51
|
Ucak I, Afreen M, Montesano D, Carrillo C, Tomasevic I, Simal-Gandara J, Barba FJ. Functional and Bioactive Properties of Peptides Derived from Marine Side Streams. Mar Drugs 2021; 19:71. [PMID: 33572713 PMCID: PMC7912481 DOI: 10.3390/md19020071] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/23/2021] [Accepted: 01/23/2021] [Indexed: 12/11/2022] Open
Abstract
In fish processing, a great amount of side streams, including skin, bones, heads and viscera, is wasted or downgraded as feed on a daily basis. These side streams are rich sources of bioactive nitrogenous compounds and protein, which can be converted into peptides through enzymatic hydrolysis as well as bacterial fermentation. Peptides are short or long chains of amino acids differing in structure and molecular weight. They can be considered as biologically active as they can contribute to physiological functions in organisms with applications in the food and pharmaceutical industries. In the food industry, such bioactive peptides can be used as preservatives or antioxidants to prevent food spoilage. Furthermore, peptides contain several functional qualities that can be exploited as tools in modifying food ingredient solubility, water-holding and fat-binding capacity and gel formation. In the pharmaceutical industry, peptides can be used as antioxidants, but also as antihypertensive, anticoagulant and immunomodulatory compounds, amongst other functions. On the basis of their properties, peptides can thus be used in the development of functional foods and nutraceuticals. This review focuses on the bioactive peptides derived from seafood side streams and discusses their technological properties, biological activities and applications.
Collapse
Affiliation(s)
- Ilknur Ucak
- Faculty of Agricultural Sciences and Technologies, Nigde Omer Halisdemir University, 51000 Nigde, Turkey;
| | - Maliha Afreen
- Faculty of Agricultural Sciences and Technologies, Nigde Omer Halisdemir University, 51000 Nigde, Turkey;
| | - Domenico Montesano
- Department of Pharmaceutical Sciences, Section of Food Sciences and Nutrition, University of Perugia, Via S. Costanzo 1, 06126 Perugia, Italy;
| | - Celia Carrillo
- Nutrition and Food Science, Faculty of Science, Universidad de Burgos, 09001 Burgos, Spain;
| | - Igor Tomasevic
- Department of Animal Source Food Technology, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia;
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E32004 Ourense, Spain;
| | - Francisco J. Barba
- Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, 46100 Burjassot, Spain
| |
Collapse
|
52
|
Comparation of Anti-Inflammatory and Antioxidantactivities of Curcumin, Tetrahydrocurcuminand Octahydrocurcuminin LPS-Stimulated RAW264.7 Macrophages. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2020:8856135. [PMID: 33424997 PMCID: PMC7772021 DOI: 10.1155/2020/8856135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/13/2020] [Accepted: 12/01/2020] [Indexed: 12/12/2022]
Abstract
Curcumin (CUR) possesses pronounced anti-inflammatory and antioxidant activities. Generally, the clinical application of CUR is restricted due to its apparent unstability and poor absorption, and the biological activities of CUR may be closely associated with its metabolites. Tetrahydrocurcumin (THC) and octahydrocurcumin (OHC) are two major hydrogenated metabolites of CUR with appreciable biological potentials. Here, we comparatively explored the anti-inflammatory and antioxidant activities of CUR, THC, and OHC in lipopolysaccharide- (LPS-) induced RAW264.7 macrophages. The results revealed that CUR, THC, and OHC dose-dependently inhibited the generation of NO and MCP-1 as well as the gene expression of MCP-1 and iNOS. Additionally, CUR, THC, and OHC significantly inhibited NF-κB activation and p38MAPK and ERK phosphorylation, while substantially upregulated the Nrf2 target gene expression (HO-1, NQO-1, GCLC, and GCLM). Nevertheless, zinc protoporphyrin (ZnPP), a typical HO-1 inhibitor, significantly reversed the alleviative effect of CUR, THC, and OHC on LPS-stimulated ROS generation. These results demonstrated that CUR, THC, and OHC exerted beneficial effect on LPS-stimulated inflammatory and oxidative responses, at least partially, through inhibiting the NF-κB and MAPKs pathways and activating Nrf2-regulated antioxidant gene expression. Particularly, THC and OHC might exert superior antioxidant and anti-inflammatory activities to CUR in LPS-stimulated RAW264.7 cells, which can be further explored to be a promising novel effective agent for inflammatory treatment.
Collapse
|
53
|
Gao R, Shu W, Shen Y, Sun Q, Jin W, Li D, Li Y, Yuan L. Peptide fraction from sturgeon muscle by pepsin hydrolysis exerts anti-inflammatory effects in LPS-stimulated RAW264.7 macrophages via MAPK and NF-κB pathways. FOOD SCIENCE AND HUMAN WELLNESS 2021. [DOI: 10.1016/j.fshw.2020.04.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
54
|
Wang QQ, Han S, Li XX, Yuan R, Zhuo Y, Chen X, Zhang C, Chen Y, Gao H, Zhao LC, Yang S. Nuezhenide Exerts Anti-Inflammatory Activity through the NF-κB Pathway. Curr Mol Pharmacol 2021; 14:101-111. [PMID: 32525787 PMCID: PMC8778660 DOI: 10.2174/1874467213666200611141337] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 04/04/2020] [Accepted: 04/15/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Nuezhenide (NZD), an iridoid glycoside isolated from Ilex pubescens Hook. & Arn. var. kwangsiensis Hand.-Mazz., used as a traditional Chinese medicine for clearing away heat and toxic materials, displays a variety of biological activities such as anti-tumor, antioxidant, and other life-protecting activities. However, a few studies involving anti-inflammatory activity and the mechanism of NZD have also been reported. In the present study, the anti-inflammatory and antioxidative effects of NZD are illustrated. OBJECTIVE This study aims to test the hypothesis that NZD suppresses LPS-induced inflammation by targeting the NF-κB pathway in RAW264.7 cells. METHODS LPS-stimulated RAW264.7 cells were employed to detect the effect of NZD on the release of cytokines by ELISA. Protein expression levels of related molecular markers were quantitated by western blot analysis. The levels of ROS, NO, and Ca2+ were detected by flow cytometry. The changes in mitochondrial reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) were observed and verified by fluorescence microscopy. Using immunofluorescence assay, the translocation of NF-κB/p65 from the cytoplasm into the nucleus was determined by confocal microscopy. RESULTS NZD exhibited anti-inflammatory activity and reduced the release of inflammatory cytokines such as nitrite, TNF-α, and IL-6. NZD suppressed the expression of the phosphorylated proteins like IKKα/β, IκBα, and p65. Besides, the flow cytometry results indicated that NZD inhibited the levels of ROS, NO, and Ca2+ in LPS-stimulated RAW264.7 cells. JC-1 assay data showed that NZD reversed LPS-induced MMP loss. Furthermore, NZD suppressed LPS-induced NF-B/p65 translocation from the cytoplasm into the nucleus. CONCLUSION NZD exhibits anti-inflammatory effects through the NF-κB pathway on RAW264.7 cells.
Collapse
Affiliation(s)
- Qin-Qin Wang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530200
| | - Shan Han
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530200
| | - Xin-Xing Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530200
| | - Renyikun Yuan
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Youqiong Zhuo
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530200
| | - Xinxin Chen
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530200
| | - Chenwei Zhang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530200
| | - Yangling Chen
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530200
| | - Hongwei Gao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530200
| | - Li-Chun Zhao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530200
| | - Shilin Yang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning, 530200
| |
Collapse
|
55
|
Chataigner M, Mortessagne P, Lucas C, Pallet V, Layé S, Mehaignerie A, Bouvret E, Dinel AL, Joffre C. Dietary fish hydrolysate supplementation containing n-3 LC-PUFAs and peptides prevents short-term memory and stress response deficits in aged mice. Brain Behav Immun 2021; 91:716-730. [PMID: 32976934 DOI: 10.1016/j.bbi.2020.09.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022] Open
Abstract
Brain aging is characterized by a decline in cognitive functions, which can lead to the development of neurodegenerative pathologies. Age-related spatial learning and memory deficits are associated with a chronic low-grade inflammation. Anxiety disorders and stress response alterations, occurring for a part of the elderly, have also been linked to an increased neuroinflammation and thus, an accelerated cognitive decline. Nutrition is an innovative strategy to prevent age-related cognitive impairments. Among the nutrients, n-3 long chain polyunsaturated fatty acids (LC-PUFAs) and low molecular weight peptides from proteins, especially those from marine resources, are good candidates for their immunomodulatory, anxiolytic and neuroprotective properties. The aim of this study is to determine the combined effect of n-3 LC-PUFAs and low molecular weight peptides on cognitive functions, and their mechanism of action. We are the first to show that a dietary supplementation with a fish hydrolysate containing n-3 LC-PUFAs and low molecular weight peptides prevented the age-related spatial short-term memory deficits and modulated navigation strategies adopted during spatial learning. In addition, the fish hydrolysate displayed anxiolytic activities with the reduction of anxiety-like behaviour in aged mice, restored the plasmatic corticosterone levels similar to adult animals following an acute stress and modulated the hypothalamic stress response. These effects on behaviour can be explained by the immunomodulatory and neuroprotective properties of the fish hydrolysate that limited microgliosis in vivo, decreased LPS-induced expression of pro-inflammatory cytokines and increased the expression of growth factors such as BDNF and NGF in vitro. Thus, n-3 LC-PUFAs and low molecular weight peptides contained in the fish hydrolysate can play an important role in the limitation of neuroinflammation and stress response alterations during aging and represent a potential strategy for the prevention of age-related cognitive decline.
