51
|
Singh AK, Cancelas JA. Gap Junctions in the Bone Marrow Lympho-Hematopoietic Stem Cell Niche, Leukemia Progression, and Chemoresistance. Int J Mol Sci 2020; 21:E796. [PMID: 31991829 PMCID: PMC7038046 DOI: 10.3390/ijms21030796] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/19/2020] [Accepted: 01/23/2020] [Indexed: 12/15/2022] Open
Abstract
Abstract: The crosstalk between hematopoietic stem cells (HSC) and bone marrow (BM) microenvironment is critical for homeostasis and hematopoietic regeneration in response to blood formation emergencies after injury, and has been associated with leukemia transformation and progression. Intercellular signals by the BM stromal cells in the form of cell-bound or secreted factors, or by physical interaction, regulate HSC localization, maintenance, and differentiation within increasingly defined BM HSC niches. Gap junctions (GJ) are comprised of arrays of membrane embedded channels formed by connexin proteins, and control crucial signaling functions, including the transfer of ions, small metabolites, and organelles to adjacent cells which affect intracellular mechanisms of signaling and autophagy. This review will discuss the role of GJ in both normal and leukemic hematopoiesis, and highlight some of the most novel approaches that may improve the efficacy of cytotoxic drugs. Connexin GJ channels exert both cell-intrinsic and cell-extrinsic effects on HSC and BM stromal cells, involved in regenerative hematopoiesis after myelosuppression, and represent an alternative system of cell communication through a combination of electrical and metabolic coupling as well as organelle transfer in the HSC niche. GJ intercellular communication (GJIC) in the HSC niche improves cellular bioenergetics, and rejuvenates damaged recipient cells. Unfortunately, they can also support leukemia proliferation and survival by creating leukemic niches that provide GJIC dependent energy sources and facilitate chemoresistance and relapse. The emergence of new strategies to disrupt self-reinforcing malignant niches and intercellular organelle exchange in leukemic niches, while at the same time conserving normal hematopoietic GJIC function, could synergize the effect of chemotherapy drugs in eradicating minimal residual disease. An improved understanding of the molecular basis of connexin regulation in normal and leukemic hematopoiesis is warranted for the re-establishment of normal hematopoiesis after chemotherapy.
Collapse
Affiliation(s)
- Abhishek K. Singh
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, USA;
- Hoxworth Blood Center, University of Cincinnati Academic Health Center, 3333 Burnet Ave., Cincinnati, OH 45229, USA
| | - Jose A. Cancelas
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, USA;
- Hoxworth Blood Center, University of Cincinnati Academic Health Center, 3333 Burnet Ave., Cincinnati, OH 45229, USA
| |
Collapse
|
52
|
Clarke H. Control of Mammalian Oocyte Development by Interactions with the Maternal Follicular Environment. Results Probl Cell Differ 2019; 63:17-41. [PMID: 28779312 DOI: 10.1007/978-3-319-60855-6_2] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Development of animal germ cells depends critically on continuous contact and communication with the somatic compartment of the gonad. In females, each oocyte is enclosed within a follicle, whose somatic cells supply nutrients that sustain basal metabolic activity of the oocyte and send signals that regulate its differentiation. This maternal microenvironment thus plays an indispensable role in ensuring the production of fully differentiated oocytes that can give rise to healthy embryos. The granulosa cells send signals, likely membrane-associated Kit ligand, which trigger oocytes within resting-stage primordial follicles to initiate growth. During growth, the granulosa cells feed amino acids, nucleotides, and glycolytic substrates to the oocyte. These factors are necessary for the oocyte to complete its growth and are delivered via gap junctions that couple the granulosa cells to the oocyte. In a complementary manner, growing oocytes also release growth factors, notably growth-differentiation factor 9 and bone morphogenetic protein 15, which are necessary for proper differentiation of the granulosa cells and for these cells to support oocyte growth. During the late stages of oocyte growth, cyclic GMP that is synthesized by the granulosa cells and diffuses into the oocyte is required to prevent its precocious entry into meiotic maturation. Finally, at the early stages of maturation, granulosa cell signals promote the synthesis of a subset of proteins within the oocyte that enhance their ability to develop as embryos. Thus, the maternal legacy of the follicular microenvironment is witnessed by the fertilization of the ovulated oocyte and subsequent birth of healthy offspring.
Collapse
Affiliation(s)
- Hugh Clarke
- Department of Obstetrics and Gynecology, Research Institute of the McGill University Health Centre, McGill University, Room E.M0.2218, Glen Research Building, 100 Boul Decarie, Montreal, QC, Canada, H4A 3J1.
| |
Collapse
|
53
|
Tellios N, Feng M, Chen N, Liu H, Tellios V, Wang M, Li X, Chang CA, Hutnik C. Mechanical stretch upregulates connexin43 in human trabecular meshwork cells. Clin Exp Ophthalmol 2019; 47:787-794. [PMID: 30816600 DOI: 10.1111/ceo.13492] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/17/2019] [Accepted: 02/22/2019] [Indexed: 11/28/2022]
Abstract
BACKGROUND Primary open angle glaucoma (POAG) patients have hallmark increases in intraocular pressure (IOP) and noted dysfunction of the trabecular meshwork (TM). Connexin43 (Cx43) is a gap junction widely expressed on the TM that is important for intercellular communication. The human gene is known as gap junction alpha-1 (GJA1). Since the role of Cx43 in the TM is not fully understood, we set out to determine the effect of excess mechanical stretch on cultured human trabecular meshwork cells (hTMCs) and to specifically investigate the effect of stretch on Cx43 expression and function. METHODS Primary hTMCs were cultured and subjected to 48 hours of 15% cyclic mechanical stretch at a frequency of 1 Hz. Levels of apoptosis and necrosis secondary to stretch were investigated using colorimetric assays. The effect of stretch on gap junction Cx43 and GJA1 was investigated by RT-PCR, immunoblotting and immunofluorescence. The migration of Lucifer Yellow dye was used to assess intercellular communication. RESULTS Stretch significantly increased the rates of apoptosis and necrosis in hTMCs. The increased rate of injury in stretched hTMCs was further associated with significant upregulation of GJA1 mRNA and Cx43 protein. Upregulation of Cx43 protein was concomitant to increased intercellular communication. CONCLUSIONS We have shown stretch to increase GJA1 gene and Cx43 protein expression, as well as intercellular communication. We have further shown stretch to be injurious to hTMCs. Upregulation of Cx43 in the hTM subsequent to stretch is a novel finding, which may be useful in elucidating the mechanism of TM injury in POAG patients.
Collapse
Affiliation(s)
| | - Mary Feng
- Department of Ophthalmology, Ivey Eye Institute, St. Joseph's Healthcare, London, Ontario, Canada
| | - Nancy Chen
- Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Hong Liu
- Lawson Health Research Institute, St. Joseph's Healthcare, London, Ontario, Canada
| | - Vasiliki Tellios
- Department of Neuroscience, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Mary Wang
- Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Xiangji Li
- Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Caitlin A Chang
- Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Cindy Hutnik
- Department of Ophthalmology, Ivey Eye Institute, St. Joseph's Healthcare, London, Ontario, Canada.,Lawson Health Research Institute, St. Joseph's Healthcare, London, Ontario, Canada.,Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
54
|
Cisterna BA, Arroyo P, Puebla C. Role of Connexin-Based Gap Junction Channels in Communication of Myelin Sheath in Schwann Cells. Front Cell Neurosci 2019; 13:69. [PMID: 30881289 PMCID: PMC6405416 DOI: 10.3389/fncel.2019.00069] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 02/12/2019] [Indexed: 12/21/2022] Open
Abstract
Peripheral nerves have the capacity to conduct action potentials along great distances and quickly recover following damage which is mainly due to Schwann cells (SCs), the most abundant glial cells of the peripheral nervous system (PNS). SCs wrap around an axonal segment multiple times, forming a myelin sheath, allowing for a significant increase in action potential conduction by insulating the axons. Mature myelin consists of compact and non-compact (or cytoplasmic) myelin zones. Non-compact myelin is found in paranodal loops bordering the nodes of Ranvier, and in the inner and outermost cytoplasmic tongues and is the region in which Schmidt-Lanterman incisures (SLI; continuous spirals of overlapping cytoplasmic expansions within areas of compact myelin) are located. Using different technologies, it was shown that the layers of non-compact myelin could be connected to each other by gap junction channels (GJCs), formed by connexin 32 (Cx32), and their relative abundance allows for the transfer of ions and different small molecules. Likewise, Cx29 is expressed in the innermost layer of the myelin sheath. Here it does not form GJCs but colocalizes with Kv1, which implies that the SCs play an active role in the electrical condition in mammals. The critical role of GJCs in the functioning of myelinating SCs is evident in Charcot-Marie-Tooth disease (CMT), X-linked form 1 (CMTX1), which is caused by mutations in the gap junction protein beta 1 (GJB1) gene that codes for Cx32. Although the management of CMT symptoms is currently supportive, there is a recent method for targeted gene delivery to myelinating cells, which rescues the phenotype in KO-Cx32 mice, a model of CMTX1. In this mini-review article, we discuss the current knowledge on the role of Cxs in myelin-forming SCs and summarize recent discoveries that may become a real treatment possibility for patients with disorders such as CMT.
Collapse
Affiliation(s)
- Bruno A Cisterna
- Escuela de Medicina, Universidad de Talca, Talca, Chile.,Centro para el Desarrollo de la Nanociencia y Nanotecnología (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
| | - Pablo Arroyo
- Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carlos Puebla
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| |
Collapse
|
55
|
Kubincová P, Sychrová E, Raška J, Basu A, Yawer A, Dydowiczová A, Babica P, Sovadinová I. Polycyclic Aromatic Hydrocarbons and Endocrine Disruption: Role of Testicular Gap Junctional Intercellular Communication and Connexins. Toxicol Sci 2019; 169:70-83. [DOI: 10.1093/toxsci/kfz023] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Abstract
Ambient air pollution and smoking are well-documented risk factors for male infertility. Prevalent air pollutants and cigarette smoke components, polycyclic aromatic hydrocarbons (PAHs), are environmental and occupational toxicants that act as chemicals disrupting endocrine regulation and reproductive potential in males. Testicular gap junctional intercellular communication (GJIC) is critical for normal development and function of testicular tissue, thus we assessed GJIC as a process potentially targeted by PAHs in testes. Lower MW PAHs with a bay or bay-like region rapidly dysregulated GJIC in Leydig TM3 cells by relocalization of major testicular gap junctional protein connexin 43 (Cx43) from plasma membrane to cytoplasm. This was associated with colocalization between Cx43 and ubiquitin in intracellular compartments, but without any effect on Cx43 degradation rate or steady-state Cx43 mRNA levels. A longer exposure to active PAHs decreased steady-state levels of full-length Cx43 protein and its 2 N-truncated isoforms. Inhibition of GJIC by PAHs, similarly to a prototypic GJIC-inhibitor TPA, was mediated via the MAP kinase-Erk1/2 and PKC pathways. Polycyclic aromatic hydrocarbon-induced GJIC dysregulation in testes was cell-type-specific because neither PAH dysregulated GJIC in Sertoli TM4 cells, despite PAHs were rapidly taken up by both Leydig TM3 as well as Sertoli TM4 cells. Because TPA effectively dysregulated GJIC in both testicular cell types, a unique regulator of GJIC targeted by PAHs might exist in Leydig TM3 cells. Our results indicate that PAHs could be a potential etiological agent contributing to reproductive dysfunctions in males through an impairment of testicular GJIC and junctional and/or nonjunctional functions of Cx43.
Collapse
Affiliation(s)
- Petra Kubincová
- Masaryk University, Faculty of Science, RECETOX, Brno, Czech Republic
| | - Eliška Sychrová
- Masaryk University, Faculty of Science, RECETOX, Brno, Czech Republic
| | - Jan Raška
- Masaryk University, Faculty of Science, RECETOX, Brno, Czech Republic
| | - Amrita Basu
- Masaryk University, Faculty of Science, RECETOX, Brno, Czech Republic
| | - Affiefa Yawer
- Masaryk University, Faculty of Science, RECETOX, Brno, Czech Republic
| | - Aneta Dydowiczová
- Masaryk University, Faculty of Science, RECETOX, Brno, Czech Republic
| | - Pavel Babica
- Masaryk University, Faculty of Science, RECETOX, Brno, Czech Republic
| | - Iva Sovadinová
- Masaryk University, Faculty of Science, RECETOX, Brno, Czech Republic
| |
Collapse
|
56
|
Pogoda K, Kameritsch P, Mannell H, Pohl U. Connexins in the control of vasomotor function. Acta Physiol (Oxf) 2019; 225:e13108. [PMID: 29858558 DOI: 10.1111/apha.13108] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 05/25/2018] [Accepted: 05/28/2018] [Indexed: 12/13/2022]
Abstract
Vascular endothelial cells, as well as smooth muscle cells, show heterogeneity with regard to their receptor expression and reactivity. For the vascular wall to act as a functional unit, the various cells' responses require integration. Such an integration is not only required for a homogeneous response of the vascular wall, but also for the vasomotor behaviour of consecutive segments of the microvascular arteriolar tree. As flow resistances of individual sections are connected in series, sections require synchronization and coordination to allow effective changes of conductivity and blood flow. A prerequisite for the local coordination of individual vascular cells and different sections of an arteriolar tree is intercellular communication. Connexins are involved in a dual manner in this coordination. (i) By forming gap junctions between cells, they allow an intercellular exchange of signalling molecules and electrical currents. In particular, the spread of electrical currents allows for coordination of cell responses over longer distances. (ii) Connexins are able to interact with other proteins to form signalling complexes. In this way, they can modulate and integrate individual cells' responses also in a channel-independent manner. This review outlines mechanisms allowing the vascular connexins to exert their coordinating function and to regulate the vasomotor reactions of blood vessels both locally, and in vascular networks. Wherever possible, we focus on the vasomotor behaviour of small vessels and arterioles which are the main vessels determining vascular resistance, blood pressure and local blood flow.
