51
|
Lin YC, Lin CF, Alalaiwe A, Wang PW, Fang YP, Fang JY. UV filter entrapment in mesoporous silica hydrogel for skin protection against UVA with minimization of percutaneous absorption. Eur J Pharm Sci 2018; 122:185-194. [DOI: 10.1016/j.ejps.2018.07.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/12/2018] [Accepted: 07/04/2018] [Indexed: 01/11/2023]
|
52
|
Lee H, Hong Y, Tran Q, Cho H, Kim M, Kim C, Kwon SH, Park S, Park J, Park J. A new role for the ginsenoside RG3 in antiaging via mitochondria function in ultraviolet-irradiated human dermal fibroblasts. J Ginseng Res 2018; 43:431-441. [PMID: 31308815 PMCID: PMC6606973 DOI: 10.1016/j.jgr.2018.07.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/09/2018] [Indexed: 11/18/2022] Open
Abstract
Background The efficacy of ginseng, the representative product of Korea, and its chemical effects have been well investigated. The ginsenoside RG3 has been reported to exhibit apoptotic, anticancer, and antidepressant-like effects. Methods In this report, the putative effect of RG3 on several cellular function including cell survival, differentiation, development and aging process were evaluated by monitoring each specific marker. Also, mitochondrial morphology and function were investigated in ultraviolet (UV)-irradiated normal human dermal fibroblast cells. Results RG3 treatment increased the expression of extracellular matrix proteins, growth-associated immediate-early genes, and cell proliferation genes in UV-irradiated normal human dermal fibroblast cells. And, RG3 also resulted in enhanced expression of antioxidant proteins such as nuclear factor erythroid 2–related factor-2 and heme oxygenase-1. In addition, RG3 affects the morphology of UV-induced mitochondria and plays a role in protecting mitochondrial dysfunction. Conclusioin RG3 restores mitochondrial adenosine triphosphate (ATP) and membrane potential via its antioxidant effects in skin cells damaged by UV irradiation, leading to an increase in proteins linked with the extracellular matrix, cell proliferation, and antioxidant activity.
Collapse
Affiliation(s)
- Hyunji Lee
- Department of Pharmacology, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Youngeun Hong
- Department of Pharmacology, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Quangdon Tran
- Department of Pharmacology, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Hyeonjeong Cho
- Department of Pharmacology, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Minhee Kim
- Department of Pharmacology, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Chaeyeong Kim
- Department of Pharmacology, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - So Hee Kwon
- Department of Pharmacy, College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea
| | - SungJin Park
- Department of Pharmacology, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Jongsun Park
- Department of Pharmacology, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
- Corresponding author. Department of Pharmacology, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015, Republic of Korea.
| | - Jisoo Park
- Department of Pharmacology, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
- Corresponding author. Department of Pharmacology, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015, Republic of Korea.
| |
Collapse
|
53
|
Kerley RN, McCarthy C, Kell DB, Kenny LC. The potential therapeutic effects of ergothioneine in pre-eclampsia. Free Radic Biol Med 2018; 117:145-157. [PMID: 29284116 DOI: 10.1016/j.freeradbiomed.2017.12.030] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 12/21/2017] [Accepted: 12/22/2017] [Indexed: 12/21/2022]
Abstract
Ergothioneine (ERG), is a water-soluble amino acid that is derived entirely from dietary sources. It has received much attention as a therapeutic agent due to its anti-oxidant properties, and there are claims of preferential accumulation within high oxidative stress organs. Pre-eclampsia, a condition accompanied by increased oxidative stress, is one of the leading causes of maternal morbidity and mortality. Despite intense research efforts, its aetiologies remain somewhat unclear and there are still no effective treatment options. Clinical trials of the anti-oxidants vitamin C and vitamin E have proven largely ineffective with little improvement in clinical outcome or even a negative response. This could be explained in part by their inability to permeate the plasma and mitochondrial membranes and scavenge mitochondria-derived superoxide species, and for the former by the fact that it is actually a pro-oxidant in the presence of unliganded iron. ERG accumulates within tissues through the action of a specific organic cation transporter, SLC22A4 (previously referred to as OCTN1), which is possibly also expressed in mammalian mitochondria. Mitochondrial dysfunction has been implicated in a variety of vascular diseases including pre-eclampsia. This review discusses the use of ERG as a possibly mitochondrial-targeted anti-oxidant, focusing on its physical properties, potential mechanisms of action, safety profile and administration in relation to pregnancies complicated by pre-eclampsia.
Collapse
Affiliation(s)
- Robert N Kerley
- Irish Centre for Fetal and Neonatal Translational Research (INFANT), Cork University Maternity Hospital, Cork, Ireland.
| | - Cathal McCarthy
- Irish Centre for Fetal and Neonatal Translational Research (INFANT), Cork University Maternity Hospital, Cork, Ireland
| | - Douglas B Kell
- School of Chemistry and The Manchester Institute of Biotechnology, The University of Manchester, 131 Princess St, Manchester M1 7DN, UK.
| | - Louise C Kenny
- Irish Centre for Fetal and Neonatal Translational Research (INFANT), Cork University Maternity Hospital, Cork, Ireland.
| |
Collapse
|
54
|
Liu L, Wu W, Li J, Jiao WH, Liu LY, Tang J, Liu L, Sun F, Han BN, Lin HW. Two sesquiterpene aminoquinones protect against oxidative injury in HaCaT keratinocytes via activation of AMPKα/ERK-Nrf2/ARE/HO-1 signaling. Biomed Pharmacother 2018; 100:417-425. [PMID: 29471244 DOI: 10.1016/j.biopha.2018.02.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/26/2018] [Accepted: 02/09/2018] [Indexed: 12/21/2022] Open
Abstract
AIMS To investigate the cytoprotective effects of two sesquiterpene aminoquinones isolated from the marine sponge Dysidea fragilis, Dysidaminone H (DA8) and 3'-methylamino-avarone (DA14), we examined their effects against hydrogen peroxide (H2O2)-induced oxidative injury in human keratinocyte cell line and elucidated the underlying mechanisms. MAIN METHODS Cell viability was detected using a CCK-8 assay kit. Intracellular reactive oxygen species (ROS) production was measured by fluorescence of 2, 7-Dichlorodi-hydrofluorescein diacetate (DCFH-DA). Messenger RNA and protein expression were measured by real-time quantitative PCR and western blotting analysis. Immunocytochemistry was performed to determine the intracellular location of nuclear factorerythroid 2 p45 related factor 2 (Nrf2). The antioxidant response element (ARE)-luciferase reporter gene assay and RNA interference were used to establish the role of ARE and Nrf2. KEY FINDINGS DA8 and DA14 (DAs) resisted H2O2induced decline of cell viability by inhibiting the accumulation of ROS. Meanwhile, DAs increased HO-1 expression and ARE activity and induced Nrf2 expression, as well as the accumulation of Nrf2 in the cell nucleus. However, silencing of Nrf2 abolished DAs-induced HO-1 expression and ARE luciferase activation. In addition, DAs induced the phosphorylation of both cyclic AMP-activated protein kinase-α (AMPKα) and extracellular signal-regulated kinase (ERK), while specific inhibitors of AMPKα and ERK abrogated HO1 upregulation and Nrf2 activation. SIGNIFICANCE DAs provided cytoprotective effects against H2O2-induced cytotoxicity by activation of the Nrf2/ARE/HO-1 pathway via phosphorylation of AMPKα and ERK. The findings suggested that DA8 and DA14 might be the candidate therapeutic agents for skin diseases caused by oxidative injury.
