51
|
A colorimetric aptasensor for the highly sensitive detection of 8-hydroxy-2'-deoxyguanosine based on G-quadruplex-hemin DNAzyme. Anal Biochem 2014; 458:4-10. [PMID: 24811738 DOI: 10.1016/j.ab.2014.04.031] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 04/16/2014] [Accepted: 04/24/2014] [Indexed: 02/08/2023]
Abstract
A highly sensitive, low-cost colorimetric aptasensor was developed for the determination of 8-hydroxy-2'-deoxyguanosine (8-OHdG) in human urine. The method is based on a conformational switching of the 8-OHdG aptamer to form a G-quadruplex structure in the presence of 8-OHdG. The resulting G-quadruplex assembles into a peroxidase-like DNAzyme with hemin, which effectively catalyzes the oxidation of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS(2-)) by H2O2 to ABTS(+), resulting in an increase in the absorption signal at 416nm along with a color change of the solution. The response signals linearly correlated with the concentration of 8-OHdG, ranging from 466pM to 247nM with a detection limit of 141pM. The relative standard deviation and the recovery were 1.97-3.47% (n=11) and 98.8-100.2%, respectively. The proposed method avoids the label and derivatization steps in common methods and allows direct analysis of the samples by the naked eye without costly instruments, which is reliable, inexpensive, and sensitive.
Collapse
|
52
|
Al-Malki AL. Assessment of urinary osteopontin in association with podocyte for early predication of nephropathy in diabetic patients. DISEASE MARKERS 2014; 2014:493736. [PMID: 24876663 PMCID: PMC4024407 DOI: 10.1155/2014/493736] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Revised: 04/15/2014] [Accepted: 04/16/2014] [Indexed: 02/04/2023]
Abstract
OBJECTIVES Microalbuminuria has been clinically used for noninvasive evaluation of renal dysfunctions. However, it is a nonspecific marker of diabetic nephropathy (DN). METHODS This study was conducted from March 2012 to April 2013 at Biochemistry Unit, King Fahd Medical Research Center (KFMRC). In this study, urinary osteopontin, podocytes number, and levels of immunoglobulin M (IgM) were determined in 60 patients (diabetic normoalbuminuria, diabetic microalbuminuria, and nephritic syndrome) compared with healthy subjects. RESULTS It was found that in diabetic microalbuminuria patients have a highly significant increase in urinary IgM, osteopontin, and podocyte levels as compared to other groups. Nephrotic syndrome patients showed a moderate significant elevation of these parameters compared to control subjects. At a given specificity of 97%, podocytes yielded the highest sensitivity of all markers, 95.5%. The sensitivity was considerably higher compared to IgM and osteopontin. Podocyte number was positively correlated with serum IgM and osteopontin (r = 0.63 and 0.56), respectively. Its cutoff corresponding to the 10% coefficient of variation was most appropriate for early diagnosis of DN. CONCLUSION Monitoring urinary podocyte may provide a noninvasive tool that is a sensitive, accurate, and specific biomarker of glomerular injury and can be used in combination with osteopontin and IgM to more reliably detect and monitor prognosis.
Collapse
Affiliation(s)
- Abdulrahman L. Al-Malki
- Biochemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| |
Collapse
|
53
|
An ultrasensitive label-free assay of 8-hydroxy-2'-deoxyguanosine based on the conformational switching of aptamer. Biosens Bioelectron 2014; 58:22-6. [PMID: 24607618 DOI: 10.1016/j.bios.2014.02.047] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Revised: 01/28/2014] [Accepted: 02/16/2014] [Indexed: 01/18/2023]
Abstract
We developed a highly sensitive label-free assay of 8-hydroxy-2'-deoxyguanosine (8-OHdG) using 8-OHdG-aptamer (Apt) as the recognition element. The Apt was adsorbed onto the surface of gold nanoparticles (AuNPs), which prevents them from aggregating under high-salt conditions. Upon addition of 8-OHdG, the conformation of the Apt changes to form a G-quadruplex structure, which leads to the aggregation of the AuNPs along with the increase of the resonance light scattering intensity. The mechanism of 8-OHdG that induces Apt to form G-quadruplexes structure was studied by circular dichroism. The response signals linearly correlated with the concentration of 8-OHdG ranging from 90.8pM to 14.1nM with a detection limit of 27.3pM, which is much lower than that obtained by other methods. This method does not need any label steps and sophisticated equipment. The application for detection of 8-OHdG in real samples further demonstrated its reliability. This strategy would be helpful for developing a universal analytical method by simply replacing corresponding aptamers for various target molecules.