Collapse
Affiliation(s)
- K. Pogoda
- Walter-Brendel-Centre of Experimental Medicine; University Hospital; LMU Munich; Munich Germany
- Biomedical Center; Cardiovascular Physiology; LMU Munich; Munich Germany
- DZHK (German Center for Cardiovascular Research); Partner Site Munich Heart Alliance; Munich Germany
| | - P. Kameritsch
- Walter-Brendel-Centre of Experimental Medicine; University Hospital; LMU Munich; Munich Germany
- Biomedical Center; Cardiovascular Physiology; LMU Munich; Munich Germany
- DZHK (German Center for Cardiovascular Research); Partner Site Munich Heart Alliance; Munich Germany
| | - H. Mannell
- Walter-Brendel-Centre of Experimental Medicine; University Hospital; LMU Munich; Munich Germany
- Biomedical Center; Cardiovascular Physiology; LMU Munich; Munich Germany
| | - U. Pohl
- Walter-Brendel-Centre of Experimental Medicine; University Hospital; LMU Munich; Munich Germany
- Biomedical Center; Cardiovascular Physiology; LMU Munich; Munich Germany
- DZHK (German Center for Cardiovascular Research); Partner Site Munich Heart Alliance; Munich Germany
- Munich Cluster for Systems Neurology (SyNergy); Munich Germany
| |
Collapse
|
57
|
Youssefian L, Vahidnezhad H, Saeidian AH, Mahmoudi H, Karamzadeh R, Kariminejad A, Huang J, Li L, Jannace TF, Fortina P, Zeinali S, White TW, Uitto J. A novel autosomal recessive GJB2-associated disorder: Ichthyosis follicularis, bilateral severe sensorineural hearing loss, and punctate palmoplantar keratoderma. Hum Mutat 2018; 40:217-229. [PMID: 30431684 DOI: 10.1002/humu.23686] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/26/2018] [Accepted: 10/30/2018] [Indexed: 11/07/2022]
Abstract
Ichthyosis follicularis, a distinct cutaneous entity reported in combination with atrichia, and photophobia has been associated with mutations in MBTPS2. We sought the genetic cause of a novel syndrome of ichthyosis follicularis, bilateral severe sensorineural hearing loss and punctate palmoplantar keratoderma in two families. We performed whole exome sequencing on three patients from two families. The pathogenicity and consequences of mutations were studied in the Xenopus oocyte expression system and by molecular modeling analysis. Compound heterozygous mutations in the GJB2 gene were discovered: a pathogenic c.526A>G; p.Asn176Asp, and a common frameshift mutation, c.35delG; p.Gly12Valfs*2. The p.Asn176Asp missense mutation was demonstrated to significantly reduce the cell-cell gap junction channel activity and increase the nonjunctional hemichannel activity in the Xenopus oocyte expression system. Molecular modeling analyses of the mutant Cx26 protein revealed significant changes in the structural characteristics and electrostatic potential of the Cx26, either in hemichannel or gap junction conformation. Thus, association of a new syndrome of an autosomal recessive disorder of ichthyosis follicularis, bilateral severe sensorineural hearing loss and punctate palmoplantar keratoderma with mutations in GJB2, expands the phenotypic spectrum of the GJB2-associated disorders. The findings attest to the complexity of the clinical consequences of different mutations in GJB2.
Collapse
Affiliation(s)
- Leila Youssefian
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA, USA
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Genetics, Genomics and Cancer Biology PhD Program, Thomas Jefferson University, Philadelphia, PA, USA
| | - Hassan Vahidnezhad
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA, USA
- Biotechnology Research Center, Department of Molecular Medicine, Pasteur Institute of Iran, Tehran, Iran
| | - Amir Hossein Saeidian
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA, USA
- Genetics, Genomics and Cancer Biology PhD Program, Thomas Jefferson University, Philadelphia, PA, USA
| | - Hamidreza Mahmoudi
- Department of Dermatology, Razi Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Razieh Karamzadeh
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | | | - Jianhe Huang
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Leping Li
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, USA
| | - Thomas F Jannace
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, USA
| | - Paolo Fortina
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
- Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Sirous Zeinali
- Biotechnology Research Center, Department of Molecular Medicine, Pasteur Institute of Iran, Tehran, Iran
| | - Thomas W White
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, USA
| | - Jouni Uitto
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
58
|
Myers JB, Haddad BG, O'Neill SE, Chorev DS, Yoshioka CC, Robinson CV, Zuckerman DM, Reichow SL. Structure of native lens connexin 46/50 intercellular channels by cryo-EM. Nature 2018; 564:372-377. [PMID: 30542154 PMCID: PMC6309215 DOI: 10.1038/s41586-018-0786-7] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 10/29/2018] [Indexed: 11/19/2022]
Abstract
Gap junctions establish direct pathways for cell-to-cell communication through the assembly of twelve connexin subunits that form intercellular channels connecting neighbouring cells. Co-assembly of different connexin isoforms produces channels with unique properties and enables communication across cell types. Here we used single-particle cryo-electron microscopy to investigate the structural basis of connexin co-assembly in native lens gap junction channels composed of connexin 46 and connexin 50 (Cx46/50). We provide the first comparative analysis to connexin 26 (Cx26), which-together with computational studies-elucidates key energetic features governing gap junction permselectivity. Cx46/50 adopts an open-state conformation that is distinct from the Cx26 crystal structure, yet it appears to be stabilized by a conserved set of hydrophobic anchoring residues. 'Hot spots' of genetic mutations linked to hereditary cataract formation map to the core structural-functional elements identified in Cx46/50, suggesting explanations for many of the disease-causing effects.
Collapse
Affiliation(s)
- Janette B Myers
- Department of Chemistry, Portland State University, Portland, OR, USA
| | - Bassam G Haddad
- Department of Chemistry, Portland State University, Portland, OR, USA
| | - Susan E O'Neill
- Department of Chemistry, Portland State University, Portland, OR, USA
| | - Dror S Chorev
- Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK
| | - Craig C Yoshioka
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, USA
| | - Carol V Robinson
- Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK
| | - Daniel M Zuckerman
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, USA
| | - Steve L Reichow
- Department of Chemistry, Portland State University, Portland, OR, USA.
| |
Collapse
|
59
|
Abstract
The connexin family of channel-forming proteins is present in every tissue type in the human anatomy. Connexins are best known for forming clustered intercellular channels, structurally known as gap junctions, where they serve to exchange members of the metabolome between adjacent cells. In their single-membrane hemichannel form, connexins can act as conduits for the passage of small molecules in autocrine and paracrine signalling. Here, we review the roles of connexins in health and disease, focusing on the potential of connexins as therapeutic targets in acquired and inherited diseases as well as wound repair, while highlighting the associated clinical challenges.
Collapse
|
60
|
Schadzek P, Hermes D, Stahl Y, Dilger N, Ngezahayo A. Concatenation of Human Connexin26 (hCx26) and Human Connexin46 (hCx46) for the Analysis of Heteromeric Gap Junction Hemichannels and Heterotypic Gap Junction Channels. Int J Mol Sci 2018; 19:E2742. [PMID: 30217016 PMCID: PMC6163895 DOI: 10.3390/ijms19092742] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 09/10/2018] [Accepted: 09/11/2018] [Indexed: 12/16/2022] Open
Abstract
Gap junction channels and hemichannels formed by concatenated connexins were analyzed. Monomeric (hCx26, hCx46), homodimeric (hCx46-hCx46, hCx26-hCx26), and heterodimeric (hCx26-hCx46, hCx46-hCx26) constructs, coupled to GFP, were expressed in HeLa cells. Confocal microscopy showed that the tandems formed gap junction plaques with a reduced plaque area compared to monomeric hCx26 or hCx46. Dye transfer experiments showed that concatenation allows metabolic transfer. Expressed in Xenopus oocytes, the inside-out patch-clamp configuration showed single channels with a conductance of about 46 pS and 39 pS for hemichannels composed of hCx46 and hCx26 monomers, respectively, when chloride was replaced by gluconate on both membrane sides. The conductance was reduced for hCx46-hCx46 and hCx26-hCx26 homodimers, probably due to the concatenation. Heteromerized hemichannels, depending on the connexin-order, were characterized by substates at 26 pS and 16 pS for hCx46-hCx26 and 31 pS and 20 pS for hCx26-hCx46. Because of the linker between the connexins, the properties of the formed hemichannels and gap junction channels (e.g., single channel conductance) may not represent the properties of hetero-oligomerized channels. However, should the removal of the linker be successful, this method could be used to analyze the electrical and metabolic selectivity of such channels and the physiological consequences for a tissue.
Collapse
Affiliation(s)
- Patrik Schadzek
- Institut für Biophysik, Leibniz Universität Hannover, Herrenhäuser Straße 2, 30419 Hannover, Germany.
| | - Doris Hermes
- Institut für Biophysik, Leibniz Universität Hannover, Herrenhäuser Straße 2, 30419 Hannover, Germany.
- Department of Clinical Neurophysiology, University of Göttingen, Robert-Koch Str. 40, D-37075 Göttingen, Germany.
| | - Yannick Stahl
- Institut für Biophysik, Leibniz Universität Hannover, Herrenhäuser Straße 2, 30419 Hannover, Germany.
| | - Nadine Dilger
- Institut für Biophysik, Leibniz Universität Hannover, Herrenhäuser Straße 2, 30419 Hannover, Germany.
| | - Anaclet Ngezahayo
- Institut für Biophysik, Leibniz Universität Hannover, Herrenhäuser Straße 2, 30419 Hannover, Germany.
- Zentrum für Systemische Neurowissenschaften Stiftung Tierärztliche Hochschule Hannover, Bünteweg 2, 30559 Hannover, Germany.
| |
Collapse
|
61
|
Aasen T, Johnstone S, Vidal-Brime L, Lynn KS, Koval M. Connexins: Synthesis, Post-Translational Modifications, and Trafficking in Health and Disease. Int J Mol Sci 2018; 19:ijms19051296. [PMID: 29701678 PMCID: PMC5983588 DOI: 10.3390/ijms19051296] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/20/2018] [Accepted: 04/21/2018] [Indexed: 02/06/2023] Open
Abstract
Connexins are tetraspan transmembrane proteins that form gap junctions and facilitate direct intercellular communication, a critical feature for the development, function, and homeostasis of tissues and organs. In addition, a growing number of gap junction-independent functions are being ascribed to these proteins. The connexin gene family is under extensive regulation at the transcriptional and post-transcriptional level, and undergoes numerous modifications at the protein level, including phosphorylation, which ultimately affects their trafficking, stability, and function. Here, we summarize these key regulatory events, with emphasis on how these affect connexin multifunctionality in health and disease.
Collapse
Affiliation(s)
- Trond Aasen
- Translational Molecular Pathology, Vall d'Hebron Institute of Research (VHIR), Autonomous University of Barcelona, CIBERONC, 08035 Barcelona, Spain.
| | - Scott Johnstone
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, P.O. Box 801394, Charlottesville, VI 22908, USA.
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TT, UK.
| | - Laia Vidal-Brime
- Translational Molecular Pathology, Vall d'Hebron Institute of Research (VHIR), Autonomous University of Barcelona, CIBERONC, 08035 Barcelona, Spain.
| | - K Sabrina Lynn
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Michael Koval
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA.
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
62
|
Clarke HJ. Regulation of germ cell development by intercellular signaling in the mammalian ovarian follicle. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2018; 7:10.1002/wdev.294. [PMID: 28892263 PMCID: PMC5746469 DOI: 10.1002/wdev.294] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 07/21/2017] [Accepted: 08/02/2017] [Indexed: 12/21/2022]
Abstract
Prior to ovulation, the mammalian oocyte undergoes a process of differentiation within the ovarian follicle that confers on it the ability to give rise to an embryo. Differentiation comprises two phases-growth, during which the oocyte increases more than 100-fold in volume as it accumulates macromolecules and organelles that will sustain early embryogenesis; and meiotic maturation, during which the oocyte executes the first meiotic division and prepares for the second division. Entry of an oocyte into the growth phase appears to be triggered when the adjacent granulosa cells produce specific growth factors. As the oocyte grows, it elaborates a thick extracellular coat termed the zona pellucida. Nonetheless, cytoplasmic extensions of the adjacent granulosa cells, termed transzonal projections (TZPs), enable them to maintain contact-dependent communication with the oocyte. Through gap junctions located where the TZP tips meet the oocyte membrane, they provide the oocyte with products that sustain its metabolic activity and signals that regulate its differentiation. Conversely, the oocyte secretes diffusible growth factors that regulate proliferation and differentiation of the granulosa cells. Gap junction-permeable products of the granulosa cells prevent precocious initiation of meiotic maturation, and the gap junctions also enable oocyte maturation to begin in response to hormonal signals received by the granulosa cells. Development of the oocyte or the somatic compartment may also be regulated by extracellular vesicles newly identified in follicular fluid and at TZP tips, which could mediate intercellular transfer of macromolecules. Oocyte differentiation thus depends on continuous signaling interactions with the somatic cells of the follicle. WIREs Dev Biol 2018, 7:e294. doi: 10.1002/wdev.294 This article is categorized under: Gene Expression and Transcriptional Hierarchies > Cellular Differentiation Signaling Pathways > Cell Fate Signaling Early Embryonic Development > Gametogenesis.
Collapse
Affiliation(s)
- Hugh J Clarke
- Department of Obstetrics and Gynecology, Research Institute of the McGill University Health Centre, McGill University, Montreal, Canada
| |
Collapse
|
63
|
Valiunas V, Cohen IS, Brink PR. Defining the factors that affect solute permeation of gap junction channels. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2018; 1860:96-101. [PMID: 28690048 PMCID: PMC5705451 DOI: 10.1016/j.bbamem.2017.07.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 06/30/2017] [Accepted: 07/03/2017] [Indexed: 01/22/2023]
Abstract
This review focuses on the biophysical properties and structure of the pore and vestibule of homotypic gap junction channels as they relate to channel permeability and selectivity. Gap junction channels are unique in their sole role to connect the cytoplasm of two adjacent cells. In general, these channels are considered to be poorly selective, possess open probabilities approximating unity, and exhibit mean open times ranging from milliseconds to seconds. These properties suggest that such channels can function as delivery pathways from cell to cell for solutes that are significantly larger than monovalent ions. We have taken quantitative data from published works concerning unitary conductance, ion flux, and permeability for homotypic connexin 43 (Cx43), Cx40, Cx26, Cx50, and Cx37, and performed a comparative analysis of conductance and/or ion/solute flux versus diffusion coefficient. The analysis of monovalent cation flux portrays the pore as equivalent to an aqueous space where hydrogen bonding and weak interactions with binding sites dominate. For larger solutes, size, shape and charge are also significant components in determining the permeation rate. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.