Collapse
Affiliation(s)
- M Chataigner
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 146 rue Léo Saignat, 33076 Bordeaux, France; Abyss Ingredients, 56850 Caudan, France
| | - P Mortessagne
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - C Lucas
- NutriBrain Research and Technology Transfer, NutriNeuro, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - V Pallet
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - S Layé
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 146 rue Léo Saignat, 33076 Bordeaux, France
| | | | - E Bouvret
- Abyss Ingredients, 56850 Caudan, France
| | - A L Dinel
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 146 rue Léo Saignat, 33076 Bordeaux, France; NutriBrain Research and Technology Transfer, NutriNeuro, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - C Joffre
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 146 rue Léo Saignat, 33076 Bordeaux, France.
| |
Collapse
|
56
|
Cassol L, Noreña CPZ. Microencapsulation and accelerated stability testing of bioactive compounds of Hibiscus sabdariffa. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00757-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
57
|
Insights about clinically approved and Preclinically investigated marine natural products. CURRENT RESEARCH IN BIOTECHNOLOGY 2020. [DOI: 10.1016/j.crbiot.2020.09.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
58
|
Hosseini SF, Rezaei M, McClements DJ. Bioactive functional ingredients from aquatic origin: a review of recent progress in marine-derived nutraceuticals. Crit Rev Food Sci Nutr 2020; 62:1242-1269. [DOI: 10.1080/10408398.2020.1839855] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Seyed Fakhreddin Hosseini
- Department of Seafood Processing, Faculty of Marine Sciences, Tarbiat Modares University, Noor, Mazandaran, Iran
| | - Masoud Rezaei
- Department of Seafood Processing, Faculty of Marine Sciences, Tarbiat Modares University, Noor, Mazandaran, Iran
| | | |
Collapse
|
59
|
Kim JM, Yoon KY. Functional properties and biological activities of perilla seed meal protein hydrolysates obtained by using different proteolytic enzymes. Food Sci Biotechnol 2020; 29:1553-1562. [PMID: 33088604 DOI: 10.1007/s10068-020-00810-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/13/2020] [Accepted: 08/18/2020] [Indexed: 12/17/2022] Open
Abstract
In this study, we aimed to determine the potential functional properties and biological activities of the hydrolysates of perilla seed meal (PSM), which is a by-product of perilla seed oil extraction. PSM protein was hydrolyzed independently by using five proteases, and their functional and biological properties were analyzed. PSM protein hydrolysate exhibited high solubility at most of the tested pH values, and the trypsin-treated hydrolysate exhibited the highest water and oil absorption capacity. The neutrase-treated hydrolysate was most effective in scavenging the 1,1-diphenyl-2-picrylhydrazine radicals, whereas the pepsin-treated hydrolysate showed the highest angiotensin I-converting enzyme inhibitory effect, and anti-inflammatory activity. Trypsin-treated hydrolysate exhibited the highest scavenging activity against of 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid radicals with the IC50 of 109.72 µg/mL. The results of the present study suggest that the type of protease used for the treatment significantly influences the functional properties and biological activities of the resulting PSM protein hydrolysates.
Collapse
Affiliation(s)
- Ja Min Kim
- Department of Food and Nutrition, Yeungnam University, Gyeongsan, 38541 South Korea
| | - Kyung Young Yoon
- Department of Food and Nutrition, Yeungnam University, Gyeongsan, 38541 South Korea
| |
Collapse
|
60
|
Gao Y, Zhang X, Ren G, Wu C, Qin P, Yao Y. Peptides from Extruded Lupin ( Lupinus albus L.) Regulate Inflammatory Activity via the p38 MAPK Signal Transduction Pathway in RAW 264.7 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:11702-11709. [PMID: 32869636 DOI: 10.1021/acs.jafc.0c02476] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this study, protein was extracted from extruded lupin and submitted to gastroduodenal digests to obtain lupin peptides, which were characterized using ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). After this, IQDKEGIPPDQQR (IQD), the lupine peptide monomer characterized after UPLC-MS/MS, was screened out by macrophage inflammatory cytokine production assay. RNA-sequencing analysis was performed to explore the mechanisms underlying the anti-inflammatory activity associated with this peptide. The results indicated that lupin peptides effectively inhibited the lipopolysaccharide-induced overproduction of proinflammatory mediators. IQD inhibited the production of tumor necrosis factor-α, interleukin (IL)-6, IL-1β, and monocyte chemoattractant protein-1 by 51.20, 38.52, 44.70, and 40.43%, respectively. RNA-sequencing results showed that IQD inhibited the inflammatory response by regulating the gene expression of the p38 mitogen-activated protein kinase pathway and inhibiting downstream inflammatory cytokines. These bioactive peptides may be used to develop new ingredients for anti-inflammatory nutritional supplements.
Collapse
Affiliation(s)
- Yue Gao
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, No. 80 South Xueyuan Road, Haidian District, Beijing 100081, China
| | - Xuna Zhang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, No. 80 South Xueyuan Road, Haidian District, Beijing 100081, China
| | - Guixing Ren
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, No. 80 South Xueyuan Road, Haidian District, Beijing 100081, China
| | - Caie Wu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu Province, China
| | - Peiyou Qin
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, No. 80 South Xueyuan Road, Haidian District, Beijing 100081, China
| | - Yang Yao
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, No. 80 South Xueyuan Road, Haidian District, Beijing 100081, China
| |
Collapse
|
61
|
Sangtanoo P, Srimongkol P, Saisavoey T, Reamtong O, Karnchanatat A. Anti-inflammatory action of two novel peptides derived from peanut worms (Sipunculus nudus) in lipopolysaccharide-induced RAW264.7 macrophages. Food Funct 2020; 11:552-560. [PMID: 31850468 DOI: 10.1039/c9fo02178g] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Peanut worm (Sipunculus nudus Linn.) protein was hydrolyzed by three proteases, and NO scavenging activity of the protein hydrolysates was evaluated. The hydrolysate obtained using Alcalase® showed the highest NO scavenging activity. This hydrolysate was fractionated using 10-, 5-, and 3 kDa molecular weight cut-off membranes, and the lowest MW fraction (<3 kDa) exhibited the highest NO scavenging activity. The <3 kDa fraction was further purified by gel filtration and high-performance liquid chromatographies. The peptides in the HPLC fraction with the strongest anti-NO activity were identified by quadrupole-time-of-flight mass spectrometry as LSPLLAAH (821.48 Da) and TVNLAYY (843.42 Da). Both peptides and the corresponding pure synthetic peptides inhibited NO production by RAW 264.7 macrophages without cytotoxicity. Quantitative real-time RT-PCR analysis showed that peptides LSPLLAAH and TVNLAYY reduced expression of proinflammatory cytokine genes iNOS, IL-6, TNF-α, and COX-2 in RAW 264.7 macrophages, suggesting that these peptides are novel anti-inflammatory candidates.
Collapse
Affiliation(s)
- Papassara Sangtanoo
- Research Unit in Bioconversion/Bioseparation for Value-Added Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok 10330, Thailand.
| | | | | | | | | |
Collapse
|
62
|
Joshi I, Nazeer RA. Anti-inflammatory potential of novel hexapeptide derived from Meretrix meretrix foot and its functional properties. Amino Acids 2020; 52:1391-1401. [PMID: 33030623 DOI: 10.1007/s00726-020-02899-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 09/30/2020] [Indexed: 10/23/2022]
Abstract
The study aimed to identify bioactive peptide from Meretrix meretrix Linnaeus foot (MMF) and examine its potential of suppressing inflammation. In brief, the anti-inflammatory activity was identified by erythrocyte membrane protection and protein denaturation assay from MMF peptic 9th-h hydrolysate and was separated with three molecular weight cut-off units. The obtained four fractions were testified for activity and the fraction (10-3 kDa) with maximum activity was purified using gel permeation chromatography. Finally, the peptide sequence was identified as Asn-Pro-Ala-Gln-Asp-Cys (647.559 Da) by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The hexapeptide was characterised for functional properties at different pH range. The non-toxic hexapeptide was able to reduce the cyclooxygenase (COX)-2 activation, pro-inflammatory cytokines and nitric oxide (NO) production significantly in RAW264.7 macrophage cells. The current results propose that the hexapeptide derived from MMF protein can act as an effective anti-inflammatory against pro-inflammatory cytokines, COX-2 and NO. Moreover, it could be used as an effective alternative source for drugs in pharma and also as an ingredient in food industries.