Collapse
|
54
|
Colorimetric determination of 8-hydroxy–2′-deoxyguanosine using label-free aptamer and unmodified gold nanoparticles. Mikrochim Acta 2014. [DOI: 10.1007/s00604-014-1173-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
55
|
Poulsen HE, Nadal LL, Broedbaek K, Nielsen PE, Weimann A. Detection and interpretation of 8-oxodG and 8-oxoGua in urine, plasma and cerebrospinal fluid. Biochim Biophys Acta Gen Subj 2014; 1840:801-8. [DOI: 10.1016/j.bbagen.2013.06.009] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Revised: 06/10/2013] [Accepted: 06/12/2013] [Indexed: 11/28/2022]
|
56
|
Simulation of oxidative stress of guanosine and 8-oxo-7,8-dihydroguanosine by electrochemically assisted injection–capillary electrophoresis–mass spectrometry. Anal Bioanal Chem 2013; 406:687-94. [DOI: 10.1007/s00216-013-7500-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 11/06/2013] [Accepted: 11/08/2013] [Indexed: 11/26/2022]
|
57
|
Abstract
The term 'antioxidant paradox' is often used to refer to the observation that oxygen radicals and other reactive oxygen species are involved in several human diseases, but giving large doses of dietary antioxidant supplements to human subjects has, in most studies, demonstrated little or no preventative or therapeutic effect. Why should this be? First, the role of reactive oxygen species in the origin and/or progression of most human diseases is unclear, although they are probably important in cancer, neurodegenerative diseases and perhaps some others. Second, the endogenous antioxidant defences in the human body are complex, interlocking and carefully regulated. The body's 'total antioxidant capacity' seems unresponsive to high doses of dietary antioxidants, so that the amount of oxidative damage to key biomolecules is rarely changed. Indeed, manipulation of endogenous antioxidant levels (e.g. by supplying weak pro-oxidants) may be a more useful approach to treatment and prevention of diseases in which reactive oxygen species are important than is consumption of large doses of dietary antioxidants.
Collapse
Affiliation(s)
- Barry Halliwell
- Department of Biochemistry, National University of Singapore, Singapore 119077, Singapore.
| |
Collapse
|
58
|
Na HJ, Park JS, Pyo JH, Lee SH, Jeon HJ, Kim YS, Yoo MA. Mechanism of metformin: inhibition of DNA damage and proliferative activity in Drosophila midgut stem cell. Mech Ageing Dev 2013; 134:381-90. [PMID: 23891756 DOI: 10.1016/j.mad.2013.07.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 06/13/2013] [Accepted: 07/14/2013] [Indexed: 02/06/2023]
Abstract
Age-related changes in stem cells could have a profound impact on tissue aging and the development of age-related diseases such as cancer. However, the effects of metformin, a recently recognized anti-cancer drug, on stem cell aging remain largely unknown. In the present study, an experiment was set up to investigate the underlying mechanism of metformin's beneficial effects on age-related changes in intestinal stem cells (ISCs) derived from Drosophila midgut. Results showed that metformin reduced age- and oxidative stress-related accumulation of DNA damage marked by Drosophila γH2AX foci and 8-oxo-dG in ISCs and progenitor cells. Metformin also inhibited age and- oxidative stress-related ISC hyperproliferation as well as intestinal hyperplasia. Our study further revealed that the inhibitory effects of metformin on DNA damage accumulation may be due to the down-regulation of age-related and oxidative stress-induced AKT activity. These data indicate that metformin has beneficial effects on age-related changes in ISCs derived from Drosophila midgut. Further, our results suggest a possible impact of DNA damage on stem cell genomic instability, which leads to the development of age-related diseases. Additionally, our study suggests that Drosophila midgut stem cells can be a suitable model system for studying stem cell biology and stem cell aging.
