51
|
Martyniuk CJ, Fang B, Koomen JM, Gavin T, Zhang L, Barber DS, Lopachin RM. Molecular mechanism of glyceraldehyde-3-phosphate dehydrogenase inactivation by α,β-unsaturated carbonyl derivatives. Chem Res Toxicol 2011; 24:2302-11. [PMID: 22084934 PMCID: PMC3243798 DOI: 10.1021/tx200437y] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
α,β-Unsaturated carbonyls make up an important class of chemicals involved in environmental toxicity and disease processes. Whereas adduction of cysteine residues on proteins is a well-documented reaction of these chemicals, such a generic effect cannot explain the molecular mechanism of cytotoxicity. Instead, more detailed information is needed regarding the possible specificity and kinetics of cysteine targeting and the quantitative relationship between adduct burden and protein dysfunction. To address these data gaps, we incubated purified human glyceraldehyde-3-phosphate dehydrogenase (GAPDH) with acrylamide (ACR), acrolein, or methylvinyl ketone (MVK). Results show that these α,β-unsaturated carbonyl toxicants inhibited GAPDH activity in a concentration- and time-dependent manner. The rank order of enzyme inhibition (K(I)) (i.e., ACR ≪ MVK < acrolein) was related to the calculated electrophilic reactivity of each compound and to the corresponding kinetics of cysteine adduct formation. Tandem mass spectrometry revealed that adduct formation was selective at lower concentrations; i.e., ACR preferentially formed adducts with Cys152 (residues 146-162). At higher concentrations, ACR also formed adducts with Cys156 and Cys247 (residues 235-248). Adduct formation at Cys152 was correlated to enzyme inhibition, which is consistent with the regulatory role of this residue in enzyme function and its location within the GAPDH active site. Further analyses indicated that Cys152 was present in a pK(a)-lowering microenvironment (pK(a) = 6.03), and at physiological pH, the corresponding sulfhydryl group exists in the highly reactive nucleophilic thiolate state. These data suggest a general cytotoxic mechanism in which electrophilic α,β-unsaturated carbonyls selectively form adducts with reactive nucleophilic cysteine residues specifically associated with the active sites of proteins. These specialized cysteine residues are toxicologically relevant molecular targets, because chemical derivatization causes loss of protein function.
Collapse
Affiliation(s)
- Christopher J Martyniuk
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, Florida 32601, USA
| | | | | | | | | | | | | |
Collapse
|
52
|
Aldini G, Orioli M, Carini M. Protein modification by acrolein: relevance to pathological conditions and inhibition by aldehyde sequestering agents. Mol Nutr Food Res 2011; 55:1301-19. [PMID: 21805620 DOI: 10.1002/mnfr.201100182] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 05/12/2011] [Accepted: 06/15/2011] [Indexed: 01/08/2023]
Abstract
Acrolein (ACR) is a toxic and highly reactive α,β-unsaturated aldehyde widely distributed in the environment as a common pollutant and generated endogenously mainly by lipoxidation reactions. Its biological effects are due to its ability to react with the nucleophilic sites of proteins, to form covalently modified biomolecules which are thought to be involved as pathogenic factors in the onset and progression of many pathological conditions such as cardiovascular and neurodegenerative diseases. Functional impairment of structural proteins and enzymes by covalent modification (crosslinking) and triggering of key cell signalling systems are now well-recognized signs of cell and tissue damage induced by reactive carbonyl species (RCS). In this review, we mainly focus on the in vitro and in vivo evidence demonstrating the ability of ACR to covalently modify protein structures, in order to gain a deeper insight into the dysregulation of cellular and metabolic pathways caused by such modifications. In addition, by considering RCS and RCS-modified proteins as drug targets, this survey will provide an overview on the newly developed molecules specifically tested for direct or indirect ACR scavenging, and the more significant studies performed in the last years attesting the efficacy of compounds already recognized as promising aldehyde-sequestering agents.
Collapse
Affiliation(s)
- Giancarlo Aldini
- Department of Pharmaceutical Sciences Pietro Pratesi, Università degli Studi di Milano, Milan, Italy
| | | | | |
Collapse
|
53
|
Zhu Q, Sun Z, Jiang Y, Chen F, Wang M. Acrolein scavengers: reactivity, mechanism and impact on health. Mol Nutr Food Res 2011; 55:1375-90. [PMID: 21714129 DOI: 10.1002/mnfr.201100149] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2011] [Revised: 04/14/2011] [Accepted: 04/26/2011] [Indexed: 01/28/2023]
Abstract
Acrolein (ACR) is an α,β-unsaturated aldehyde that exists extensively in the environment and (thermally processed) foods. It can also be generated through endogenous metabolism. Its high electrophilicity makes this aldehyde notorious for its facile reaction with biological nucleophiles, leading to the modification of proteins/DNA and depletion of glutathione. Recent studies also have revealed its roles in disturbing various cell signing pathways in biological systems. With growing evidences of ACR's implication in human diseases, strategies to eliminate its hazardous impacts are of great importance. One of the intervention strategies is the application of reactive scavengers to directly trap ACR. Some known ACR scavengers include sulfur (thiol)-containing and nitrogen (amino)-containing compounds as well as the newly emerging natural polyphenols. In this review, the interactions between ACR and its scavengers are highlighted. The discussion about ACR scavengers is mainly focused on their chemical reactivity, trapping mechanisms as well as their roles extended to biological relevance. In addition to their direct trapping effect on ACR, these scavengers might possess multiple functions and offer additional benefits against ACR-induced toxicity. A comprehensive understanding of the mechanism involved may help to establish ACR scavenging as a novel therapeutic intervention against human diseases that are associated with ACR and/or oxidative stress.