Collapse
Affiliation(s)
- Ila Joshi
- Biopharmaceutical Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603 203, Tamil Nadu, India
| | - Rasool Abdul Nazeer
- Biopharmaceutical Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603 203, Tamil Nadu, India.
| |
Collapse
|
63
|
Oh Y, Ahn CB, Je JY. Ark shell protein-derived bioactive peptides promote osteoblastic differentiation through upregulation of the canonical Wnt/β-catenin signaling in human bone marrow-derived mesenchymal stem cells. J Food Biochem 2020; 44:e13440. [PMID: 32808363 DOI: 10.1111/jfbc.13440] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/30/2020] [Accepted: 07/30/2020] [Indexed: 01/13/2023]
Abstract
In this study, the stimulating effect of ark shell protein-derived peptides AWLNH and PHDL on osteoblast differentiation in human bone marrow-derived mesenchymal stem cells (hBMMSCs) and its molecular mechanism was investigated. The hBMMSCs were cultured with two peptides and osteogenic markers were analyzed. Results showed that enhanced ALP activity and calcification were detected in the presence of AWLNH and PHDL. Based on western blotting, RT-qPCR, and immunostaining analysis, AWLNH and PHDL are specific for osteoblast differentiation of hBMMSCs through activating the canonical Wnt/β-catenin signaling pathway followed by activating Runx2, osterix, and type I collagen. Loss-of-function assay with DKK-1, a Wnt antagonist, showed that the canonical Wnt/β-catenin signaling was essential for AWLNH and PHDL-induced osteogenesis in hBMMSCs. These findings suggested that AWLNH and PHDL can stimulate osteoblast differentiation of hBMMSCs via upregulating the canonical Wnt/β-catenin signaling and may be useful for a potential nutraceuticals or pharmaceuticals to treat osteoporosis. PRACTICAL APPLICATIONS: Ark shell is a popular foodstuff in Korea. However, biological effects of its protein and peptide have not been explored in many ways. This study demonstrated that ark shell protein-derived peptides promoted osteoblast differentiation in hBMMSCs through upregulating the canonical Wnt/β-catenin signaling. The results of this study could be a basis to promote its application as functional foods and/or nutraceuticals.
Collapse
Affiliation(s)
- Yunok Oh
- Institute of Marine Life Sciences, Pukyong National University, Busan, Republic of Korea
| | - Chang-Bum Ahn
- Division of Food and Nutrition, Chonnam National University, Gwangju, Republic of Korea
| | - Jae-Young Je
- Department of Marine-Bio Convergence Science, Pukyong National University, Busan, Republic of Korea
| |
Collapse
|
64
|
Antioxidant Peptides from Sepia esculenta Hydrolyzate Attenuate Oxidative Stress and Fat Accumulation in Caenorhabditis elegans. Mar Drugs 2020; 18:md18100490. [PMID: 32993031 PMCID: PMC7599988 DOI: 10.3390/md18100490] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/17/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023] Open
Abstract
The hydrolysate of golden cuttlefish (Sepia esculenta) was prepared by using papain, and then, it was further separated by ultrafiltration, gel filtration chromatography, and reverse-phase high-performance liquid chromatography (RP-HPLC). The peptide components of the active fraction were identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS), and then two novel peptides, SeP2 (DVEDLEAGLAK, 1159.27 Da) and SeP5 (EITSLAPSTM, 1049.22 Da), were obtained and displayed significant alleviation effects on oxidative stress in Caenorhabditis elegans. Studies indicated that S. esculenta antioxidant peptides (SePs) increase superoxide dismutase (SOD) activity but reduce reactive oxygen species (ROS) and malondialdehyde (MDA) levelsin oxidation-damaged nematodes. Using transgenic CF1553 nematodes, the sod-3p::GFP expression in the worms treated with SePs was significantly higher than that of the control nematodes. Real-time PCR also demonstrated that the expression of stress-related genes such as sod-3 is up-regulated by SePs. Furthermore, studies showed that SePs could obviously decrease fat accumulation as well as reduce the elevated ROS and MDA levels in high-fat nematodes. Taken together, these results indicated that SePs are capable of the activation of antioxidant defense and the inhibition of free radicals and lipid peroxidation, play important roles in attenuating oxidative stress and fat accumulation in C. elegans, and might have the potential to be used in nutraceutical and functional foods.
Collapse
|
65
|
Zhu W, Ren L, Zhang L, Qiao Q, Farooq MZ, Xu Q. The Potential of Food Protein-Derived Bioactive Peptides against Chronic Intestinal Inflammation. Mediators Inflamm 2020; 2020:6817156. [PMID: 32963495 PMCID: PMC7499337 DOI: 10.1155/2020/6817156] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 08/25/2020] [Indexed: 12/18/2022] Open
Abstract
Inflammation can cause various chronic diseases like inflammatory bowel diseases. Various food protein-derived bioactive peptides (BAPs) with anti-inflammatory activity have the potential to manage these diseases. The aim of this paper is to overview the mechanisms and the molecular targets of BAPs to exert anti-inflammatory activity. In this review, the in vitro and in vivo effects of BAPs on intestinal inflammation are highlighted. The mechanism, pathways, and future perspectives of BAPs as the potential sources of therapeutic treatments to alleviate intestinal inflammation are provided, including nuclear factor-κB, mitogen-activated protein kinase, Janus kinase-signal transducer and activator of transcription, and peptide transporter 1 (PepT1), finding that PepT1 and gut microbiota are the promising targets for BAPs to alleviate the intestinal inflammation. This review provides a comprehensive understanding of the role of dietary BAPs in attenuating inflammation and gives a novel direction in nutraceuticals for people or animals with intestinal inflammation.
Collapse
Affiliation(s)
- Wanying Zhu
- Shanxian Central Hospital, Heze 274300, China
| | - Liying Ren
- Shanxian Central Hospital, Heze 274300, China
| | - Li Zhang
- Shanxian Central Hospital, Heze 274300, China
| | - Qinqin Qiao
- College of Information Engineering, Fuyang Normal University, Fuyang 236000, China
| | - Muhammad Zahid Farooq
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qingbiao Xu
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
66
|
Wang K, Siddanakoppalu PN, Ahmed I, Pavase TR, Lin H, Li Z. Purification and identification of anti-allergic peptide from Atlantic Salmon (Salmo salar) byproduct enzymatic hydrolysates. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104084] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
67
|
Gao R, Shu W, Shen Y, Sun Q, Bai F, Wang J, Li D, Li Y, Jin W, Yuan L. Sturgeon protein-derived peptides exert anti-inflammatory effects in LPS-stimulated RAW264.7 macrophages via the MAPK pathway. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
68
|
Quintal-Bojórquez N, Segura-Campos MR. Bioactive Peptides as Therapeutic Adjuvants for Cancer. Nutr Cancer 2020; 73:1309-1321. [DOI: 10.1080/01635581.2020.1813316] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
69
|
Ji Z, Mao J, Chen S, Mao J. Antioxidant and anti-inflammatory activity of peptides from foxtail millet (Setaria italica) prolamins in HaCaT cells and RAW264.7 murine macrophages. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100636] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
70
|
Gao R, Shen Y, Shu W, Jin W, Bai F, Wang J, Zhang Y, El-Seedi H, Sun Q, Yuan L. Sturgeon hydrolysates alleviate DSS-induced colon colitis in mice by modulating NF-κB, MAPK, and microbiota composition. Food Funct 2020; 11:6987-6999. [PMID: 32701080 DOI: 10.1039/c9fo02772f] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Sturgeon muscle byproduct collected after caviar production is usually not fully utilized, and sometimes may be discarded, thus causing a lot of waste. Yet dietary protein hydrolysates, which may be derived from sturgeon muscle, have been reported to have versatile beneficial biological activities. Studying the biological activities of sturgeon muscle-derived hydrolysates holds much promise for adding value to sturgeon. The current study aimed to study the therapeutic anti-inflammatory effects of sturgeon muscle-derived hydrolysates and the underlying mechanisms. The administration of sturgeon hydrolysates (SH) significantly decreased the severity of DSS-induced damage, evidenced by increased body weight, colon length, and decreased disease activity index (DAI) and histological scores. SH also inhibited myeloperoxidase (MPO) activity and reduced the serum levels of IL-6, IL-1β, and TNF-α. Western blotting results revealed that SH suppressed DSS-induced activation of the NF-κB and MAPK pathways in the colon. Furthermore, SH partially restored the alteration of the gut microbiota in colitic mice. SH increased the Bacteroidetes/Firmicutes ratio and the relative abundance of Ruminococcaceae, Porphyromonadaceae, and Bacteroidetes S24-7, while decreased the abundance of potentially harmful bacteria Erysipelotrichaceae and Enterococcaceae. These results suggest that SH inhibited DSS-induced colitis by regulating the NF-κB and MAPK pathways and modulating microbiota composition.
Collapse
Affiliation(s)
- Ruichang Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Kchaou H, Jridi M, Benbettaieb N, Debeaufort F, Nasri M. Bioactive films based on cuttlefish (Sepia officinalis) skin gelatin incorporated with cuttlefish protein hydrolysates: Physicochemical characterization and antioxidant properties. Food Packag Shelf Life 2020. [DOI: 10.1016/j.fpsl.2020.100477] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
72
|
Optimization of Enzymatic Conditions of Sturgeon Muscles and Their Anti-Inflammatory Potential. J FOOD QUALITY 2020. [DOI: 10.1155/2020/9698134] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The objective of this study was to investigate the effects of different enzymolysis conditions on the NO inhibition rate and DH (degree of hydrolysis) of sturgeon hydrolysates (SH) prepared by Alcalase. The NO inhibition rate of 60.23% was attained under the optimum enzymolysis conditions as follows: pH 9.0, enzymolysis time of 4.92 h, enzymolysis temperature of 55°C, solid/liquid ratio of 1 : 20, and enzyme additive amount of 7674.22 U/g protein, which was well matched with the predicted value 61.44% of the Box–Behnken design model. After the ultrafiltration of SH, SH-3 (SH < 3 kDa) could significantly decrease the levels of NO and proinflammatory cytokine level IL-6. Also, we found that the obtained SH-3 contained good properties of emulsification and possessed good WHC and OHC. SH-3 demonstrated appreciable antioxidant potential on DPPH and ABTS radical scavenging activities. These results suggested that SH-3 derived from sturgeon muscles could potentially be used as a promising ingredient against inflammatory and oxidative stress-associated diseases.