Collapse
Affiliation(s)
- Hyun-Jin Na
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan 609-735, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
59
|
Nair AR, DeGheselle O, Smeets K, Van Kerkhove E, Cuypers A. Cadmium-Induced Pathologies: Where Is the Oxidative Balance Lost (or Not)? Int J Mol Sci 2013; 14:6116-43. [PMID: 23507750 PMCID: PMC3634456 DOI: 10.3390/ijms14036116] [Citation(s) in RCA: 203] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Revised: 02/04/2013] [Accepted: 02/20/2013] [Indexed: 12/12/2022] Open
Abstract
Over the years, anthropogenic factors have led to cadmium (Cd) accumulation in the environment causing various health problems in humans. Although Cd is not a Fenton-like metal, it induces oxidative stress in various animal models via indirect mechanisms. The degree of Cd-induced oxidative stress depends on the dose, duration and frequency of Cd exposure. Also the presence or absence of serum in experimental conditions, type of cells and their antioxidant capacity, as well as the speciation of Cd are important determinants. At the cellular level, the Cd-induced oxidative stress either leads to oxidative damage or activates signal transduction pathways to initiate defence responses. This balance is important on how different organ systems respond to Cd stress and ultimately define the pathological outcome. In this review, we highlight the Cd-induced oxidant/antioxidant status as well as the damage versus signalling scenario in relation to Cd toxicity. Emphasis is addressed to Cd-induced pathologies of major target organs, including a section on cell proliferation and carcinogenesis. Furthermore, attention is paid to Cd-induced oxidative stress in undifferentiated stem cells, which can provide information for future therapies in preventing Cd-induced pathologies.
Collapse
Affiliation(s)
- Ambily Ravindran Nair
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, Diepenbeek 3590, Belgium; E-Mails: (A.R.N.); (O.D.); (K.S.); (E.V.K.)
| | | | | | - Emmy Van Kerkhove
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, Diepenbeek 3590, Belgium; E-Mails: (A.R.N.); (O.D.); (K.S.); (E.V.K.)
| | - Ann Cuypers
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, Diepenbeek 3590, Belgium; E-Mails: (A.R.N.); (O.D.); (K.S.); (E.V.K.)
| |
Collapse
|
60
|
Broedbaek K, Siersma V, Henriksen T, Weimann A, Petersen M, Andersen JT, Jimenez-Solem E, Hansen LJ, Henriksen JE, Bonnema SJ, de Fine Olivarius N, Poulsen HE. Association between urinary markers of nucleic acid oxidation and mortality in type 2 diabetes: a population-based cohort study. Diabetes Care 2013; 36:669-76. [PMID: 23150279 PMCID: PMC3579372 DOI: 10.2337/dc12-0998] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE We recently showed that RNA oxidation, estimated by urinary excretion of 8-oxo-7,8-dihydroguanosine (8-oxoGuo), independently predicted mortality in a cohort of 1,381 treatment-naive patients with newly diagnosed type 2 diabetes. In the present investigation, we analyzed urine collected 6 years after the diagnosis to assess the association between urinary markers of nucleic acid oxidation and mortality in patients with established and treated diabetes. RESEARCH DESIGN AND METHODS We used data from the 970 patients who attended the screening for diabetes complications 6 years after the diagnosis. Cox proportional hazards regression was used to examine the relationship between urinary markers of DNA oxidation (8-oxo-7,8-dihydro-2'-deoxyguanosine [8-oxodG] [n = 938]) and RNA oxidation (8-oxoGuo [n = 936]) and mortality. RESULTS During a median of 9.8 years of follow-up, 654 patients died. Urinary 8-oxoGuo assessed 6 years after the diagnosis was significantly associated with mortality. The multivariate-adjusted hazard ratios for all-cause and diabetes-related mortality of patients with 8-oxoGuo levels in the highest quartile compared with those in the lowest quartile were 1.86 (95% CI 1.34-2.58) and 1.72 (1.11-2.66), respectively. Conversely, 8-oxodG was not associated with mortality. In addition, we found an association between changes in 8-oxoGuo from diagnosis to 6-year follow-up and mortality, with increased risk in patients with an increase and decreased risk in patients with a decrease in 8-oxoGuo. CONCLUSIONS The RNA oxidation marker 8-oxoGuo is an independent predictor of mortality in patients with established and treated type 2 diabetes, and changes in 8-oxoGuo during the first 6 years after diagnosis are associated with mortality.