Collapse
Affiliation(s)
- Qin Zhu
- School of Biological Sciences, The University of Hong Kong, Hong Kong, PR China
| | | | | | | | | |
Collapse
|
54
|
Spiess PC, Deng B, Hondal RJ, Matthews DE, van der Vliet A. Proteomic profiling of acrolein adducts in human lung epithelial cells. J Proteomics 2011; 74:2380-94. [PMID: 21704744 DOI: 10.1016/j.jprot.2011.05.039] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 05/20/2011] [Accepted: 05/26/2011] [Indexed: 02/01/2023]
Abstract
Acrolein (2,3-propenal) is a major indoor and outdoor air pollutant originating largely from tobacco smoke or organic combustion. Given its high reactivity, the adverse effects of inhaled acrolein are likely due to direct interactions with the airway epithelium, resulting in altered epithelial function, but only limited information exists to date regarding the primary direct cellular targets for acrolein. Here, we describe a global proteomics approach to characterize the spectrum of airway epithelial protein targets for Michael adduction in acrolein-exposed bronchial epithelial (HBE1) cells, based on biotin hydrazide labeling and avidin purification of biotinylated proteins or peptides for analysis by LC-MS/MS. Identified protein targets included a number of stress proteins, cytoskeletal proteins, and several key proteins involved in redox signaling, including thioredoxin reductase, thioredoxin, peroxiredoxins, and glutathione S-transferase π. Because of the central role of thioredoxin reductase in cellular redox regulation, additional LC-MS/MS characterization was performed on purified mitochondrial thioredoxin reductase to identify the specific site of acrolein adduction, revealing the catalytic selenocysteine residue as the target responsible for enzyme inactivation. Our findings indicate that these approaches are useful in characterizing major protein targets for acrolein, and will enhance mechanistic understanding of the impact of acrolein on cell biology.
Collapse
Affiliation(s)
- Page C Spiess
- Department of Pathology, University of Vermont, Burlington, VT 05405, USA
| | | | | | | | | |
Collapse
|
55
|
Butterfield DA, Reed T, Sultana R. Roles of 3-nitrotyrosine- and 4-hydroxynonenal-modified brain proteins in the progression and pathogenesis of Alzheimer's disease. Free Radic Res 2011; 45:59-72. [PMID: 20942567 DOI: 10.3109/10715762.2010.520014] [Citation(s) in RCA: 280] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Proteins play an important role in normal structure and function of the cells. Oxidative modification of proteins may greatly alter the structure and may subsequently lead to loss of normal physiological cell functions and may lead to abnormal function of cell and eventually to cell death. These modifications may be reversible or irreversible. Reversible protein modifications, such as phosphorylation, can be overcome by specific enzymes that cause a protein to 'revert' back to its original protein structure, while irreversible protein modifications cannot. Several important irreversible protein modifications include protein nitration and HNE modification, both which have been extensively investigated in research on the progression of Alzheimer's disease (AD). From the earliest stage of AD throughout the advancement of the disorder there is evidence of increased protein nitration and HNE modification. These protein modifications lead to decreased enzymatic activity, which correlates directly to protein efficacy and provides support for several common themes in AD pathology, namely altered energy metabolism, mitochondrial dysfunction and reduced cholinergic neurotransmission. The current review summarized some of the findings on protein oxidation related to different stages of Alzheimer's disease (AD) that will be helpful in understanding the role of protein oxidation in the progression and pathogenesis of AD.
Collapse
Affiliation(s)
- D Allan Butterfield
- Department of Chemistry, University of Kentucky, Lexington, KY 40506-0055, USA.
| | | | | |
Collapse
|
56
|
Fisher AA, Labenski MT, Monks TJ, Lau SS. Utilization of LC-MS/MS analyses to identify site-specific chemical protein adducts in vitro. Methods Mol Biol 2011; 691:317-26. [PMID: 20972762 PMCID: PMC4120700 DOI: 10.1007/978-1-60761-849-2_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Biologically reactive intermediates are formed following metabolism of xenobiotics, and during normal oxidative metabolism. These reactive species are electrophilic in nature and are capable of forming stable adducts with target proteins. These covalent protein modifications can initiate processes that lead to acute tissue injury or chronic disease. Recent advancements in mass spectrometry techniques and data analysis has permitted a more detailed investigation of site-specific protein modifications by reactive electrophiles. Knowledge from such analyses will assist in providing a better understanding of how specific classes of electrophiles produce toxicity and disease progression via site-selective protein-specific covalent modification. Hydroquinone (HQ) is a known environmental toxicant, and its quinone-thioether metabolites, formed via the intermediate generation of 1,4-benzoquinone (1,4-BQ), elicit their toxic response via the covalent modification of target proteins and the generation of reactive oxygen species. We have utilized a model protein, cytochrome c, to guide us in identifying 1,4-BQ- and 1,4-BQ-thioether derived site-specific protein modifications. LC-MS/MS analyses reveals that these modifications occur selectively on lysine and glutamic acid residues of the target protein, and that these modifications occur within identifiable "electrophile binding motifs" within the protein. These motifs are found within lysine-rich regions of the protein and appear to be target sites of 1,4-BQ-thioether adduction. These residues also appear to dictate the nature of post-adduction chemistry and the final structure of the adduct. This model system will provide critical insight for in vivo adduct hunting following exposure to 1,4-BQ-thioethers, but the general approaches can also be extended to the identification of protein adducts derived from other classes of reactive electrophiles.