Collapse
|
73
|
Pan Y, Zhao X, Kim SH, Kang SA, Kim YG, Park KY. Anti-inflammatory effects of Beopje curly dock (Rumex crispus L.) in LPS-induced RAW 264.7 cells and its active compounds. J Food Biochem 2020; 44:e13291. [PMID: 32458452 DOI: 10.1111/jfbc.13291] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/20/2020] [Accepted: 05/02/2020] [Indexed: 12/21/2022]
Abstract
Inflammation is a defense response of the body to stimuli. Curly dock (CD) is an herbal food with anti-inflammatory effects. Beopje is an herbal food processing method that reduces toxicity and enhances beneficial effects. This study investigated the effects of CD and Beopje curly dock (CD-B) extracts on lipopolysaccharide (LPS)-induced inflammatory damage in RAW 264.7 cells. Cell survival rate and nitrite concentration were determined using the MTT assay and Griess method, respectively. Enzyme-linked immunosorbent assay was used to detect the inflammatory cytokine levels. The mRNA and protein expression levels of inflammatory associated genes were detected by qPCR and Western blot, respectively. CD and CD-B extracts compositions were assessed by UPLC-Q-TOF MS analysis. Our results indicate that CD-B has a more significant inhibitory effect on the LPS-induced inflammatory response in RAW 264.7 cells than CD, suggesting that the Beopje process potentially enhances the anti-inflammatory effect of CD. PRACTICAL APPLICATIONS: Long-term inflammation can cause a variety of chronic diseases. Therefore, it is necessary to suppress the occurrence of body inflammation in time. This study preliminarily clarified the mechanism of herbal foods to alleviate inflammation by regulating the immune response, and further confirms that applying the Beopje process enhances the anti-inflammatory effect. This research can serve as a significant reference for future research, prevention and treatment of inflammation-related diseases, and the development of functional foods with anti-inflammatory activity. It also provides a theoretical basis for the further reasonable application of Beopje processing method.
Collapse
Affiliation(s)
- Yanni Pan
- Department of Food Science and Biotechnology, Cha University, Seongnam, South Korea.,Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| | - Seung-Hee Kim
- Department of Conversing Technology, Graduate School of Venture, Hoseo University, Seoul, South Korea
| | - Soon-Ah Kang
- Department of Conversing Technology, Graduate School of Venture, Hoseo University, Seoul, South Korea
| | | | - Kun-Young Park
- Department of Food Science and Biotechnology, Cha University, Seongnam, South Korea.,Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| |
Collapse
|
74
|
Narayanasamy A, Balde A, Raghavender P, Shashanth D, Abraham J, Joshi I, Nazeer R. Isolation of marine crab (Charybdis natator) leg muscle peptide and its anti-inflammatory effects on macrophage cells. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101577] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
75
|
Effects of Compound Active Peptides on Protecting Liver and Intestinal Epithelial Cells from Damages and Preventing Hyperglycemia. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3183104. [PMID: 32318237 PMCID: PMC7157784 DOI: 10.1155/2020/3183104] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/14/2020] [Accepted: 02/19/2020] [Indexed: 01/04/2023]
Abstract
Active peptides have good effectiveness in controlling or preventing many diseases. Compound active peptides (CAP) obtained from animal, plant, and sea food proteins were used in this study to explore their effects on antioxidation, anti-inflammation, and antihyperglycemia in vitro and in vivo. The results demonstrated that 10 μg/mL CAP could increase cell viability (P < 0.05) and decrease reactive oxygen species (ROS) levels and cell apoptosis (P < 0.05) when WRL68 cells were induced by H2O2 for 6 h. Moreover, incubation with 20 μg/mL CAP for 6 h significantly increased cell viability and Bcl-2 expression level (P < 0.05) and decreased expression levels of IL-6, IL-8, TNF-α, Bax, and Caspase 3 and the ratio of Bax/Bcl-2 (P < 0.05) when swine jejunal epithelial cells (IPEC-J2) were induced by deoxynivalenol (DON). In addition, adding CAP individually or combined with Liuweidihuang pills (LDP, Chinese medicine) and low-dose glibenclamide could lower blood glucose levels in alloxan-induced hyperglycemic model mice. These results suggested that CAP was probably a beneficial ingredient for alleviating H2O2-induced oxidative stress and DON-induced cell inflammation and apoptosis and preventing hyperglycemia.
Collapse
|
76
|
Gasco L, Acuti G, Bani P, Dalle Zotte A, Danieli PP, De Angelis A, Fortina R, Marino R, Parisi G, Piccolo G, Pinotti L, Prandini A, Schiavone A, Terova G, Tulli F, Roncarati A. Insect and fish by-products as sustainable alternatives to conventional animal proteins in animal nutrition. ITALIAN JOURNAL OF ANIMAL SCIENCE 2020. [DOI: 10.1080/1828051x.2020.1743209] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Laura Gasco
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Torino, Grugliasco, Torino, Italy
| | - Gabriele Acuti
- Dipartimento di Medicina Veterinaria, Università degli Studi di Perugia, Perugia, Italy
| | - Paolo Bani
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Antonella Dalle Zotte
- Dipartimento di Medicina Animale, Produzioni e Salute, Università degli Studi di Padova, Legnaro, PD, Italy
| | - Pier Paolo Danieli
- Dipartimento di Scienze Agrarie e Forestali, Università degli Studi della Tuscia, Viterbo, Italy
| | - Anna De Angelis
- Dipartimento di Agraria, Alimentazione e Ambiente, Università degli Studi di Catania, Catania, Italy
| | - Riccardo Fortina
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Torino, Grugliasco, Torino, Italy
| | - Rosaria Marino
- Dipartimento di Scienze Agrarie, degli Alimenti e dell’Ambiente, Università degli Studi di Foggia, Foggia, Italy
| | - Giuliana Parisi
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali, Università degli Studi di Firenze, Firenze, Italy
| | - Giovanni Piccolo
- Dipartimento di Medicina Veterinaria e Produzioni Animali, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Luciano Pinotti
- Dipartimento di Scienze Veterinarie per la Salute, la Produzione Animale e la Sicurezza Alimentare, Università degli Studi di Milano, Milano, Italy
| | - Aldo Prandini
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Achille Schiavone
- Dipartimento di Scienze Veterinarie, Università degli Studi di Torino, Grugliasco, Torino, Italy
| | - Genciana Terova
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell’Insubria, Varese, Italy
| | - Francesca Tulli
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, Università degli Studi di Udine, Udine, Italy
| | - Alessandra Roncarati
- Scuola di Bioscienze e Medicina Veterinaria, Università degli Studi di Camerino, Matelica, MC, Italy
| |
Collapse
|
77
|
Antioxidant Peptides from Collagen Hydrolysate of Redlip Croaker ( Pseudosciaena polyactis) Scales: Preparation, Characterization, and Cytoprotective Effects on H 2O 2-Damaged HepG2 Cells. Mar Drugs 2020; 18:md18030156. [PMID: 32168851 PMCID: PMC7142964 DOI: 10.3390/md18030156] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/07/2020] [Accepted: 03/10/2020] [Indexed: 02/06/2023] Open
Abstract
Bioactive peptides from fish collagens with antioxidant properties have become a topic of great interest for health, food, and processing/preservation industries. To explore the high-value utilized way of scales produced during the fish processing, collagen hydrolysates of redlip croaker (Pseudosciaena polyactis) scales were prepared using six different proteases, and the hydrolysate (RSCH) prepared using neutrase showed the highest degree of hydrolysis (21.36 ± 1.18%) and 2,2-diphenyl-1-picrylhydrazyl (DPPH·) radical scavenging activity (30.97 ± 1.56%) among the six hydrolysates. Subsequently, six antioxidant peptides were purified from RSCH using membrane ultrafiltration and serial chromatography, and their amino acid sequences were identified as DGPEGR, GPEGPMGLE, EGPFGPEG, YGPDGPTG, GFIGPTE, and IGPLGA with molecular masses of 629.61, 885.95, 788.96, 762.75, 733.80, and 526.61 Da, respectively. Among six collagen peptides, GPEGPMGLE, EGPFGPEG, and GFIGPTE exhibited the strongest scavenging activities on DPPH· radical (EC50 0.59, 0.37, and 0.45 mg/mL), hydroxyl radical (EC50 0.45, 0.33, and 0.32 mg/mL), and superoxide anion radical (EC50 0.62, 0.47, and 0.74 mg/mL). GPEGPMGLE, EGPFGPEG, and GFIGPTE showed high inhibiting ability on lipid peroxidation in a linoleic acid model system and protective activities on oxidation-damaged DNA. More importantly, GPEGPMGLE, EGPFGPEG, and GFIGPTE could protect HepG2 cells from H2O2-induced oxidative damage through decreasing the levels of reactive oxygen species (ROS) and MDA and activating intracellular antioxidant enzymes of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px). These results suggested that six collagen peptides (RCP1–RCP6), especially GPEGPMGLE, EGPFGPEG, and GFIGPTE, might serve as potential antioxidants applied in nutraceutical and pharmaceutical products.
