51
|
Vorob’ev MM, Açıkgöz BD, Güler G, Golovanov AV, Sinitsyna OV. Proteolysis of Micellar β-Casein by Trypsin: Secondary Structure Characterization and Kinetic Modeling at Different Enzyme Concentrations. Int J Mol Sci 2023; 24:ijms24043874. [PMID: 36835285 PMCID: PMC9960058 DOI: 10.3390/ijms24043874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Tryptic proteolysis of protein micelles was studied using β-casein (β-CN) as an example. Hydrolysis of specific peptide bonds in β-CN leads to the degradation and rearrangement of the original micelles and the formation of new nanoparticles from their fragments. Samples of these nanoparticles dried on a mica surface were characterized by atomic force microscopy (AFM) when the proteolytic reaction had been stopped by tryptic inhibitor or by heating. The changes in the content of β-sheets, α-helices, and hydrolysis products during proteolysis were estimated by using Fourier-transform infrared (FTIR) spectroscopy. In the current study, a simple kinetic model with three successive stages is proposed to predict the rearrangement of nanoparticles and the formation of proteolysis products, as well as changes in the secondary structure during proteolysis at various enzyme concentrations. The model determines for which steps the rate constants are proportional to the enzyme concentration, and in which intermediate nano-components the protein secondary structure is retained and in which it is reduced. The model predictions were in agreement with the FTIR results for tryptic hydrolysis of β-CN at different concentrations of the enzyme.
Collapse
Affiliation(s)
- Mikhail M. Vorob’ev
- A.N. Nesmeyanov Institute of Organoelement Compounds, RAS, 28 ul. Vavilova, 119991 Moscow, Russia
- Correspondence:
| | - Burçin Dersu Açıkgöz
- Division of Bioengineering, Graduate School, Izmir University of Economics, Izmir 35330, Turkey
| | - Günnur Güler
- Biophysics Laboratory, Department of Physics, Izmir Institute of Technology, Urla, Izmir 35430, Turkey
- Biomedical Bioengineering, Izmir University of Economics, Sakarya Cad., Izmir 35330, Turkey
| | - Andrey V. Golovanov
- A.N. Nesmeyanov Institute of Organoelement Compounds, RAS, 28 ul. Vavilova, 119991 Moscow, Russia
| | - Olga V. Sinitsyna
- A.N. Nesmeyanov Institute of Organoelement Compounds, RAS, 28 ul. Vavilova, 119991 Moscow, Russia
| |
Collapse
|
52
|
Zhu P, Ma C, Fan J, Yang Y, Liu X, Bian X, Ren L, Xu Y, Yu D, Liu L, Fu Y, Gao J, Zhang N. The interaction of trehalose and molten globule state soybean 11S globulin and its impact on foaming capacities. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:1194-1204. [PMID: 36088619 DOI: 10.1002/jsfa.12214] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/04/2022] [Accepted: 09/11/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Soybean 11S globulin has good functional properties, which are widely used in the field of food. However, natural soybean 11S globulin (N-11S) has low flexibility and is easy to aggregate, impacting its foaming process. Studies have shown that soybean 11S globulin in molten globule state (MG-11S) has better molecular flexibility than N-11S, and trehalose has been shown to improve the properties of proteins. Therefore, this study investigated the interaction mechanism between trehalose and MG-11S, and its impact on rheological and foaming properties of MG-11S. RESULTS The molecular docking and intrinsic fluorescence results showed that hydrogen bonding was the main interaction force at lower than 0.5 mol L-1 trehalose added. Meanwhile, rheology and foaming showed that the MG-11S-trehalose complexes had better viscoelasticity, foaming ability (66.67-86.67%) and foaming stability (75.00-89.29%) than N-11S (16.67% foaming ability and 40.00% foaming stability); however, when the trehalose was higher than 0.5 mol L-1 , molecular crowding occurred and H-bonds were weakened, resulting in reduction of foaming capacities. Microstructure determination showed that trehalose attached to the surface of foam membrane; meanwhile, the foaming structure of the complex with 0.5 mol L-1 trehalose had a thicker liquid film with decreased drainage rate, less agglomeration and disproportionation of foam, illustrating the best foaming ability and foaming stability. CONCLUSION The results suggested that trehalose at different concentrations can interact with MG-11S through different mechanisms, and improve the foaming capacity of MS-11S. This provided a reference for the application of MS-11S in foaming food. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Pengyu Zhu
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Chunmin Ma
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Jing Fan
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Yang Yang
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Xiaofei Liu
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Xin Bian
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Likun Ren
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Yue Xu
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Dehui Yu
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Linlin Liu
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Yu Fu