Collapse
Affiliation(s)
- Ashley A Fisher
- Department of Pharmacology and Toxicology, Southwest Environmental Health Sciences Center, Center for Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, USA
| | | | | | | |
Collapse
|
57
|
Wang Z, Ramsdell JS. Analysis of interactions of brevetoxin-B and human serum albumin by liquid chromatography/mass spectrometry. Chem Res Toxicol 2010; 24:54-64. [PMID: 21142195 DOI: 10.1021/tx1002854] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Brevetoxins are neurotoxins produced by marine dinoflagellates, primarily Karenia brevis, and can cause intoxication and even mortality of marine species, affect human health through the consumption of brevetoxin-contaminated shellfish, and effect respiratory irritation through aerosol exposure at coastal areas. Brevetoxin-A and brevetoxin-B, the major brevetoxins produced in algae, are metabolized to a series of amino acid and peptide-related derivatives in shellfish through the reactions of the amino acid residue cysteine with an α,β-unsaturated aldehyde group. In this paper, covalent interactions between brevetoxin and proteins were investigated using brevetoxin-B and human serum albumin (HSA) as a model. It is demonstrated that both noncovalent and covalent interactions can occur between brevetoxin-B and HSA with in vitro experiments. Covalent adducts of brevetoxin-B and HSA were generated under physiological conditions and reduced with sodium borohydride based on the reaction conditions of single amino acid residues with brevetoxin-B. LC/MS analysis of toxin-treated HSA recognized the formation of the intact protein adducts with primarily one and two toxin molecules attached to one HSA molecule. HSA treated with/without brevetoxin-B was digested with trypsin, trypsin following chymotrypsin, and Pronase, respectively, for LC/MS analysis of adduction sites. Brevetoxin-B was found to react primarily with Cys(34) and His(3) and with His and Lys at other sites of HSA with variable reactivity and with Lys in general the least reactive.
Collapse
Affiliation(s)
- Zhihong Wang
- Marine Biotoxins Program, Center for Coastal Environmental Health and Biomolecular Research, NOAA/National Ocean Service, 219 Fort Johnson Road, Charleston, South Carolina 29412, USA
| | | |
Collapse
|
58
|
LoPachin RM, Gavin T, Geohagen BC, Zhang L, Casper D, Lekhraj R, Barber DS. β-dicarbonyl enolates: a new class of neuroprotectants. J Neurochem 2010; 116:132-43. [PMID: 21054388 DOI: 10.1111/j.1471-4159.2010.07091.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Curcumin, phloretin and structurally related phytopolyphenols have well-described neuroprotective properties that appear to be at least partially mediated by 1,3-dicarbonyl enol substructures that form nucleophilic enolates. Based on their structural similarities, we tested the hypothesis that enolates of simple 1,3-dicarbonyl compounds such as acetylacetone might also possess neuroprotective actions. Our results show that the β-diketones, particularly 2-acetylcyclopentanone, protected rat striatal synaptosomes and a neuronal cell line from thiol loss and toxicity induced by acrolein, an electrophilic α,β-unsaturated aldehyde. The 1,3-dicarbonyl compounds also provided substantial cytoprotection against toxicity induced by hydrogen peroxide in a cellular model of oxidative stress. Initial chemical characterization in cell-free systems indicated that the 1,3-dicarbonyl compounds acted as surrogate nucleophilic targets that slowed the rate of sulfhydryl loss caused by acrolein. Although the selected 1,3-dicarbonyl congeners did not scavenge free radicals, metal ion chelation was a significant property of both acetylacetone and 2-acetylcyclopentanone. Our data suggest that the 1,3-dicarbonyl enols represent a new class of neuroprotectants that scavenge electrophilic metal ions and unsaturated aldehydes through their nucleophilic enolate forms. As such, these enols might be rational candidates for treatment of acute or chronic neurodegenerative conditions that have oxidative stress as a common molecular etiology.
Collapse
Affiliation(s)
- Richard M LoPachin
- Department of Anesthesiology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York, 10467-2409 USA.
| | | | | | | | | | | | | |
Collapse
|
59
|
Abstract
Heat shock proteins act as cytoplasmic chaperones to ensure correct protein folding and prevent protein aggregation. The presence of stoichiometric amounts of one such heat shock protein, Hsp27, in supersaturated solutions of unmodified G-actin leads to crystallization, in preference to polymerization, of the actin. Hsp27 is not evident in the resulting crystal structure. Thus, for the first time, we present the structure of G-actin in a form that is devoid of polymerization-deterring chemical modifications or binding partners, either of which may alter its conformation. The structure contains a calcium ion and ATP within a closed nucleotide-binding cleft, and the D-loop is disordered. This native G-actin structure invites comparison with the current F-actin model in order to understand the structural implications for actin polymerization. In particular, this analysis suggests a mechanism by which the bound cation coordinates conformational change and ATP-hydrolysis.