Collapse
Affiliation(s)
- Li Liu
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Wei Wu
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jing Li
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Wei-Hua Jiao
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Li-Yun Liu
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jie Tang
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Lei Liu
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Fan Sun
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Bing-Nan Han
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; Department of Development Technology of Marine Resources, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Hou-Wen Lin
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| |
Collapse
|
55
|
Hseu YC, Korivi M, Lin FY, Li ML, Lin RW, Wu JJ, Yang HL. Trans-cinnamic acid attenuates UVA-induced photoaging through inhibition of AP-1 activation and induction of Nrf2-mediated antioxidant genes in human skin fibroblasts. J Dermatol Sci 2018; 90:123-134. [PMID: 29395579 DOI: 10.1016/j.jdermsci.2018.01.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 12/18/2017] [Accepted: 01/12/2018] [Indexed: 10/18/2022]
Abstract
BACKGROUND UVA irradiation-induced skin damage/photoaging is associated with redox imbalance and collagen degradation. OBJECTIVE Dermato-protective efficacies of trans-cinnamic acid (t-CA), a naturally occurring aromatic compound have been investigated against UVA irradiation, and elucidated underlying molecular mechanism. METHODS Human foreskin fibroblast-derived (Hs68) cells and nude mice were treated with t-CA prior to UVA exposure, and assayed the anti-photoaging effects of t-CA. RESULTS We found t-CA (20-100 μM) pretreatment substantially ameliorated UVA (3 J/cm2)-induced cytotoxicity, and inhibited intracellular ROS production in Hs68 cells. UVA-induced profound upregulation of metalloproteinase (MMP)-1/-3 and degradation of type I procollagen in dermal fibroblasts were remarkably reversed by t-CA, possibly through inhibition of AP-1 (c-Fos, but not c-Jun) translocation. The t-CA-mediated anti-photoaging properties are associated with increased nuclear translocation of Nrf2. Activation of Nrf2 signaling is accompanied with induction of HO-1 and γ-GCLC expressions in t-CA-treated fibroblasts. Furthermore t-CA-induced Nrf2 translocation is mediated through PKC, AMPK, CKII or ROS signaling cascades. This phenomenon was confirmed with respective pharmacological inhibitors, GF109203X, Compound C, CKII inhibitor or NAC, which blockade t-CA-induced Nrf2 activation. Silencing of Nrf2 signaling with siRNA showed no anti-photoaging effects of t-CA against UVA-induced ROS production, loss of HO-1 and type I collagen degradation in fibroblasts. In vivo evidence on nude mice revealed that t-CA pretreatment (20 or 100 mM/day) significantly suppressed MMP-1/-3 activation and maintained sufficient type I procollagen levels in biopsied skin tissue against UVA irradiation (3 J/cm2/day for 10-day). CONCLUSION t-CA treatment diminished UVA-induced photoaging/collagen degradation, and protected structural integrity of the skin.
Collapse
Affiliation(s)
- You-Cheng Hseu
- Department of Cosmeceutics, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung 40402, Taiwan; Department of Health and Nutrition Biotechnology, Asia University, Taichung 41354, Taiwan
| | - Mallikarjuna Korivi
- Institute of Nutrition, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung 40402, Taiwan
| | - Fang-Ying Lin
- Department of Cosmeceutics, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung 40402, Taiwan
| | - Mei-Ling Li
- Institute of Nutrition, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung 40402, Taiwan
| | - Ruei-Wan Lin
- Institute of Nutrition, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung 40402, Taiwan
| | - Jia-Jiuan Wu
- Institute of Nutrition, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung 40402, Taiwan
| | - Hsin-Ling Yang
- Institute of Nutrition, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung 40402, Taiwan.
| |
Collapse
|
56
|
Zerumbone protects human skin keratinocytes against UVA-irradiated damages through Nrf2 induction. Biochem Pharmacol 2018; 148:130-146. [DOI: 10.1016/j.bcp.2017.12.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 12/18/2017] [Indexed: 02/08/2023]
|
57
|
Tang RMY, Cheah IKM, Yew TSK, Halliwell B. Distribution and accumulation of dietary ergothioneine and its metabolites in mouse tissues. Sci Rep 2018; 8:1601. [PMID: 29371632 PMCID: PMC5785509 DOI: 10.1038/s41598-018-20021-z] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/11/2018] [Indexed: 01/31/2023] Open
Abstract
L-ergothioneine (ET) is a diet-derived amino acid that accumulates at high concentrations in animals and humans. Numerous studies have highlighted its antioxidant abilities in vitro, and possible cytoprotective capabilities in vivo. We investigated the uptake and distribution of ET in various organs by a highly sensitive and specific liquid chromatography coupled tandem mass spectrometry (LC-MS/MS) technique, both before and after oral administration of pure ET (35 and 70 mg/kg/day for 1, 7, and 28 days) to male C57BL6J mice. ET primarily concentrates in the liver and whole blood, and also in spleen, kidney, lung, heart, intestines, eye, and brain tissues. Strong correlations were found between ET and its putative metabolites - hercynine, ET-sulfonate (ET-SO3H), and S-methyl ET. Hercynine accumulates in the brain after prolonged ET administration. This study demonstrates the uptake and distribution of ET and provides a foundation for future studies with ET to target oxidative damage in a range of tissues in human diseases.
Collapse
Affiliation(s)
- Richard Ming Yi Tang
- National University of Singapore Graduate School for Integrative Sciences and Engineering, Singapore, Singapore
| | - Irwin Kee-Mun Cheah
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 28 Medical Drive, Singapore, Singapore
| | - Terry Shze Keong Yew
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 28 Medical Drive, Singapore, Singapore
| | - Barry Halliwell
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 28 Medical Drive, Singapore, Singapore.
