51
|
Ding Y, Chen L, Shi Y, Akhtar M, Chen J, Ettelaie R. Emulsifying and emulsion stabilizing properties of soy protein hydrolysates, covalently bonded to polysaccharides: The impact of enzyme choice and the degree of hydrolysis. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106519] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
52
|
Shi F, Tian X, McClements DJ, Chang Y, Shen J, Xue C. Influence of molecular weight of an anionic marine polysaccharide (sulfated fucan) on the stability and digestibility of multilayer emulsions: Establishment of structure-function relationships. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106418] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
53
|
Yang J, Gu Z, Cheng L, Li Z, Li C, Ban X, Hong Y. Preparation and stability mechanisms of double emulsions stabilized by gelatinized native starch. Carbohydr Polym 2021; 262:117926. [PMID: 33838805 DOI: 10.1016/j.carbpol.2021.117926] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/02/2021] [Accepted: 03/07/2021] [Indexed: 01/11/2023]
Abstract
Double emulsions are promising carrier systems for foods, pharmaceuticals, and cosmetics. However, their limited stability hinders their practical applications. We used gelatinized starch to develop stable double emulsions as carrier materials. The oil/water/water (O/W/W) double emulsions were formed by 5 wt% native corn starch, while oil/water/oil (O/W/O) double emulsions were formed by 7 wt% native corn starch and high-amylose starch with 60 % and 75 % amylose contents investigated by optical microscopy. Furthermore, the storage stability of double emulsions was revealed by droplet size distribution, microstructure, backscattering, rheological profiles, and low-field nuclear magnetic resonance (LF-NMR) imaging. Results confirmed that the O/W/O double emulsions stabilized by 7 wt% native corn starch had a smaller mean droplet size (11.400 ± 0.424 μm) and excellent storage stability (14 days) than O/W/W and O/W/O double emulsions prepared with high-amylose starch. Such unique double emulsions prepared with gelatinized native corn starch are good candidates of carrier materials.
Collapse
Affiliation(s)
- Jie Yang
- Key Laboratory of Synergetic and Biological Colloids, Ministry of Education, Wuxi, 214122, Jiangsu Province, China; Qingdao Special Food Research Institute, Qingdao, 266109, Shandong Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China
| | - Zhengbiao Gu
- Key Laboratory of Synergetic and Biological Colloids, Ministry of Education, Wuxi, 214122, Jiangsu Province, China; Qingdao Special Food Research Institute, Qingdao, 266109, Shandong Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, 214122, Jiangsu Province, China
| | - Li Cheng
- Key Laboratory of Synergetic and Biological Colloids, Ministry of Education, Wuxi, 214122, Jiangsu Province, China; Qingdao Special Food Research Institute, Qingdao, 266109, Shandong Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, 214122, Jiangsu Province, China
| | - Zhaofeng Li
- Key Laboratory of Synergetic and Biological Colloids, Ministry of Education, Wuxi, 214122, Jiangsu Province, China; Qingdao Special Food Research Institute, Qingdao, 266109, Shandong Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, 214122, Jiangsu Province, China
| | - Caiming Li
- Key Laboratory of Synergetic and Biological Colloids, Ministry of Education, Wuxi, 214122, Jiangsu Province, China; Qingdao Special Food Research Institute, Qingdao, 266109, Shandong Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, 214122, Jiangsu Province, China
| | - Xiaofeng Ban
- Key Laboratory of Synergetic and Biological Colloids, Ministry of Education, Wuxi, 214122, Jiangsu Province, China; Qingdao Special Food Research Institute, Qingdao, 266109, Shandong Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, 214122, Jiangsu Province, China
| | - Yan Hong
- Key Laboratory of Synergetic and Biological Colloids, Ministry of Education, Wuxi, 214122, Jiangsu Province, China; Qingdao Special Food Research Institute, Qingdao, 266109, Shandong Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, 214122, Jiangsu Province, China.