Collapse
|
78
|
Hu XM, Wang YM, Zhao YQ, Chi CF, Wang B. Antioxidant Peptides from the Protein Hydrolysate of Monkfish ( Lophius litulon) Muscle: Purification, Identification, and Cytoprotective Function on HepG2 Cells Damage by H 2O 2. Mar Drugs 2020; 18:E153. [PMID: 32164197 PMCID: PMC7142609 DOI: 10.3390/md18030153] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 12/21/2022] Open
Abstract
In the work, defatted muscle proteins of monkfish (Lophius litulon) were separately hydrolyzed by pepsin, trypsin, and in vitro gastrointestinal (GI) digestion methods, and antioxidant peptides were isolated from proteins hydrolysate of monkfish muscle using ultrafiltration and chromatography processes. The antioxidant activities of isolated peptides were evaluated using radical scavenging and lipid peroxidation assays and H2O2-induced model of HepG2 cells. In which, the cell viability, reactive oxygen species (ROS) content, and antioxidant enzymes and malondialdehyde (MDA) levels were measured for evaluating the protective extent on HepG2 cells damaged by H2O2. The results indicated that the hydrolysate (MPTH) prepared using in vitro GI digestion method showed the highest degree of hydrolysis (27.24 ± 1.57%) and scavenging activity on a 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical (44.54 ± 3.12%) and hydroxyl radical (41.32 ± 2.73%) at the concentration of 5 mg protein/mL among the three hydrolysates. Subsequently, thirteen antioxidant peptides (MMP-1 to MMP-13) were isolated from MPTH. According to their DPPH radical and hydroxyl radical scavenging activity, three peptides with the highest antioxidant activity were selected and identified as EDIVCW (MMP-4), MEPVW (MMP-7), and YWDAW (MMP-12) with molecular weights of 763.82, 660.75, and 739.75 Da, respectively. EDIVCW, MEPVW, and YWDAW showed high scavenging activities on DPPH radical (EC50 0.39, 0.62, and 0.51 mg/mL, respectively), hydroxyl radical (EC50 0.61, 0.38, and 0.32 mg/mL, respectively), and superoxide anion radical (EC50 0.76, 0.94, 0.48 mg/mL, respectively). EDIVCW and YWDAW showed equivalent inhibiting ability on lipid peroxidation with glutathione in the linoleic acid model system. Moreover, EDIVCW, MEPVW, and YWDAW had no cytotoxicity to HepG2 cells at the concentration of 100.0 µM and could concentration-dependently protect HepG2 cells from H2O2-induced oxidative damage through decreasing the levels of reactive oxygen species (ROS) and MDA and activating intracellular antioxidant enzymes of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px). These present results indicated that the protein hydrolysate and isolated antioxidant peptides from monkfish muscle, especially YWDAW could serve as powerful antioxidants applied in the treatment of some liver diseases and healthcare products associated with oxidative stress.
Collapse
Affiliation(s)
- Xiao-Meng Hu
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (X.-M.H.); (Y.-M.W.); (Y.-Q.Z.)
| | - Yu-Mei Wang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (X.-M.H.); (Y.-M.W.); (Y.-Q.Z.)
| | - Yu-Qin Zhao
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (X.-M.H.); (Y.-M.W.); (Y.-Q.Z.)
| | - Chang-Feng Chi
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China
| | - Bin Wang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (X.-M.H.); (Y.-M.W.); (Y.-Q.Z.)
| |
Collapse
|
79
|
Kim HS, Lee JH, Moon SH, Ahn DU, Paik HD. Ovalbumin Hydrolysates Inhibit Nitric Oxide Production in LPS-induced RAW 264.7 Macrophages. Food Sci Anim Resour 2020; 40:274-285. [PMID: 32161922 PMCID: PMC7057040 DOI: 10.5851/kosfa.2020.e12] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/04/2020] [Accepted: 02/04/2020] [Indexed: 12/23/2022] Open
Abstract
In this study, ovalbumin (OVA) hydrolysates were prepared using various
proteolytic enzymes and the anti-inflammatory activities of the hydrolysates
were determined. Also, the potential application of OVA as a functional food
material was discussed. The effect of OVA hydrolysates on the inhibition of
nitric oxide (NO) production was evaluated via the Griess reaction, and their
effects on the expression of inducible NO synthase (inducible nitric oxide
synthase, iNOS) were assessed using the quantitative real-time PCR and Western
blotting. To determine the mechanism by which OVA hydrolysates activate
macrophages, pathways associated with the mitogen-activated protein kinase
(MAPK) signaling were evaluated. When the OVA hydrolysates were added to RAW
264.7 cells without lipopolysaccharide (LPS) stimulation, they did not affect
the production of NO. However, both the OVA-Protex 6L hydrolysate (OHPT) and
OVA-trypsin hydrolysate (OHT) inhibited NO production dose-dependently in LPS-
stimulated RAW 264.7 cells. Especially, OHT showed a strong NO-inhibitory
activity (62.35% at 2 mg/mL) and suppressed iNOS production and the mRNA
expression for iNOS (p<0.05). Also, OHT treatment decreased the
phosphorylation levels of Jun amino-terminal kinases (JNK) and extracellular
signal-regulated kinases (ERK) in the MAPK signaling pathway. These findings
suggested that OVA hydrolysates could be used as an anti-inflammatory agent that
prevent the overproduction of NO.
Collapse
Affiliation(s)
- Hyun Suk Kim
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea
| | - Jae Hoon Lee
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea
| | - Sun Hee Moon
- Department of Environmental and Occupational Health, University of Arkansas for Medical Science, Little Rock, Arkansas 72205, USA
| | - Dong Uk Ahn
- Department of Animal Science, Iowa State University, Ames, Iowa 50011, USA
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
80
|
Durand R, Pellerin G, Thibodeau J, Fraboulet E, Marette A, Bazinet L. Screening for metabolic syndrome application of a herring by-product hydrolysate after its separation by electrodialysis with ultrafiltration membrane and identification of novel anti-inflammatory peptides. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116205] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
81
|
Martínez-Sánchez SM, Gabaldón-Hernández JA, Montoro-García S. Unravelling the molecular mechanisms associated with the role of food-derived bioactive peptides in promoting cardiovascular health. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103645] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
82
|
Deng Z, Cui C, Wang Y, Ni J, Zheng L, Wei HK, Peng J. FSGHF3 and peptides, prepared from fish skin gelatin, exert a protective effect on DSS-induced colitis via the Nrf2 pathway. Food Funct 2020; 11:414-423. [DOI: 10.1039/c9fo02165e] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Inflammatory bowel disease (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), is a chronic inflammatory disease affecting the colon, and its incidence is rising worldwide.
Collapse
Affiliation(s)
- Zhao Deng
- Department of Animal Nutrition and Feed Science
- College of Animal Science and Technology
- Huazhong Agricultural University
- Wuhan
- P. R. China
| | - Chenbin Cui
- Department of Animal Nutrition and Feed Science
- College of Animal Science and Technology
- Huazhong Agricultural University
- Wuhan
- P. R. China
| | - Yanan Wang
- Department of Animal Nutrition and Feed Science
- College of Animal Science and Technology
- Huazhong Agricultural University
- Wuhan
- P. R. China
| | - Jiangjin Ni
- Department of Animal Nutrition and Feed Science
- College of Animal Science and Technology
- Huazhong Agricultural University
- Wuhan
- P. R. China
| | - Liufeng Zheng
- Department of Animal Nutrition and Feed Science
- College of Animal Science and Technology
- Huazhong Agricultural University
- Wuhan
- P. R. China
| | - Hong-Kui Wei
- Department of Animal Nutrition and Feed Science
- College of Animal Science and Technology
- Huazhong Agricultural University
- Wuhan
- P. R. China
| | - Jian Peng
- Department of Animal Nutrition and Feed Science
- College of Animal Science and Technology
- Huazhong Agricultural University
- Wuhan
- P. R. China
| |
Collapse
|
83
|
Liang LL, Cai SY, Gao M, Chu XM, Pan XY, Gong KK, Xiao CW, Chen Y, Zhao YQ, Wang B, Sun KL. Purification of antioxidant peptides of Moringa oleifera seeds and their protective effects on H2O2 oxidative damaged Chang liver cells. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103698] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
84
|
Aquaculture and by-products: Challenges and opportunities in the use of alternative protein sources and bioactive compounds. ADVANCES IN FOOD AND NUTRITION RESEARCH 2019; 92:127-185. [PMID: 32402443 DOI: 10.1016/bs.afnr.2019.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
There is a growing concern about chronic diseases such as obesity, diabetes, hypertension, hypercholesterolemia, cancer and cardiovascular diseases resulting from profound changes in the western lifestyle. Aquaculture by-products are generated in large quantities and they can be profitably recycled through their bioactive compounds used for health or food supplements. Improving waste utilization in the field of aquaculture is essential for a sustainable industry to prevent or minimize the environmental impact. In this sense fish by-products are a great source of protein and omega-3 polyunsaturated fatty acids which are particularly studied on Atlantic salmon or rainbow trout. Fish protein hydrolysate (FPH) obtained from chemical, enzymatical and microbial hydrolysis of processing by-products are being used as a source of amino acids and peptides with high digestibility, fast absorption and important biological activities. Omega-3 polyunsaturated fatty acids, eicosapentaenoic (EPA) and docosahexaenoic (DHA) from fish discards have been reported to decrease postprandial triacylglycerol levels, reduction of blood pressure, platelet aggregation and the inflammatory response. Crustacean by-products can also be used to produce chitosan with antioxidant and antimicrobial activity for food and pharmaceutical industries and carotenoids with important biological activity. Seaweeds are rich in bioactive compounds such as alginate, carrageenan, agar, carotenoids and polyphenols with different biological activities such as antioxidant, anticancer, antidiabetic, antimicrobial or anti-inflammatory activity. Finally, regarding harvest microalgae, during the past decades, they were mainly used in the healthy food market, with >75% of the annual microalgal biomass production, used for the manufacture of powders, tablets, capsules or pills. We will report and discuss the present and future role of aquaculture by-products as sources of biomolecules for the design and development of functional foods/beverages. This chapter will focus on the main bioactive compounds from aquaculture by-products as functional compounds in food and their applications in biomedicine for the prevention and treatment of diseases.
