51
|
Utilization of fermented and enzymatically hydrolyzed soy press cake as ingredient for meat analogues. Lebensm Wiss Technol 2022; 165:113736. [PMID: 35938059 PMCID: PMC9340857 DOI: 10.1016/j.lwt.2022.113736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/26/2022] [Accepted: 06/30/2022] [Indexed: 11/22/2022]
Abstract
The aim of the present study was to improve the properties of soy press cake to be utilized as an ingredient of meat analogues. Soy press cakes were fermented with lactobacillus strains, and separately hydrolyzed by cellulase/xylanase mixture and α-amylase. Meat analogues were produced with 10% fermented or hydrolyzed soy press cakes. The effect of applied processes on protein oxidation, physical and functional properties of soy press cakes were analyzed, as well as sensory and textural properties of meat analogues. The results indicated that soy press cake was a suitable source of fibre and energy with low content of saturated fatty acids, and provided plant-based proteins and essential amino acids. The study demonstrated the potential of lactic acid fermentation, and enzymatic hydrolysis to improve water- and oil-holding capacity and reduce protein oxidation in soy press cakes. L. acidophilus 336 and cellulase/xylanase mixture were recommended for fermentation and hydrolysis of soy press cakes, respectively, regarding reduction of protein oxidation. Fermentation of soy press cakes with L. plantarum P1 improved the texture of meat analogues. Press cakes fermentation reduced bitterness, increased juiciness, and balanced the taste of meat analogues. Fermented soy press cake was recommended for the production of meat analogues. This research was the 1st application of fermented soy press cake in meat analogue. Fermentation and hydrolysis improved the functional properties of soy press cakes. Protein oxidation in soy press cakes was reduced after fermentation and hydrolysis. Fermented soy press cakes improved sensory quality of the meat analogues. L. plantarum P1 is recommended for the fermentation of soy press cakes.
Collapse
|
52
|
Traditional Fermented Foods and Beverages from around the World and Their Health Benefits. Microorganisms 2022; 10:microorganisms10061151. [PMID: 35744669 PMCID: PMC9227559 DOI: 10.3390/microorganisms10061151] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 02/04/2023] Open
Abstract
Traditional fermented foods and beverages play an important role in a range of human diets, and several experimental studies have shown their potential positive effects on human health. Studies from different continents have revealed strong associations between the microorganisms present in certain fermented foods (e.g., agave fructans, kefir, yeats, kombucha, chungkookjang, cheeses and vegetables, among others) and weight maintenance, reductions in the risk of cardiovascular disease, antidiabetic and constipation benefits, improvement of glucose and lipids levels, stimulation of the immunological system, anticarcinogenic effects and, most importantly, reduced mortality. Accordingly, the aim of this review is to corroborate information reported in experimental studies that comprised interventions involving the consumption of traditional fermented foods or beverages and their association with human health. This work focuses on studies that used fermented food from 2014 to the present. In conclusion, traditional fermented foods or beverages could be important in the promotion of human health. Further studies are needed to understand the mechanisms involved in inflammatory, immune, chronic and gastrointestinal diseases and the roles of fermented traditional foods and beverages in terms of preventing or managing those diseases.
Collapse
|
53
|
Sahin B, Hosoglu MI, Guneser O, Karagul-Yuceer Y. Fermented Spirulina products with Saccharomyces and non- Saccharomyces yeasts: Special reference to their microbial, physico-chemical and sensory characterizations. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
54
|
Sun Y, Zhang S, Li H, Zhu J, Liu Z, Hu X, Yi J. Assessments of Probiotic Potentials of Lactiplantibacillus plantarum Strains Isolated From Chinese Traditional Fermented Food: Phenotypic and Genomic Analysis. Front Microbiol 2022; 13:895132. [PMID: 35615501 PMCID: PMC9125032 DOI: 10.3389/fmicb.2022.895132] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 03/25/2022] [Indexed: 12/02/2022] Open
Abstract
The lack of rapid and effective approaches to determine the health benefits of strains is one of the main challenges affecting the selection of probiotics from large numbers of candidates. In this study, the probiotic potential of 44 Lactiplantibacillus plantarum strains isolated from different Chinese traditional fermented foods was evaluated, including acid and bile salt resistance, adhesion ability, survival in simulated human gastrointestinal transit, antioxidant activity, bile salt hydrolase (BSH) activity, and antibacterial activity. All tested L. plantarum strains showed high antioxidant capacity, BSH activity, and antibacterial activity. Among the strains, B652, C232, D444, and E932 were identified as the best comprehensive performed strains, which were selected for whole-genome sequencing, in order to provide clear information and identify key genes responsible for functional characteristics in vitro. It demonstrated that the antioxidant activity, adhesion activity, and ability to survive in the simulated gastric environment were found to be closely correlated with antioxidant enzyme encoding genes, cell-surface protein-encoding genes, and stress response genes, respectively. The numbers of functional genes present in strains might decide their performance in probiotic profile evaluation. The outcome of the study could support the development of a novel approach for the screening and identification of probiotics.