| |
Collapse
|
58
|
Chen M, Pan H, Dai Y, Zhang J, Tong Y, Huang Y, Wang M, Huang H. Phosphatidylcholine regulates NF-κB activation in attenuation of LPS-induced inflammation: evidence from in vitro study. Anim Cells Syst (Seoul) 2017. [DOI: 10.1080/19768354.2017.1405072] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Meijuan Chen
- Department of Infectious Disease, Zhejiang Provincial People’s Hospital, Hangzhou, People’s Republic of China
| | - Hongying Pan
- Department of Infectious Disease, Zhejiang Provincial People’s Hospital, Hangzhou, People’s Republic of China
| | - Yining Dai
- Department of Infectious Disease, Zhejiang Provincial People’s Hospital, Hangzhou, People’s Republic of China
| | - Jiajie Zhang
- Department of Infectious Disease, Zhejiang Provincial People’s Hospital, Hangzhou, People’s Republic of China
| | - Yongxi Tong
- Department of Infectious Disease, Zhejiang Provincial People’s Hospital, Hangzhou, People’s Republic of China
| | - Yicheng Huang
- Department of Infectious Disease, Zhejiang Provincial People’s Hospital, Hangzhou, People’s Republic of China
| | - Mingshan Wang
- Department of Infectious Disease, Zhejiang Provincial People’s Hospital, Hangzhou, People’s Republic of China
| | - Haijun Huang
- Department of Infectious Disease, Zhejiang Provincial People’s Hospital, Hangzhou, People’s Republic of China
| |
Collapse
|
59
|
Pahila J, Kaneda H, Nagasaka R, Koyama T, Ohshima T. Effects of ergothioneine-rich mushroom extracts on lipid oxidation and discoloration in salmon muscle stored at low temperatures. Food Chem 2017; 233:273-281. [DOI: 10.1016/j.foodchem.2017.04.130] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 04/11/2017] [Accepted: 04/19/2017] [Indexed: 10/19/2022]
|
60
|
Yang HL, Korivi M, Lin MK, Chang HCW, Wu CR, Lee MS, Chen WTL, Hseu YC. Antihemolytic and antioxidant properties of pearl powder against 2,2′-azobis(2-amidinopropane) dihydrochloride-induced hemolysis and oxidative damage to erythrocyte membrane lipids and proteins. J Food Drug Anal 2017; 25:898-907. [PMID: 28987367 PMCID: PMC9328879 DOI: 10.1016/j.jfda.2016.10.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/27/2016] [Accepted: 10/30/2016] [Indexed: 02/02/2023] Open
Abstract
Pearl powder, a well-known traditional mineral medicine, is reported to be used for well-being and to treat several diseases from centuries in Taiwan and China. We investigated the in vitro antihemolytic and antioxidant properties of pearl powder that could protect erythrocytes against 2,2′-azobis(2-amidinopropane) dihydrochloride (AAPH)-induced oxidative damage to membrane proteins/lipids. Human erythrocytes were incubated with different concentrations of pearl powder (50–200 μg/mL) for 30 minutes and then exposed to AAPH for 2–6 hours. We found that AAPH alone time dependently increased the oxidative hemolysis of erythrocytes, while pearl powder pretreatment substantially inhibited the hemolysis in a concentration-/time-dependent manner. AAPH-induced oxidative damage to erythrocyte membrane lipids was evidenced by the elevated malondialdehyde (MDA) levels. However, pearl powder remarkably inhibited the malondialdehyde formation, and the 200 μg/mL concentration showed almost similar malondialdehyde values to the control. Furthermore, pearl powder suppressed the AAPH-induced high-molecular-weight protein formation and concomitantly increased the low-molecular-weight proteins in erythrocytes. Antioxidant potential that was measured as superoxide dismutase activity and glutathione content was significantly dropped by AAPH incubation, which suggests the vulnerability of erythrocytes to AAPH-induced oxidative stress. Noteworthy, erythrocytes pretreated with pearl powder showed restored superoxide dismutase activity and glutathione levels against AAPH-induced loss. Our findings conclude that pearl powder attenuate free radical-induced hemolysis and oxidative damage to erythrocyte membrane lipids/proteins. The potent antioxidant property of pearl powder may offer protection from free radical-related diseases.
Collapse
Affiliation(s)
- Hsin-Ling Yang
- Institute of Nutrition, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung,
Taiwan
| | - Mallikarjuna Korivi
- Institute of Nutrition, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung,
Taiwan
| | - Ming-Kuem Lin
- School of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung,
Taiwan
| | | | - Chi-Rei Wu
- School of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung,
Taiwan
| | - Meng-Shiou Lee
- School of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung,
Taiwan
| | - William Tzu-Liang Chen
- Division of Colorectal Surgery, Department of Surgery, Center of Minimally Invasive Surgery, China Medical University Hospital, China Medical University, Taichung,
Taiwan
- College of Medicine, China Medical University, Taichung,
Taiwan
- Corresponding authors. College of Medicine, China Medical University, 91 Hsueh Shih Road, Taichung 40402, Taiwan (W.T.-L. Chen); Department of Cosmeceutics, College of Biopharmaceutical and Food Sciences China Medical University, 91 Hsueh Shih Road, Taichung 40402, Taiwan (Y.-C. Hseu). E-mail addresses: (W.T.-L. Chen), (Y.-C. Hseu)
| | - You-Cheng Hseu
- Department of Health and Nutrition Biotechnology, Asia University, Taichung,
Taiwan
- Department of Cosmeceutics, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung,
Taiwan
- Corresponding authors. College of Medicine, China Medical University, 91 Hsueh Shih Road, Taichung 40402, Taiwan (W.T.-L. Chen); Department of Cosmeceutics, College of Biopharmaceutical and Food Sciences China Medical University, 91 Hsueh Shih Road, Taichung 40402, Taiwan (Y.-C. Hseu). E-mail addresses: (W.T.-L. Chen), (Y.-C. Hseu)
| |
Collapse
|
61
|
Yang HL, Korivi M, Chen CH, Peng WJ, Chen CS, Li ML, Hsu LS, Liao JW, Hseu YC. Antrodia camphorata attenuates cigarette smoke-induced ROS production, DNA damage, apoptosis, and inflammation in vascular smooth muscle cells, and atherosclerosis in ApoE-deficient mice. ENVIRONMENTAL TOXICOLOGY 2017; 32:2070-2084. [PMID: 28370894 DOI: 10.1002/tox.22422] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 03/08/2017] [Accepted: 03/19/2017] [Indexed: 06/07/2023]
Abstract
Cigarette smoke exposure activates several cellular mechanisms predisposing to atherosclerosis, including oxidative stress, dyslipidemia, and vascular inflammation. Antrodia camphorata, a renowned medicinal mushroom in Taiwan, has been investigated for its antioxidant, anti-inflammatory, and antiatherosclerotic properties in cigarette smoke extracts (CSE)-treated vascular smooth muscle cells (SMCs), and ApoE-deficient mice. Fermented culture broth of Antrodia camphorata (AC, 200-800 µg/mL) possesses effective antioxidant activity against CSE-induced ROS production. Treatment of SMCs (A7r5) with AC (30-120 µg/mL) remarkably ameliorated CSE-induced morphological aberrations and cell death. Suppressed ROS levels by AC corroborate with substantial inhibition of CSE-induced DNA damage in AC-treated A7r5 cells. We found CSE-induced apoptosis through increased Bax/Bcl-2 ratio, was substantially inhibited by AC in A7r5 cells. Notably, upregulated SOD and catalase expressions in AC-treated A7r5 cells perhaps contributed to eradicate the CSE-induced ROS generation, and prevents DNA damage and apoptosis. Besides, AC suppressed AP-1 activity by inhibiting the c-Fos/c-Jun expressions, and NF-κB activation through inhibition of I-κBα degradation against CSE-stimulation. This anti-inflammatory property of AC was accompanied by suppressed CSE-induced VEGF, PDGF, and EGR-1 overexpressions in A7r5 cells. Furthermore, AC protects lung fibroblast (MRC-5) cells from CSE-induced cell death. In vivo data showed that AC oral administration (0.6 mg/d/8-wk) prevents CSE-accelerated atherosclerosis in ApoE-deficient mice. This antiatherosclerotic property was associated with increased serum total antioxidant status, and decreased total cholesterol and triacylglycerol levels. Thus, Antrodia camphorata may be useful for prevention of CSE-induced oxidative stress and diseases. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 2070-2084, 2017.