Collapse
Affiliation(s)
- Kasper Broedbaek
- Laboratory of Clinical Pharmacology, Rigshospitalet, Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Wang C, Li C, Gong W, Lou T. New urinary biomarkers for diabetic kidney disease. Biomark Res 2013; 1:9. [PMID: 24252392 PMCID: PMC4177619 DOI: 10.1186/2050-7771-1-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 01/04/2013] [Indexed: 11/10/2022] Open
Abstract
Diabetic kidney disease is the leading cause of end-stage renal disease in developed and developing countries. Microalbuminuria is the gold standard for detection and prediction of diabetic kidney disease and cardiovascular risk disease in clinical practice. However, microalbuminuria has several limitations, such as lower sensitive, larger variability. It is urgent to explore higher sensitivity and specificity for earlier detection of diabetic kidney disease and more accurate prediction of the progression to end stage renal disease. We reviewed some new and important urinary biomarkers, such as: transferrin, immunoglobulin G, immunoglobulin M, Cystanic C, podocytes, type IV collagen, 8-oxo-7, 8-dihydro-2'-deoxyguanosine, ceruloplasmin, monocyte chemoattractant protein-1 and so on. We need good quality, long-term, large longitudinal trials to validate published biomarkers and find new biomarkers, considering biomarkers reviewed here are from small cross-sectional studies.
Collapse
Affiliation(s)
- Cheng Wang
- Division of Nephrology, Department of Medicine, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510630, China.
| | | | | | | |
Collapse
|
62
|
Lee YE, Kim JW, Lee EM, Ahn YB, Song KH, Yoon KH, Kim HW, Park CW, Li G, Liu Z, Ko SH. Chronic resveratrol treatment protects pancreatic islets against oxidative stress in db/db mice. PLoS One 2012; 7:e50412. [PMID: 23226280 PMCID: PMC3511555 DOI: 10.1371/journal.pone.0050412] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 10/19/2012] [Indexed: 11/18/2022] Open
Abstract
Resveratrol (RSV) has anti-inflammatory and anti-oxidant actions which may contribute to its cardiovascular protective effects. We examined whether RSV has any beneficial effects on pancreatic islets in db/db mice, an animal model of type 2 diabetes. The db/db and db/dm mice (non-diabetic control) were treated with (db-RSV) or without RSV (db-control) (20 mg/kg daily) for 12 weeks. After performing an intraperitoneal glucose tolerance test and insulin tolerance test, mice were sacrificed, the pancreas was weighed, pancreatic β-cell mass was quantified by point count method, and the amount of islet fibrosis was determined. 8-Hydroxydeoxyguanosine (8-OHdG), an oxidative stress marker, was determined in 24 h urine and pancreatic islets. RSV treatment significantly improved glucose tolerance at 2 hrs in db/db mice (P = 0.036), but not in db/dm mice (P = 0.623). This was associated with a significant increase in both pancreas weight (P = 0.011) and β-cell mass (P = 0.016). Islet fibrosis was much less in RSV-treated mice (P = 0.048). RSV treatment also decreased urinary 8-OHdG levels (P = 0.03) and the percentage of islet nuclei that were positive for 8-OHdG immunostaining (P = 0.019). We conclude that RSV treatment improves glucose tolerance, attenuates β-cell loss, and reduces oxidative stress in type 2 diabetes. These findings suggest that RSV may have a therapeutic implication in the prevention and management of diabetes.