Collapse
Affiliation(s)
- Virginijus Valiunas
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Ira S Cohen
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Peter R Brink
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
64
|
Sanchez HA, Slavi N, Srinivas M, Verselis VK. Syndromic deafness mutations at Asn 14 differentially alter the open stability of Cx26 hemichannels. J Gen Physiol 2017; 148:25-42. [PMID: 27353444 PMCID: PMC4924935 DOI: 10.1085/jgp.201611585] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 06/10/2016] [Indexed: 01/23/2023] Open
Abstract
Connexin 26 (Cx26) is a transmembrane protein that forms hexameric hemichannels that can function when unopposed or dock to form intercellular gap junction channels. Aberrantly functioning unopposed hemichannels are a common feature of syndromic deafness associated with mutations in Cx26. In this study, we examine two different mutations at the same position in the N-terminal domain of Cx26, N14K and N14Y, which have been reported to produce different phenotypes in patients. We find that both N14K and N14Y, when expressed alone or together with wild-type (WT) Cx26, result in functional hemichannels with widely disparate functional properties. N14K currents are robust, whereas N14Y currents are small. The two mutants also exhibit opposite shifts in voltage-dependent loop gating, such that activation of N14K and N14Y is shifted in the hyperpolarizing and depolarizing directions, respectively. Deactivation kinetics suggests that N14K stabilizes and N14Y destabilizes the open state. Single N14K hemichannel recordings in low extracellular Ca(2+) show no evidence of stable closing transitions associated with loop gating, and N14K hemichannels are insensitive to pH. Together, these properties cause N14K hemichannels to be particularly refractory to closing. Although we find that the unitary conductance of N14K is indistinguishable from WT Cx26, mutagenesis and substituted cysteine accessibility studies suggest that the N14 residue is exposed to the pore and that the differential properties of N14K and N14Y hemichannels likely result from altered electrostatic interactions between the N terminus and the cytoplasmic extension of TM2 in the adjacent subunit. The combined effects that we observe on loop gating and pH regulation may explain the unusual buccal cutaneous manifestations in patients carrying the N14K mutation. Our work also provides new considerations regarding the underlying molecular mechanism of loop gating, which controls hemichannel opening in the plasma membrane.
Collapse
Affiliation(s)
- Helmuth A Sanchez
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Nefeli Slavi
- Department of Biological Sciences, SUNY College of Optometry, New York, NY 10036
| | - Miduturu Srinivas
- Department of Biological Sciences, SUNY College of Optometry, New York, NY 10036
| | - Vytas K Verselis
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461
| |
Collapse
|
65
|
Leybaert L, Lampe PD, Dhein S, Kwak BR, Ferdinandy P, Beyer EC, Laird DW, Naus CC, Green CR, Schulz R. Connexins in Cardiovascular and Neurovascular Health and Disease: Pharmacological Implications. Pharmacol Rev 2017; 69:396-478. [PMID: 28931622 PMCID: PMC5612248 DOI: 10.1124/pr.115.012062] [Citation(s) in RCA: 175] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Connexins are ubiquitous channel forming proteins that assemble as plasma membrane hemichannels and as intercellular gap junction channels that directly connect cells. In the heart, gap junction channels electrically connect myocytes and specialized conductive tissues to coordinate the atrial and ventricular contraction/relaxation cycles and pump function. In blood vessels, these channels facilitate long-distance endothelial cell communication, synchronize smooth muscle cell contraction, and support endothelial-smooth muscle cell communication. In the central nervous system they form cellular syncytia and coordinate neural function. Gap junction channels are normally open and hemichannels are normally closed, but pathologic conditions may restrict gap junction communication and promote hemichannel opening, thereby disturbing a delicate cellular communication balance. Until recently, most connexin-targeting agents exhibited little specificity and several off-target effects. Recent work with peptide-based approaches has demonstrated improved specificity and opened avenues for a more rational approach toward independently modulating the function of gap junctions and hemichannels. We here review the role of connexins and their channels in cardiovascular and neurovascular health and disease, focusing on crucial regulatory aspects and identification of potential targets to modify their function. We conclude that peptide-based investigations have raised several new opportunities for interfering with connexins and their channels that may soon allow preservation of gap junction communication, inhibition of hemichannel opening, and mitigation of inflammatory signaling.
Collapse
Affiliation(s)
- Luc Leybaert
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Paul D Lampe
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Stefan Dhein
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Brenda R Kwak
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Peter Ferdinandy
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Eric C Beyer
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Dale W Laird
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Christian C Naus
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Colin R Green
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Rainer Schulz
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| |
Collapse
|
66
|
Meens MJ, Kutkut I, Rochemont V, Dubrot J, Kaladji FR, Sabine A, Lyons O, Hendrikx S, Bernier-Latmani J, Kiefer F, Smith A, Hugues S, Petrova TV, Kwak BR. Cx47 fine-tunes the handling of serum lipids but is dispensable for lymphatic vascular function. PLoS One 2017; 12:e0181476. [PMID: 28732089 PMCID: PMC5521787 DOI: 10.1371/journal.pone.0181476] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 06/30/2017] [Indexed: 12/04/2022] Open
Abstract
Mutations in the gap junction protein connexin47 (Cx47) are associated with lymphedema. However, the role of Cx47 in lymphatic pathophysiology is unknown. We demonstrate that Cx47 is expressed in lymphatic endothelial cells by whole-mount immunostaining and qPCR. To determine if Cx47 plays a role in lymphatic vessel function we analysed Cx47-/- mice. Cx47-deficiency did not affect lymphatic contractility (contractile amplitude or frequency) or lymphatic morphology (vessel diameter or number of valves). Interstitial fluid drainage or dendritic cell migration through lymphatic vessels was also not affected by Cx47-deficiency. Cx47 is dispensable for long-chain fatty acid absorption from the gut but rather promotes serum lipid handling as prolonged elevated triglyceride levels were observed in Cx47-deficient mice after oral lipid tolerance tests. When crossed with Apolipoprotein E-deficient (Apoe-/-) mice, LDL-cholesterol was decreased in young Cx47-/-Apoe-/- adults as compared to Apoe-/- mice, which was inverted later in life. Finally, advanced atherosclerotic plaques in thoracic-abdominal aortas of 15 months-old mice tended to be larger in Cx47-/-Apoe-/- mice. These plaques contained fewer macrophages but similar amounts of T lymphocytes, collagen and lipids than plaques of Apoe-/- mice. In conclusion, Cx47 is expressed in lymphatic endothelium and seems modestly implicated in multiple aspects of lymphatic pathophysiology.
Collapse
Affiliation(s)
- Merlijn J. Meens
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
- * E-mail:
| | - Issa Kutkut
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Viviane Rochemont
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Juan Dubrot
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Fouad R. Kaladji
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Amélie Sabine
- Department of Fundamental Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Lausanne, Switzerland
- Division of Experimental Pathology, Institute of Pathology, CHUV, Lausanne, Switzerland
| | - Oliver Lyons
- Academic Department of Vascular Surgery, Cardiovascular Division, King's College London, BHF Centre of Research Excellence & NIHR Biomedical Research Centre at King's Health Partners, St Thomas' Hospital, London, United Kingdom
| | - Stefanie Hendrikx
- Department of Fundamental Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Lausanne, Switzerland
- Division of Experimental Pathology, Institute of Pathology, CHUV, Lausanne, Switzerland
| | - Jeremiah Bernier-Latmani
- Department of Fundamental Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Lausanne, Switzerland
- Division of Experimental Pathology, Institute of Pathology, CHUV, Lausanne, Switzerland
| | - Friedemann Kiefer
- Mammalian Cell Signalling Laboratory, Department of Vascular Cell Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Alberto Smith
- Academic Department of Vascular Surgery, Cardiovascular Division, King's College London, BHF Centre of Research Excellence & NIHR Biomedical Research Centre at King's Health Partners, St Thomas' Hospital, London, United Kingdom
| | - Stéphanie Hugues
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Tatiana V. Petrova
- Department of Fundamental Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Lausanne, Switzerland
- Division of Experimental Pathology, Institute of Pathology, CHUV, Lausanne, Switzerland
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Swiss Federal Institute of Technology Lausanne, Lausanne, Switzerland
| | - Brenda R. Kwak
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
- Department of Medical Specialties – Cardiology, University of Geneva, Geneva, Switzerland
| |
Collapse
|
67
|
Bai D, Yue B, Aoyama H. Crucial motifs and residues in the extracellular loops influence the formation and specificity of connexin docking. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:9-21. [PMID: 28693896 DOI: 10.1016/j.bbamem.2017.07.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 06/25/2017] [Accepted: 07/03/2017] [Indexed: 12/19/2022]
Abstract
Most of the early studies on gap junction (GJ) channel function and docking compatibility were on rodent connexins, while recent research on GJ channels gradually shifted from rodent to human connexins largely due to the fact that mutations in many human connexin genes are found to associate with inherited human diseases. The studies on human connexins have revealed some key differences from those found in rodents, calling for a comprehensive characterization of human GJ channels. Functional studies revealed that docking and formation of functional GJ channels between two hemichannels are possible only between docking-compatible connexins. Two groups of docking-compatible rodent connexins have been identified. Compatibility is believed to be due to their amino acid residue differences at the extracellular loop domains (E1 and E2). Sequence alignment of the E1 and E2 domains of all connexins known to make GJs revealed that they are highly conserved and show high sequence identity with human Cx26, which is the only connexin with near atomic resolution GJ structure. We hypothesize that different connexins have a similar structure as that of Cx26 at the E1 and E2 domains and use the corresponding residues in their E1 and E2 domains for docking. Based on the Cx26 GJ structure and sequence analysis of well-studied connexins, we propose that the E1-E1 docking interactions are staggered with each E1 interacting with two E1s on the docked connexon. The putative E1 docking residues are conserved in both docking-compatible and -incompatible connexins, indicating that E1 does not likely serve a role in docking compatibility. However, in the case of E2-E2 docking interactions, the putative docking residues are only conserved within the docking-compatible connexins, suggesting the E2 is likely to serve the function of docking compatibility. Docking compatibility studies on human connexins have attracted a lot of attention due to the fact that putative docking residues are mutational hotspots for several connexin-linked human diseases. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.
Collapse
Affiliation(s)
- Donglin Bai
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada.
| | - Benny Yue
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Hiroshi Aoyama
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| |
Collapse
|
68
|
Zhong G, Akoum N, Appadurai DA, Hayrapetyan V, Ahmed O, Martinez AD, Beyer EC, Moreno AP. Mono-Heteromeric Configurations of Gap Junction Channels Formed by Connexin43 and Connexin45 Reduce Unitary Conductance and Determine both Voltage Gating and Metabolic Flux Asymmetry. Front Physiol 2017; 8:346. [PMID: 28611680 PMCID: PMC5447054 DOI: 10.3389/fphys.2017.00346] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 05/11/2017] [Indexed: 11/29/2022] Open
Abstract
In cardiac tissues, the expression of multiple connexins (Cx40, Cx43, Cx45, and Cx30.2) is a requirement for proper development and function. Gap junctions formed by these connexins have distinct permeability and gating mechanisms. Since a single cell can express more than one connexin isoform, the formation of hetero-multimeric gap junction channels provides a tissue with an enormous repertoire of combinations to modulate intercellular communication. To study further the perm-selectivity and gating properties of channels containing Cx43 and Cx45, we studied two monoheteromeric combinations in which a HeLa cell co-transfected with Cx43 and Cx45 was paired with a cell expressing only one of these connexins. Macroscopic measurements of total conductance between cell pairs indicated a drastic reduction in total conductance for mono-heteromeric channels. In terms of Vj dependent gating, Cx43 homomeric connexons facing heteromeric connexons only responded weakly to voltage negativity. Cx45 homomeric connexons exhibited no change in Vj gating when facing heteromeric connexons. The distributions of unitary conductances (γj) for both mono-heteromeric channels were smaller than predicted, and both showed low permeability to the fluorescent dyes Lucifer yellow and Rhodamine123. For both mono-heteromeric channels, we observed flux asymmetry regardless of dye charge: flux was higher in the direction of the heteromeric connexon for MhetCx45 and in the direction of the homomeric Cx43 connexon for MhetCx43. Thus, our data suggest that co-expression of Cx45 and Cx43 induces the formation of heteromeric connexons with greatly reduced permeability and unitary conductance. Furthermore, it increases the asymmetry for voltage gating for opposing connexons, and it favors asymmetric flux of molecules across the junction that depends primarily on the size (not the charge) of the crossing molecules.
Collapse
Affiliation(s)
- Guoqiang Zhong
- Department of Cardiology, First Affiliated Hospital of Guangxi Medical UniversityGuangxi, China
| | - Nazem Akoum
- University Medical Center, University of WashingtonSeattle, WA, United States
| | | | | | - Osman Ahmed
- Atlanta Heart SpecialistsAtlanta, GA, United States
| | - Agustin D Martinez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de ValparaísoValparaíso, Chile
| | - Eric C Beyer
- Department of Pediatrics, University of ChicagoChicago, IL, United States
| | - Alonso P Moreno
- Cardiovascular Research and Training Institute (CVRTI), Department of Bioengineering, University of UtahSalt Lake Citiy, UT, United States
| |
Collapse
|
69
|
Hall DH. Gap junctions in C. elegans: Their roles in behavior and development. Dev Neurobiol 2017; 77:587-596. [PMID: 27294317 PMCID: PMC5412865 DOI: 10.1002/dneu.22408] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 06/08/2016] [Accepted: 06/08/2016] [Indexed: 01/07/2023]
Abstract
The nematode Caenorhabditis elegans utilizes gap junctions in different fashions in virtually all of its cells. This model animal has a surprisingly large number of innexin genes within its genome, and many nematode cell types can express multiple innexins at once, leading to the formation of diverse junction types and enough redundancy to limit the effect of single gene knockdowns on animal development or behavioral phenotypes. Here, we review the general properties of these junctions, their expression patterns, and their known roles in tissue development and in the animal's connectome. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 587-596, 2017.