Collapse
Affiliation(s)
- Hsin-Ling Yang
- Institute of Nutrition, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, Taiwan
| | - Mallikarjuna Korivi
- Institute of Nutrition, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, Taiwan
| | - Cheng-Hsien Chen
- Department of Applied Chemistry, Chao Yang University of Technology, Taichung, Taiwan
| | - Wei-Jung Peng
- Department of Applied Chemistry, Chao Yang University of Technology, Taichung, Taiwan
| | - Chee-Shan Chen
- Department of Applied Chemistry, Chao Yang University of Technology, Taichung, Taiwan
| | - Mei-Ling Li
- Institute of Nutrition, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, Taiwan
| | - Li-Sung Hsu
- Institute of Biochemistry and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
| | - Jiunn-Wang Liao
- Graduate Institute of Veterinary Pathology, National Chung Hsing University, Taichung, Taiwan
| | - You-Cheng Hseu
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
- Department of Cosmeceutics, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, Taiwan
| |
Collapse
|
62
|
Shi Y, An D, Liu Y, Feng Q, Fang X, Pan G, Wang Q. Propoxur enhances MMP-2 expression and the corresponding invasion of human breast cancer cells via the ERK/Nrf2 signaling pathway. Oncotarget 2017; 8:87107-87123. [PMID: 29152067 PMCID: PMC5675619 DOI: 10.18632/oncotarget.19081] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 06/20/2017] [Indexed: 11/25/2022] Open
Abstract
Propoxur is considered a prime etiological suspect of increasing tumor incidence, but the role is still undefined. In this study, two human breast cancer cells lines, MCF-7 and MDA-MB-231 cells, were used as cell models. Cells were respectively treated with 0, 0.01, 1, or 100 μM propoxur. PD98059, a MEK inhibitor, was administered to block the ERK/MAPK pathway. Migration and reactive oxygen species were measured by wound healing and Transwell assays, and flow cytometry. Protein expression and subcellular location were detected by western blotting and immunofluorescence staining, respectively. Results showed that propoxur treatment enhanced cell migration and invasion in a dose-dependent manner, while MMP-2 expression, but not MMP-9, was significantly increased in two cell lines. Meanwhile, the treatment increased intracellular reactive oxygen species, Nrf2 expression and nuclear translocation, and ERK1/2 phosphorylation. Inversely, inhibition of ERK1/2 activation with PD98059 significantly attenuated propoxur-induced Nrf2 expression and nuclear translocation. Moreover, PD98059 suppressed propoxur-induced cell migration and invasion, and MMP-2 overexpression. Collectively, these results indicate that propoxur can trigger reactive oxygen species overproduction, further promoting breast cancer cell migration and invasion by regulating the ERK/Nrf2 signaling pathways.
Collapse
Affiliation(s)
- Yunxiang Shi
- Center of Hygiene Assessment and Research, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China
| | - Daizhi An
- Center of Hygiene Assessment and Research, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China
| | - Yiping Liu
- Beijing Municipal Public Security Hospital, Beijing Municipal Public Security Bureau, Beijing 100006, China
| | - Qiong Feng
- Center of Hygiene Assessment and Research, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China
| | - Xu Fang
- Center of Hygiene Assessment and Research, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China
| | - Guilan Pan
- Department of Physiology, BaoTou Medical College, Inner Mongolia University of Science and Technology, Baotou 014040, China
| | - Qiang Wang
- Center of Hygiene Assessment and Research, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China
| |
Collapse
|
63
|
Malvidin and cyanidin derivatives from açai fruit ( Euterpe oleracea Mart. ) counteract UV-A-induced oxidative stress in immortalized fibroblasts. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 172:42-51. [DOI: 10.1016/j.jphotobiol.2017.05.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 05/05/2017] [Accepted: 05/09/2017] [Indexed: 11/19/2022]
|
64
|
Chen L, Ran Q, Xiang Y, Xiang L, Chen L, Li F, Wu J, Wu C, Li Z. Co-Activation of PKC-δ by CRIF1 Modulates Oxidative Stress in Bone Marrow Multipotent Mesenchymal Stromal Cells after Irradiation by Phosphorylating NRF2 Ser40. Theranostics 2017; 7:2634-2648. [PMID: 28819452 PMCID: PMC5558558 DOI: 10.7150/thno.17853] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 04/19/2017] [Indexed: 12/26/2022] Open
Abstract
The high mortality associated with pancytopenia and multi-organ failure resulting from hematopoietic disorders of acute radiation syndrome (h-ARS) creates an urgent need for developing more effective treatment strategies. Here, we showed that bone marrow multipotent mesenchymal stromal cells (BMMSCs) effectively regulate oxidative stress following radiative injury, which might be on account of irradiation-induced elevation of protein levels of CR6-interacting factor 1(CRIF1) and nuclear factor E2-related factor 2(NRF2). Crif1-knockdown BMMSCs presented increased oxidative stress and apoptosis after irradiation, which were partially due to a suppressed antioxidant response mediated by decreased NRF2 nuclear translocation. Co-immunoprecipitation (Co-IP) experiments indicated that CRIF1 interacted with protein kinase C-δ (PKC-δ). NRF2 Ser40 phosphorylation was inhibited in Crif1-deficient BMMSCs even in the presence of three kinds of PKC agonists, suggesting that CRIF1 might co-activate PKC-δ to phosphorylate NRF2 Ser40. After radiative injury, the supporting effect of BMMSCs for the colony forming ability of HSCs in vitro was reduced, and the deficiency of CRIF1 aggravated such damage. Thus, CRIF1 plays an essential role in PKC-δ/NRF2 pathway modulation to alleviate oxidative stress in BMMSCs after irradiative injury, and at some level it may maintain the HSCs-supporting effect of BMMSCs after radiative injuries.
Collapse
|
65
|
Ding R, Sun B, Liu Z, Yao X, Wang H, Shen X, Jiang H, Chen J. Advanced Oxidative Protein Products Cause Pain Hypersensitivity in Rats by Inducing Dorsal Root Ganglion Neurons Apoptosis via NADPH Oxidase 4/c-Jun N-terminal Kinase Pathways. Front Mol Neurosci 2017; 10:195. [PMID: 28674486 PMCID: PMC5474489 DOI: 10.3389/fnmol.2017.00195] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 06/02/2017] [Indexed: 02/02/2023] Open
Abstract
Pain hypersensitivity is the most common category of chronic pain and is difficult to cure. Oxidative stress and certain cells apoptosis, such as dorsal root ganglion (DRG) neurons, play an essential role in the induction and development of pain hypersensitivity. The focus of this study is at a more specific molecular level. We investigated the role of advanced oxidative protein products (AOPPs) in inducing hypersensitivity and the cellular mechanism underlying the proapoptotic effect of AOPPs. Normal rats were injected by AOPPs-Rat serum albumin (AOPPs–RSA) to cause pain hypersensitivity. Primary cultured DRG neurons were treated with increasing concentrations of AOPPs–RSA or for increasing time durations. The MTT, flow cytometry and western blot analyses were performed in the DRG neurons. A loss of mitochondrial membrane potential (MMP) and an increase in intracellular reactive oxygen species (ROS) were observed. We found that AOPPs triggered DRG neurons apoptosis and MMP loss. After AOPPs treatment, intracellular ROS generation increased in a time- and dose-dependent manner, whereas, N-acetyl-L-cysteine (NAC), a specific ROS scavenger could inhibit the ROS generation. Proapoptotic proteins, such as Bax, caspase 9/caspase 3, and PARP-1 were activated, whereas anti-apoptotic Bcl-2 protein was down-regulated. AOPPs also increased Nox4 and JNK expression. Taken together, these findings suggest that AOPPs cause pain hypersensitivity in rats, and extracellular AOPPs accumulation triggered Nox4-dependent ROS production, which activated JNK, and induced DRG neurons apoptosis by activating caspase 3 and PARP-1.