Collapse
Affiliation(s)
- Yuwei Sun
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China
| | - Shiyao Zhang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China
| | - Hong Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China
| | - Jiang Zhu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China
| | - Zhijia Liu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China
| | - Xiaosong Hu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Junjie Yi
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China
- *Correspondence: Junjie Yi,
| |
Collapse
|
55
|
Isolation, Characterization, and Identification Candidate of Probiotic Bacteria Isolated from Wadi Papuyu (Anabas testudineus Bloch.) a Fermented Fish Product from Central Kalimantan, Indonesia. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2022; 2022:4241531. [PMID: 35573825 PMCID: PMC9098345 DOI: 10.1155/2022/4241531] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 11/17/2022]
Abstract
During the wadi fermentation process, some microorganisms can grow, including lactic acid bacteria (LAB), affecting the taste and texture of the final product. Some LAB strains are used as probiotics such as the Lactobacillus and Bifidobacterium groups. This study aimed at isolating, in vitro characterizing, and identifying microbial isolates from wadi papuyu (Anabas testudineus Bloch.). The stages started from sample collection, manufacture of wadi papuyu by fermentation for 8 days, isolation of bacteria from wadi papuyu, in vitro characterization, and identification of bacterial isolates with VITEK 2 Compact and PCR-sequencing methods 16S rRNA and 18S rRNA. The number of microbial colonies growing on MRS agar and MHA was 22 in total, while after purification and characterization it was observed only 4 different microbial isolates. Candidates are tested to determine whether they meet the criteria to be candidates for probiotic cultures. The in vitro testing of four isolates showed that they do not possess probiotic characteristics, especially in autoaggregation tests. Identification results using the VITEK 2 Compact method and 16S rRNA gene PCR-sequencing showed that of the 4 isolated strains, three were bacterial and one belonged to yeasts.
Collapse
|
56
|
Zhang N, Jin M, Wang K, Zhang Z, Shah NP, Wei H. Functional oligosaccharide fermentation in the gut: Improving intestinal health and its determinant factors-A review. Carbohydr Polym 2022; 284:119043. [PMID: 35287885 DOI: 10.1016/j.carbpol.2021.119043] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 12/17/2022]
|
57
|
Hu X, Zhang Q, Zhang Q, Ding J, Liu Y, Qin W. An updated review of functional properties, debittering methods, and applications of soybean functional peptides. Crit Rev Food Sci Nutr 2022; 63:8823-8838. [PMID: 35482930 DOI: 10.1080/10408398.2022.2062587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Soybean functional peptides (SFPs) are obtained via the hydrolysis of soybean protein into polypeptides, oligopeptides, and a small amount of amino acids. They have nutritional value and a variety of functional properties, including regulating blood lipids, lowering blood pressure, anti-diabetes, anti-oxidant, preventing COVID-19, etc. SFPs have potential application prospects in food processing, functional food development, clinical medicine, infant milk powder, special medical formulations, among others. However, bitter peptides containing relatively more hydrophobic amino acids can be formed during the production of SFPs, seriously restricting the application of SFPs. High-quality confirmatory human trials are needed to determine effective doses, potential risks, and mechanisms of action, especially as dietary supplements and special medical formulations. Therefore, the physiological activities and potential risks of soybean polypeptides are summarized, and the existing debitterness technologies and their applicability are reviewed. The technical challenges and research areas to be addressed in optimizing debittering process parameters and improving the applicability of SFPs are discussed, including integrating various technologies to obtain higher quality functional peptides, which will facilitate further exploration of physiological mechanism, metabolic pathway, tolerance, bioavailability, and potential hazards of SFPs. This review can help promote the value of SFPs and the development of the soybean industry.