Collapse
Affiliation(s)
- David H Hall
- Department of Neuroscience, Center for C. elegans Anatomy, Albert Einstein College of Medicine, Bronx, New York, 10461
| |
Collapse
|
70
|
Skerrett IM, Williams JB. A structural and functional comparison of gap junction channels composed of connexins and innexins. Dev Neurobiol 2017; 77:522-547. [PMID: 27582044 PMCID: PMC5412853 DOI: 10.1002/dneu.22447] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 08/12/2016] [Accepted: 08/30/2016] [Indexed: 02/03/2023]
Abstract
Methods such as electron microscopy and electrophysiology led to the understanding that gap junctions were dense arrays of channels connecting the intracellular environments within almost all animal tissues. The characteristics of gap junctions were remarkably similar in preparations from phylogenetically diverse animals such as cnidarians and chordates. Although few studies directly compared them, minor differences were noted between gap junctions of vertebrates and invertebrates. For instance, a slightly wider gap was noted between cells of invertebrates and the spacing between invertebrate channels was generally greater. Connexins were identified as the structural component of vertebrate junctions in the 1980s and innexins as the structural component of pre-chordate junctions in the 1990s. Despite a lack of similarity in gene sequence, connexins and innexins are remarkably similar. Innexins and connexins have the same membrane topology and form intercellular channels that play a variety of tissue- and temporally specific roles. Both protein types oligomerize to form large aqueous channels that allow the passage of ions and small metabolites and are regulated by factors such as pH, calcium, and voltage. Much more is currently known about the structure, function, and structure-function relationships of connexins. However, the innexin field is expanding. Greater knowledge of innexin channels will permit more detailed comparisons with their connexin-based counterparts, and provide insight into the ubiquitous yet specific roles of gap junctions. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 522-547, 2017.
Collapse
Affiliation(s)
- I Martha Skerrett
- Biology Department, SUNY Buffalo State, 1300 Elmwood Ave, Buffalo, New York, 14222
| | - Jamal B Williams
- Biology Department, SUNY Buffalo State, 1300 Elmwood Ave, Buffalo, New York, 14222
| |
Collapse
|
71
|
Srinivas M, Verselis VK, White TW. Human diseases associated with connexin mutations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:192-201. [PMID: 28457858 DOI: 10.1016/j.bbamem.2017.04.024] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 04/20/2017] [Accepted: 04/25/2017] [Indexed: 01/11/2023]
Abstract
Gap junctions and hemichannels comprised of connexins impact many cellular processes. Significant advances in our understanding of the functional role of these channels have been made by the identification of a host of genetic diseases caused by connexin mutations. Prominent features of connexin disorders are the inability of other connexins expressed in the same cell type to compensate for the mutated one, and the ability of connexin mutants to dominantly influence the activity of other wild-type connexins. Functional studies have begun to identify some of the underlying mechanisms whereby connexin channel mutation contributes to the disease state. Detailed mechanistic understanding of these functional differences will help to facilitate new pathophysiology driven therapies for the diverse array of connexin genetic disorders. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.
Collapse
Affiliation(s)
- Miduturu Srinivas
- Department of Biological and Vision Sciences, SUNY College of Optometry, New York, NY 10036, USA
| | - Vytas K Verselis
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Thomas W White
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
72
|
Abstract
Gap junction channels facilitate the intercellular exchange of ions and small molecules, a process that is critical for the function of many different kinds of cells and tissues. Recent crystal structures of channels formed by one connexin isoform (connexin26) have been determined, and they have been subjected to molecular modeling. These studies have provided high-resolution models to gain insights into the mechanisms of channel conductance, molecular permeability, and gating. The models share similarities, but there are some differences in the conclusions reached by these studies. Many unanswered questions remain to allow an atomic-level understanding of intercellular communication mediated by connexin26. Because some domains of the connexin polypeptides are highly conserved (like the transmembrane regions), it is likely that some features of the connexin26 structure will apply to other members of the family of gap junction proteins. However, determination of high-resolution structures and modeling of other connexin channels will be required to account for the diverse biophysical properties and regulation conferred by the differences in their sequences.
Collapse
Affiliation(s)
- Eric C Beyer
- Department of Pediatrics, University of Chicago, Chicago, IL, 60637, USA
| | - Viviana M Berthoud
- Department of Pediatrics, University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
73
|
Molica F, Stierlin FB, Fontana P, Kwak BR. Pannexin- and Connexin-Mediated Intercellular Communication in Platelet Function. Int J Mol Sci 2017; 18:E850. [PMID: 28420171 PMCID: PMC5412434 DOI: 10.3390/ijms18040850] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/06/2017] [Accepted: 04/12/2017] [Indexed: 12/11/2022] Open
Abstract
The three major blood cell types, i.e., platelets, erythrocytes and leukocytes, are all produced in the bone marrow. While red blood cells are the most numerous and white cells are the largest, platelets are small fragments and account for a minor part of blood volume. However, platelets display a crucial function by preventing bleeding. Upon vessel wall injury, platelets adhere to exposed extracellular matrix, become activated, and form a platelet plug preventing hemorrhagic events. However, when platelet activation is exacerbated, as in rupture of an atherosclerotic plaque, the same mechanism may lead to acute thrombosis causing major ischemic events such as myocardial infarction or stroke. In the past few years, major progress has been made in understanding of platelet function modulation. In this respect, membrane channels formed by connexins and/or pannexins are of particular interest. While it is still not completely understood whether connexins function as hemichannels or gap junction channels to inhibit platelet aggregation, there is clear-cut evidence for a specific implication of pannexin1 channels in collagen-induced aggregation. The focus of this review is to summarize current knowledge of the role of connexins and pannexins in platelet aggregation and to discuss possible pharmacological approaches along with their limitations and future perspectives for new potential therapies.
Collapse
Affiliation(s)
- Filippo Molica
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland.
- Department of Medical Specializations, Cardiology, University of Geneva, 1211 Geneva, Switzerland.
| | - Florian B Stierlin
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland.
- Department of Medical Specializations, Cardiology, University of Geneva, 1211 Geneva, Switzerland.
- Geneva Platelet Group, University of Geneva, 1211 Geneva, Switzerland.
| | - Pierre Fontana
- Geneva Platelet Group, University of Geneva, 1211 Geneva, Switzerland.
- Division of Angiology and Haemostasis, Geneva University Hospitals, 1211 Geneva, Switzerland.
| | - Brenda R Kwak
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland.
- Department of Medical Specializations, Cardiology, University of Geneva, 1211 Geneva, Switzerland.
| |
Collapse
|
74
|
Piwowarczyk K, Paw M, Ryszawy D, Rutkowska-Zapała M, Madeja Z, Siedlar M, Czyż J. Connexin43 high prostate cancer cells induce endothelial connexin43 up-regulation through the activation of intercellular ERK1/2-dependent signaling axis. Eur J Cell Biol 2017; 96:337-346. [PMID: 28396058 DOI: 10.1016/j.ejcb.2017.03.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 03/24/2017] [Accepted: 03/31/2017] [Indexed: 01/04/2023] Open
Abstract
Connexin(Cx)43 regulates the invasive potential of prostate cancer cells and participates in their extravasation. To address the role of endothelial Cx43 in this process, we analyzed Cx43 regulation in human umbilical vein endothelial cells in the proximity of Cx43high (DU-145 and MAT-LyLu) and Cx43low prostate cancer cells (PC-3 and AT-2). Endothelial Cx43 up-regulation was observed during the diapedesis of DU-145 and MAT-LyLu cells. This process was attenuated by transient Cx43 silencing in cancer cells and by chemical inhibition of ERK1/2-dependent signaling in endothelial cells. Cx43 expression in endothelial cells was insensitive to the inhibition of gap junctional intercellular coupling between Cx43high prostate cancer and endothelial cells by 18α-glycyrrhetinic acid. Instead, endothelial Cx43 up-regulation was correlated with the local contraction of endothelial cells and with their activation in the proximity of Cx43high DU-145 and MAT-LyLu cells. It was also sensitive to pro-inflammatory factors secreted by peripheral blood monocytes, such as TNFα. In contrast to Cx43low AT-2 cells, Cx43low PC-3 cells produced angioactive factors that locally activated the endothelial cells in the absence of endothelial Cx43 up-regulation. Collectively, these data show that Cx43low and Cx43high prostate cancer cells can adapt discrete, Cx43-independent and Cx43-dependent strategies of diapedesis. Our observations identify a novel strategy of prostate cancer cell diapedesis, which depends on the activation of intercellular Cx43/ERK1/2/Cx43 signaling axis at the interfaces between Cx43high prostate cancer and endothelial cells.
Collapse
Affiliation(s)
- Katarzyna Piwowarczyk
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Milena Paw
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Damian Ryszawy
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Magdalena Rutkowska-Zapała
- Department of Clinical Immunology, Institute of Paediatrics, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Zbigniew Madeja
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Maciej Siedlar
- Department of Clinical Immunology, Institute of Paediatrics, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Jarosław Czyż
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland.
| |
Collapse
|
75
|
Wang E, Geng A, Seo R, Maniar A, Gong X. Knock-in of Cx46 partially rescues fiber defects in lenses lacking Cx50. Mol Vis 2017; 23:160-170. [PMID: 28458505 PMCID: PMC5367893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 03/22/2017] [Indexed: 11/03/2022] Open
Abstract
PURPOSE Connexins 46 (Cx46) and 50 (Cx50) support lens development and homeostasis. Knockout (KO) of Cx50, but not Cx46, causes defects in lens fiber organization, F-actin enrichment, gap junction (GJ) size, ball-and-socket (BS) maturation, and GJ-associated protein distributions. To further determine the unique roles of Cx50 and Cx46, we investigated whether these defects persisted in Cx46 knock-in (Ki) lenses. Ki mice had Cx46 knocked-in to their Cx50 loci, where it was expressed under endogenous Cx50 promoters. METHODS Fiber cell morphology and the distribution of lens membrane/cytoskeleton proteins from wild-type (WT), Ki, and Cx50 KO mice were visualized by immunofluorescent labeling and confocal microscopy. RESULTS Cx46 Ki partially rescued Cx50 KO lens fiber defects. Three-week-old Ki lens fibers had typical F-actin distributions but were nonuniformly sized and disorganized. The Cx-associated proteins zonula occludens-1 (ZO-1) and β-dystroglycan (βDys) no longer localized to the nuclei but remained absent from GJs. BS formed, but this occurred with lower than WT frequency. BS appeared with greater frequency in 8-week-old Ki lenses, but so did aberrant balloon-like structures similar to those in Cx50 KO lenses. Unexpectedly, 8-week-old Cx50 KO and Ki cortical lens fibers were no longer disorganized. CONCLUSIONS Cx identity is important for some aspects of fiber development (organization, Cx association with ZO-1 and βDys) but not others (F-actin enrichment). Either Cx supports BS maturation, but the sparsity of BS and presence of balloon-like structures in Ki lenses suggest that Cx50 is more capable of doing so. The partial rescue of BS structures may support the rapid growth of cortical fibers to the improved growth of Ki lenses compared to Cx50 KO lenses at young ages. Neither absence of Cx50 nor presence of Ki Cx46 affects cortical fiber cell organization by the age of 8 weeks.
Collapse
Affiliation(s)
- Eddie Wang
- School of Optometry and Vision Science Program, University of California, Berkeley, Berkeley, CA
| | - Andrew Geng
- School of Optometry and Vision Science Program, University of California, Berkeley, Berkeley, CA
| | - Richard Seo
- School of Optometry and Vision Science Program, University of California, Berkeley, Berkeley, CA
| | - Ankur Maniar
- School of Optometry and Vision Science Program, University of California, Berkeley, Berkeley, CA
| | - Xiaohua Gong
- School of Optometry and Vision Science Program, University of California, Berkeley, Berkeley, CA
| |
Collapse
|
76
|
Scemes E, Velíšková J. Exciting and not so exciting roles of pannexins. Neurosci Lett 2017; 695:25-31. [PMID: 28284836 DOI: 10.1016/j.neulet.2017.03.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 03/02/2017] [Accepted: 03/06/2017] [Indexed: 01/24/2023]
Abstract
It is the current view that purinergic signaling regulates many physiological functions. Pannexin1 (Panx1), a member of the gap junction family of proteins is an ATP releasing channel that plays important physio-pathological roles in various tissues, including the CNS. Upon binding to purinergic receptors expressed in neural cells, ATP triggers cellular responses including increased cell proliferation, cell morphology changes, release of cytokines, and regulation of neuronal excitability via release of glutamate, GABA and ATP itself. Under pathological conditions such as ischemia, trauma, inflammation, and epilepsy, extracellular ATP concentrations increases drastically but the consequences of this surge is still difficult to characterize due to its rapid metabolism in ADP and adenosine, the latter having inhibitory action on neuronal activity. For seizures, for instance, the excitatory effect of ATP on neuronal activity is mainly related to its action of P2X receptors, while the inhibitory effects are related to activation of P1, adenosine receptors. Here we provide a mini review on the properties of pannexins with a main focus on Panx1 and its involvement in seizure activity. Although there are only few studies implicating Panx1 in seizures, they are illustrative of the dual role that Panx1 has on neuronal excitability.