- College of Food Science, Southwest University, Chongqing, China
| | - Jian Gao
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Na Zhang
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| |
Collapse
|
53
|
Wu Q, Tian Q, Zhang D, Zhang Y. Effect of Sitophilus zeamais (Coleoptera: Curculionidae) Infestation on the Protein Physicochemical and Structural Properties of Wheat Grain. JOURNAL OF ECONOMIC ENTOMOLOGY 2022; 115:2092-2104. [PMID: 36287645 DOI: 10.1093/jee/toac168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Indexed: 06/16/2023]
Abstract
Boring pests such as Sitophilus zeamais (S. zeamais) are major threats in grain storage. However, how these pests affect the proteins of stored grains remains largely unknown. Here we aimed to investigate the effect of S. zeamais infestation on wheat protein during postharvest storage. In this study, wheat grain infested by S. zeamais was sampled at egg (4 d), larval (20 d), pupal (35 d), and adult stages (45 d), respectively. The protein's physicochemical and structural properties and the edible quality of whole wheat noodle were analyzed. The results showed that S. zeamais infestation significantly decreased the quality of wheat protein by altering its constitution and structure properties. Especially, compared with the control, the content of wet and dry gluten, gluten index, sodium dodecyl sulfate sedimentation volume, sulfhydryl groups, and disulfide bonds in insect-infested wheat decreased by 19.40, 5.42, 18.40, 8.12, 29.13, and 14.30%, respectively, during the storage period of one life cycle of S. zeamais. Additionally, the proportions of wheat protein fractions (albumin [1.16-fold], globulin [0.96-fold], gliadin [1.16-fold], and glutenin [0.95-fold]) and secondary structures (α-helix [0.91-fold], β-fold [0.96-fold], β-turn [1.06-fold], and random coil [1.05-fold]) of protein changed significantly, and the gluten network structure was broken in S. zeamais-infested wheat. Furthermore, the color of whole wheat noodle became darker, cooking loss rate increased, and textural properties (hardness, adhesiveness, springiness, cohesiveness, chewiness, and resilience) decreased as well. The results in the present study provided new insights for analyzing the quality deterioration mechanism and further quality improvement of boring pests-infested wheat grain.
Collapse
Affiliation(s)
- Qiong Wu
- Engineering Research Center of Grain Storage and Security of Ministry of Education, Henan Provincial Engineering Technology Research Center on Grain Post Harvest, School of Food and Strategic Reserves, Henan University of Technology, Lianhua Road 100, Zhengzhou High-Tech Development Zone, Zhengzhou, 450001, Henan, China
| | - Qisheng Tian
- Engineering Research Center of Grain Storage and Security of Ministry of Education, Henan Provincial Engineering Technology Research Center on Grain Post Harvest, School of Food and Strategic Reserves, Henan University of Technology, Lianhua Road 100, Zhengzhou High-Tech Development Zone, Zhengzhou, 450001, Henan, China
| | - Dongdong Zhang
- Engineering Research Center of Grain Storage and Security of Ministry of Education, Henan Provincial Engineering Technology Research Center on Grain Post Harvest, School of Food and Strategic Reserves, Henan University of Technology, Lianhua Road 100, Zhengzhou High-Tech Development Zone, Zhengzhou, 450001, Henan, China
| | - Yurong Zhang
- Engineering Research Center of Grain Storage and Security of Ministry of Education, Henan Provincial Engineering Technology Research Center on Grain Post Harvest, School of Food and Strategic Reserves, Henan University of Technology, Lianhua Road 100, Zhengzhou High-Tech Development Zone, Zhengzhou, 450001, Henan, China
| |
Collapse
|
54
|
Self-assembling soy protein fibril aggregates: Characterization and impact on in vitro digestibility of potato starch. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
55
|
Singla D, Bhattacharya M. Salt-Induced Dissolution of Protein Aggregates. J Phys Chem B 2022; 126:8760-8770. [PMID: 36283072 DOI: 10.1021/acs.jpcb.2c06555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Protein aggregation is mediated by a complex interplay of noncovalent interactions and is associated with a broad range of aspects from debilitating human diseases to the food industry and therapeutic biotechnology. Deciphering the intricate roles of noncovalent interactions is of paramount importance for the design of effective inhibitory and disaggregation strategies, which remains a formidable challenge. By using a combination of spectroscopic and microscopic tools, here we show that the surfactant-mediated protein aggregation can be modulated by an intriguing interplay of hydrophobic and electrostatic effects. Additionally, our results illuminate the unique role of salt as a potent disaggregation inducer that alters the protein-surfactant electrostatic interactions and triggers the dissolution of preformed protein aggregates resulting in restoring the native protein structure. This unusual salt-induced dissolution and refolding offers a unique approach to regulating the balance between protein self-assembly and disassembly and will offer a potent strategy to design electrostatically targeted inhibitors.