Collapse
Affiliation(s)
- Ruoting Ding
- Department of Spine Surgery, Nanfang Hospital, Southern Medical UniversityGuangzhou, China
| | - Baihui Sun
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical UniversityGuangzhou, China
| | - Zhongyuan Liu
- Department of Spine Surgery, Nanfang Hospital, Southern Medical UniversityGuangzhou, China
| | - Xinqiang Yao
- Department of Spine Surgery, Nanfang Hospital, Southern Medical UniversityGuangzhou, China
| | - Haiming Wang
- Department of Spine Surgery, Nanfang Hospital, Southern Medical UniversityGuangzhou, China
| | - Xing Shen
- Department of Spine Surgery, Nanfang Hospital, Southern Medical UniversityGuangzhou, China
| | - Hui Jiang
- Department of Spine Surgery, Nanfang Hospital, Southern Medical UniversityGuangzhou, China
| | - Jianting Chen
- Department of Spine Surgery, Nanfang Hospital, Southern Medical UniversityGuangzhou, China
| |
Collapse
|
66
|
Martinez RM, Pinho-Ribeiro FA, Vale DL, Steffen VS, Vicentini FT, Vignoli JA, Baracat MM, Georgetti SR, Verri WA, Casagrande R. Trans-chalcone added in topical formulation inhibits skin inflammation and oxidative stress in a model of ultraviolet B radiation skin damage in hairless mice. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 171:139-146. [DOI: 10.1016/j.jphotobiol.2017.05.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 04/29/2017] [Accepted: 05/01/2017] [Indexed: 12/12/2022]
|
67
|
Potential Use of Chemoprotectants against the Toxic Effects of Cyanotoxins: A Review. Toxins (Basel) 2017; 9:toxins9060175. [PMID: 28545227 PMCID: PMC5488025 DOI: 10.3390/toxins9060175] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/21/2017] [Accepted: 05/17/2017] [Indexed: 12/16/2022] Open
Abstract
Cyanobacterial toxins, particularly microcystins (MCs) and cylindrospermopsin (CYN), are responsible for toxic effects in humans and wildlife. In order to counteract or prevent their toxicity, various strategies have been followed, such as the potential application of chemoprotectants. A review of the main substances evaluated for this aim, as well as the doses and their influence on cyanotoxin-induced toxicity, has been performed. A search of the literature shows that research on MCs is much more abundant than research on CYN. Among chemoprotectants, antioxidant compounds are the most extensively studied, probably because it is well known that oxidative stress is one of the toxic mechanisms common to both toxins. In this group, vitamin E seems to have the strongest protectant effect for both cyanotoxins. Transport inhibitors have also been studied in the case of MCs, as CYN cellular uptake is not yet fully elucidated. Further research is needed because systematic studies are lacking. Moreover, more realistic exposure scenarios, including cyanotoxin mixtures and the concomitant use of chemoprotectants, should be considered.
Collapse
|
68
|
Kalaras MD, Richie JP, Calcagnotto A, Beelman RB. Mushrooms: A rich source of the antioxidants ergothioneine and glutathione. Food Chem 2017; 233:429-433. [PMID: 28530594 DOI: 10.1016/j.foodchem.2017.04.109] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 03/13/2017] [Accepted: 04/18/2017] [Indexed: 10/19/2022]
Abstract
While mushrooms are the highest dietary source for the unique sulfur-containing antioxidant ergothioneine, little is known regarding levels of the major biological antioxidant glutathione. Thus, our objectives were to determine and compare levels of glutathione, as well as ergothioneine, in different species of mushrooms. Glutathione levels varied >20-fold (0.11-2.41mg/gdw) with some varieties having higher levels than reported for other foods. Ergothioneine levels also varied widely (0.15-7.27mg/gdw) and were highly correlated with those of glutathione (r=0.62, P<0.001). Both antioxidants were more concentrated in pileus than stipe tissues in selected mushrooms species. Agaricus bisporus harvested during the third cropping flush contained higher levels of ergothioneine and glutathione compared to the first flush, possibly as a response to increased oxidative stress. This study demonstrated that certain mushroom species are high in glutathione and ergothioneine and should be considered an excellent dietary source of these important antioxidants.
Collapse
Affiliation(s)
- Michael D Kalaras
- Center for Plant and Mushroom Foods for Health, Department of Food Science, The Pennsylvania State University, 202 Rodney A. Erickson Food Science Building, University Park, PA 16802, United States.
| | - John P Richie
- Department of Public Health Sciences, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, United States.
| | - Ana Calcagnotto
- Department of Public Health Sciences, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, United States.
| | - Robert B Beelman
- Center for Plant and Mushroom Foods for Health, Department of Food Science, The Pennsylvania State University, 202 Rodney A. Erickson Food Science Building, University Park, PA 16802, United States.
| |
Collapse
|
69
|
Cheah IK, Tang RMY, Yew TSZ, Lim KHC, Halliwell B. Administration of Pure Ergothioneine to Healthy Human Subjects: Uptake, Metabolism, and Effects on Biomarkers of Oxidative Damage and Inflammation. Antioxid Redox Signal 2017; 26:193-206. [PMID: 27488221 DOI: 10.1089/ars.2016.6778] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AIM We investigated the uptake and pharmacokinetics of l-ergothioneine (ET), a dietary thione with free radical scavenging and cytoprotective capabilities, after oral administration to humans, and its effect on biomarkers of oxidative damage and inflammation. RESULTS After oral administration, ET is avidly absorbed and retained by the body with significant elevations in plasma and whole blood concentrations, and relatively low urinary excretion (<4% of administered ET). ET levels in whole blood were highly correlated to levels of hercynine and S-methyl-ergothioneine, suggesting that they may be metabolites. After ET administration, some decreasing trends were seen in biomarkers of oxidative damage and inflammation, including allantoin (urate oxidation), 8-hydroxy-2'-deoxyguanosine (DNA damage), 8-iso-PGF2α (lipid peroxidation), protein carbonylation, and C-reactive protein. However, most of the changes were non-significant. INNOVATION This is the first study investigating the administration of pure ET to healthy human volunteers and monitoring its uptake and pharmacokinetics. This compound is rapidly gaining attention due to its unique properties, and this study lays the foundation for future human studies. CONCLUSION The uptake and retention of ET by the body suggests an important physiological function. The decreasing trend of oxidative damage biomarkers is consistent with animal studies suggesting that ET may function as a major antioxidant but perhaps only under conditions of oxidative stress. Antioxid. Redox Signal. 26, 193-206.