Collapse
Affiliation(s)
- Eliana Scemes
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| | - Jana Velíšková
- Departments of Cell Biology & Anatomy, Obstetrics & Gynecology and Neurology, New York Medical College, Valhalla, NY, 10595, USA.
| |
Collapse
|
77
|
Abstract
PURPOSE OF THE REVIEW This review highlights recent developments into how intercellular communication through connexin43 facilitates bone modeling and remodeling. RECENT FINDINGS Connexin43 is required for both skeletal development and maintenance, particularly in cortical bone, where it carries out multiple functions, including preventing osteoclastogenesis, restraining osteoprogenitor proliferation, promoting osteoblast differentiation, coordinating organized collagen matrix deposition, and maintaining osteocyte survival. Emerging data shows that connexin43 regulates both the exchange of small molecules among osteoblast lineage cells and the docking of signaling proteins to the gap junction, affecting the efficiency of signal transduction. Understanding how and what connexin43 communicates to coordinate tissue remodeling has therapeutic implications in bone. Altering the information shared by intercellular communication and/or targeting the recruitment of signaling machinery to the gap junction could be used to impact the skeletal homeostatic set point, either driving osteogenesis or inhibiting resorption.
Collapse
Affiliation(s)
- Megan C Moorer
- Department of Orthopaedics, University of Maryland School of Medicine, 100 Penn Street, Allied Health Building, Room 540E, Baltimore, MD, 21201, USA
| | - Joseph P Stains
- Department of Orthopaedics, University of Maryland School of Medicine, 100 Penn Street, Allied Health Building, Room 540E, Baltimore, MD, 21201, USA.
| |
Collapse
|
78
|
Desplantez T. Cardiac Cx43, Cx40 and Cx45 co-assembling: involvement of connexins epitopes in formation of hemichannels and Gap junction channels. BMC Cell Biol 2017; 18:3. [PMID: 28124623 PMCID: PMC5267329 DOI: 10.1186/s12860-016-0118-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Background This review comes after the International Gap Junction Conference (IGJC 2015) and describes the current knowledge on the function of the specific motifs of connexins in the regulation of the formation of gap junction channels. Moreover the review is complemented by a summarized description of the distinct contribution of gap junction channels in the electrical coupling. Results Complementary biochemical and functional characterization on cell models and primary cells have improved our understanding on the oligomerization of connexins and the formation and the electrical properties of gap junction channels. Studies mostly focused cardiac connexins Cx43 and Cx40 expressed in myocytes, while Cx45 and Cx30.2 have been less investigated, for which main findings are reviewed to highlight their critical contribution in the formation of gap junction channels for ensuring the orchestrated electrical impulse propagation and coordination of atrial and ventricular contraction and heart function, whereas connexin dysfunction and remodeling are pro-arrhythmic factors. Common and specific motifs of residues identified in different domain of each type of connexin determine the connexin homo- and hetero-oligomerization and the channels formation, which leads to specific electrical properties. Conclusions These motifs and the resulting formation of gap junction channels are keys to ensure the tissue homeostasis and function in each connexin expression pattern in various tissues of multicellular organisms. Altogether, the findings to date have significantly improved our understanding on the function of the different connexin expression patterns in healthy and diseased tissues, and promise further investigations on the contribution in the different types of connexin.
Collapse
Affiliation(s)
- Thomas Desplantez
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Campus X. Arnozan, Avenue Haut Leveque, 33600, Pessac- Bordeaux, France. .,Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, F-33000, Bordeaux, France. .,INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, F-33000, Bordeaux, France.
| |
Collapse
|
79
|
Boeldt DS, Krupp J, Yi FX, Khurshid N, Shah DM, Bird IM. Positive versus negative effects of VEGF165 on Ca2+ signaling and NO production in human endothelial cells. Am J Physiol Heart Circ Physiol 2016; 312:H173-H181. [PMID: 27836897 DOI: 10.1152/ajpheart.00924.2015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 11/01/2016] [Accepted: 11/01/2016] [Indexed: 11/22/2022]
Abstract
The role increased vascular endothelial growth factor (VEGF) plays in vascular function during normal vs. preeclamptic pregnancy has been a source of some controversy of late. In this study, we seek to understand how VEGF165 influences vasodilator production via Ca2+ signaling mechanisms in human endothelial cells. We utilize human umbilical vein endothelial cells (HUVEC) as well as intact ex vivo human umbilical vein (HUV Endo) to address direct stimulation of Ca2+ and NO by VEGF165 alone, as well as the effect of VEGF165 on subsequent ATP-stimulated Ca2+ signaling and NO production. We show that VEGF165 stimulates Ca2+ responses in both HUVEC and HUV Endo, which results in a corresponding increase in NO production in HUV Endo. Longer-term VEGF165 pretreatment then inhibits sustained Ca2+ burst responses to ATP in HUVEC and HUV Endo. This is paralleled by a corresponding drop in ATP-stimulated NO production in HUV Endo, likely through inhibition of Cx43 gap-junction function. Thus, although VEGF165 makes a small initial positive impact on vasodilator production via direct stimulation of Ca2+ responses, this is outweighed by the greater subsequent negative impact on Ca2+ bursts and vasodilator production promoted by more potent agonists such as ATP. Overall, elevated levels of VEGF165 associated with preeclampsia could contribute to the endothelial dysfunction by preventing Ca2+ bursts to other agonists including but not limited to ATP. NEW & NOTEWORTHY In this manuscript, we show that VEGF levels associated with preeclampsia are a net negative contributor to potential vasodilator production in both a human ex vivo and in vitro endothelial cell model. Therefore, pharmacological targeting of VEGF-stimulated signaling pathways could be a novel treatment modality for preeclampsia-related hypertension.
Collapse
Affiliation(s)
- Derek S Boeldt
- Perinatal Research Laboratories, Department of Obstetrics and Gynecology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin; and
| | - Jennifer Krupp
- Perinatal Research Laboratories, Department of Obstetrics and Gynecology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin; and.,Division Maternal Fetal Medicine, Department of Obstetrics and Gynecology, School Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin
| | - Fu-Xian Yi
- Perinatal Research Laboratories, Department of Obstetrics and Gynecology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin; and
| | - Nauman Khurshid
- Perinatal Research Laboratories, Department of Obstetrics and Gynecology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin; and.,Division Maternal Fetal Medicine, Department of Obstetrics and Gynecology, School Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin
| | - Dinesh M Shah
- Division Maternal Fetal Medicine, Department of Obstetrics and Gynecology, School Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin
| | - Ian M Bird
- Perinatal Research Laboratories, Department of Obstetrics and Gynecology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin; and
| |
Collapse
|
80
|
Lobastova L, Kraus D, Glassmann A, Khan D, Steinhäuser C, Wolff C, Veit N, Winter J, Probstmeier R. Collective cell migration of thyroid carcinoma cells: a beneficial ability to override unfavourable substrates. Cell Oncol (Dordr) 2016; 40:63-76. [PMID: 27826898 DOI: 10.1007/s13402-016-0305-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2016] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Tumor cell invasion and metastasis are life threatening events. Invasive tumor cells tend to migrate as collective sheets. In the present in vitro study we aimed to (i) assess whether collective tumor cells gain benefits in their migratory potential compared to single cells and (ii) to identify its putative underlying molecular mechanisms. METHODS The migratory potential of single and collective carcinoma cells was assessed using video time lapse microscopy and cell migration assays in the absence and presence of seven potential gap junction inhibitors or the Rac1 inhibitor Z62954982. The perturbation of gap junctions was assessed using a dye diffusion assay. In addition, LDH-based cytotoxicity and RT-PCR-based expression analyses were performed. RESULTS Whereas single breast, cervix and thyroid carcinoma cells were virtually immobile on unfavourable plastic surfaces, we found that they gained pronounced migratory capacities as collectives under comparable conditions. Thyroid carcinoma cells, that were studied in more detail, were found to express specific subsets of connexins and to form active gap junctions as revealed by dye diffusion analysis. Although all potential gap junction blockers suppressed intercellular dye diffusion in at least one of the cell lines tested, only two of them were found to inhibit collective cell migration and none of them to inhibit single cell migration. In the presence of the Rac1 inhibitor Z62954982 collective migration, but not single cell migration, was found to be reduced up to 20 %. CONCLUSIONS Our data indicate that collective migration enables tumor cells to cross otherwise unfavourable substrate areas. This capacity seems to be independent of intercellular communication via gap junctions, whereas Rac1-dependent intracellular signalling seems to be essential.
Collapse
Affiliation(s)
- Liudmila Lobastova
- Neuro- and Tumor Cell Biology Group, Department of Nuclear Medicine, University Hospital Bonn, Sigmund-Freud-Str. 25, D-53105, Bonn, Germany
| | - Dominik Kraus
- Department of Prosthodontics, Preclinical Education, and Material Science, University of Bonn, Bonn, Germany
| | | | - Dilaware Khan
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Christian Steinhäuser
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Christina Wolff
- Neuro- and Tumor Cell Biology Group, Department of Nuclear Medicine, University Hospital Bonn, Sigmund-Freud-Str. 25, D-53105, Bonn, Germany
| | - Nadine Veit
- Neuro- and Tumor Cell Biology Group, Department of Nuclear Medicine, University Hospital Bonn, Sigmund-Freud-Str. 25, D-53105, Bonn, Germany
| | - Jochen Winter
- Oral Cell Biology Group, Department of Periodontology, Operative and Preventive Dentistry, University of Bonn, Bonn, Germany
| | - Rainer Probstmeier
- Neuro- and Tumor Cell Biology Group, Department of Nuclear Medicine, University Hospital Bonn, Sigmund-Freud-Str. 25, D-53105, Bonn, Germany.
| |
Collapse
|
81
|
Soon ASC, Chua JW, Becker DL. Connexins in endothelial barrier function - novel therapeutic targets countering vascular hyperpermeability. Thromb Haemost 2016; 116:852-867. [PMID: 27488046 DOI: 10.1160/th16-03-0210] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 07/15/2016] [Indexed: 12/14/2022]
Abstract
Prolonged vascular hyperpermeability is a common feature of many diseases. Vascular hyperpermeability is typically associated with changes in the expression patterns of adherens and tight junction proteins. Here, we focus on the less-appreciated contribution of gap junction proteins (connexins) to basal vascular permeability and endothelial dysfunction. First, we assess the association of connexins with endothelial barrier integrity by introducing tools used in connexin biology and relating the findings to customary readouts in vascular biology. Second, we explore potential mechanistic ties between connexins and junction regulation. Third, we review the role of connexins in microvascular organisation and development, focusing on interactions of the endothelium with mural cells and tissue-specific perivascular cells. Last, we see how connexins contribute to the interactions between the endothelium and components of the immune system, by using neutrophils as an example. Mounting evidence of crosstalk between connexins and other junction proteins suggests that we rethink the way in which different junction components contribute to endothelial barrier function. Given the multiple points of connexin-mediated communication arising from the endothelium, there is great potential for synergism between connexin-targeted inhibitors and existing immune-targeted therapeutics. As more drugs targeting connexins progress through clinical trials, it is hoped that some might prove effective at countering vascular hyperpermeability.
Collapse
Affiliation(s)
| | | | - David Laurence Becker
- David L. Becker, PhD, Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, 308232 Singapore, Tel: +65 6592 3961, Fax: +65 6515 0417, E-mail:
| |
Collapse
|
82
|
Boulay AC, Cisternino S, Cohen-Salmon M. Immunoregulation at the gliovascular unit in the healthy brain: A focus on Connexin 43. Brain Behav Immun 2016; 56:1-9. [PMID: 26674996 DOI: 10.1016/j.bbi.2015.11.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/26/2015] [Accepted: 11/28/2015] [Indexed: 01/18/2023] Open
Abstract
In the brain, immune cell infiltration is normally kept at a very low level and a unique microenvironment strictly restricts immune reactions and inflammation. Even in such quiescent environment, a constant immune surveillance is at work allowing the brain to rapidly react to threats. To date, knowledge about the factors regulating the brain-immune system interrelationship in healthy conditions remains elusive. Interestingly, astrocytes, the most abundant glial cells in the brain, may participate in many aspects of this unique homeostasis, in particular due to their close interaction with the brain vascular system and expression of a specific molecular repertoire. Indeed, astrocytes maintain the blood-brain barrier (BBB) integrity, interact with immune cells, and participate in the regulation of intracerebral liquid movements. We recently showed that Connexin 43 (Cx43), a gap junction protein highly expressed by astrocytes at the BBB interface, is an immunoregulating factor. The absence of astroglial Cx43 leads to a transient endothelial activation, a continuous immune recruitment as well as the development of a specific humoral autoimmune response against the von Willebrand factor A domain-containing protein 5a, an extracellular matrix protein expressed by astrocytes. In this review, we propose to gather current knowledge on how astrocytes may influence the immune system in the healthy brain, focusing on their roles at the gliovascular interface. We will also consider pathological situations involving astrocyte-specific autoimmunities. Finally, we will discuss the specific role of astroglial Cx43 and the physiological consequences of immune regulations taking place on inflammation, cognition and behavior in the absence of Cx43.