Collapse
|
85
|
Antioxidant and cryoprotective effects of hydrolysate from gill protein of bighead carp (Hypophthalmichthys nobilis) in preventing denaturation of frozen surimi. Food Chem 2019; 298:124868. [DOI: 10.1016/j.foodchem.2019.05.142] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 05/21/2019] [Accepted: 05/21/2019] [Indexed: 01/14/2023]
|
86
|
Qiu YT, Wang YM, Yang XR, Zhao YQ, Chi CF, Wang B. Gelatin and Antioxidant Peptides from Gelatin Hydrolysate of Skipjack Tuna ( Katsuwonus pelamis) Scales: Preparation, Identification and Activity Evaluation. Mar Drugs 2019; 17:md17100565. [PMID: 31623339 PMCID: PMC6836156 DOI: 10.3390/md17100565] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/28/2019] [Accepted: 10/01/2019] [Indexed: 12/11/2022] Open
Abstract
For full use of fish by-products, scale gelatin (TG) and antioxidant peptides (APs) of skipjack tuna (Katsuwonus pelamis) were prepared, and their properties were characterized using an amino acid analyzer, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), Fourier transform infrared spectroscopy (FTIR), electrospray ionization mass spectrometers (ESI-MS), and radical scavenging assays. The results indicate that TG with a yield of 3.46 ± 0.27% contained Gly (327.9 ± 5.2 residues/1000 residues) as the major amino acid and its imino acid content was 196.1 residues/1000 residues. The structure of TG was more unstable than that of type I collagen from scales of skipjack tuna (TC) and TG was more suitable for preparation of hydrolysate by protease than mammalian gelatins. Therefore, TG was separately hydrolyzed under five proteases (pepsin, papain, trypsin, neutrase, and alcalase) and ten APs (TGP1–TGP10) were isolated from the alcalase-hydrolysate. Among them, TGP5, TGP7, and TGP9 with high antioxidant activity were identified as His-Gly-Pro-Hyp-Gly-Glu (TGP5), Asp-Gly-Pro-Lys-Gly-His (TGP7) and Met-Leu-Gly-Pro-Phe-Gly-Pro-Ser (TGP9), respectively. Furthermore, TGP5, TGP7, and TGP9 exhibited a high radical scavenging capability on 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical (EC50 values of 1.34, 0.54, and 0.67 mg/mL, respectively), hydroxyl radical (EC50 values of 1.03, 0.41, and 0.74 mg/mL, respectively), and superoxide anion radical (EC50 values of 1.19, 0.71, and 1.59 mg/mL, respectively). These results suggest that three APs (TGP5, TGP7, and TGP9), especially TGP7, have a strong antioxidant activity and could act as potential antioxidant ingredients applied in functional products.
Collapse
Affiliation(s)
- Yi-Ting Qiu
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Yu-Mei Wang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Xiu-Rong Yang
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Yu-Qin Zhao
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Chang-Feng Chi
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Bin Wang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| |
Collapse
|
87
|
Han C, Yang J, Song P, Wang X, Shi W. Effects of Salvia miltiorrhiza Polysaccharides on Lipopolysaccharide-Induced Inflammatory Factor Release in RAW264.7 Cells. J Interferon Cytokine Res 2019; 38:29-37. [PMID: 29328882 DOI: 10.1089/jir.2017.0087] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
This study investigated the anti-inflammatory effects and possible underlying mechanisms of Salvia miltiorrhiza polysaccharides (SMP) in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. The cytotoxicity of SMP was detected by the MTT method. The morphological change of RAW264.7 was observed by Diff-Quik staining. Enzyme-linked immunosorbent assay was used to evaluate the production of cytokines in LPS-induced RAW264.7 cells. The nitric oxide (NO) kit assay detected the NO release from LPS-induced RAW264.7 cells. Real-time polymerase chain reaction was used to detect the transcriptions of tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), inducible NO synthase (iNOS), and cyclooxygenase (COX)-2 in LPS-induced RAW264.7 cells. The protein expression of nuclear NF-κB was measured by Western blot. The results showed that the safe medication range of SMP was less than 3 mg/mL. Compared with the LPS model group, SMP (2, 1, and 0.5 mg/mL) improved the degree of cell deformation and reduced the amount of pseudopodia, and statistically reduced the secretions of cytokines in cells induced by LPS (P < 0.01) at different time points. SMP significantly inhibited the mRNA transcriptions of TNF-α, IL-6, iNOS, and COX-2 and the protein expressions of NF-κB, p-p65, and p-IκBa. In conclusion, this study preliminarily proved the protective effect of SMP on LPS-induced RAW264.7 macrophage. Its mechanism might be related to inhibition of NF-κB signal pathway and the gene expressions and secretion of cytokines.
Collapse
Affiliation(s)
- Chao Han
- College of Traditional Chinese Veterinary Medicine, Agricultural University of Hebei , Baoding, China
| | - Jinkai Yang
- College of Traditional Chinese Veterinary Medicine, Agricultural University of Hebei , Baoding, China
| | - Pengyan Song
- College of Traditional Chinese Veterinary Medicine, Agricultural University of Hebei , Baoding, China
| | - Xiao Wang
- College of Traditional Chinese Veterinary Medicine, Agricultural University of Hebei , Baoding, China
| | - Wanyu Shi
- College of Traditional Chinese Veterinary Medicine, Agricultural University of Hebei , Baoding, China
| |
Collapse
|
88
|
Zhao GX, Yang XR, Wang YM, Zhao YQ, Chi CF, Wang B. Antioxidant Peptides from the Protein Hydrolysate of Spanish Mackerel ( Scomberomorous niphonius) Muscle by in Vitro Gastrointestinal Digestion and Their In Vitro Activities. Mar Drugs 2019; 17:md17090531. [PMID: 31547415 PMCID: PMC6780850 DOI: 10.3390/md17090531] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 12/18/2022] Open
Abstract
For the full use of Spanish mackerel (Scomberomorous niphonius) muscle to produce antioxidant peptides, the proteins of Spanish mackerel muscle were separately hydrolyzed under five kinds of enzymes and in vitro gastrointestinal digestion, and antioxidant peptides were isolated from the protein hydrolysate using ultrafiltration and multiple chromatography methods. The results showed that the hydrolysate (SMPH) prepared using in vitro GI digestion showed the highest degree of hydrolysis (27.45 ± 1.76%) and DPPH radical scavenging activity (52.58 ± 2.68%) at the concentration of 10 mg protein/mL among the six protein hydrolysates, and 12 peptides (SMP-1 to SMP-12) were prepared from SMPH. Among them, SMP-3, SMP-7, SMP-10, and SMP-11 showed the higher DPPH radical scavenging activities and were identified as Pro-Glu-Leu-Asp-Trp (PELDW), Trp-Pro-Asp-His-Trp (WPDHW), and Phe-Gly-Tyr-Asp-Trp-Trp (FGYDWW), and Tyr-Leu-His-Phe-Trp (YLHFW), respectively. PELDW, WPDHW, FGYDWW, and YLHFW showed high scavenging activities on DPPH radical (EC50 1.53, 0.70, 0.53, and 0.97 mg/mL, respectively), hydroxyl radical (EC50 1.12, 0.38, 0.26, and 0.67 mg/mL, respectively), and superoxide anion radical (EC50 0.85, 0.49, 0.34, and 1.37 mg/mL, respectively). Moreover, PELDW, WPDHW, FGYDWW, and YLHFW could dose-dependently inhibit lipid peroxidation in the linoleic acid model system and protect plasmid DNA (pBR322DNA) against oxidative damage induced by H2O2 in the tested model systems. In addition, PELDW, WPDHW, FGYDWW, and YLHFW could retain their high activities when they were treated under a low temperature (<60 °C) and a moderate pH environment (pH 5–9). These present results indicate that the protein hydrolysate, fractions, and isolated peptides from Spanish mackerel muscle have strong antioxidant activity and might have the potential to be used in health food products.