Collapse
Affiliation(s)
- Young-Eun Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ji-Won Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, The Catholic University of Korea, Seoul, Korea
| | - Eun-Mi Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yu-Bae Ahn
- Division of Endocrinology and Metabolism, Department of Internal Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ki-Ho Song
- Division of Endocrinology and Metabolism, Department of Internal Medicine, The Catholic University of Korea, Seoul, Korea
| | - Kun-Ho Yoon
- Division of Endocrinology and Metabolism, Department of Internal Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hyung-Wook Kim
- Division of Nephrology, Department of Internal Medicine, The Catholic University of Korea, Seoul, Korea
| | - Cheol-Whee Park
- Division of Nephrology, Department of Internal Medicine, The Catholic University of Korea, Seoul, Korea
| | - Guolian Li
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia, United States of America
| | - Zhenqi Liu
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia, United States of America
| | - Seung-Hyun Ko
- Division of Endocrinology and Metabolism, Department of Internal Medicine, The Catholic University of Korea, Seoul, Korea
- * E-mail:
| |
Collapse
|
63
|
Lee JC, Son YO, Pratheeshkumar P, Shi X. Oxidative stress and metal carcinogenesis. Free Radic Biol Med 2012; 53:742-57. [PMID: 22705365 DOI: 10.1016/j.freeradbiomed.2012.06.002] [Citation(s) in RCA: 193] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 05/31/2012] [Accepted: 06/02/2012] [Indexed: 01/18/2023]
Abstract
Occupational and environmental exposures to metals are closely associated with an increased risk of various cancers. Although carcinogenesis caused by metals has been intensively investigated, the exact mechanisms of action are still unclear. Accumulating evidence indicates that reactive oxygen species (ROS) generated by metals play important roles in the etiology of degenerative and chronic diseases. This review covers recent advances in (1) metal-induced generation of ROS and the related mechanisms; (2) the relationship between metal-mediated ROS generation and carcinogenesis; and (3) the signaling proteins involved in metal-induced carcinogenesis, especially intracellular reduction-oxidation-sensitive molecules.
Collapse
Affiliation(s)
- Jeong-Chae Lee
- Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | | | | | | |
Collapse
|
64
|
Huh JY, Son DJ, Lee Y, Lee J, Kim B, Lee HM, Jo H, Choi S, Ha H, Chung MH. 8-Hydroxy-2-deoxyguanosine prevents plaque formation and inhibits vascular smooth muscle cell activation through Rac1 inactivation. Free Radic Biol Med 2012; 53:109-21. [PMID: 22580124 PMCID: PMC5489255 DOI: 10.1016/j.freeradbiomed.2012.03.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 02/16/2012] [Accepted: 03/12/2012] [Indexed: 12/23/2022]
Abstract
8-Hydroxy-2-deoxyguanosine (8-OHdG), a marker of oxidative stress, has been recently rediscovered to inhibit Rac1 in neutrophils and macrophages, thereby inhibiting Rac1-linked functions of these cells, including reactive oxygen species production through NADPH oxidase activation, phagocytosis, chemotaxis, and cytokine release. In vascular smooth muscle cells (VSMCs), reactive oxygen species also induce abnormal proliferation and migration leading to progression of atherosclerosis. Based upon the involvement of reactive oxygen species in phagocytic cells and VSMCs during the atherosclerotic process, we hypothesized that 8-OHdG could have antiatherosclerotic action and tested this hypothesis in an experimentally induced atherosclerosis in mice. Partially ligated ApoE knockout mice, a more physiologically relevant model of low and oscillatory flow, developed an advanced lesion in 2 weeks, and orally administered 8-OHdG