Collapse
Affiliation(s)
- Anne-Cécile Boulay
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB), Centre National de la Recherche Scientifique CNRS, Unité Mixte de Recherche 7241, Institut National de la Santé et de la Recherche Médicale INSERM, U1050, Neuroglial Interactions in Cerebral Physiopathology, 75231 Paris Cedex 05, France; University Pierre et Marie Curie, ED, N°158, 75005 Paris, France; MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University, 75005 Paris, France
| | - Salvatore Cisternino
- Variabilité de réponse aux psychotropes, INSERM, U1144, Paris F-75006, France; Université Paris Descartes, Faculté de Pharmacie, UMR-S 1144, 75006 Paris, France; Université Paris Diderot, UMR-S 1144, 75013 Paris, France
| | - Martine Cohen-Salmon
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB), Centre National de la Recherche Scientifique CNRS, Unité Mixte de Recherche 7241, Institut National de la Santé et de la Recherche Médicale INSERM, U1050, Neuroglial Interactions in Cerebral Physiopathology, 75231 Paris Cedex 05, France; University Pierre et Marie Curie, ED, N°158, 75005 Paris, France; MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University, 75005 Paris, France.
| |
Collapse
|
83
|
Zolnik TA, Connors BW. Electrical synapses and the development of inhibitory circuits in the thalamus. J Physiol 2016; 594:2579-92. [PMID: 26864476 PMCID: PMC4865577 DOI: 10.1113/jp271880] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 02/05/2016] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS The thalamus is a structure critical for information processing and transfer to the cortex. Thalamic reticular neurons are inhibitory cells interconnected by electrical synapses, most of which require the gap junction protein connexin36 (Cx36). We investigated whether electrical synapses play a role in the maturation of thalamic networks by studying neurons in mice with and without Cx36. When Cx36 was deleted, inhibitory synapses were more numerous, although both divergent inhibitory connectivity and dendritic complexity were reduced. Surprisingly, we observed non-Cx36-dependent electrical synapses with unusual biophysical properties interconnecting some reticular neurons in mice lacking Cx36. The results of the present study suggest an important role for Cx36-dependent electrical synapses in the development of thalamic circuits. ABSTRACT Neurons within the mature thalamic reticular nucleus (TRN) powerfully inhibit ventrobasal (VB) thalamic relay neurons via GABAergic synapses. TRN neurons are also coupled to one another by electrical synapses that depend strongly on the gap junction protein connexin36 (Cx36). Electrical synapses in the TRN precede the postnatal development of TRN-to-VB inhibition. We investigated how the deletion of Cx36 affects the maturation of TRN and VB neurons, electrical coupling and GABAergic synapses by studying wild-type (WT) and Cx36 knockout (KO) mice. The incidence and strength of electrical coupling in TRN was sharply reduced, but not abolished, in KO mice. Surprisingly, electrical synapses between Cx36-KO neurons had faster voltage-dependent decay kinetics and conductance asymmetry (rectification) than did electrical synapses between WT neurons. The properties of TRN-mediated inhibition in VB also depended on the Cx36 genotype. Deletion of Cx36 increased the frequency and shifted the amplitude distributions of miniature IPSCs, whereas the paired-pulse ratio of evoked IPSCs was unaffected, suggesting that the absence of Cx36 led to an increase in GABAergic synaptic contacts. VB neurons from Cx36-KO mice also tended to have simpler dendritic trees and fewer divergent inputs from the TRN compared to WT cells. The findings obtained in the present study suggest that proper development of thalamic inhibitory circuitry, neuronal morphology, TRN cell function and electrical coupling requires Cx36. In the absence of Cx36, some TRN neurons express asymmetric electrical coupling mediated by other unidentified connexin subtypes.
Collapse
Affiliation(s)
- Timothy A Zolnik
- Department of Neuroscience, Division of Biology & Medicine, Brown University, Providence, RI, USA
- Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Barry W Connors
- Department of Neuroscience, Division of Biology & Medicine, Brown University, Providence, RI, USA
| |
Collapse
|
84
|
Hamon L, Savarin P, Pastré D. Polyamine signal through gap junctions: A key regulator of proliferation and gap-junction organization in mammalian tissues? Bioessays 2016; 38:498-507. [DOI: 10.1002/bies.201500195] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Loic Hamon
- Laboratoire Structure-Activité des Biomolécules Normales et Pathologiques; INSERM U1204 and Université Evry-Val d'Essonne; Evry France
| | - Philippe Savarin
- Centre National de Recherche Scientifique (CNRS), Equipe Spectroscopie des Biomolécules et des Milieux Biologiques (SBMB); Université Paris 13, Sorbonne Paris Cité, Laboratoire Chimie, Structures, Propriétés de Biomatériaux et d'Agents Thérapeutiques (CSPBAT), Unité Mixte de Recherche (UMR) 7244; Bobigny France
| | - David Pastré
- Laboratoire Structure-Activité des Biomolécules Normales et Pathologiques; INSERM U1204 and Université Evry-Val d'Essonne; Evry France
| |
Collapse
|
85
|
Connexin 43, breast cancer tumor suppressor: Missed connections? Cancer Lett 2016; 374:117-126. [DOI: 10.1016/j.canlet.2016.02.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 01/28/2016] [Accepted: 02/03/2016] [Indexed: 12/21/2022]
|
86
|
Schadzek P, Schlingmann B, Schaarschmidt F, Lindner J, Koval M, Heisterkamp A, Ngezahayo A, Preller M. Data of the molecular dynamics simulations of mutations in the human connexin46 docking interface. Data Brief 2016; 7:93-9. [PMID: 26958636 PMCID: PMC4764773 DOI: 10.1016/j.dib.2016.01.067] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 01/18/2016] [Accepted: 01/28/2016] [Indexed: 02/06/2023] Open
Abstract
The structure of hCx26 derived from the X-ray analysis was used to generate a homology model for hCx46. Interacting connexin molecules were used as starting model for the molecular dynamics (MD) simulation using NAMD and allowed us to predict the dynamic behavior of hCx46wt and the cataract related mutant hCx46N188T as well as two artificial mutants hCx46N188Q and hCx46N188D. Within the 50 ns simulation time the docked complex composed of the mutants dissociate while hCx46wt remains stable. The data indicates that one hCx46 molecule forms 5–7 hydrogen bonds (HBs) with the counterpart connexin of the opposing connexon. These HBs appear essential for a stable docking of the connexons as shown by the simulation of an entire gap junction channel and were lost for all the tested mutants. The data described here are related to the research article entitled “The cataract related mutation N188T in human connexin46 (hCx46) revealed a critical role for residue N188 in the docking process of gap junction channels” (Schadzek et al., 2015) [1].
Collapse
Affiliation(s)
- Patrik Schadzek
- Institute of Biophysics, Leibniz University Hannover, Germany
| | - Barbara Schlingmann
- Institute of Biophysics, Leibniz University Hannover, Germany; Division of Pulmonary, Allergy and Critical Care and Sleep Medicine, Department of Medicine and Department of Cell Biology, Emory School of Medicine, Atlanta, GA, USA
| | | | - Julia Lindner
- Institute of Biophysics, Leibniz University Hannover, Germany
| | - Michael Koval
- Division of Pulmonary, Allergy and Critical Care and Sleep Medicine, Department of Medicine and Department of Cell Biology, Emory School of Medicine, Atlanta, GA, USA; Department of Cell Biology, Emory University, Atlanta, GA, USA
| | | | - Anaclet Ngezahayo
- Institute of Biophysics, Leibniz University Hannover, Germany; Center for System Neurosciences (ZSN), Hannover, Germany
| | - Matthias Preller
- Institute for Biophysical Chemistry, Hannover Medical School (MHH), Hannover, Germany; Center for Structural Systems Biology, German Electron Synchrotron (DESY), Hamburg, Germany
| |
Collapse
|
87
|
Bai D. Structural analysis of key gap junction domains--Lessons from genome data and disease-linked mutants. Semin Cell Dev Biol 2015; 50:74-82. [PMID: 26658099 DOI: 10.1016/j.semcdb.2015.11.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 11/26/2015] [Indexed: 12/27/2022]
Abstract
A gap junction (GJ) channel is formed by docking of two GJ hemichannels and each of these hemichannels is a hexamer of connexins. All connexin genes have been identified in human, mouse, and rat genomes and their homologous genes in many other vertebrates are available in public databases. The protein sequences of these connexins align well with high sequence identity in the same connexin across different species. Domains in closely related connexins and several residues in all known connexins are also well-conserved. These conserved residues form signatures (also known as sequence logos) in these domains and are likely to play important biological functions. In this review, the sequence logos of individual connexins, groups of connexins with common ancestors, and all connexins are analyzed to visualize natural evolutionary variations and the hot spots for human disease-linked mutations. Several gap junction domains are homologous, likely forming similar structures essential for their function. The availability of a high resolution Cx26 GJ structure and the subsequently-derived homology structure models for other connexin GJ channels elevated our understanding of sequence logos at the three-dimensional GJ structure level, thus facilitating the understanding of how disease-linked connexin mutants might impair GJ structure and function. This knowledge will enable the design of complementary variants to rescue disease-linked mutants.
Collapse
Affiliation(s)
- Donglin Bai
- Department of Physiology and Pharmacology, The University of Western Ontario, London, ON, Canada N6A 5C1.
| |
Collapse
|
88
|
Relating specific connexin co-expression ratio to connexon composition and gap junction function. J Mol Cell Cardiol 2015; 89:195-202. [PMID: 26550940 DOI: 10.1016/j.yjmcc.2015.11.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 10/05/2015] [Accepted: 11/04/2015] [Indexed: 12/15/2022]
Abstract
Cardiac connexin 43 (Cx43), Cx40 and Cx45 are co-expressed at distinct ratios in myocytes. This pattern is considered a key factor in regulating the gap junction channels composition, properties and function and remains poorly understood. This work aims to correlate gap junction function with the connexin composition of the channels at accurate ratios Cx43:Cx40 and Cx43:Cx45. Rat liver epithelial cells that endogenously express Cx43 were stably transfected to induce expression of accurate levels of Cx40 or Cx45 that may be present in various areas of the heart (e.g. atria and ventricular conduction system). Induction of Cx40 does not increase the amounts of junctional connexins (Cx43 and Cx40), whereas induction of Cx45 increases the amounts of junctional connexins (Cx43 and Cx45). Interestingly, the non-junctional fraction of Cx43 remains unaffected upon induction of Cx40 and Cx45. Co-immunoprecipitation studies show low level of Cx40/Cx43 heteromerisation and undetectable Cx45/Cx43 heteromerisation. Functional characterisation shows that induction of Cx40 and Cx45 decreases Lucifer Yellow transfer. Electrical coupling is decreased by Cx45 induction, whereas it is decreased at low induction of Cx40 and increased at high induction. These data indicate a fine regulation of the gap junction channel make-up in function of the type and the ratio of co-expressed Cxs that specifically regulates chemical and electrical coupling. This reflects specific gap junction function in regulating impulse propagation in the healthy heart, and a pro-arrhythmic potential of connexin remodelling in the diseased heart.
Collapse
|
89
|
Affiliation(s)
- Eric C Beyer
- a Department of Pediatrics ; University of Chicago , Chicago , IL USA
| |
Collapse
|
90
|
Lin X, Xu Q, Veenstra RD. Functional formation of heterotypic gap junction channels by connexins-40 and -43. Channels (Austin) 2015; 8:433-43. [PMID: 25483586 DOI: 10.4161/19336950.2014.949188] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Connexin40 (Cx40) and connexin43 (Cx43) are co-expressed in the cardiovascular system, yet their ability to form functional heterotypic Cx43/Cx40 gap junctions remains controversial. We paired Cx43 or Cx40 stably-transfected N2a cells to examine the formation and biophysical properties of heterotypic Cx43/Cx40 gap junction channels. Dual whole cell patch clamp recordings demonstrated that Cx43 and Cx40 form functional heterotypic gap junctions with asymmetric transjunctional voltage (Vj) dependent gating properties. The heterotypic Cx43/Cx40 gap junctions exhibited less Vj gating when the Cx40 cell was positive and pronounced gating when negative. Endogenous N2a cell connexin expression levels were 1,000-fold lower than exogenously expressed Cx40 and Cx43 levels, measured by real-time PCR and Western blotting methods, suggestive of heterotypic gap junction formation by exogenous Cx40 and Cx43. Imposing a [KCl] gradient across the heterotypic gap junction modestly diminished the asymmetry of the macroscopic normalized junctional conductance - voltage (Gj-Vj) curve when [KCl] was reduced by 50% on the Cx43 side and greatly exacerbated the Vj gating asymmetries when lowered on the Cx40 side. Pairing wild-type (wt) Cx43 with the Cx40 E9,13K mutant protein produced a nearly symmetrical heterotypic Gj-Vj curve. These studies conclusively demonstrate the ability of Cx40 and Cx43 to form rectifying heterotypic gap junctions, owing primarily to alternate amino-terminal (NT) domain acidic and basic amino acid differences that may play a significant role in the physiology and/or pathology of the cardiovascular tissues including cardiac conduction properties and myoendothelial intercellular communication.
Collapse
Key Words
- Connexin40
- Cx37, connexin37
- Cx40, connexin40; Cx43, connexin43
- Cx45, connexin45
- E1, first extracellular loop domain
- EDTA, Ethylenediaminetetraacetic acid
- FITC, fluorescein isothiocyante
- GAPDH, glyceraldehyde-3-phosphate dehydrogenase
- Gj, normalized junctional conductance
- Gj,max, maximum normalized gj
- Gj,min, mimimum normalized gj
- I1 and I2, whole cell currents for cell 1 and cell 2
- Ij, junctional current
- Kon, inactivation on-rate
- N2a, mouse Neuro2a
- NT, N-terminal domain
- Popen, open probability
- RT-PCR, real-time PCR
- Rel1 and Rel2, whole cell patch electrode resistance values for cell 1 and cell 2
- Rin, renal insulinoma
- TBS, Tris buffered saline
- TRITC, tetramethylrhodamine isothiocyanate
- V1 and V2, command voltage clamp potentials for cell 1 and cell 2
- V1/2, half-inactivation voltage
- Vj, transjunctional voltage
- connexin43
- gap junctions
- gj, junctional conductance
- heterotypic
- ij, single gap junction channel current
- mCx30.2/hCx31.9, mouse connexin30.2/human connexin31.9
- pS, picoSiemen
- spermine
- transjunctional voltage gating
- wt, wild-type
- ΔI2, change in I2 in response to an applied Vj gradient produced by changing V1
- γj, single gap junction channel conductance
- τdecay, exponential decay time constant
Collapse
Affiliation(s)
- Xianming Lin
- a Department of Pharmacology ; SUNY Upstate Medical University ; Syracuse , NY USA
| | | | | |
Collapse
|
91
|
Molina SA, Stauffer B, Moriarty HK, Kim AH, McCarty NA, Koval M. Junctional abnormalities in human airway epithelial cells expressing F508del CFTR. Am J Physiol Lung Cell Mol Physiol 2015; 309:L475-87. [PMID: 26115671 PMCID: PMC4556929 DOI: 10.1152/ajplung.00060.2015] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 06/24/2015] [Indexed: 12/11/2022] Open
Abstract
Cystic fibrosis (CF) has a profound impact on airway physiology. Accumulating evidence suggests that intercellular junctions are impaired in CF. We examined changes to CF transmembrane conductance regulator (CFTR) function, tight junctions, and gap junctions in NuLi-1 (CFTR(wt/wt)) and CuFi-5 (CFTR(ΔF508/ΔF508)) cells. Cells were studied at air-liquid interface (ALI) and compared with primary human bronchial epithelial cells. On the basis of fluorescent lectin binding, the phenotype of the NuLi-1 and CuFi-5 cells at week 8 resembled that of serous, glycoprotein-rich airway cells. After week 7, CuFi-5 cells possessed 130% of the epithelial Na(+) channel activity and 17% of the CFTR activity of NuLi-1 cells. In both cell types, expression levels of CFTR were comparable to those in primary airway epithelia. Transepithelial resistance of NuLi-1 and CuFi-5 cells stabilized during maturation in ALI culture, with significantly lower transepithelial resistance for CuFi-5 than NuLi-1 cells. We also found that F508del CFTR negatively affects gap junction function in the airway. NuLi-1 and CuFi-5 cells express the connexins Cx43 and Cx26. While both connexins were properly trafficked by NuLi-1 cells, Cx43 was mistrafficked by CuFi-5 cells. Cx43 trafficking was rescued in CuFi-5 cells treated with 4-phenylbutyric acid (4-PBA), as assessed by intracellular dye transfer. 4-PBA-treated CuFi-5 cells also exhibited an increase in forskolin-induced CFTR-mediated currents. The Cx43 trafficking defect was confirmed using IB3-1 cells and found to be corrected by 4-PBA treatment. These data support the use of NuLi-1 and CuFi-5 cells to examine the effects of F508del CFTR expression on tight junction and gap junction function in the context of serous human airway cells.