Collapse
Affiliation(s)
- Hui Wang
- Department of Chemistry and Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | |
Collapse
|
60
|
Dubinina EE, Dadali VA. Role of 4-hydroxy-trans-2-nonenal in cell functions. BIOCHEMISTRY (MOSCOW) 2010; 75:1069-87. [DOI: 10.1134/s0006297910090014] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
61
|
Wang X, Ling S, Zhao D, Sun Q, Li Q, Wu F, Nie J, Qu L, Wang B, Shen X, Bai Y, Li Y, Li Y. Redox regulation of actin by thioredoxin-1 is mediated by the interaction of the proteins via cysteine 62. Antioxid Redox Signal 2010; 13:565-73. [PMID: 20218863 DOI: 10.1089/ars.2009.2833] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Actin is a highly conserved protein in eukaryotic cells, and has been identified as one of the main redox targets by redox proteomics under oxidative stress. However, little is known about the mechanisms of regulation of the redox state of actin. In this study, we investigated how thioredoxin-1 (Trx1) affected the redox state of actin and its polymerization under oxidative stress in SH-SY5Y cells. Trx1 decreased the levels of reactive oxygen species (ROS) in the cells, and cysteine residues at positions 32, 35, and 69 of the Trx1 protein were active sites for redox regulation. Actin could be kept in a reduced state by Trx1 under H(2)O(2) stimulation. A physical interaction was found to exist between actin and Trx1. Cysteine 62 in Trx1 was the key site that interacted with actin, and it was required to maintain cellular viability and anti-apoptotic function. Taken together, these results suggested that Trx1 could protect cells from apoptosis under oxidative stress not only by increasing the total antioxidant capability and decreasing the ROS levels, but also by stabilizing the actin cytoskeletal system, which cooperatively contributed to the enhancement of cell viability and worked against apoptosis.
Collapse
Affiliation(s)
- Xiaogang Wang
- Department of Cellular and Molecular Biology, State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Colombo G, Aldini G, Orioli M, Giustarini D, Gornati R, Rossi R, Colombo R, Carini M, Milzani A, Dalle-Donne I. Water-Soluble alpha,beta-unsaturated aldehydes of cigarette smoke induce carbonylation of human serum albumin. Antioxid Redox Signal 2010; 12:349-64. [PMID: 19686037 DOI: 10.1089/ars.2009.2806] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Cigarette smoking is a major risk factor for developing pulmonary and cardiovascular diseases as well as some forms of cancer. Understanding the mechanisms by which smoking contributes to disease remains a major research focus. Increased levels of carbonylated serum proteins are present in smokers; albumin is the major carbonylated protein in the bronchoalveolar lavage fluid of older smokers. We have investigated the susceptibility of human serum albumin (HSA) to alpha,beta-unsaturated aldehyde-induced carbonylation when exposed to whole-phase cigarette smoke extract (CSE). Fluorescence studies with fluorescent probes showed depletion of HSA Cys34 free thiol and marked decrease of free Lys residues. Spectrophotometric and immunochemical carbonyl assays after carbonyl derivatization with 2,4-dinitrophenylhydrazine revealed the formation of covalent carbonyl adducts. Nanoscale capillary liquid chromatography and electrospray tandem mass spectrometry analysis detected acrolein and crotonaldehyde Michael adducts at Cys34, Lys525, Lys351, and His39 at all the CSE concentrations tested. Lys541 and Lys545 were also found to form a Schiff base with acrolein. The carbonyl scavenger drugs, hydralazine and pyridoxamine, partially prevented CSE-induced HSA carbonylation. Carbonylation of HSA associated with cigarette smoking might result in modifications of its antioxidant properties and transport functions of both endogenous and exogenous compounds.
Collapse
Affiliation(s)
- Graziano Colombo
- Dipartimento di Biologia, Università degli Studi di Milano, Milan , Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Abstract
Relatively low levels of reactive oxygen species (ROS) produced inside resting skeletal muscles play important functions in cell signaling. When ROS production increases to levels beyond the buffering capacity of muscle antioxidant systems, a state of oxidative stress develops, which leads to skeletal muscle contractile dysfunction. A clear association between oxidative stress and depressed skeletal muscle performance has been described in several acute and chronic conditions, such as systemic inflammation and chronic obstructive lung diseases. The observation that the levels of oxidant-derived posttranslational protein modifications, including protein carbonylation, are elevated inside skeletal muscle fibers when oxidative stress develops suggest that these modifications play important roles in regulating muscle function. This proposal is supported by recent studies that unveiled that several myofilament (myosin heavy chain and actin), mitochondrial (aconitase, creatine kinase), and cytosolic (enolase, aldolase and glyceraldehyde 3-phosphate dehydrogenase and carbonic anhydrase III) proteins are carbonylated inside skeletal muscle fibers in many animal models of muscle dysfunction, and in humans with impaired skeletal muscle contractility. However, the functional importance of carbonylation in determining the function of muscle-specific proteins and the precise contribution of carbonylation-induced dysfunction of these proteins to overall muscle contractile deficit in various pathologies remain to be determined.
Collapse
Affiliation(s)
- Esther Barreiro
- Pulmonology Department, IMIM-Hospital del Mar, Catalonia, Spain
| | | |
Collapse
|
64
|
Burcham PC, Raso A, Thompson CA. Toxicity of smoke extracts towards A549 lung cells: role of acrolein and suppression by carbonyl scavengers. Chem Biol Interact 2010; 183:416-24. [PMID: 20015449 DOI: 10.1016/j.cbi.2009.12.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Revised: 12/07/2009] [Accepted: 12/08/2009] [Indexed: 02/06/2023]
Abstract
The noxious 3-carbon electrophile acrolein forms on combustion of diverse organic matter including synthetic polymers such as polyethylene. While known to play a key role in smoke inhalation injury (SII), the molecular basis for the pulmonary toxicity of high dose acrolein-containing smoke is unclear. As a result, drug interventions in SII are poorly directed against pathogenetic smoke toxicants such as acrolein. The first aim of this study was to confirm a role for acrolein in the acute toxicity of smoke extracts towards A549 lung cells by monitoring adduction of known acrolein targets and the expression of acrolein-inducible genes. A second aim was to evaluate carbonyl scavengers for their abilities to protect cell targets and block smoke extract toxicity. Extracts were prepared by bubbling smoke released by smouldering polyethylene through a buffered saline-trap. Acrolein levels in the extracts were estimated via HPLC after derivatisation with 2,4-dinitrophenylhydrazine. Extracts were highly toxic towards A549 cells, eliciting greater ATP depletion than an equivalent concentration of acrolein alone. The toxicity was accompanied by pronounced carbonylation of several cytoskeletal targets, namely vimentin and keratins-7, -8 and -18. Western blotting revealed that polyethylene combustion products also upregulated several acrolein-responsive protein markers, including GADD45beta, NQO1, HMOX, Hsp70, Nur77 and Egr1. Several carbonyl scavengers (bisulfite, d-penicillamine, hydralazine and 1-hydrazinoisoquinoline) strongly attenuated smoke extract toxicity, with bisulfite suppressing both the adduction and cross-linking of intermediate filament targets. Bisulfite also suppressed the cytotoxicity of smoke extracts when detected using real-time monitoring of cellular impedance. These findings confirm a key role for acrolein in smoke cytotoxicity and suggest drugs that block acrolein toxicity deserve further investigation as possible interventions against SII.