| |
Collapse
|
54
|
Yan S, Xie F, Zhang S, Jiang L, Qi B, Li Y. Effects of soybean protein isolate − polyphenol conjugate formation on the protein structure and emulsifying properties: Protein − polyphenol emulsification performance in the presence of chitosan. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125641] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
55
|
Ma N, Gao Q, Li X, Xu D, Yuan Y, Cao Y. Enhancing the physicochemical stability and digestibility of DHA emulsions by encapsulation of DHA droplets in caseinate/alginate honeycomb-shaped microparticles. Food Funct 2020; 11:2080-2093. [PMID: 32129355 DOI: 10.1039/c9fo02947h] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Docosahexaenoic acid (DHA) was encapsulated in caseinate/alginate microparticles by adjusting the pH based on the electrostatic complexation, in order to improve the physicochemical stability and digestibility of single caseinate-stabilized DHA emulsions. In this study, relatively stable honeycomb-shaped DHA microparticles were formed by electrostatic complexation between positively charged caseinate-coated DHA droplets, caseinate and negatively charged alginate at pH 4.5. The zeta-potential, particle size, size distribution, physical stability, microstructure, DHA oxidation and free fatty acids (FFA) release rate in a simulated gastrointestinal tract (GIT) model were determined. Dynamic light scattering (DLS) and confocal laser scanning microscopy (CLSM) measurements indicated that DHA microparticles had a particle size (1521.00 ± 39.15 nm) significantly larger than that of caseinate-stabilized DHA emulsions (243.23 ± 4.51 nm). The microparticles were much more stable near the isoelectric point (pI) of the adsorbed proteins compared with the single emulsions according to the original transmissions of LUMiSizer. The cryo-scanning electron microscopy (Cryo-SEM) images also showed that the microparticles formed a specific honeycomb-shaped network structure with more uniform distribution and without aggregation. The incorporation of DHA droplets into caseinate/alginate microparticles significantly ameliorated their chemical stability. GIT studies showed that the digestion of DHA microparticles was enhanced which was due to more open loose structures compared with the large-scale close-knit aggregation of DHA emulsion droplets. This study may provide useful information for the stabilization of functional food components and rational design of nutraceutical delivery systems.
Collapse
Affiliation(s)
- Ningning Ma
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Key Laboratory of Flavor Chemistry, Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University, Beijing, China.
| | - Qianru Gao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Key Laboratory of Flavor Chemistry, Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University, Beijing, China.
| | - Xiaoyu Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Key Laboratory of Flavor Chemistry, Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University, Beijing, China.
| | - Duoxia Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Key Laboratory of Flavor Chemistry, Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University, Beijing, China.
| | - Yingmao Yuan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Key Laboratory of Flavor Chemistry, Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University, Beijing, China.
| | - Yanping Cao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Key Laboratory of Flavor Chemistry, Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University, Beijing, China.
| |
Collapse
|
56
|
Cai X, Wang Y, Du X, Xing X, Zhu G. Stability of pH-responsive Pickering emulsion stabilized by carboxymethyl starch/xanthan gum combinations. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.106093] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
57
|
Shao P, Feng J, Sun P, Xiang N, Lu B, Qiu D. Recent advances in improving stability of food emulsion by plant polysaccharides. Food Res Int 2020; 137:109376. [DOI: 10.1016/j.foodres.2020.109376] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/11/2020] [Accepted: 06/02/2020] [Indexed: 11/25/2022]
|
58
|
Methods to improve rice protein dispersal at moderate pH. Food Sci Biotechnol 2020; 29:1401-1406. [PMID: 32999747 DOI: 10.1007/s10068-020-00799-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 05/04/2020] [Accepted: 07/13/2020] [Indexed: 01/04/2023] Open
Abstract
Dispersion of rice protein (RP) at a neutral pH is highly important for its application in the food industry. We analyzed the solubility of RP at different pH conditions and found higher solubility at pH < 3 and pH > 8 than at a neutral pH. Furthermore, at pH 2, the RP solubility improved from 30 to 63% with sonication; however, the samples precipitated when the pH was increased from 2 to 7. To circumvent this, anionic pectin and sodium alginate were added to the RP solution at pH 2. Pectin formed a complex with RP at pH 2, showing a shift in the zeta-potential from 17.3 mV (RP only) to - 1.0 mV (RP plus 1% pectin). Interestingly, the formation of this RP-pectin complex allowed RP to remain dispersed when the pH was increased to 7. Moreover, a stable emulsion could be prepared using the RP-pectin complex as an emulsifier.