Collapse
Affiliation(s)
- Samuel A Molina
- Emory+Children's Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia; Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia; Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia; and
| | - Brandon Stauffer
- Emory+Children's Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia; Division of Pulmonary, Allergy/Immunology, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia
| | - Hannah K Moriarty
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Agnes H Kim
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Nael A McCarty
- Emory+Children's Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia; Division of Pulmonary, Allergy/Immunology, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia
| | - Michael Koval
- Emory+Children's Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia; Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia; Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia; and
| |
Collapse
|
92
|
Stout RF, Snapp EL, Spray DC. Connexin Type and Fluorescent Protein Fusion Tag Determine Structural Stability of Gap Junction Plaques. J Biol Chem 2015; 290:23497-514. [PMID: 26265468 DOI: 10.1074/jbc.m115.659979] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Indexed: 12/22/2022] Open
Abstract
Gap junctions (GJs) are made up of plaques of laterally clustered intercellular channels and the membranes in which the channels are embedded. Arrangement of channels within a plaque determines subcellular distribution of connexin binding partners and sites of intercellular signaling. Here, we report the discovery that some connexin types form plaque structures with strikingly different degrees of fluidity in the arrangement of the GJ channel subcomponents of the GJ plaque. We uncovered this property of GJs by applying fluorescence recovery after photobleaching to GJs formed from connexins fused with fluorescent protein tags. We found that connexin 26 (Cx26) and Cx30 GJs readily diffuse within the plaque structures, whereas Cx43 GJs remain persistently immobile for more than 2 min after bleaching. The cytoplasmic C terminus of Cx43 was required for stability of Cx43 plaque arrangement. We provide evidence that these qualitative differences in GJ arrangement stability reflect endogenous characteristics, with the caveat that the sizes of the GJs examined were necessarily large for these measurements. We also uncovered an unrecognized effect of non-monomerized fluorescent protein on the dynamically arranged GJs and the organization of plaques composed of multiple connexin types. Together, these findings redefine our understanding of the GJ plaque structure and should be considered in future studies using fluorescent protein tags to probe dynamics of highly ordered protein complexes.
Collapse
Affiliation(s)
- Randy F Stout
- From the Dominick P. Purpura Department of Neuroscience and
| | - Erik Lee Snapp
- the Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - David C Spray
- From the Dominick P. Purpura Department of Neuroscience and
| |
Collapse
|
93
|
Lee MY, Takada T, Takada Y, Kappy MD, Beyer LA, Swiderski DL, Godin AL, Brewer S, King WM, Raphael Y. Mice with conditional deletion of Cx26 exhibit no vestibular phenotype despite secondary loss of Cx30 in the vestibular end organs. Hear Res 2015; 328:102-12. [PMID: 26232528 DOI: 10.1016/j.heares.2015.07.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 07/22/2015] [Accepted: 07/23/2015] [Indexed: 01/19/2023]
Abstract
Connexins are components of gap junctions which facilitate transfer of small molecules between cells. One member of the connexin family, Connexin 26 (Cx26), is prevalent in gap junctions in sensory epithelia of the inner ear. Mutations of GJB2, the gene encoding Cx26, cause significant hearing loss in humans. The vestibular system, however, does not usually show significant functional deficits in humans with this mutation. Mouse models for loss of Cx26 function demonstrate hearing loss and cochlear pathology but the extent of vestibular dysfunction and organ pathology are less well characterized. To understand the vestibular effects of Cx26 mutations, we evaluated vestibular function and histology of the vestibular sensory epithelia in a conditional knockout (CKO) mouse with Cx26 loss of function. Transgenic C57BL/6 mice, in which cre-Sox10 drives excision of the Cx26 gene from non-sensory cells flanking the sensory epithelium of the inner ear (Gjb2-CKO), were compared to age-matched wild types. Animals were sacrificed at ages between 4 and 40 weeks and their cochlear and vestibular sensory organs harvested for histological examination. Cx26 immunoreactivity was prominent in the peripheral vestibular system and the cochlea of wild type mice, but absent in the Gjb2-CKO specimens. The hair cell population in the cochleae of the Gjb2-CKO mice was severely depleted but in the vestibular organs it was intact, despite absence of Cx26 expression. The vestibular organs appeared normal at the latest time point examined, 40 weeks. To determine whether compensation by another connexin explains survival of the normal vestibular sensory epithelium, we evaluated the presence of Cx30 in the Gjb2-CKO mouse. We found that Cx30 labeling was normal in the cochlea, but it was decreased or absent in the vestibular system. The vestibular phenotype of the mutants was not different from wild-types as determined by time on the rotarod, head stability tests and physiological responses to vestibular stimulation. Thus presence of Cx30 in the cochlea does not compensate for Cx26 loss, and the absence of both connexins from vestibular sensory epithelia is no more injurious than the absence of one of them. Further studies to uncover the physiological foundation for this difference between the cochlea and the vestibular organs may help in designing treatments for GJB2 mutations.
Collapse
Affiliation(s)
- Min Young Lee
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, 1150 West. Medical Center Dr., Ann Arbor, MI 48109-5648, USA
| | - Tomoko Takada
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, 1150 West. Medical Center Dr., Ann Arbor, MI 48109-5648, USA
| | - Yohei Takada
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, 1150 West. Medical Center Dr., Ann Arbor, MI 48109-5648, USA
| | - Michelle D Kappy
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, 1150 West. Medical Center Dr., Ann Arbor, MI 48109-5648, USA
| | - Lisa A Beyer
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, 1150 West. Medical Center Dr., Ann Arbor, MI 48109-5648, USA
| | - Donald L Swiderski
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, 1150 West. Medical Center Dr., Ann Arbor, MI 48109-5648, USA
| | - Ashley L Godin
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, 1150 West. Medical Center Dr., Ann Arbor, MI 48109-5648, USA
| | - Shannon Brewer
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, 1150 West. Medical Center Dr., Ann Arbor, MI 48109-5648, USA
| | - W Michael King
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, 1150 West. Medical Center Dr., Ann Arbor, MI 48109-5648, USA
| | - Yehoash Raphael
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, 1150 West. Medical Center Dr., Ann Arbor, MI 48109-5648, USA.
| |
Collapse
|
94
|
M Kidder G, Winterhager E. Physiological roles of connexins in labour and lactation. Reproduction 2015; 150:R129-36. [PMID: 26150552 DOI: 10.1530/rep-15-0134] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 07/06/2015] [Indexed: 01/08/2023]
Abstract
The connexin family of proteins are best known as oligomerizing to form intercellular membrane channels (gap junctions) that metabolically and ionically couple cells to allow for coordinated cellular function. Nowhere in the body is this role better illustrated than in the uterine smooth muscle during parturition, where gap junctions conduct the contraction wave throughout the tissue to deliver the baby. Parturition is followed by the onset of lactation with connexins contributing to both the dramatic reorganization of mammary gland tissue leading up to lactation and the smooth muscle contraction of the myoepithelial cells which extrudes the milk. This review summarizes what is known about the expression and roles of individual connexin family members in the uterus during labour and in the mammary glands during development and lactation. Connexin loss or malfunction in mammary glands and the uterus can have serious implications for the health of both the mother and the newborn baby.
Collapse
Affiliation(s)
- Gerald M Kidder
- Department of Physiology and PharmacologySchulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario N6A 5C1, CanadaInstitute of Molecular BiologyUniversity of Duisburg-Essen, University Clinics, 45211 Essen, Germany
| | - Elke Winterhager
- Department of Physiology and PharmacologySchulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario N6A 5C1, CanadaInstitute of Molecular BiologyUniversity of Duisburg-Essen, University Clinics, 45211 Essen, Germany
| |
Collapse
|
95
|
Kaneko Y, Tachikawa M, Akaogi R, Fujimoto K, Ishibashi M, Uchida Y, Couraud PO, Ohtsuki S, Hosoya KI, Terasaki T. Contribution of pannexin 1 and connexin 43 hemichannels to extracellular calcium-dependent transport dynamics in human blood-brain barrier endothelial cells. J Pharmacol Exp Ther 2015; 353:192-200. [PMID: 25670633 DOI: 10.1124/jpet.114.220210] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Dysregulation of blood-brain barrier (BBB) transport function is thought to exacerbate neuronal damage in acute ischemic stroke. The purpose of this study was to clarify the characteristics of pannexin (Px) and/or connexin (Cx) hemichannel(s)-mediated transport of organic anions and cations in human BBB endothelial cell line hCMEC/D3 and to identify inhibitors of hemichannel opening in hCMEC/D3 cells in the absence of extracellular Ca(2+), a condition mimicking acute ischemic stroke. In the absence of extracellular Ca(2+), the cells showed increased uptake and efflux transport of organic ionic fluorescent dyes. Classic hemichannel inhibitors markedly inhibited the enhanced uptake and efflux. Quantitative targeted absolute proteomics confirmed Px1 and Cx43 protein expression in plasma membrane of hCMEC/D3 cells. Knockdown of Px1 and Cx43 with the small interfering RNAs significantly inhibited the enhanced uptake and efflux of organic anionic and cationic fluorescent dyes. Clinically used cilnidipine and progesterone, which have neuroprotective effects in animal ischemia models, were identified as inhibitors of hemichannel opening. These findings suggest that altered transport dynamics at the human BBB in the absence of extracellular Ca(2+) is at least partly attributable to opening of Px1 and Cx43 hemichannels. Therefore, we speculate that Px1 and Cx43 may be potential drug targets to ameliorate BBB transport dysregulation during acute ischemia.
Collapse
Affiliation(s)
- Yosuke Kaneko
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan (Y.K., M.T., R.A., Y.U., T.T.); Department of Applied Chemistry and Biochemistry, Faculty of Engineering, Kyushu Sangyo University, Fukuoka, Japan (K.F., M.I.); INSERM, U1016, Institut Cochin and CNRS, UMR8104, and Université Paris Descartes, Paris, France (P.-O.C.); Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan (S.O.); and Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (K.H.)
| | - Masanori Tachikawa
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan (Y.K., M.T., R.A., Y.U., T.T.); Department of Applied Chemistry and Biochemistry, Faculty of Engineering, Kyushu Sangyo University, Fukuoka, Japan (K.F., M.I.); INSERM, U1016, Institut Cochin and CNRS, UMR8104, and Université Paris Descartes, Paris, France (P.-O.C.); Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan (S.O.); and Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (K.H.)
| | - Ryo Akaogi
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan (Y.K., M.T., R.A., Y.U., T.T.); Department of Applied Chemistry and Biochemistry, Faculty of Engineering, Kyushu Sangyo University, Fukuoka, Japan (K.F., M.I.); INSERM, U1016, Institut Cochin and CNRS, UMR8104, and Université Paris Descartes, Paris, France (P.-O.C.); Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan (S.O.); and Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (K.H.)
| | - Kazuhisa Fujimoto
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan (Y.K., M.T., R.A., Y.U., T.T.); Department of Applied Chemistry and Biochemistry, Faculty of Engineering, Kyushu Sangyo University, Fukuoka, Japan (K.F., M.I.); INSERM, U1016, Institut Cochin and CNRS, UMR8104, and Université Paris Descartes, Paris, France (P.-O.C.); Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan (S.O.); and Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (K.H.)
| | - Megumi Ishibashi
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan (Y.K., M.T., R.A., Y.U., T.T.); Department of Applied Chemistry and Biochemistry, Faculty of Engineering, Kyushu Sangyo University, Fukuoka, Japan (K.F., M.I.); INSERM, U1016, Institut Cochin and CNRS, UMR8104, and Université Paris Descartes, Paris, France (P.-O.C.); Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan (S.O.); and Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (K.H.)
| | - Yasuo Uchida
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan (Y.K., M.T., R.A., Y.U., T.T.); Department of Applied Chemistry and Biochemistry, Faculty of Engineering, Kyushu Sangyo University, Fukuoka, Japan (K.F., M.I.); INSERM, U1016, Institut Cochin and CNRS, UMR8104, and Université Paris Descartes, Paris, France (P.-O.C.); Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan (S.O.); and Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (K.H.)