Collapse
Affiliation(s)
- Irwin K Cheah
- 1 Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore , Singapore .,3 Centre for Life Sciences, National University of Singapore, Singapore
| | - Richard M Y Tang
- 1 Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore , Singapore .,3 Centre for Life Sciences, National University of Singapore, Singapore
| | - Terry S Z Yew
- 1 Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore , Singapore .,3 Centre for Life Sciences, National University of Singapore, Singapore
| | - Keith H C Lim
- 2 Department of Radiation Oncology, National University Cancer Institute Singapore, National University Hospital , Singapore
| | - Barry Halliwell
- 1 Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore , Singapore .,3 Centre for Life Sciences, National University of Singapore, Singapore
| |
Collapse
|
70
|
Fan F, Wu Y. Photochromic properties of color-matching, double-shelled microcapsules covalently bonded onto cotton fabric and applications to outdoor clothing. J Appl Polym Sci 2017. [DOI: 10.1002/app.44698] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Fei Fan
- College of Textiles and Clothing; Wuyi University; Jiangmen 529020 People's Republic of China
| | - Yingzhu Wu
- College of Textiles and Clothing; Wuyi University; Jiangmen 529020 People's Republic of China
| |
Collapse
|
71
|
Oregano Essential Oil Induces SOD1 and GSH Expression through Nrf2 Activation and Alleviates Hydrogen Peroxide-Induced Oxidative Damage in IPEC-J2 Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:5987183. [PMID: 28105249 PMCID: PMC5220500 DOI: 10.1155/2016/5987183] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/29/2016] [Accepted: 11/14/2016] [Indexed: 12/27/2022]
Abstract
Oregano essential oil (OEO) has long been used to improve the health of animals, particularly their intestinal health. The health benefits of OEO are generally attributed to antioxidative actions, but the mechanisms remain unclear. Here, we investigate the antioxidative effects of OEO and their underlying molecular mechanisms in porcine small intestinal epithelial (IPEC-J2) cells. We found that OEO treatment prior to hydrogen peroxide (H2O2) exposure increased cell viability and prevented lactate dehydrogenase (LDH) release into the medium. H2O2-induced reactive oxygen species (ROS) and malondialdehyde (MDA) were remarkably suppressed by OEO. OEO dose-dependently increased mRNA and protein levels of the nuclear factor-erythroid 2-related factor-2 (Nrf2) target genes Cu/Zn-superoxide dismutase (SOD1) and g-glutamylcysteine ligase (GCLC, GLCM), as well as intracellular concentrations of SOD1 and glutathione. OEO also increased intranuclear expression of Nrf2 and the activity of an antioxidant response element reporter plasmid in IPEC-J2 cells. The OEO-induced expression of Nrf2-regulated genes and increased SOD1 and glutathione concentrations in IPEC-J2 cells were reduced by Nrf2 small interfering (si) RNAs, counteracting the protective effects of OEO against oxidative stress in IPEC-J2 cells. Our results suggest that OEO protects against H2O2-induced IPEC-J2 cell damage by inducing Nrf2 and related antioxidant enzymes.
Collapse
|
72
|
Sun Z, Park SY, Hwang E, Zhang M, Seo SA, Lin P, Yi TH. Thymus vulgaris alleviates UVB irradiation induced skin damage via inhibition of MAPK/AP-1 and activation of Nrf2-ARE antioxidant system. J Cell Mol Med 2016; 21:336-348. [PMID: 27641753 PMCID: PMC5264136 DOI: 10.1111/jcmm.12968] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 08/03/2016] [Indexed: 12/21/2022] Open
Abstract
Solar ultraviolet (UV) radiation-induced reactive oxidative species is mainly responsible for the development of photoageing. Rosmarinic acid was one of the main bioactive components detected in Thymus vulgaris (TV) we extracted. In this study, UVB-induced skin damages have been shown to be ameliorated by treatment with TV in hairless mice (HR-1) skin, demonstrated by decreased matrix metalloproteinases (MMPs) and increased collagen production. However, the underlying molecular mechanism on which TV acted was unclear. We examined the photoprotective effects of TV against UVB and elucidated the molecular mechanism in normal human dermal fibroblasts. Thymus vulgaris remarkably prevented the UVB-induced reactive oxygen species and lactate dehydrogenase. Dose-dependent increase in glutathione, NAD(P)H: quinone oxidoreductase1 and heme oxygenase-1, by TV was confirmed by increased nuclear accumulation of Nrf2. Furthermore, 5-Methoxyindole-2-carboxylic acid was introduced as a specific inhibitor of dihydrolipoyl dehydrogenase (DLD). We demonstrated that Nrf2 expression was regulated by DLD, which was a tricarboxylic acid cycle-associated protein that decreased after UVB exposure. Besides, TV significantly diminished UVB induced phosphorylation of mitogen activated protein kinases pathway, containing extracellular signal-regulated kinase, Jun N-terminal kinase and p38, which consequently reduced phosphorylated c-fos and c-jun. Our results suggest that TV is a potential botanical agent for use against UV radiation-induced oxidative stress mediated skin damages.
Collapse
Affiliation(s)
- Zhengwang Sun
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University Global Campus, Yongin-si, Gyeonggi-do, Korea
| | - Sang Yong Park
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University Global Campus, Yongin-si, Gyeonggi-do, Korea
| | - Eunson Hwang
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University Global Campus, Yongin-si, Gyeonggi-do, Korea
| | - Mengyang Zhang
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University Global Campus, Yongin-si, Gyeonggi-do, Korea
| | - Seul A Seo
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University Global Campus, Yongin-si, Gyeonggi-do, Korea
| | - Pei Lin
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University Global Campus, Yongin-si, Gyeonggi-do, Korea
| | - Tae-Hoo Yi
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University Global Campus, Yongin-si, Gyeonggi-do, Korea
| |
Collapse
|
73
|
Liu C, Vojnovic D, Kochevar IE, Jurkunas UV. UV-A Irradiation Activates Nrf2-Regulated Antioxidant Defense and Induces p53/Caspase3-Dependent Apoptosis in Corneal Endothelial Cells. Invest Ophthalmol Vis Sci 2016; 57:2319-27. [PMID: 27127932 PMCID: PMC4855825 DOI: 10.1167/iovs.16-19097] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Purpose To examine whether Nrf2-regulated antioxidant defense and p53 are activated in human corneal endothelial cells (CEnCs) by environmental levels of ultraviolet A (UV-A), a known stimulator of oxidative stress. Methods Immortalized human CEnCs (HCEnCi) were exposed to UV-A fluences of 2.5, 5, 10, or 25 J/cm2, then allowed to recover for 3 to 24 hours. Control HCEnCi did not receive UV-A. Reactive oxygen species (ROS) were measured using H2DCFDA. Cell cytotoxicity was evaluated by lactate dehydrogenase (LDH) release. Levels of Nrf2, HO-1, NQO-1, p53, and caspase3 were detected by immunnoblotting or real-time PCR. Activated caspase3 was measured by immunoblotting and a fluorescence assay. Results Exposure of HCEnCi to 5, 10, and 25 J/cm2 UV-A increased ROS levels compared with controls. Nrf2, HO-1, and NQO-1 mRNA increased 1.7- to 3.2-fold at 3 and 6 hours after irradiation with 2.5 and 5 J/cm2 UV-A. At 6 hours post irradiation, UV-A (5 J/cm2) enhanced nuclear Nrf2 translocation. At 24 hours post treatment, UV-A (5, 10, and 25 J/cm2) produced a 1.8- to 2.8-fold increase in phospho-p53 and a 2.6- to 6.0-fold increase in activated caspase3 compared with controls, resulting in 20% to 42% cell death. Conclusions Lower fluences of UV-A induce Nrf2-regulated antioxidant defense and higher fluences activate p53 and caspase3, indicating that even near-environmental levels of UV-A may affect normal CEnCs. This data suggest that UV-A may especially damage cells deficient in antioxidant defense, and thus may be involved in the etiology of Fuchs' endothelial corneal dystrophy (FECD).