Collapse
|
59
|
Biosurfactants produced by Pseudomonas syringae pv tabaci: A versatile mixture with interesting emulsifying properties. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
60
|
Hadian M, Labbafi M, Hosseini SMH, Safari M, Vries RD. A deeper insight into the characteristics of double-layer oil-in-water emulsions stabilized by Persian gum and whey protein isolate. J DISPER SCI TECHNOL 2020. [DOI: 10.1080/01932691.2020.1816178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Mohammad Hadian
- Department of Food Science and Technology, Razi Food Chemistry Lab, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
- Physical Chemistry and Soft Matter, Wageningen University and Research, Wageningen, the Netherlands
| | - Mohsen Labbafi
- Department of Food Science and Technology, Razi Food Chemistry Lab, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | | | - Mohammad Safari
- Department of Food Science and Technology, Razi Food Chemistry Lab, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Renko de Vries
- Physical Chemistry and Soft Matter, Wageningen University and Research, Wageningen, the Netherlands
| |
Collapse
|
61
|
Li M, McClements DJ, Liu X, Liu F. Design principles of oil‐in‐water emulsions with functionalized interfaces: Mixed, multilayer, and covalent complex structures. Compr Rev Food Sci Food Saf 2020; 19:3159-3190. [DOI: 10.1111/1541-4337.12622] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/25/2020] [Accepted: 07/28/2020] [Indexed: 11/26/2022]
Affiliation(s)
- Moting Li
- College of Food Science and Engineering Northwest A&F University Yangling Shaanxi China
| | | | - Xuebo Liu
- College of Food Science and Engineering Northwest A&F University Yangling Shaanxi China
| | - Fuguo Liu
- College of Food Science and Engineering Northwest A&F University Yangling Shaanxi China
| |
Collapse
|
62
|
Cai X, Du X, Zhu G, Cao C. Induction effect of NaCl on the formation and stability of emulsions stabilized by carboxymethyl starch/xanthan gum combinations. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105776] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
63
|
Addition of cationic guar-gum and oleic acid improved the stability of plasma emulsions prepared with enzymatically hydrolyzed egg yolk. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105827] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
|
64
|
Pan H, Shen X, Tao W, Chen S, Ye X. Assembly of Oil-Based Microcapsules Coated with Proanthocyanidins as a Novel Carrier for Hydrophobic Active Compounds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:5715-5722. [PMID: 32243753 DOI: 10.1021/acs.jafc.9b07282] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Proanthocyanidins are sustainable materials with amphiphilic characteristic, network-forming capacity, and health benefits, which give them possibility as encapsulating biomaterials. We found that proanthocyanidins from Chinese bayberry leaves and grape seeds (BLPs and GSPs) were able to encapsulate oil to form spherical microcapsules of controlled size and architecture. Microcapsules encapsulated with BLPs and GSPs (BMs and GMs) exhibited different physical stability when subjected to environmental stresses. BMs showed higher physical stability to environmental stresses than GMs. The proanthocyanidin shell could protect β-carotene from chemical degradation. Subsequently, varied gastrointestinal behaviors of the microcapsules were observed in simulated digestion. GMs with low stability reduced the lipid digestion and β-carotene bioaccessibility. BMs with high stability retarded lipid digestion but did not change the amount of hydrolyzed lipids and β-carotene bioaccessibility. Our study demonstrates that BLPs rather than GSPs can be used alone as encapsulating material for protection and targeted delivery of lipophilic bioactive compounds.