Collapse
Affiliation(s)
- Philip C Burcham
- Pharmacology and Anaesthesiology Unit, School of Medicine and Pharmacology, The University of Western Australia, Nedlands, WA 6009, Australia.
| | | | | |
Collapse
|
65
|
LoPachin RM, Gavin T, Petersen DR, Barber DS. Molecular mechanisms of 4-hydroxy-2-nonenal and acrolein toxicity: nucleophilic targets and adduct formation. Chem Res Toxicol 2009; 22:1499-508. [PMID: 19610654 DOI: 10.1021/tx900147g] [Citation(s) in RCA: 205] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Acrolein and 4-hydroxy-2-nonenal (HNE) are byproducts of lipid peroxidation and are thought to play central roles in various traumatic injuries and disease states that involve cellular oxidative stress, for example, spinal cord trauma, diabetes, and Alzheimer's disease. In this review, we will discuss the chemical attributes of acrolein and HNE that determine their toxicities. Specifically, these aldehydes are classified as type 2 alkenes and are characterized by an alpha,beta-unsaturated carbonyl structure. This structure is a conjugated system that contains mobile pi-electrons. The carbonyl oxygen atom is electronegative and can promote the withdrawal of mobile electron density from the beta-carbon atom causing regional electron deficiency. On the basis of this type of electron polarizability, both acrolein and HNE are considered to be soft electrophiles that preferentially form 1,4-Michael type adducts with soft nucleophiles. Proteomic, quantum mechanical, and kinetic data will be presented, indicating that cysteine sulfhydryl groups are the primary soft nucleophilic targets of acrolein and HNE. This is in contrast to nitrogen groups on harder biological nucleophiles such as lysine or histidine residues. The toxicological outcome of adduct formation is not only dependent upon residue selectivity but also the importance of the targeted amino acid in protein function or structure. In attempting to discern the toxicological significance of a given adduct, we will consider the normal roles of cysteine, lysine, and histidine residues in proteins and the relative merits of corresponding adducts in the manifestations of diseases or toxic states. Understanding the molecular actions of acrolein and HNE could provide insight into many pathogenic conditions that involve initial cellular oxidative stress and could, thereby, offer new efficacious avenues of pharmacological defense.
Collapse
Affiliation(s)
- Richard M LoPachin
- Department of Anesthesiology, Albert Einstein College of Medicine, Montefiore Medical Center, 111 East 210th Street, Bronx, New York 10467, USA.
| | | | | | | |
Collapse
|
66
|
Rubino FM, Pitton M, Di Fabio D, Colombi A. Toward an "omic" physiopathology of reactive chemicals: thirty years of mass spectrometric study of the protein adducts with endogenous and xenobiotic compounds. MASS SPECTROMETRY REVIEWS 2009; 28:725-84. [PMID: 19127566 DOI: 10.1002/mas.20207] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Cancer and degenerative diseases are major causes of morbidity and death, derived from the permanent modification of key biopolymers such as DNA and regulatory proteins by usually smaller, reactive molecules, present in the environment or generated from endogenous and xenobiotic components by the body's own biochemical mechanisms (molecular adducts). In particular, protein adducts with organic electrophiles have been studied for more than 30 [see, e.g., Calleman et al., 1978] years essentially for three purposes: (a) as passive monitors of the mean level of individual exposure to specific chemicals, either endogenously present in the human body or to which the subject is exposed through food or environmental contamination; (b) as quantitative indicators of the mean extent of the individual metabolic processing which converts a non-reactive chemical substance into its toxic products able to damage DNA (en route to cancer induction through genotoxic mechanisms) or key proteins (as in the case of several drugs, pesticides or otherwise biologically active substances); (c) to relate the extent of protein modification to that of biological function impairment (such as enzyme inhibition) finally causing the specific health damage. This review describes the role that contemporary mass spectrometry-based approaches employed in the qualitative and quantitative study of protein-electrophile adducts play in the discovery of the (bio)chemical mechanisms of toxic substances and highlights the future directions of research in this field. A particular emphasis is given to the measurement of often high levels of the protein adducts of several industrial and environmental pollutants in unexposed human populations, a phenomenon which highlights the possibility that a number of small organic molecules are generated in the human organism through minor metabolic processes, the imbalance of which may be the cause of "spontaneous" cases of cancer and of other degenerative diseases of still uncharacterized etiology. With all this in mind, it is foreseen that a holistic description of cellular functions will take advantage of new analytical methods based on time-integrated metabolomic measurements of a new biological compartment, the "adductome," aimed at better understanding integrated organism response to environmental and endogenous stressors.