Collapse
Affiliation(s)
- Cailing Liu
- Schepens Eye Research Institute Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Dijana Vojnovic
- Schepens Eye Research Institute Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Irene E Kochevar
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - Ula V Jurkunas
- Schepens Eye Research Institute Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
74
|
Marone PA, Trampota J, Weisman S. A Safety Evaluation of a Nature-Identical l-Ergothioneine in Sprague Dawley Rats. Int J Toxicol 2016; 35:568-83. [PMID: 27306320 DOI: 10.1177/1091581816653375] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
l-(+) Ergothioneine is a naturally occurring thiol amino acid with antioxidant properties and potential benefits as a dietary supplement. Despite its century-old identification and wide distribution in human food, little is known of its mechanism of action and safety. The nature-identical biomimetic of l-(+) ergothioneine, produced by Mironova Labs and supplied as Mironova (EGT+), has been investigated in the present studies for its mutagenic and toxicologic potential. In a plate incorporation and preincubation assay with Salmonella typhimurium strains TA98, 100, 1,535, and 1,537 and Escherichia coli WP2uvrA strain, at dose concentrations of 1.58, 5, 15.8, 50, 158, 500, 1,580, and 5,000 μg/plate with and without metabolic activation, no cytotoxicity or mutagenicity was observed. Following a preliminary 28-day study, a repeated dose 90-day gavage study at dose levels of 0, 400, 800, and 1,600 mg/kg body weight (bw)/d in Sprague Dawley rats, in which dose-proportional systemic absorption was confirmed by plasma analysis, no adverse clinical, body weight/gain, food consumption and efficiency, clinical pathology, or histopathological changes associated with the administration of the nature-identical ergothioneine were observed. In conclusion, EGT+ administered over 90 days was well tolerated with a no adverse effect level at 1,600 mg/kg bw/d, the highest dose tested for male and female rats. In addition, the nature-identical test substance, EGT+ was not mutagenic in a bacterial reverse mutation assay at plate concentrations of up to 5,000 μg/mL in the presence or absence of metabolic activation.
Collapse
Affiliation(s)
- Palma Ann Marone
- Virginia Commonwealth University, Medical College of Virginia, Department of Pharmacology and Toxicology, Richmond, VA, USA
| | | | | |
Collapse
|
75
|
Wang Q, Ju X, Chen Y, Dong X, Luo S, Liu H, Zhang D. Effects of L-carnitine against H2O2-induced oxidative stress in grass carp ovary cells (Ctenopharyngodon idellus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2016; 42:845-857. [PMID: 26701137 DOI: 10.1007/s10695-015-0179-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 12/10/2015] [Indexed: 06/05/2023]
Abstract
This study was designed in vitro to investigate the effects of L-carnitine against H2O2-induced oxidative stress in a grass carp (Ctenopharyngodon idellus) ovary cell line (GCO). GCO cells were pre-treated with different concentrations of L-carnitine, followed by incubation with 2.5 mM H2O2 for 1 h to induce oxidative damage. The results indicated that adding L-carnitine at concentrations of 0.01-1 mM into the medium for 12 h significantly increased cell viability. Pre-treatment with L-carnitine at concentrations of 0.1-5 mM for 12 h significantly inhibited 2.5 mM H2O2-induced cell viability loss. The significant decreases in the level of reactive oxygen species and cell apoptosis were observed in 0.5 mM L-carnitine group compared to the H2O2 group. Malondialdehyde values of all of the L-carnitine groups were significantly lower than those of the H2O2 group, while total glutathione levels of all of the L-carnitine groups were significantly higher than of the H2O2 group. The activity of antioxidant enzymes, such as total superoxide dismutase (0.1 and 0.5 mM L-carnitine), catalase (0.5 mM L-carnitine) and γ-glutamyl cysteine synthetase (0.5 and 1 mM L-carnitine), was significantly increased. In addition, pre-treatment of L-carnitine in GCO cells exposed to 2.5 mM H2O2 significantly increased the mRNA expression of copper, zinc superoxide dismutase, catalase (0.5 mM L-carnitine), glutamate cysteine ligase catalytic subunit (0.1-1 mM) and glutathione peroxidase (0.1 mM L-carnitine). In conclusion, L-carnitine promotes GCO cell growth and improves antioxidant function, it plays a protective role against oxidative stress induced by H2O2 in GCO cells, and the appropriate supplemental amount of L-carnitine is 0.1-1 mM.
Collapse
Affiliation(s)
- Qiuju Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Xue Ju
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Yuke Chen
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Xiaoqing Dong
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Sha Luo
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Hongjian Liu
- Fishery Technical Extension Station of Jilin Province, Changchun, 130012, China
| | - Dongming Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
76
|
Advanced oxidative protein products induced human keratinocyte apoptosis through the NOX–MAPK pathway. Apoptosis 2016; 21:825-35. [DOI: 10.1007/s10495-016-1245-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
77
|
Daunay S, Lebel R, Farescour L, Yadan JC, Erdelmeier I. Short protecting-group-free synthesis of 5-acetylsulfanyl-histidines in water: novel precursors of 5-sulfanyl-histidine and its analogues. Org Biomol Chem 2016; 14:10473-10480. [DOI: 10.1039/c6ob01870j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Natural and novel sulfur-containing amino acids are preparedviaa new regioselective one-pot two-step procedure.
Collapse
|
78
|
Kondo T, Nakashima A, Watanabe T, Yoshiyama K, Uchida A, Kurogi K, Fukui K, Suiko M, Sakakibara Y. Studies on the Anti-oxidative Stress Effect of Shiitake Mushroom. J JPN SOC FOOD SCI 2016. [DOI: 10.3136/nskkk.63.199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Tomomi Kondo
- Miyazaki JA Food Research & Development, Inc
- Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki
| | | | | | | | - Asuka Uchida
- Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki
| | - Katsuhisa Kurogi
- Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki
| | | | - Masahito Suiko
- Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki
| | - Yoichi Sakakibara
- Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki
| |
Collapse
|
79
|
Chang HC, Yang HL, Pan JH, Korivi M, Pan JY, Hsieh MC, Chao PM, Huang PJ, Tsai CT, Hseu YC. Hericium erinaceus Inhibits TNF-α-Induced Angiogenesis and ROS Generation through Suppression of MMP-9/NF-κB Signaling and Activation of Nrf2-Mediated Antioxidant Genes in Human EA.hy926 Endothelial Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:8257238. [PMID: 26823953 PMCID: PMC4707368 DOI: 10.1155/2016/8257238] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Revised: 10/14/2015] [Accepted: 10/28/2015] [Indexed: 11/21/2022]
Abstract
Hericium erinaceus (HE) is an edible mushroom that has been shown to exhibit anticancer and anti-inflammatory activities. We investigated the antiangiogenic and antioxidant potentials of ethanol extracts of HE in human endothelial (EA.hy926) cells upon tumor necrosis factor-α- (TNF-α-) stimulation (10 ng/mL). The underlying molecular mechanisms behind the pharmacological efficacies were elucidated. We found that noncytotoxic concentrations of HE (50-200 μg/mL) significantly inhibited TNF-α-induced migration/invasion and capillary-like tube formation of endothelial cells. HE treatment suppressed TNF-α-induced activity and/or overexpression of matrix metalloproteinase-9 (MMP-9) and intercellular adhesion molecule-1 (ICAM-1). Furthermore, HE downregulated TNF-α-induced nuclear translocation and transcriptional activation of nuclear factor-κB (NF-κB) followed by suppression of I-κB (inhibitor-κB) degradation. Data from fluorescence microscopy illustrated that increased intracellular ROS production upon TNF-α-stimulation was remarkably inhibited by HE pretreatment in a dose-dependent manner. Notably, HE triggered antioxidant gene expressions of heme oxygenase-1 (HO-1), γ-glutamylcysteine synthetase (γ-GCLC), and glutathione levels, which may contribute to inhibition of ROS. Increased antioxidant status was associated with upregulated nuclear translocation and transcriptional activation of NF-E2 related factor-2 (Nrf2) in HE treated cells. Our findings conclude that antiangiogenic and anti-inflammatory activities of H. erinaceus may contribute to its anticancer property through modulation of MMP-9/NF-κB and Nrf2-antioxidant signaling pathways.