Collapse
Affiliation(s)
- Guo-Xu Zhao
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Xiu-Rong Yang
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Yu-Mei Wang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Yu-Qin Zhao
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Chang-Feng Chi
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Bin Wang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| |
Collapse
|
89
|
Mudgil P, Baby B, Ngoh YY, Kamal H, Vijayan R, Gan CY, Maqsood S. Molecular binding mechanism and identification of novel anti-hypertensive and anti-inflammatory bioactive peptides from camel milk protein hydrolysates. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.05.091] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
90
|
Diao J, Chi Z, Guo Z, Zhang L. Mung Bean Protein Hydrolysate Modulates the Immune Response Through NF-κB Pathway in Lipopolysaccharide-Stimulated RAW 264.7 Macrophages. J Food Sci 2019; 84:2652-2657. [PMID: 31449334 DOI: 10.1111/1750-3841.14691] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 05/06/2019] [Accepted: 05/15/2019] [Indexed: 02/02/2023]
Abstract
The objective of this study was to evaluate the immunomodulatory activity of mung bean protein hydrolysate (MBPH) in lipopolysaccharide (LPS)-induced RAW 264.7 cells and discuss the possible immune regulatory mechanism. MBPH was prepared by alcalase, trypsin, neutrase, and flavourzyme. The 3-h alcalase-hydrolyzed hydrolysate with a molecular weight less than 1,450 Da was selected for the immunological tests. Results showed that MBPH possessed strong suppressing activity to proinflammatory mediators in a dose-dependent manner. Compared to the LPS alone group, MBPH (200 µg/mL) significantly reduced nitric oxide (NO), inducible nitric oxide synthase, interleukin (IL)-6, and IL-1β secretion levels by 52.6%, 53.2%, 48.4%, and 49.7%, respectively, in LPS-induced macrophages. It also enhanced IL-10 secretion from 789 to 3,678 pg/mL. MBPH blocked nuclear factor-kappa B (NF-κB) translocation in LPS-induced macrophages through the prevention of IκBα phosphorylation, and this process further prevented p65 translocation into the nucleus. A possible mechanism of MBPH is that it regulated the expression of inflammatory factors via the NF-κB pathway, thus inhibiting inflammatory reactions. The results suggested that MBPH is of application potential in the development of immunomodulatory functional food to ameliorate immunosuppression.
Collapse
Affiliation(s)
- Jingjing Diao
- The College of Animal Science and Veterinary Medicine, and Natl. Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural Univ., Daqing, 163319, China
| | - Zhiping Chi
- The College of Food Science, Heilongjiang Bayi Agricultural Univ., Daqing, 163319, China
| | - Zengwang Guo
- The College of Food Science, Heilongjiang Bayi Agricultural Univ., Daqing, 163319, China
| | - Liping Zhang
- The College of Food Science, Heilongjiang Bayi Agricultural Univ., Daqing, 163319, China
| |
Collapse
|
91
|
Zhang L, Zhao GX, Zhao YQ, Qiu YT, Chi CF, Wang B. Identification and Active Evaluation of Antioxidant Peptides from Protein Hydrolysates of Skipjack Tuna ( Katsuwonus pelamis) Head. Antioxidants (Basel) 2019; 8:antiox8080318. [PMID: 31430875 PMCID: PMC6721175 DOI: 10.3390/antiox8080318] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/14/2019] [Accepted: 08/16/2019] [Indexed: 02/07/2023] Open
Abstract
For the full use of fish by-products to produce antioxidant peptides, skipjack tuna (Katsuwonus pelamis) heads generated during can processing were defatted and hydrolyzed using the in vitro gastrointestinal (GI) digestion (pepsin–trypsin system) method and six antioxidant peptides (P1 to P6) were purified from the head hydrolysate (KPH) using ultrafiltration and serial chromatography methods. Six isolated peptides (P1 to P6) were identified as Val-Glu-Glu (VEE, P1), Trp-Met-Phe-Asp-Trp (WMFDW, P2), Asp-Ala-Gly-Pro-Tyr-Gly-Pro-Ile (DAGPYGPI, P3), Trp-Met-Gly-Pro-Tyr (WMGPY, P4), Glu-Arg-Gly-Pro-Leu-Gly-Pro-His (ERGPLGPH, P5), and Glu-Met- Gly-Pro-Ala (EMGPA, P6), respectively, using a protein sequencer and electrospray ionization-mass spectrometer. Among skipjack tuna head hydrolysates, fractions, and six isolated peptides (P1 to P6), WMFDW (P2), WMGPY (P4), and EMGPA (P6) showed the highest radical scavenging activities on 2,2-diphenyl-1-picrylhydrazyl (DPPH) (EC50 values of 0.31, 0.33, and 0.46 mg/mL for WMFDW, WMGPY, and EMGPA, respectively), hydroxyl (EC50 values of 0.30, 0.43, and 0.52 mg/mL for WMFDW, WMGPY, and EMGPA, respectively), and superoxide anion (EC50 values of 0.56, 0.38, and 0.71 mg/mL for WMFDW, WMGPY, and EMGPA, respectively). Moreover, WMFDW, WMGPY, and EMGPA showed strong capability in reducing power and lipd peroxidation inhibition in the linoleic acid system. In addition, WMFDW, WMGPY, and EMGPA can retain strong antioxidant activity at temperatures lower than 60 °C and pH values ranged from 5 to 9. The results showed that six isolated peptides (P1 to P6) from skipjack tuna heads, especially WMFDW, WMGPY, and EMGPA, might be applied in health care products acting as powerful antioxidant agents.
Collapse
Affiliation(s)
- Lun Zhang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Guo-Xu Zhao
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yu-Qin Zhao
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yi-Ting Qiu
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Chang-Feng Chi
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Bin Wang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| |
Collapse
|
92
|
Moon SW, Ahn CB, Oh Y, Je JY. Lotus (Nelumbo nucifera) seed protein isolate exerts anti-inflammatory and antioxidant effects in LPS-stimulated RAW264.7 macrophages via inhibiting NF-κB and MAPK pathways, and upregulating catalase activity. Int J Biol Macromol 2019; 134:791-797. [DOI: 10.1016/j.ijbiomac.2019.05.094] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/15/2019] [Accepted: 05/15/2019] [Indexed: 12/20/2022]
|
93
|
Kang HK, Lee HH, Seo CH, Park Y. Antimicrobial and Immunomodulatory Properties and Applications of Marine-Derived Proteins and Peptides. Mar Drugs 2019; 17:md17060350. [PMID: 31212723 PMCID: PMC6628016 DOI: 10.3390/md17060350] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 12/21/2022] Open
Abstract
Marine organisms provide an abundant source of potential medicines. Many of the marine-derived biomaterials have been shown to act as different mechanisms in immune responses, and in each case they can significantly control the immune system to produce effective reactions. Marine-derived proteins, peptides, and protein hydrolysates exhibit various physiologic functions, such as antimicrobial, anticancer, antioxidant, antihypertensive, and anti-inflammatory activities. Recently, the immunomodulatory properties of several antimicrobial peptides have been demonstrated. Some of these peptides directly kill bacteria and exhibit a variety of immunomodulatory activities that improve the host innate immune response and effectively eliminate infection. The properties of immunomodulatory proteins and peptides correlate with their amino acid composition, sequence, and length. Proteins and peptides with immunomodulatory properties have been tested in vitro and in vivo, and some of them have undergone different clinical and preclinical trials. This review provides a comprehensive overview of marine immunomodulatory proteins, peptides, and protein hydrolysates as well as their production, mechanisms of action, and applications in human therapy.
Collapse
Affiliation(s)
- Hee Kyoung Kang
- Department of Biomedical Science, Chosun University, Gwangju 501-759, Korea.
- Department of Convergences, Kongju National University, Kongju 314-701, Korea.
| | - Hyung Ho Lee
- Department of Convergences, Kongju National University, Kongju 314-701, Korea.
| | - Chang Ho Seo
- Department of Convergences, Kongju National University, Kongju 314-701, Korea.
| | - Yoonkyung Park
- Department of Biomedical Science, Chosun University, Gwangju 501-759, Korea.
- Research Center for Proteineous Materials, Chosun University, Gwangju 501-759, Korea.
| |
Collapse
|
94
|
Fernández-Tomé S, Hernández-Ledesma B, Chaparro M, Indiano-Romacho P, Bernardo D, Gisbert JP. Role of food proteins and bioactive peptides in inflammatory bowel disease. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.03.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
95
|
He Y, Pan X, Chi CF, Sun KL, Wang B. Ten new pentapeptides from protein hydrolysate of miiuy croaker (Miichthys miiuy) muscle: Preparation, identification, and antioxidant activity evaluation. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.01.054] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
96
|
Yang XR, Qiu YT, Zhao YQ, Chi CF, Wang B. Purification and Characterization of Antioxidant Peptides Derived from Protein Hydrolysate of the Marine Bivalve Mollusk Tergillarca granosa. Mar Drugs 2019; 17:E251. [PMID: 31035632 PMCID: PMC6563033 DOI: 10.3390/md17050251] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/25/2019] [Accepted: 04/25/2019] [Indexed: 01/02/2023] Open
Abstract
In this report, protein hydrolysate (TGH) of blood cockle (Tegillarca granosa) was prepared using a two-enzyme system (Alcalase treatment for 1.5 h following Neutrase treatment for 1.5 h). Subsequently, six antioxidant peptides were isolated from TGH using ultrafiltration and chromatography methods, and their amino acid sequences were identified as EPLSD, WLDPDG, MDLFTE, WPPD, EPVV, and CYIE with molecular weights of 559.55, 701.69, 754.81, 513.50, 442.48, and 526.57 Da, respectively. In which, MDLFTE and WPPD exhibited strong scavenging activities on DPPH radical (EC50 values of 0.53 ± 0.02 and 0.36 ± 0.02 mg/mL, respectively), hydroxy radical (EC50 values of 0.47 ± 0.03 and 0.38 ± 0.04 mg/mL, respectively), superoxide anion radical (EC50 values of 0.75 ± 0.04 and 0.46 ± 0.05 mg/mL, respectively), and ABTS cation radical (EC50 values of 0.96 ± 0.08 and 0.54 ± 0.03 mg/mL, respectively). Moreover, MDLFTE and WPPD showed high inhibiting ability on lipid peroxidation. However, MDLFTE and WPPD were unstable and could not retain strong antioxidant activity at high temperatures (>80 °C for 0.5 h), basic pH conditions (pH > 9 for 2.5 h), or during simulated GI digestion. In addition, the effect of simulated gastrointestinal digestion on TGP4 was significantly weaker than that on MDLFTE. Therefore, MDLFTE and WPPD may be more suitable for serving as nutraceutical candidates in isolated forms than as food ingredient candidates in functional foods and products.