Collapse
Affiliation(s)
- Federico Maria Rubino
- Laboratory for Analytical Toxicology and Metabonomics, Department of Medicine, Surgery and Odontology, Università degli Studi di Milano at Ospedale San Paolo, v. Antonio di Rudinì 8, Milano I-20142, Italy.
| | | | | | | |
Collapse
|
67
|
Rossi R, Giustarini D, Fineschi S, De Cunto G, Lungarella G, Cavarra E. Differential thiol status in blood of different mouse strains exposed to cigarette smoke. Free Radic Res 2009; 43:538-45. [PMID: 19370473 DOI: 10.1080/10715760902893332] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
C57Bl/6J, DBA/2 and ICR mouse strains are known to possess different susceptibilities to developing emphysema after exposure to cigarette smoke with DBA/2 and C57Bl/6J strains being significantly more susceptible to pulmonary damage than the ICR strain. This study was aimed at analysing the occurrence of systemic oxidative stress in the blood of these different mouse strains after exposure to cigarette smoke. This study did not observe a significant decrease in glutathione in erythrocytes or in plasma cysteine, cysteinylglycine, homocysteine and glutathione in C57Bl/6J or DBA/2 mice, whereas a significant increase in the corresponding oxidized forms was observed in plasma. However, the ICR strain showed a significant increase in glutathione in erythrocytes and a significant decrease in most of the oxidized forms of cysteine, cysteinylglycine, homocysteine and glutathione in plasma after the same exposition. These experiments demonstrate that exposure to cigarette smoking induces systemic oxidative stress only in some mouse strains which are susceptible to developing emphysema.
Collapse
Affiliation(s)
- Ranieri Rossi
- Department of Evolutionary Biology, Laboratory of Pharmacology and Toxicology, Experimental Medicine & Public Health, University of Siena, Siena, Italy
| | | | | | | | | | | |
Collapse
|
68
|
Hop proanthocyanidins induce apoptosis, protein carbonylation, and cytoskeleton disorganization in human colorectal adenocarcinoma cells via reactive oxygen species. Food Chem Toxicol 2009; 47:827-36. [PMID: 19271284 DOI: 10.1016/j.fct.2009.01.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Proanthocyanidins (PCs) have been shown to suppress the growth of diverse human cancer cells and are considered as promising additions to the arsenal of chemopreventive phytochemicals. An oligomeric mixture of PCs from hops (Humulus lupulus) significantly decreased cell viability of human colon cancer HT-29 cells in a dose-dependent manner. Hop PCs, at 50 or 100 microg/ml, exhibited apoptosis-inducing properties as shown by the increase in caspase-3 activity. Increased levels of intracellular reactive oxygen species (ROS) was accompanied by an augmented accumulation of protein carbonyls. Mass spectrometry-based proteomic analysis in combination with 2-alkenal-specific immunochemical detection identified beta-actin and protein disulfide isomerase as major putative targets of acrolein adduction. Incubation of HT-29 cells with hop PCs resulted in morphological changes that indicated disruption of the actin cytoskeleton. PC-mediated hydrogen peroxide (H2O2) formation in the cell culture media was also quantified; but, the measured H2O2 levels would not explain the observed changes in the oxidative modifications of actin. These findings suggest new modes of action for proanthocyandins as anticarcinogenic agents in human colon cancer cells, namely, promotion of protein oxidative modifications and cytoskeleton derangement.
Collapse
|
69
|
Pournamdari M, Saadi A, Ellis E, Andrew R, Walker B, Watson DG. Development of a derivatisation method for the analysis of aldehyde modified amino acid residues in proteins by Fourier transform mass spectrometry. Anal Chim Acta 2008; 633:216-22. [PMID: 19166725 DOI: 10.1016/j.aca.2008.11.070] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Revised: 11/15/2008] [Accepted: 11/24/2008] [Indexed: 01/22/2023]
Abstract
A method was developed for the analysis of amino acids within bovine serum albumin (BSA) which had been modified by reaction with different enals. BSA was reacted with the aldehydes and the reaction products were stabilised by reaction with NaBH(4). The protein was then hydrolysed with 6N HCl and the hydrolysis products were analysed by liquid chromatography-mass spectrometry (LC-MS). The modified amino acids were derivatised with propylchloroformate. High resolution mass spectrometry carried out using an LTQ-Orbitrap instrument which was able to characterise a wide range of adducts. In addition double adducts were observed to be formed with 4-hydroxynonenal (HNE) and lysine or lysine+histidine. Qualitatively it was possible to consistently observe a pyridinium adduct formed between lysine and pentenal in human plasma from normal subjects.
Collapse
Affiliation(s)
- Mostafa Pournamdari
- Strathclyde Institute for Pharmacy and Biomedical Science (SIPBS), 27 Taylor Street, Glasgow G4 0NR, United Kingdom
| | | | | | | | | | | |
Collapse
|
70
|
Lopachin RM, Geohagen BC, Gavin T. Synaptosomal toxicity and nucleophilic targets of 4-hydroxy-2-nonenal. Toxicol Sci 2008; 107:171-81. [PMID: 18996889 PMCID: PMC2638640 DOI: 10.1093/toxsci/kfn226] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
4-Hydroxy-2-nonenal (HNE) is an aldehyde by-product of lipid peroxidation that is presumed to play a primary role in certain neuropathogenic states (e.g., Alzheimer disease, spinal cord trauma). Although the molecular mechanism of neurotoxicity is unknown, proteomic analyses (e.g., tandem mass spectrometry) have demonstrated that this soft electrophile preferentially forms Michael-type adducts with cysteine sulfhydryl groups. In this study, we characterized HNE synaptosomal toxicity and evaluated the role of putative nucleophilic amino acid targets. Results show that HNE exposure of striatal synaptosomes inhibited (3)H-dopamine membrane transport and vesicular storage. These concentration-dependent effects corresponded to parallel decreases in synaptosomal sulfhydryl content. Calculations of quantum mechanical parameters (softness, electrophilicity) that describe the interactions of an electrophile with its nucleophilic target indicated that the relative softness of HNE was directly related to both the second-order rate constant (k(2)) for sulfhydryl adduct formation and corresponding neurotoxic potency (IC(50)). Computation of additional quantum mechanical parameters that reflect the relative propensity of a nucleophile to interact with a given electrophile (chemical potential, nucleophilicity) indicated that the sulfhydryl thiolate state was the HNE target. In support of this, we showed that the rate of adduct formation was related to pH and that N-acetyl-L-cysteine, but not N-acetyl-L-lysine or beta-alanyl-L-histidine, reduced in vitro HNE neurotoxicity. These data suggest that, like other type 2 alkenes, HNE produces nerve terminal toxicity by forming adducts with sulfhydryl thiolates on proteins involved in neurotransmission.