Collapse
Affiliation(s)
- Xinjie Hu
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Qinqiu Zhang
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Qing Zhang
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Jie Ding
- College of Food Science, Sichuan Agricultural University, Ya'an, China
- College of Food Science and Technology, Sichuan Tourism University, Chengdu, China
| | - Yaowen Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Wen Qin
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| |
Collapse
|
58
|
Tallei TE, Fatimawali, Yelnetty A, Kusumawaty D, Effendi Y, Park MN, Alhumaydhi FA, Emran TB, Kim B. Predictive Microbial Community and Functional Gene Expression Profiles in Pineapple Peel Fermentation Using 16S rRNA Gene Sequences. FERMENTATION-BASEL 2022; 8:194. [DOI: 10.3390/fermentation8050194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Pineapple peel (PP) is a by-product with the potential to be used as a raw material for functional beverages. Traditional PP fermentation has so far paid little attention to the microbial community and its role in the fermentation process. As a result, the current research looked into the microbial communities and their roles during PP fermentation. A metagenomic approach based on the 16S rRNA sequencing data was used to assess the microbial communities. Subsequent analysis was performed using PICRUSt (phylogenetic investigation of communities by reconstruction of unobserved states) to analyze the microbial functions in the fermentation system. The microecology of the fermentation process in three samples was predominated by Firmicutes. Furthermore, the well-known probiotic genera Weissella, Lactobacillus, and Lactococcus were found to be predominating in the gumer, promic, and control samples, respectively. It was obvious that microenvironmental differences have an effect on the microbial composition of PP fermentation. Moreover, functional prediction revealed that carbohydrate metabolism was the most prevalent metabolic pathway during the fermentation process. Additionally, it was discovered that all of the bacteria found in the samples played significant roles in carbohydrate, amino acid, vitamin, and co-factor metabolism, which can be inferred to result in the production of beneficial metabolites.
Collapse
|
59
|
Cais-Sokolińska D, Walkowiak-Tomczak D, Rudzińska M. Photosensitized oxidation of cholesterol and altered oxysterol levels in sour cream: Effects of addition of cucumber pickles. J Dairy Sci 2022; 105:4760-4771. [PMID: 35450712 DOI: 10.3168/jds.2022-21856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/23/2022] [Indexed: 12/13/2022]
Abstract
The aim of this research was to examine whether sour cream (18% fat) is an exogenous source of oxysterols and whether it is possible to improve its antioxidative properties and to modulate cholesterol transformation by adding cucumber. To determine whether cucumber modifies the properties of sour cream, fresh cucumber or cucumber pickle (pH 3.3; 1.5% lactic acid) was added in an amount of 20%. The sour cream samples were then stored under light (450 lx, 590 cd, 120 lm) for 3 wk. After storage, the addition of the cucumber pickle increased total mesophilic aerobic bacteria from 7.5 to 9.3 log cfu/g and increased the l-lactic acid content from 6.1 to 9.7 g/L. The total conjugated linoleic acid content in sour cream with cucumber pickle also increased to 4.5 mg/g fat after storage, whereas the cholesterol content decreased to 3.44 g/kg fat. Importantly, with the addition of cucumber pickle, the total content of cholesterol oxidization products (COP) did not change after storage (1.7 mg/kg fat). By contrast, the total COP content in the control sour cream sample increased from 1.7 to 7.3 mg/kg fat over 3 wk of storage. The dominant COP before and after storage was 7β-hydroxycholesterol. Thus, despite exposure to light, adding cucumber pickle to sour cream modulates cholesterol transformation and effectively inhibits the formation of oxysterols.
Collapse
Affiliation(s)
- D Cais-Sokolińska
- Department of Dairy and Process Engineering, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, ul. Wojska Polskiego 31, 60-624 Poznań, Poland.
| | - D Walkowiak-Tomczak
- Department of Food Technology of Plant Origin, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, ul. Wojska Polskiego 31, 60-624 Poznań, Poland
| | - M Rudzińska
- Department of Food Technology of Plant Origin, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, ul. Wojska Polskiego 31, 60-624 Poznań, Poland
| |
Collapse
|
60
|
Microbial Composition of a Traditional Fermented Wheat Preparation—Nishasta and Its Role in the Amelioration of Retinoic Acid-Induced Osteoporosis in Rats. FERMENTATION 2022. [DOI: 10.3390/fermentation8040182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Fermented foods have a long history of human use. The purpose of this study was to characterize the microbial composition of a traditional fermented wheat preparation—Nishasta— and to explore its effect in retinoic acid-induced osteoporosis in Wistar rats. The sample was suspended in sterile water (10% w/v), mixed thoroughly, filtered, and gradually diluted. Aliquots of dilutions were cultured in MRS (DeMan–Rogosa–Sharpe) medium, and colonies with similar morphologies were subjected to DNA extraction. The 16S rRNA gene of the isolates was amplified by polymerase chain reaction, checked by agarose gel electrophoresis, and finally identified by sequencing. Anti-osteoporosis screening of Nishasta was carried out in female Wistar rats using retinoic acid as an inducer (70 mg/kg, p.o. once a day for 14 days). Its effect on bone health parameters was determined. The bone metabolism markers such as hydroxyproline (HOP), tartrate-resistant acid phosphatase (TRACP), and alkaline phosphatase (ALP) were evaluated. The results of microbial characterization revealed the presence of ten clones of Lactobacillus plantarum in the fermented preparation with L. plantarum NF3 as the predominant strain. The average microbial count was 2.4 × 103 CFU/g. Retinoic acid administration led to a marked disorder of various bone health markers in rats. It also increased the levels of urine calcium and phosphorus, indicating increased bone destruction. Treatment with fermented wheat (at 200, 100, and 50 mg/kg doses, p.o. daily for 42 days after the induction of osteoporosis) improved bone mineral density in a dose-dependent manner. It also improved the bone microstructure and reduced the levels of ALP, TRACP, and HOP. Micro-CT revealed that it reduced trabecular separation and increased the percent bone volume, trabecular numbers, trabecular thickness, and bone mineral density in the rats. The results showed that the fermented wheat promoted bone formation and prevented bone resorption. Our findings clearly established the effectiveness of Nishasta against osteoporosis in Wistar rats that can be partly attributed to the improved gut calcium absorption and microbiota composition.