Collapse
Affiliation(s)
- Haibo Pan
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang R&D Center for Food Technology and Equipment, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Xuemin Shen
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang R&D Center for Food Technology and Equipment, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Wenyang Tao
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang R&D Center for Food Technology and Equipment, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Shiguo Chen
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang R&D Center for Food Technology and Equipment, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang R&D Center for Food Technology and Equipment, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| |
Collapse
|
65
|
Boonlao N, Shrestha S, Sadiq MB, Anal AK. Influence of whey protein-xanthan gum stabilized emulsion on stability and in vitro digestibility of encapsulated astaxanthin. J FOOD ENG 2020. [DOI: 10.1016/j.jfoodeng.2019.109859] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
66
|
Ma L, Zou L, McClements DJ, Liu W. One-step preparation of high internal phase emulsions using natural edible Pickering stabilizers: Gliadin nanoparticles/gum Arabic. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105381] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
67
|
López-Ortega MA, Rodríguez-Hernández AI, Camacho-Ruíz RM, Córdova J, López-Cuellar MDR, Chavarría-Hernández N, González-García Y. Physicochemical characterization and emulsifying properties of a novel exopolysaccharide produced by haloarchaeon Haloferax mucosum. Int J Biol Macromol 2020; 142:152-162. [DOI: 10.1016/j.ijbiomac.2019.09.087] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/27/2019] [Accepted: 09/11/2019] [Indexed: 12/14/2022]
|
68
|
Effects of anionic polysaccharides on the digestion of fish oil-in-water emulsions stabilized by hydrolyzed rice glutelin. Food Res Int 2020; 127:108768. [DOI: 10.1016/j.foodres.2019.108768] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/05/2019] [Accepted: 10/19/2019] [Indexed: 12/24/2022]
|
69
|
Preparation, characterization, and emulsification properties of agarose fatty acid derivatives with different hydrophobic chains. Int J Biol Macromol 2019; 141:906-918. [DOI: 10.1016/j.ijbiomac.2019.09.056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/24/2019] [Accepted: 09/07/2019] [Indexed: 12/31/2022]
|
70
|
Stability of emulsion stabilized by low-concentration soybean protein isolate: Effects of insoluble soybean fiber. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.105232] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
71
|
Hu Z, Qiu L, Sun Y, Xiong H, Ogra Y. Improvement of the solubility and emulsifying properties of rice bran protein by phosphorylation with sodium trimetaphosphate. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.05.037] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
72
|
Zang X, Wang J, Yu G, Cheng J. Addition of anionic polysaccharides to improve the stability of rice bran protein hydrolysate-stabilized emulsions. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.04.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
73
|
Yang L, Qin X, Kan J, Liu X, Zhong J. Improving the Physical and Oxidative Stability of Emulsions Using Mixed Emulsifiers: Casein-Octenyl Succinic Anhydride Modified Starch Combinations. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1018. [PMID: 31315272 PMCID: PMC6669503 DOI: 10.3390/nano9071018] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/13/2019] [Accepted: 07/15/2019] [Indexed: 12/23/2022]
Abstract
This study aims to investigate the influence of casein and octenyl succinic anhydride modified starch (OSAS) combinations on the physical and oxidative stability of fish oil-in-water emulsions. The interaction between casein and OSAS was manifested in changes in protein structure and hydrogen-bonding interaction. Casein-OSAS combinations could effectively inhibit droplet aggregation at pH 4 and attenuate droplet growth at a high CaCl2 concentration of 0.2 mol/L, compared with casein as an emulsifier. Nanoemulsions stabilized by casein-OSAS combinations or casein showed better oxidative stability compared with OSAS-stabilized emulsions. Therefore, casein-OSAS combinations can improve some physical properties of protein-based emulsions and oxidative stability of modified starch-based emulsions, suggesting protein-modified starch combinations are more promising in the emulsion-based food industry compared to each of the two emulsifiers alone.