Collapse
Affiliation(s)
- Hebron C. Chang
- Department of Biotechnology and Bioinformatics, Asia University, Taichung 41354, Taiwan
| | - Hsin-Ling Yang
- Institute of Nutrition, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung 40402, Taiwan
| | - Jih-Hao Pan
- Department of Biotechnology and Bioinformatics, Asia University, Taichung 41354, Taiwan
| | - Mallikarjuna Korivi
- Institute of Nutrition, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung 40402, Taiwan
| | - Jian-You Pan
- Department of Biotechnology and Bioinformatics, Asia University, Taichung 41354, Taiwan
| | - Meng-Chang Hsieh
- Department of Biotechnology and Bioinformatics, Asia University, Taichung 41354, Taiwan
| | - Pei-Min Chao
- Institute of Nutrition, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung 40402, Taiwan
| | - Pei-Jane Huang
- Department of Health and Nutrition Biotechnology, Asia University, Taichung 41354, Taiwan
| | - Ching-Tsan Tsai
- Institute of Public Health, China Medical University, Taichung 40402, Taiwan
| | - You-Cheng Hseu
- Department of Health and Nutrition Biotechnology, Asia University, Taichung 41354, Taiwan
- Department of Cosmeceutics, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
80
|
Coenzyme Q0 regulates NFκB/AP-1 activation and enhances Nrf2 stabilization in attenuation of LPS-induced inflammation and redox imbalance: Evidence from in vitro and in vivo studies. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1859:246-61. [PMID: 26548719 DOI: 10.1016/j.bbagrm.2015.11.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 10/09/2015] [Accepted: 11/03/2015] [Indexed: 12/20/2022]
Abstract
Coenzyme Q (CoQ) analogs with variable number of isoprenoid units have been demonstrated as anti-inflammatory and antioxidant/pro-oxidant molecules. In this study we used CoQ0 (2,3-dimethoxy-5-methyl-1,4-benzoquinone, zero isoprenoid side-chains), a novel quinone derivative, and investigated its molecular actions against LPS-induced inflammation and redox imbalance in murine RAW264.7 macrophages and mice. In LPS-stimulated macrophages, non-cytotoxic concentrations of CoQ0 (2.5-10 μM) inhibited iNOS/COX-2 protein expressions with subsequent reductions of NO, PGE2, TNF-α and IL-1β secretions. This inhibition was reasoned by suppression of NFκB (p65) activation, and inhibition of AP-1 (c-Jun., c-Fos, ATF2) translocation. Our findings indicated that IKKα-mediated I-κB degradation and MAPK-signaling are involved in regulation of NFκB/AP-1 activation. Furthermore, CoQ0 triggered HO-1 and NQO-1 genes through increased Nrf2 nuclear translocation and Nrf2/ARE-signaling. This phenomenon was confirmed by diminished CoQ0 protective effects in Nrf2 knockdown cells, where LPS-induced NO, PGE2, TNF-α and IL-1β productions remained high. Molecular evidence revealed that CoQ0 enhanced Nrf2 steady-state level at both transcriptional and translational levels. CoQ0-induced Nrf2 activation appears to be regulated by ROS-JNK-signaling cascades, as evidenced by suppressed Nrf2 activation upon treatment with pharmacological inhibitors of ROS (N-acetylcysteine) and JNK (SP600125). Besides, oral administration of CoQ0 (5 mg/kg) suppressed LPS-induced (1 mg/kg) induction of iNOS/COX-2 and TNF-α/IL-1β through tight regulation of NFκB/Nrf2 signaling in mice liver and spleen. Our findings conclude that pharmacological actions of CoQ0 are mediated via inhibition of NFκB/AP-1 activation and induction of Nrf2/ARE-signaling. Owing to its potent anti-inflammatory and antioxidant properties, CoQ0 could be a promising candidate to treat inflammatory disorders.
Collapse
|
81
|
Anti-angiogenic properties of coenzyme Q0 through downregulation of MMP-9/NF-κB and upregulation of HO-1 signaling in TNF-α-activated human endothelial cells. Biochem Pharmacol 2015; 98:144-56. [PMID: 26348871 DOI: 10.1016/j.bcp.2015.09.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 09/02/2015] [Indexed: 01/13/2023]
Abstract
Various coenzyme Q (CoQ) analogs have been reported as anti-inflammatory and antioxidant substances. However, coenzyme Q0 (CoQ0, 2,3-dimethoxy-5-methyl-1,4-benzoquinone), a novel quinone derivative, has not been well studied for its pharmacological efficacies, and its response to cytokine stimulation remains unclear. Therefore, we investigated the potential anti-angiogenic properties of CoQ0 in human endothelial (EA.hy 926) cells against tumor necrosis factor-α (TNF-α) stimulation. We found that the non-cytotoxic concentrations of CoQ0 (2.5-10μM) significantly suppressed the TNF-α-induced migration/invasion and tube formation abilities of endothelial cells. CoQ0 suppressed TNF-α-induced activity and protein expressions of matrix metalloproteinase-9 (MMP-9) and intercellular adhesion molecule-1 (ICAM-1) followed by an abridged adhesion of U937 leukocytes to endothelial cells. CoQ0 treatment remarkably downregulated TNF-α-induced nuclear translocation and transcriptional activation of nuclear factor-κB (NF-κB) possibly through suppressed I-κBα degradation. Furthermore, CoQ0 triggered the expressions of heme oxygenase-1 (HO-1) and γ-glutamylcysteine synthetase (γ-GCLC), followed by an increased nuclear accumulation of NF-E2 related factor-2 (Nrf2)/antioxidant response element (ARE) activity. In agreement with these, intracellular glutathione levels were significantly increased in CoQ0 treated cells. More interestingly, knockdown of HO-1 gene by specific shRNA showed diminished anti-angiogenic effects of CoQ0 against TNF-α-induced invasion, tube formation and adhesion of leukocyte to endothelial cells. Our findings reveal that CoQ0 protective effects against cytokine-stimulation are mediated through the suppression of MMP-9/NF-κB and/or activation of HO-1 signaling cascades. This novel finding emphasizes the pharmacological efficacies of CoQ0 to treat inflammation and angiogenesis.
Collapse
|