Collapse
Affiliation(s)
- Xiu-Rong Yang
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Yi-Ting Qiu
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Yu-Qin Zhao
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Chang-Feng Chi
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Bin Wang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| |
Collapse
|
97
|
Cao H, Cao J, Zhang Y, Ye T, Song Yu J, Yuan M, Xu F, Zheng W, Zuo X. Continuous preparation and characterization of immunomodulatory peptides from type II collagen by a novel immobilized enzyme membrane reactor with improved performance. J Food Biochem 2019; 43:e12862. [PMID: 31353698 DOI: 10.1111/jfbc.12862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 02/25/2019] [Accepted: 03/13/2019] [Indexed: 11/28/2022]
Abstract
In this study, a novel method of continuous coupling of immobilized enzymatic hydrolysis reactor and membrane separation (CIEH-MS) was used to isolate the immunomodulatory peptides from type II collagen (CII) in chick sternal cartilage. The immobilized neutral protease was successfully prepared with an activity of 400.5 U/g. The CIEH-MS system loaded with immobilized neutral protease had high operational stability with enzyme decay constant of 0.0077 and half-life of 89.61 hr. Using a CIEH-MS system, the immunomodulatory peptides were obtained with lymphocyte proliferation of 66.23%, peptide yield of 23.43%, degree of hydrolysis (DH) of 22.41%, and permeate flux of 6.17 L/m2 h. The peptide fractions were further purified and the P3-2-4 fraction (RGQLGPM) with 760.4 Da molecular weights exhibited the highest lymphocyte proliferation activity (85.54%) and binding ability to human leukocyte antigen-DRB1 (HLA-DRB1) molecules (133.2 ng/ml). The results demonstrated that CIEH-MS system is an effective way to obtain immunomodulatory peptides from CII. PRACTICAL APPLICATIONS: Chick sternal cartilage is one of the by-products of meat processing, and it is often discarded as waste or used for low-value purposes. CII is the most abundant collagen in chick sternal cartilage, and recently studies have demonstrated that CII peptides possess the ability to induce immunologic tolerance for the treatment of chronic disease. In order to find potential applications for this by-product, immunomodulatory peptides from CII hydrolysates in chick sternal cartilage were isolated using a novel CIEH-MS system. The result showed that CII peptides exhibited a high immunomodulatory activity, and had a potential application in functional foods and medical fields.
Collapse
Affiliation(s)
- Hui Cao
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, P.R. China
| | - Jifang Cao
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, P.R. China
| | - Yujun Zhang
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, P.R. China
| | - Tai Ye
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, P.R. China
| | - Jin Song Yu
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, P.R. China
| | - Min Yuan
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, P.R. China
| | - Fei Xu
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, P.R. China
| | - Wenxin Zheng
- Institute of Animal husbandry Quality Standards, Xinjiang Academy of Animal Science, Urumq, P.R. China
| | - Xiaojia Zuo
- Institute of Animal husbandry Quality Standards, Xinjiang Academy of Animal Science, Urumq, P.R. China
| |
Collapse
|
98
|
Zhang JB, Zhao YQ, Wang YM, Chi CF, Wang B. Eight Collagen Peptides from Hydrolysate Fraction of Spanish Mackerel Skins: Isolation, Identification, and In Vitro Antioxidant Activity Evaluation. Mar Drugs 2019; 17:E224. [PMID: 31013895 PMCID: PMC6521054 DOI: 10.3390/md17040224] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 03/27/2019] [Accepted: 04/10/2019] [Indexed: 12/22/2022] Open
Abstract
A previous report indicated that collagen hydrolysate fraction (F7) from Spanish mackerel (Scomberomorous niphonius) skins showed high reducing power and radical scavenging activities on 2,2-Diphenyl-1-picrylhydrazyl (DPPH) (EC50 value of 1.57 mg/mL) and hydroxyl (EC50 value of 1.20 mg/mL). In this work, eight peptides were isolated from F7 and identified as Gly-Pro-Tyr (GPY, 335.31 Da), Gly-Pro-Thr-Gly-Glu (GPTGE, 459.47 Da), Pro-Phe-Gly-Pro-Asp (PFGPD, 531.52 Da), Gly-Pro-Thr-Gly-Ala-Lys (GPTGAKG, 586.65 Da), Pro-Tyr-Gly-Ala-Lys-Gly (PYGAKG, 591.69 Da), Gly-Ala-Thr-Gly-Pro-Gln-Gly (GATGPQG, 586.61 Da), Gly-Pro-Phe-Gly-Pro-Met (GPFGPM, 604.73 Da), and Tyr-Gly-Pro-Met (YGPM, 466.50 Da), respectively. Among them, PFGPD, PYGAKG, and YGPM exhibited strong radical scavenging activities on DPPH (EC50 values of 0.80, 3.02, and 0.72 mg/mL for PFGPD, PYGAKG, and YGPM, respectively), hydroxyl (EC50 values of 0.81, 0.66, and 0.88 mg/mL for PFGPD, PYGAKG, and YGPM, respectively), superoxide anion (EC50 values of 0.91, 0.80, and 0.73 mg/mL for PFGPD, PYGAKG, and YGPM, respectively), and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) cation (EC50 values of 0.86, 1.07, and 0.82 mg/mL for PFGPD, PYGAKG, and YGPM, respectively) in a positive concentration-activity relationship. Furthermore, PFGPD, PYGAKG, and YGPM could effectively reduce Fe3+ to Fe2+ and inhibit lipid peroxidation. Hence, eight collagen peptides from hydrolysate of Spanish mackerel skins might be served as antioxidant candidates for various industrial applications.
Collapse
Affiliation(s)
- Jing-Bo Zhang
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, School of Marine Science and Technology, Zhejiang Ocean University, 1st Haidanan Road, Zhoushan 316022, China.
| | - Yu-Qin Zhao
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, 1st Haidanan Road, Zhoushan 316022, China.
| | - Yu-Mei Wang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, 1st Haidanan Road, Zhoushan 316022, China.
| | - Chang-Feng Chi
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, School of Marine Science and Technology, Zhejiang Ocean University, 1st Haidanan Road, Zhoushan 316022, China.
| | - Bin Wang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, 1st Haidanan Road, Zhoushan 316022, China.
| |
Collapse
|
99
|
He R, Wang Y, Yang Y, Wang Z, Ju X, Yuan J. Rapeseed protein-derived ACE inhibitory peptides LY, RALP and GHS show antioxidant and anti-inflammatory effects on spontaneously hypertensive rats. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.02.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
100
|
Lan C, Zhao YQ, Li XR, Wang B. High Fischer ratio oligopeptides determination from Antartic krill: Preparation, peptides profiles, and in vitro antioxidant activity. J Food Biochem 2019; 43:e12827. [PMID: 31353526 DOI: 10.1111/jfbc.12827] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 02/16/2019] [Accepted: 02/18/2019] [Indexed: 01/14/2023]
Abstract
In this work, alcalase and flavorzyme were chosen as the hydrolase for preparing high Fischer ratio oligopeptides from Antarctic krill (Euphausia superba) (HFP) using sequential enzyme hydrolysis process, and their hydrolysis conditions were optimized using single factor experiment. According to the Fischer ratio, granular activated carbon of XHJ-200 (200 mesh) showed the best way to remove aromatic amino acids and its optimal parameters were pH value of 6.0, adsorption time of 2.5 hr, temperature of 25°C, and solid-liquid ratio of 1:20. The Fischer ratio and average molecular weight of HFP were 21.12 (>20) and 779.9 Da, respectively. In addition, the peptide profile of HFP was established using RP-HPLC and 23 oligopeptides isolated from HFP including 6 dipeptides, 9 tripeptides, 3 tetrapeptides, and 5 pentapeptides were identified using protein amino acid sequence analyzer and mass spectrum. Furthermore, HFP exhibited high radical scavenging activity, reducing power, and lipid peroxidation inhibition capability. PRACTICAL APPLICATIONS: High Fischer ratio oligopeptides (HFO) is a kind of small peptide mixture with the mole ratio of branched-chain amino acids (BCAA) to aromatic amino acids (AAA) higher than 20, which has drawn a great attention due to its great potential in clinical nutrition approaches for the treatment of liver disease when amino acid composition is out of proportion characterized by low levels of BCAA and high levels of AAA in the systemic blood. Antarctic krill is regarded as the largest animal protein resource for various food and pharmaceutical products. However, there is no report on the preparation of HFO of Antarctic krill (HFP). Therefore, the aim of the present study was to investigate the preparation process, peptide profiles and in vitro antioxidant activity of HFP. This study will potentially enhance the value-added utilization of Antarctic krill by making it an important raw material in the health-promoting functional products.
Collapse
Affiliation(s)
- Chen Lan
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Yu-Qin Zhao
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Xue-Rong Li
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Bin Wang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| |
Collapse
|