Collapse
Affiliation(s)
- Liu Yang
- College of Food Science, Southwest University, Chongqing 400700, China
| | - Xiaoli Qin
- College of Food Science, Southwest University, Chongqing 400700, China
| | - Jianquan Kan
- College of Food Science, Southwest University, Chongqing 400700, China
| | - Xiong Liu
- College of Food Science, Southwest University, Chongqing 400700, China
| | - Jinfeng Zhong
- College of Food Science, Southwest University, Chongqing 400700, China.
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing 400700, China.
| |
Collapse
|
74
|
Zhang R, Wu W, Zhang Z, Lv S, Xing B, McClements DJ. Impact of Food Emulsions on the Bioaccessibility of Hydrophobic Pesticide Residues in Co-Ingested Natural Products: Influence of Emulsifier and Dietary Fiber Type. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:6032-6040. [PMID: 31083996 DOI: 10.1021/acs.jafc.8b06930] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In the typical Western diet, fruits and vegetables are often consumed with food products that exist as oil-in-water emulsions, such as creams, dressings, and sauces. Studies have shown that coingestion of fruits and vegetables with emulsions can increase the bioavailability of beneficial lipophilic bioactive agents, such as nutraceuticals or vitamins. Agricultural produce, however, may also be contaminated with low levels of detrimental lipophilic agents, such as hydrophobic pesticides. We therefore examined the impact of coingesting a common agricultural product (tomatoes) with model food emulsions on the bioaccessibility of a hydrophobic pesticide (chlorpyrifos). The impact of emulsifier types (phospholipids, whey protein, Tween 80) and dietary fiber types (xanthan, chitosan, β-glucan) on the bioaccessibility of the pesticide was measured using a simulated gastrointestinal model. Chlorpyrifos bioaccessibility depended on the type of emulsifier used to formulate the emulsions: phospholipids > Tween 80 > whey protein. Dietary fiber type also influenced pesticide bioaccessibility by an amount that depended on the nature of the emulsifier used. Overall, our results suggest that the bioaccessibility of undesirable pesticides on fruits and vegetables will depend on the nature of the emulsions they are consumed with.
Collapse
Affiliation(s)
- Ruojie Zhang
- Department of Food Science , University of Massachusetts Amherst , Amherst , Massachusetts 01003 , United States
| | - Wenhao Wu
- Stockbridge School of Agriculture , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| | - Zipei Zhang
- Department of Food Science , University of Massachusetts Amherst , Amherst , Massachusetts 01003 , United States
| | - Shanshan Lv
- Department of Food Science , University of Massachusetts Amherst , Amherst , Massachusetts 01003 , United States
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), College of Material Science and Engineering , Northeast Forestry University , Harbin , 150040 , People's Republic of China
| | - Baoshan Xing
- Stockbridge School of Agriculture , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| | - David Julian McClements
- Laboratory for Environmental Health NanoScience, Center for Nanotechnology and Nanotoxicology, T. H. Chan School of Public Health , Harvard University 665 Huntington Avenue , Boston , Massachusetts 02115 , United States
| |
Collapse
|
75
|
Xu X, Sun Q, McClements DJ. Enhancing the formation and stability of emulsions using mixed natural emulsifiers: Hydrolyzed rice glutelin and quillaja saponin. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.11.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
76
|
Erben M, Pérez AA, Osella CA, Alvarez VA, Santiago LG. Impact of gum arabic and sodium alginate and their interactions with whey protein aggregates on bio-based films characteristics. Int J Biol Macromol 2019; 125:999-1007. [DOI: 10.1016/j.ijbiomac.2018.12.131] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 11/25/2018] [Accepted: 12/16/2018] [Indexed: 11/16/2022]
|
77
|
Impact of pH, ionic strength and chitosan charge density on chitosan/casein complexation and phase behavior. Carbohydr Polym 2019; 208:133-141. [DOI: 10.1016/j.carbpol.2018.12.015] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 09/19/2018] [Accepted: 12/07/2018] [Indexed: 01/18/2023]
|
78
|