Collapse
Affiliation(s)
- Richard M Lopachin
- Department of Anesthesiology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York 10467, USA
| | | | | |
Collapse
|
71
|
Reddy NM, Kleeberger SR, Bream JH, Fallon PG, Kensler TW, Yamamoto M, Reddy SP. Genetic disruption of the Nrf2 compromises cell-cycle progression by impairing GSH-induced redox signaling. Oncogene 2008; 27:5821-32. [PMID: 18542053 PMCID: PMC2646365 DOI: 10.1038/onc.2008.188] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2007] [Revised: 05/05/2008] [Accepted: 05/12/2008] [Indexed: 01/10/2023]
Abstract
Genetic disruption of Nrf2 greatly enhances susceptibility to prooxidant- and carcinogen-induced experimental models of various human disorders; but the mechanisms by which this transcription factor confers protection are unclear. Using Nrf2-proficient (Nrf2(+/+)) and Nrf2-deficient (Nrf2(-/-)) primary epithelial cultures as a model, we now show that Nrf2 deficiency leads to oxidative stress and DNA lesions, accompanied by impairment of cell-cycle progression, mainly G(2)/M-phase arrest. Both N-acetylcysteine and glutathione (GSH) supplementation ablated the DNA lesions and DNA damage-response pathways in Nrf2(-/-) cells; however only GSH could rescue the impaired colocalization of mitosis-promoting factors and the growth arrest. Akt activation was deregulated in Nrf2(-/-) cells, but GSH supplementation restored it. Inhibition of Akt signaling greatly diminished the GSH-induced Nrf2(-/-) cell proliferation and wild-type cell proliferation. GSH depletion impaired Akt signaling and mitosis-promoting factor colocalization in Nrf2(+/+) cells. Collectively, our findings uncover novel functions for Nrf2 in regulating oxidative stress-induced cell-cycle arrest, especially G(2)/M-checkpoint arrest, and proliferation, and GSH-regulated redox signaling and Akt are required for this process.
Collapse
Affiliation(s)
- NM Reddy
- Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - SR Kleeberger
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - JH Bream
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - PG Fallon
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - TW Kensler
- Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - M Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - SP Reddy
- Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
72
|
Abstract
Thrombocytopenia is a critical problem that occurs in many hematologic diseases, as well as after cancer therapy and radiation exposure. Platelet transfusion is the most commonly used therapy but has limitations of alloimmunization, availability, and expense. Thus, the development of safe, small, molecules to enhance platelet production would be advantageous for the treatment of thrombocytopenia. Herein, we report that an important lipid mediator and a peroxisome proliferator-activated receptor gamma (PPARgamma) ligand called 15-deoxy-Delta(12,14) prostaglandin J(2) (15d-PGJ(2)), increases Meg-01 maturation and platelet production. 15d-PGJ(2) also promotes platelet formation from culture-derived mouse and human megakaryocytes and accelerates platelet recovery after in vivo radiation-induced bone marrow injury. Interestingly, the platelet-enhancing effects of 15d-PGJ(2) in Meg-01 cells are independent of PPARgamma, but dependent on reactive oxygen species (ROS) accumulation; treatment with antioxidants such as glutathione ethyl ester (GSH-EE); or N-acetylcysteine (NAC) attenuate 15d-PGJ(2)-induced platelet production. Collectively, these data support the concept that megakaryocyte redox status plays an important role in platelet generation and that small electrophilic molecules may have clinical efficacy for improving platelet numbers in thrombocytopenic patients.
Collapse
|
73
|
Spiess PC, Morin D, Jewell WT, Buckpitt AR. Measurement of protein sulfhydryls in response to cellular oxidative stress using gel electrophoresis and multiplexed fluorescent imaging analysis. Chem Res Toxicol 2008; 21:1074-85. [PMID: 18416539 DOI: 10.1021/tx8000708] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The significance of free radicals in biology has been established by numerous investigations spanning a period of over 40 years. Whereas there are many intracellular targets for these radical species, the importance of cysteine thiol posttranslational modification has received considerable attention. The current studies present a highly sensitive method for measurement of the posttranslational modification of protein thiols. This method is based on labeling of proteins with monofunctional maleimide dyes followed by 2D gel electrophoresis to separate proteins and multiplexed fluorescent imaging analysis. The method correctly interrogates the thiol/disulfide ratio present in commercially available proteins. Exposure of pulmonary airway epithelial cells to high concentrations of menadione or t-butyl hydroperoxide resulted in the modification of cysteines in more than 141 proteins of which 60 were subsequently identified by MALDI-TOF/TOF MS. Although some proteins were modified similarly by these two oxidants, several showed detectably different maleimide ratios in response to these two agents. Proteins that were modified by one or both oxidants include those involved in transcription, protein synthesis and folding, and cell death/growth. In conclusion, these studies provide a novel procedure for measuring the redox status of cysteine thiols on individual proteins with a clearly demonstrated applicability to interactions of chemicals with pulmonary epithelial cells.