significantly reduced plaque formation along with reduced superoxide formation, monocyte/macrophage infiltration, and extracellular matrix (ECM) accumulation. The effects of 8-OHdG observed in primary VSMCs were consistent with the in vivo effects of 8-OHdG and were inhibitory to angiotensin II or platelet-derived growth factor-induced production of reactive oxygen species, proliferation, migration, and ECM production. Also, angiotensin II-induced Rac1 activity in VSMCs was significantly inhibited by 8-OHdG, and transfection of constitutively active Rac1 reversed the inhibitory effect of 8-OHdG on VSMC activation. Molecular docking study showed that 8-OHdG stabilizes Rac1-GEF complex, indicating the physical contact of 8-OHdG with Rac1. These findings highly suggest that the antiatherosclerotic effect of 8-OHdG is mediated by inhibition of Rac1 activity. In conclusion, our results show a novel action of orally active 8-OHdG in suppressing atherosclerotic plaque formation in vivo and VSMC activation in vitro through inhibition of Rac1, which emphasizes a new therapeutic avenue to benefit atherosclerosis.
Collapse
MESH Headings
- 8-Hydroxy-2'-Deoxyguanosine
- Angiotensin II/pharmacology
- Animals
- Apolipoproteins E/physiology
- Blotting, Western
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Cells, Cultured
- Chemotaxis/drug effects
- Deoxyguanosine/analogs & derivatives
- Deoxyguanosine/pharmacology
- Immunoenzyme Techniques
- Male
- Mice
- Mice, Knockout
- Models, Molecular
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Oxidative Stress/drug effects
- Plaque, Atherosclerotic/metabolism
- Plaque, Atherosclerotic/prevention & control
- Reactive Oxygen Species/metabolism
- Superoxides/metabolism
- Vasoconstrictor Agents/pharmacology
- rac1 GTP-Binding Protein/antagonists & inhibitors
- rac1 GTP-Binding Protein/metabolism
Collapse
Affiliation(s)
- Joo Young Huh
- Division of Life & Pharmaceutical Sciences and Center for Cell Signaling & Drug Discovery Research, College of Pharmacy, Ewha Womans University, Seoul 120-750, Korea
| | - Dong Ju Son
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Yoonji Lee
- Division of Life & Pharmaceutical Sciences and Center for Cell Signaling & Drug Discovery Research, College of Pharmacy, Ewha Womans University, Seoul 120-750, Korea
| | - Junghyun Lee
- Division of Life & Pharmaceutical Sciences and Center for Cell Signaling & Drug Discovery Research, College of Pharmacy, Ewha Womans University, Seoul 120-750, Korea
| | - Boyeon Kim
- Division of Life & Pharmaceutical Sciences and Center for Cell Signaling & Drug Discovery Research, College of Pharmacy, Ewha Womans University, Seoul 120-750, Korea
| | - Hwan Myung Lee
- Department of Cosmetic Science, College of Natural Sciences, Hoseo University, Asan, Korea
| | - Hanjoong Jo
- Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, Korea
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Sun Choi
- Division of Life & Pharmaceutical Sciences and Center for Cell Signaling & Drug Discovery Research, College of Pharmacy, Ewha Womans University, Seoul 120-750, Korea
- Corresponding author. (S. Choi), (H. Ha)
| | - Hunjoo Ha
- Division of Life & Pharmaceutical Sciences and Center for Cell Signaling & Drug Discovery Research, College of Pharmacy, Ewha Womans University, Seoul 120-750, Korea
- Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, Korea
- Corresponding author. Fax: +82 2 3277 2851
| | - Myung-Hee Chung
- Samsung Advanced Institute for Health Sciences & Technology, Sung Kyun Kwan University, Seoul, Korea
| |
Collapse
|
65
|
|
66
|
Cadet J, Douki T, Ravanat JL, Wagner JR. Measurement of oxidatively generated base damage to nucleic acids in cells: facts and artifacts. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s12566-012-0029-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