Li X, Wu G, Qi X, Zhang H, Wang L, Qian H. Physicochemical properties of stable multilayer nanoemulsion prepared via the spontaneously-ordered adsorption of short and long chains. Food Chem 2019; 274:620-628. [DOI: 10.1016/j.foodchem.2018.09.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/30/2018] [Accepted: 09/01/2018] [Indexed: 12/11/2022]
|
79
|
Process-induced water-soluble biopolymers from broccoli and tomato purées: Their molecular structure in relation to their emulsion stabilizing capacity. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2018.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
80
|
Stevanović ZD, Bošnjak-Neumüller J, Pajić-Lijaković I, Raj J, Vasiljević M. Essential Oils as Feed Additives-Future Perspectives. Molecules 2018; 23:E1717. [PMID: 30011894 PMCID: PMC6100314 DOI: 10.3390/molecules23071717] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 11/16/2022] Open
Abstract
The inconsistency of phytogenic feed additives' (PFA) effects on the livestock industry poses a risk for their use as a replacement for antibiotic growth promoters. The livestock market is being encouraged to use natural growth promotors, but information is limited about the PFA mode of action. The aim of this paper is to present the complexity of compounds present in essential oils (EOs) and factors that influence biological effects of PFA. In this paper, we highlight various controls and optimization parameters that influence the processes for the standardization of these products. The chemical composition of EOs depends on plant genetics, growth conditions, development stage at harvest, and processes of extracting active compounds. Their biological effects are further influenced by the interaction of phytochemicals and their bioavailability in the gastrointestinal tract of animals. PFA effects on animal health and production are also complex due to various EO antibiotic, antioxidant, anti-quorum sensing, anti-inflammatory, and digestive fluids stimulating activities. Research must focus on reliable methods to identify and control the quality and effects of EOs. In this study, we focused on available microencapsulation techniques of EOs to increase the bioavailability of active compounds, as well as their application in the animal feed additive industry.
Collapse
Affiliation(s)
- Zora Dajić Stevanović
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia.
| | | | - Ivana Pajić-Lijaković
- Department of Chemical Engineering, Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia.
| | - Jog Raj
- PATENT CO DOO, Vlade Cetkovica 1A, 24211 Misicevo, Serbia.
| | | |
Collapse
|
81
|
Santiago JSJ, Salvia-Trujillo L, Zucca R, Van Loey AM, Grauwet T, Hendrickx ME. In vitro digestibility kinetics of oil-in-water emulsions structured by water-soluble pectin-protein mixtures from vegetable purées. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2018.02.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
82
|
Chaves MA, Oseliero Filho PL, Jange CG, Sinigaglia-Coimbra R, Oliveira CLP, Pinho SC. Structural characterization of multilamellar liposomes coencapsulating curcumin and vitamin D3. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.04.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
83
|
|
84
|
Cai Y, Deng X, Liu T, Zhao M, Zhao Q, Chen S. Effect of xanthan gum on walnut protein/xanthan gum mixtures, interfacial adsorption, and emulsion properties. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2018.01.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
85
|
Hu Y, Li Y, Zhang W, Kou G, Zhou Z. Physical stability and antioxidant activity of citrus flavonoids in arabic gum-stabilized microcapsules: Modulation of whey protein concentrate. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2017.10.037] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
86
|
Feng M, Pan L, Yang X, Sun J, Xu X, Zhou G. Thermal gelling properties and mechanism of porcine myofibrillar protein containing flaxseed gum at different NaCl concentrations. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2017.09.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
87
|
Influence of anionic polysaccharides on the physical and oxidative stability of hydrolyzed rice glutelin emulsions: Impact of polysaccharide type and pH. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2017.05.018] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|