Collapse
Affiliation(s)
- Page C Spiess
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California, USA.
| | | | | | | |
Collapse
|
74
|
Aldini G, Vistoli G, Regazzoni L, Gamberoni L, Facino RM, Yamaguchi S, Uchida K, Carini M. Albumin is the main nucleophilic target of human plasma: a protective role against pro-atherogenic electrophilic reactive carbonyl species? Chem Res Toxicol 2008; 21:824-35. [PMID: 18324789 DOI: 10.1021/tx700349r] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The aim of this work was to study the metabolic fate of 4-hydroxy- trans-2-nonenal (HNE) in human plasma, which represents the main vascular site of reactive carbonyl species (RCS) formation and where the main pro-atherogenic target proteins are formed. When HNE was spiked in human plasma, it rapidly disappeared (within 40 s) and no phase I metabolites were detected, suggesting that the main fate of HNE is due to an adduction mechanism. HNE consumption was then monitored in two plasma fractions: low molecular weight plasma protein fractions (<10 kDa; LMWF) and high molecular weight plasma protein fractions (>10 kDa; HMWF). HNE was almost stable in LMWF, while in HMWF it was consumed by almost 70% within 5 min. Proteomics identified albumin (HSA) as the main protein target, as further confirmed by a significantly reduced HNE quenching of dealbuminated plasma. LC-ESI-MS/MS analysis identified Cys34 and Lys199 as the most reactive adduction sites of HSA, through the formation of a Michael and Schiff base adducts, respectively. The rate constant of HNE trapping by albumin was 50.61 +/- 1.89 M (-1) s (-1) and that of Cys34 (29.37 M (-1) s (-1)) was 1 order of magnitude higher with respect to that of GSH (3.81 +/- 0.17 M (-1) s (-1)), as explained by molecular modeling studies. In conclusion, we suggest that albumin, through nucleophilic residues, and in particular Cys34, can act as an endogenous detoxifying agent of circulating RCS.
Collapse
Affiliation(s)
- Giancarlo Aldini
- Istituto di Chimica Farmaceutica e Tossicologica Pietro Pratesi, Faculty of Pharmacy, University of Milan, I-20131, Milan, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
75
|
Günther M, Wagner E, Ogris M. Acrolein: unwanted side product or contribution to antiangiogenic properties of metronomic cyclophosphamide therapy? J Cell Mol Med 2008; 12:2704-16. [PMID: 18266977 PMCID: PMC3828885 DOI: 10.1111/j.1582-4934.2008.00255.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Tumour therapy with cyclophosphamide (CPA), an alkylating chemotherapeutic agent, has been associated with reduced tumour blood supply and antiangiogenic effects when applied in a continuous, low-dose metronomic schedule. Compared to conventional high-dose scheduling, metronomic CPA therapy exhibits antitumoural activity with reduced side effects. We have studied potential antiangiogenic properties of acrolein which is released from CPA after hydroxylation. Acrolein adducts were found in tumour cells and tumour endothelial cells of CPA-treated mice, suggesting an in vivo relevance of acrolein. In vitro, acrolein inhibited endothelial cell proliferation, endothelial cell migration and tube formation. Moreover, acrolein caused disassembly of the F-actin cytoskeleton and inhibition of alphavbeta3 integrin clustering at focal adhesions points in endothelial cells. Acrolein treatment modulated expression of thrombospondin-1 (TSP-1), an endogenous inhibitor of angiogenesis known to be linked to antiangiogenic effects of metronomic CPA therapy. Further on, acrolein treatment of primary endothelial cells modified NF-(kappa)B activity levels. This is the first study that points at an antiangiogenic activity of acrolein in metronomically scheduled CPA therapy.
Collapse
Affiliation(s)
- M Günther
- Pharmaceutical Biology-Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität, Butenandtstr, Munich, Germany
| | | | | |
Collapse
|
76
|
Liebler DC. Protein damage by reactive electrophiles: targets and consequences. Chem Res Toxicol 2007; 21:117-28. [PMID: 18052106 DOI: 10.1021/tx700235t] [Citation(s) in RCA: 197] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
It has been 60 years since the Millers first described the covalent binding of carcinogens to tissue proteins. Protein covalent binding was gradually overshadowed by the emergence of DNA adduct formation as the dominant paradigm in chemical carcinogenesis but re-emerged in the early 1970s as a critical mechanism of drug and chemical toxicity. Technology limitations hampered the characterization of protein adducts until the emergence of mass spectrometry-based proteomics in the late 1990s. The time since then has seen rapid progress in the characterization of the protein targets of electrophiles and the consequences of protein damage. Recent integration of novel affinity chemistries for electrophile probes, shotgun proteomics methods, and systems modeling tools has led to the identification of hundreds of protein targets of electrophiles in mammalian systems. The technology now exists to map the targets of damage to critical components of signaling pathways and metabolic networks and to understand mechanisms of damage at a systems level. The implementation of sensitive, specific analyses for protein adducts from both xenobiotic-derived and endogenous electrophiles offers a means to link protein damage to clinically relevant health effects of both chemical exposures and disease processes.
Collapse
Affiliation(s)
- Daniel C Liebler
- Department of Biochemistry, Vanderbilt University School of Medicine,, Nashville, Tennessee 37232, USA.
| |
Collapse
|