67
|
Weimann A, Broedbaek K, Henriksen T, Stovgaard ES, Poulsen HE. Assays for urinary biomarkers of oxidatively damaged nucleic acids. Free Radic Res 2012; 46:531-40. [PMID: 22352957 DOI: 10.3109/10715762.2011.647693] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The analysis of oxidized nucleic acid metabolites can be performed by a variety of methodologies: liquid chromatography coupled with electrochemical or mass-spectrometry detection, gas chromatography coupled with mass spectrometry, capillary electrophoresis and ELISA (Enzyme-linked immunosorbent assay). The major analytical challenge is specificity. The best combination of selectivity and speed of analysis can be obtained by liquid chromatography coupled with tandem mass spectrometric detection. This, however, is also the most demanding technique with regard to price, complexity and skills requirement. The available ELISA methods present considerable specificity problems and cannot be recommended at present. The oxidized nucleic acid metabolites in urine are assumed to originate from the DNA and RNA. However, direct evidence is not available. A possible contribution from the nucleotide pools is most probably minimal, if existing. Recent investigation on RNA oxidation has shown conditions where RNA oxidation but not DNA oxidation is prominent, and while investigation on DNA is of huge interest, RNA oxidation may be overlooked. The methods for analyzing oxidized deoxynucleosides can easily be expanded to analyze the oxidized ribonucleosides. The urinary measurement of oxidized nucleic acid metabolites provides a non-invasive measurement of oxidative stress to DNA and RNA.
Collapse
Affiliation(s)
- Allan Weimann
- Laboratory of Clinical Pharmacology Q7642, Rigshospitalet, Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
68
|
Møller P, Cooke MS, Collins A, Olinski R, Rozalski R, Loft S. Harmonising measurements of 8-oxo-7,8-dihydro-2′-deoxyguanosine in cellular DNA and urine. Free Radic Res 2012; 46:541-53. [DOI: 10.3109/10715762.2011.644241] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
69
|
Broedbaek K, Siersma V, Henriksen T, Weimann A, Petersen M, Andersen JT, Jimenez-Solem E, Stovgaard ES, Hansen LJ, Henriksen JE, Bonnema SJ, Olivarius NDF, Poulsen HE. Urinary markers of nucleic acid oxidation and long-term mortality of newly diagnosed type 2 diabetic patients. Diabetes Care 2011; 34:2594-6. [PMID: 21994431 PMCID: PMC3220837 DOI: 10.2337/dc11-1620] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE We analyzed data from a cohort of 1,381 newly diagnosed type 2 diabetic patients to test the hypothesis that urinary markers of nucleic acid oxidation are independent predictors of mortality. RESEARCH DESIGN AND METHODS We examined the relationship between urinary excretion of markers of DNA oxidation (8-oxo-7,8-dihydro-2'-deoxyguanosine [8-oxodG]) and RNA oxidation (8-oxo-7,8-dihydroguanosine [8-oxoGuo]) and long-term mortality using Cox proportional hazards regression. RESULTS After multivariate adjustment, the hazard ratios for all-cause and diabetes-related mortality of patients with 8-oxoGuo levels in the highest quartile compared with those in the lowest quartile were 1.44 (1.12-1.85) and 1.54 (1.13-2.10), respectively. Conversely, no significant associations between 8-oxodG and mortality were found in the adjusted analyses. CONCLUSIONS Urinary excretion of the RNA oxidation marker 8-oxoGuo measured shortly after diagnosis of type 2 diabetes predicts long-term mortality independently of conventional risk factors. This finding suggests that 8-oxoGuo could serve as a new clinical biomarker in diabetes.
Collapse
Affiliation(s)
- Kasper Broedbaek
- Laboratory of Clinical Pharmacology, Rigshospitalet, Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|