Collapse
Affiliation(s)
- Deepika Singla
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Thapar Technology Campus, Bhadson Road, Patiala, Punjab147004, India
| | - Mily Bhattacharya
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Thapar Technology Campus, Bhadson Road, Patiala, Punjab147004, India
| |
Collapse
|
56
|
Zhang Y, Bai G, Jin G, Wang Y, Wang J, Puolanne E, Cao J. Role of low molecular additives in the myofibrillar protein gelation: underlying mechanisms and recent applications. Crit Rev Food Sci Nutr 2022; 64:3604-3622. [PMID: 36239320 DOI: 10.1080/10408398.2022.2133078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Understanding mechanisms of myofibrillar protein gelation is important for development of gel-type muscle foods. The protein-protein interactions are largely responsible for the heat-induced gelation. Exogenous additives have been extensively applied to improve gelling properties of myofibrillar proteins. Research has been carried out to investigate effects of different additives on protein gelation, among which low molecular substances as one of the most abundant additives have been recently implicated in the modifications of intermolecular interactions. In this review, the processes of myosin dissociation under salt and the subsequent interaction via intermolecular forces are elaborated. The underlying mechanisms focusing on the role of low molecular additives in myofibrillar protein interactions during gelation particularly in relation to modifications of the intermolecular forces are comprehensively discussed, and six different additives i.e. metal ions, phosphates, amino acids, hydrolysates, phenols and edible oils are involved. The promoting effect of low molecular additives on protein interactions is highly attributed to the strengthened hydrophobic interactions providing explanations for improved gelation. Other intermolecular forces i.e. covalent bonds, ionic and hydrogen bonds could also be influenced depending on varieties of additives. This review can hopefully be used as a reference for the development of gel-type muscle foods in the future.
Collapse
Affiliation(s)
- Yuemei Zhang
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Genpeng Bai
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Guofeng Jin
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Ying Wang
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Jinpeng Wang
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Eero Puolanne
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Jinxuan Cao
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
57
|
Uttinger MJ, Hundschell CS, Lautenbach V, Pusara S, Bäther S, Heyn TR, Keppler JK, Wenzel W, Walter J, Kozlowska M, Wagemans AM, Peukert W. Determination of specific and non-specific protein-protein interactions for beta-lactoglobulin by analytical ultracentrifugation and membrane osmometry experiments. SOFT MATTER 2022; 18:6739-6756. [PMID: 36040122 DOI: 10.1039/d2sm00908k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Protein-protein interactions are essential for the understanding of biological processes. Specific protein aggregation is an important aspect for many biological systems. In particular, electrostatic interactions play the key role for protein-protein interactions, as many amino acids have pH-dependent charge states. Moreover, protein dissociation is directly related to the solution pH, ionic strength, temperature and protein concentration. The subtle interplay between different specific and non-specific interactions is demonstrated for beta-lactoglobulin (BLG) with a focus on low salt concentrations, thus mimicking technically relevant processing conditions. BLG is a well-characterized model system, proven to attain its monomer-dimer equilibrium strongly dependent upon the pH of the solution. In this manuscript, we present a unique combination of analytical ultracentrifugation and membrane osmometry experiments, which quantifies specific and non-specific interactions, i.e. in terms of the dimer dissociation constants and the second osmotic virial coefficient, at pH 3 and 7 and sodium chloride concentrations of 10 mM and 100 mM. This provides direct insight to protein-protein interactions for a system with a concentration-dependent monomer-dimer equilibrium. Moreover, using a coarse-grained extended DLVO model in combination with molecular dynamics simulations, we quantify non-specific monomer-monomer, monomer-dimer and dimer-dimer interactions as well as the binding free energy of BLG dimerization from theoretical calculations. The experimentally determined interactions are shown to be mainly governed by electrostatic interactions and further agree with free energy calculations. Our experimental protocol aims to determine non-specific and specific interactions for a dynamically interacting system and provides an understanding of protein-protein interactions for BLG at low salt concentrations.
Collapse
Affiliation(s)
- M J Uttinger
- Institute of Particle Technology, Interdisciplinary Center for Functional Particle Systems, Friedrich-Alexander-Universität Erlangen-Nürnberg, Haberstraße 9a, 91058 Erlangen, Germany.
| | - C S Hundschell
- Institute of Food Technology and Food Chemistry, Department of Food Colloids, Technical University Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - V Lautenbach
- Institute of Particle Technology, Interdisciplinary Center for Functional Particle Systems, Friedrich-Alexander-Universität Erlangen-Nürnberg, Haberstraße 9a, 91058 Erlangen, Germany.
| | - S Pusara
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - S Bäther
- Institute of Food Technology and Food Chemistry, Department of Food Colloids, Technical University Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - T R Heyn
- Institute of Human Nutrition and Food Science, Division of Food Technology, Kiel University, 24118 Kiel, Germany
| | - J K Keppler
- Laboratory of Food Process Engineering, Wageningen University, Wageningen, The Netherlands
| | - W Wenzel
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - J Walter
- Institute of Particle Technology, Interdisciplinary Center for Functional Particle Systems, Friedrich-Alexander-Universität Erlangen-Nürnberg, Haberstraße 9a, 91058 Erlangen, Germany.
| | - M Kozlowska
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - A M Wagemans
- Institute of Food Technology and Food Chemistry, Department of Food Colloids, Technical University Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - W Peukert
- Institute of Particle Technology, Interdisciplinary Center for Functional Particle Systems, Friedrich-Alexander-Universität Erlangen-Nürnberg, Haberstraße 9a, 91058 Erlangen, Germany.
| |
Collapse
|