| | - Pierre-Olivier Couraud
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan (Y.K., M.T., R.A., Y.U., T.T.); Department of Applied Chemistry and Biochemistry, Faculty of Engineering, Kyushu Sangyo University, Fukuoka, Japan (K.F., M.I.); INSERM, U1016, Institut Cochin and CNRS, UMR8104, and Université Paris Descartes, Paris, France (P.-O.C.); Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan (S.O.); and Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (K.H.)
| | - Sumio Ohtsuki
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan (Y.K., M.T., R.A., Y.U., T.T.); Department of Applied Chemistry and Biochemistry, Faculty of Engineering, Kyushu Sangyo University, Fukuoka, Japan (K.F., M.I.); INSERM, U1016, Institut Cochin and CNRS, UMR8104, and Université Paris Descartes, Paris, France (P.-O.C.); Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan (S.O.); and Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (K.H.)
| | - Ken-ichi Hosoya
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan (Y.K., M.T., R.A., Y.U., T.T.); Department of Applied Chemistry and Biochemistry, Faculty of Engineering, Kyushu Sangyo University, Fukuoka, Japan (K.F., M.I.); INSERM, U1016, Institut Cochin and CNRS, UMR8104, and Université Paris Descartes, Paris, France (P.-O.C.); Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan (S.O.); and Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (K.H.)
| | - Tetsuya Terasaki
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan (Y.K., M.T., R.A., Y.U., T.T.); Department of Applied Chemistry and Biochemistry, Faculty of Engineering, Kyushu Sangyo University, Fukuoka, Japan (K.F., M.I.); INSERM, U1016, Institut Cochin and CNRS, UMR8104, and Université Paris Descartes, Paris, France (P.-O.C.); Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan (S.O.); and Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (K.H.)
| |
Collapse
|
96
|
Winterhager E, Kidder GM. Gap junction connexins in female reproductive organs: implications for women's reproductive health. Hum Reprod Update 2015; 21:340-52. [PMID: 25667189 DOI: 10.1093/humupd/dmv007] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 01/20/2015] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Connexins comprise a family of ~20 proteins that form intercellular membrane channels (gap junction channels) providing a direct route for metabolites and signalling molecules to pass between cells. This review provides a critical analysis of the evidence for essential roles of individual connexins in female reproductive function, highlighting implications for women's reproductive health. METHODS No systematic review has been carried out. Published literature from the past 35 years was surveyed for research related to connexin involvement in development and function of the female reproductive system. Because of the demonstrated utility of genetic manipulation for elucidating connexin functions in various organs, much of the cited information comes from research with genetically modified mice. In some cases, a distinction is drawn between connexin functions clearly related to the formation of gap junction channels and those possibly linked to non-channel roles. RESULTS AND CONCLUSIONS Based on work with mice, several connexins are known to be required for female reproductive functions. Loss of connexin43 (CX43) causes an oocyte deficiency, and follicles lacking or expressing less CX43 in granulosa cells exhibit reduced growth, impairing fertility. CX43 is also expressed in human cumulus cells and, in the context of IVF, has been correlated with pregnancy outcome, suggesting that this connexin may be a determinant of oocyte and embryo quality in women. Loss of CX37, which exclusively connects oocytes with granulosa cells in the mouse, caused oocytes to cease growing without acquiring meiotic competence. Blocking of CX26 channels in the uterine epithelium disrupted implantation whereas loss or reduction of CX43 expression in the uterine stroma impaired decidualization and vascularization in mouse and human. Several connexins are important in placentation and, in the human, CX43 is a key regulator of the fusogenic pathway from the cytotrophoblast to the syncytiotrophoblast, ensuring placental growth. CX40, which characterizes the extravillous trophoblast (EVT), supports proliferation of the proximal EVTs while preventing them from differentiating into the invasive pathway. Furthermore, women with recurrent early pregnancy loss as well as those with endometriosis exhibit reduced levels of CX43 in their decidua. The antimalaria drug mefloquine, which blocks gap junction function, is responsible for increased risk of early pregnancy loss and stillbirth, probably due to inhibition of intercellular communication in the decidua or between trophoblast layers followed by an impairment of placental growth. Gap junctions also play a critical role in regulating uterine blood flow, contributing to the adaptive response to pregnancy. Given that reproductive impairment can result from connexin mutations in mice, it is advised that women suffering from somatic disease symptoms associated with connexin gene mutations be additionally tested for impacts on reproductive function. Better knowledge of these essential connexin functions in human female reproductive organs is important for safeguarding women's reproductive health.
Collapse
Affiliation(s)
- Elke Winterhager
- Institute of Molecular Biology, University of Duisburg-Essen, University Clinics, 45211 Essen, Germany
| | - Gerald M Kidder
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario and Children's Health Research Institute, London, Ontario N6C 2V5, Canada
| |
Collapse
|
97
|
Irion U, Frohnhöfer HG, Krauss J, Çolak Champollion T, Maischein HM, Geiger-Rudolph S, Weiler C, Nüsslein-Volhard C. Gap junctions composed of connexins 41.8 and 39.4 are essential for colour pattern formation in zebrafish. eLife 2014; 3:e05125. [PMID: 25535837 PMCID: PMC4296512 DOI: 10.7554/elife.05125] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Accepted: 12/22/2014] [Indexed: 11/20/2022] Open
Abstract
Interactions between all three pigment cell types are required to form the stripe pattern of adult zebrafish (Danio rerio), but their molecular nature is poorly understood. Mutations in leopard (leo), encoding Connexin 41.8 (Cx41.8), a gap junction subunit, cause a phenotypic series of spotted patterns. A new dominant allele, leotK3, leads to a complete loss of the pattern, suggesting a dominant negative impact on another component of gap junctions. In a genetic screen, we identified this component as Cx39.4 (luchs). Loss-of-function alleles demonstrate that luchs is required for stripe formation in zebrafish; however, the fins are almost not affected. Double mutants and chimeras, which show that leo and luchs are only required in xanthophores and melanophores, but not in iridophores, suggest that both connexins form heteromeric gap junctions. The phenotypes indicate that these promote homotypic interactions between melanophores and xanthophores, respectively, and those cells instruct the patterning of the iridophores. DOI:http://dx.doi.org/10.7554/eLife.05125.001 The colour patterns that mark an animal's skin, hair, or feathers—called the pigmentation pattern—can be very important for its survival and fitness, helping it to hide from predators or to attract a mate. As a result, there is considerable interest in understanding how genes, proteins, and cells work together to produce the many different pigmentation patterns that exist in the animal world. Adult zebrafish have a characteristic pigmentation pattern of horizontal dark and light stripes on their bodies and fins. There are three types of pigment cell that create this pattern. Xanthophores and iridophores are found all over the body, and the dark stripes also contain melanophore cells. The silvery, reflective iridophores are the first of the cells to populate the skin, giving rise to the first light stripe. They then form a dense network of cells that breaks up to form the darker stripes. However, iridophores are not required to form stripes in the fins, suggesting that patterning occurs differently in the fins and the body. Mutations to a gene called leopard, or leo for short, cause spots to form on the skin of the zebrafish in place of the usual stripes. This gene encodes a member of the connexin family of proteins, which form channels in the membranes that surround cells. These channels—known as gap junctions—allow neighbouring cells to communicate with each other. Each gap junction is made up of two half channels, with one half coming from each neighbouring cells. If the two half channels are identical, the gap junction is known as ‘homomeric’; ‘heteromeric’ gap junctions are made from two different half channels, each consisting of a different connexin protein. The connexin encoded by leo is required for both types of gap junction to form between melanophores and xanthophores. Irion et al. discovered a new mutation to the leo gene that completely disrupts the patterning of the zebrafish. A technique called a genetic screen revealed that the same patterning defects are also seen in the body of zebrafish with mutations to another gene called luchs, which encodes a different connexin protein to the one produced by leo. However, the fins of zebrafish with mutant versions of luchs remain striped. The findings of Irion et al. suggest that heteromeric gap junctions formed from the connexins produced by leo and luchs are important for xanthophores and melanophores to communicate with each other and so form the stripy patterning seen on the body of the zebrafish. The signals transmitted through the gap junctions may also make the iridophores adopt the looser arrangement that is required for the dark stripes to form. As a next step, it will be important to identify the signals that pass through these gap junctions that allow the cells to communicate with their neighbours and establish the pigmentation pattern. DOI:http://dx.doi.org/10.7554/eLife.05125.002
Collapse
Affiliation(s)
- Uwe Irion
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | | | - Jana Krauss
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | | | | | | | - Christian Weiler
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | | |
Collapse
|
98
|
Kelly JJ, Simek J, Laird DW. Mechanisms linking connexin mutations to human diseases. Cell Tissue Res 2014; 360:701-21. [DOI: 10.1007/s00441-014-2024-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 09/26/2014] [Indexed: 11/30/2022]
|
99
|
Teleki I, Szasz AM, Maros ME, Gyorffy B, Kulka J, Meggyeshazi N, Kiszner G, Balla P, Samu A, Krenacs T. Correlations of differentially expressed gap junction connexins Cx26, Cx30, Cx32, Cx43 and Cx46 with breast cancer progression and prognosis. PLoS One 2014; 9:e112541. [PMID: 25383624 PMCID: PMC4226536 DOI: 10.1371/journal.pone.0112541] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 10/06/2014] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND AND AIMS Connexins and their cell membrane channels contribute to the control of cell proliferation and compartmental functions in breast glands and their deregulation is linked to breast carcinogenesis. Our aim was to correlate connexin expression with tumor progression and prognosis in primary breast cancers. MATERIALS AND METHODS Meta-analysis of connexin isotype expression data of 1809 and 1899 breast cancers from the Affymetrix and Illumina array platforms, respectively, was performed. Expressed connexins were also monitored at the protein level in tissue microarrays of 127 patients equally representing all tumor grades, using immunofluorescence and multilayer, multichannel digital microscopy. Prognostic correlations were plotted in Kaplan-Meier curves and tested using the log-rank test and cox-regression analysis in univariate and multivariate models. RESULTS The expression of GJA1/Cx43, GJA3/Cx46 and GJB2/Cx26 and, for the first time, GJA6/Cx30 and GJB1/Cx32 was revealed both in normal human mammary glands and breast carcinomas. Within their subfamilies these connexins can form homo- and heterocellular epithelial channels. In cancer, the array datasets cross-validated each other's prognostic results. In line with the significant correlations found at mRNA level, elevated Cx43 protein levels were linked with significantly improved breast cancer outcome, offering Cx43 protein detection as an independent prognostic marker stronger than vascular invasion or necrosis. As a contrary, elevated Cx30 mRNA and protein levels were associated with a reduced disease outcome offering Cx30 protein detection as an independent prognostic marker outperforming mitotic index and necrosis. Elevated versus low Cx43 protein levels allowed the stratification of grade 2 tumors into good and poor relapse free survival subgroups, respectively. Also, elevated versus low Cx30 levels stratified grade 3 patients into poor and good overall survival subgroups, respectively. CONCLUSION Differential expression of Cx43 and Cx30 may serve as potential positive and negative prognostic markers, respectively, for a clinically relevant stratification of breast cancers.
Collapse
Affiliation(s)
- Ivett Teleki
- 1 Department of Pathology & Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | | | - Mate Elod Maros
- 1 Department of Pathology & Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Balazs Gyorffy
- MTA TTK Lendulet Cancer Biomarker Research Group, Budapest, Hungary
- 2 Department of Pediatrics, Semmelweis University, Budapest, Hungary
- MTA-SE Pediatrics and Nephrology Research Group, Budapest, Hungary
| | - Janina Kulka
- 2 Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Nora Meggyeshazi
- 1 Department of Pathology & Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Gergo Kiszner
- 1 Department of Pathology & Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Peter Balla
- 1 Department of Pathology & Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Aliz Samu
- 1 Department of Pathology & Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Tibor Krenacs
- 1 Department of Pathology & Experimental Cancer Research, Semmelweis University, Budapest, Hungary
- MTA-SE Tumor Progression Research Group, Budapest, Hungary
| |
Collapse
|
100
|
Good ME, Ek-Vitorín JF, Burt JM. Structural determinants and proliferative consequences of connexin 37 hemichannel function in insulinoma cells. J Biol Chem 2014; 289:30379-30386. [PMID: 25217644 PMCID: PMC4215222 DOI: 10.1074/jbc.m114.583054] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 09/10/2014] [Indexed: 01/24/2023] Open
Abstract
Connexin (Cx) 37 suppresses vascular and cancer cell proliferation. The C terminus and a channel able to function are necessary, and neither by itself is sufficient, for Cx37 to mediate growth suppression. Cx37 supports transmembrane and intercellular signaling by forming functional hemichannels (HCs) and gap junction channels (GJCs), respectively. Here we determined whether Cx37 with HC, but not GJC, functionality would suppress proliferation of rat insulinoma (Rin) cells comparably to wild-type Cx37 (Cx37-WT). We mutated extracellular loop residues hypothesized to compromise HC docking but not HC function (six cysteines mutated to alanine, C54A,C61A,C65A, C187A,C192A,C198A (designated as C6A); N55I; and Q58L). All three mutants trafficked to the plasma membrane and formed protein plaques comparably to Cx37-WT. None of the mutants formed functional GJCs, and Cx37-C6A did not form functional HCs. Cx37-N55I and -Q58L formed HCs with behavior and permeation properties similar to Cx37-WT (especially Q58L), but none of the mutants suppressed Rin cell proliferation. The data indicate that determinants of Cx37 HC function differ from other Cxs and that HC functions with associated HC-supported protein-protein interactions are not sufficient for Cx37 to suppress Rin cell proliferation. Together with previously published data, these results suggest that Cx37 suppresses Rin cell proliferation only when in a specific conformation achieved by interaction of the C terminus with a Cx37 pore-forming domain able to open as a GJC.
Collapse
Affiliation(s)
- Miranda E Good
- Department of Physiology, University of Arizona, Tucson, Arizona 85724-5051
| | - José F Ek-Vitorín
- Department of Physiology, University of Arizona, Tucson, Arizona 85724-5051
| | - Janis M Burt
- Department of Physiology, University of Arizona, Tucson, Arizona 85724-5051.
| |
Collapse
|