Collapse
|
61
|
Traditional Grain-Based vs. Commercial Milk Kefirs, How Different Are They? APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12083838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Traditional kefir, which is claimed for health-promoting properties, is made from natural grain-based kefir, while commercial kefirs are made of defined mixtures of microorganisms. Here, approaches are described how to discriminate commercial and traditional kefirs. These two groups of kefirs were characterized by in-depth analysis on the taxonomic and functional level. Cultivation-independent targeted qPCR as well as next-generation sequencing (NGS) proved a completely different microbial composition in traditional and commercial kefirs. While in the traditional kefirs, Lactobacillus kefiranofaciens was the dominant bacterial species, commercial kefirs were dominated by Lactococcus lactis. Volatile organic compounds (VOCs) analysis using headspace-gas chromatography-ion mobility spectrometry also revealed drastic differences between commercial and traditional kefirs; the former built a separate cluster together with yogurt samples. Lactose and galactose concentrations in commercial kefirs were considerably higher than in traditional kefirs, which is important regarding their health properties for people who have specific intolerances. In summary, the analyzed commercial kefirs do not resemble the microbial community and metabolite characteristics of traditional grain-based kefir. Thus, they may deliver different functional effects to the consumers, which remain to be examined in future studies.
Collapse
|
62
|
Ghosh S, Nag M, Lahiri D, Sarkar T, Pati S, Kari ZA, Nirmal NP, Edinur HA, Ray RR. Engineered Biofilm: Innovative Nextgen Strategy for Quality Enhancement of Fermented Foods. Front Nutr 2022; 9:808630. [PMID: 35479755 PMCID: PMC9036442 DOI: 10.3389/fnut.2022.808630] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/11/2022] [Indexed: 11/22/2022] Open
Abstract
Microbial communities within fermented food (beers, wines, distillates, meats, fishes, cheeses, breads) products remain within biofilm and are embedded in a complex extracellular polymeric matrix that provides favorable growth conditions to the indwelling species. Biofilm acts as the best ecological niche for the residing microbes by providing food ingredients that interact with the fermenting microorganisms' metabolites to boost their growth. This leads to the alterations in the biochemical and nutritional quality of the fermented food ingredients compared to the initial ingredients in terms of antioxidants, peptides, organoleptic and probiotic properties, and antimicrobial activity. Microbes within the biofilm have altered genetic expression that may lead to novel biochemical pathways influencing their chemical and organoleptic properties related to consumer acceptability. Although microbial biofilms have always been linked to pathogenicity owing to its enhanced antimicrobial resistance, biofilm could be favorable for the production of amino acids like l-proline and L-threonine by engineered bacteria. The unique characteristics of many traditional fermented foods are attributed by the biofilm formed by lactic acid bacteria and yeast and often, multispecies biofilm can be successfully used for repeated-batch fermentation. The present review will shed light on current research related to the role of biofilm in the fermentation process with special reference to the recent applications of NGS/WGS/omics for the improved biofilm forming ability of the genetically engineered and biotechnologically modified microorganisms to bring about the amelioration of the quality of fermented food.
Collapse
Affiliation(s)
- Sreejita Ghosh
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Haringhata, India
| | - Moupriya Nag
- Department of Biotechnology, University of Engineering & Management, Kolkata, India
| | - Dibyajit Lahiri
- Department of Biotechnology, University of Engineering & Management, Kolkata, India
| | - Tanmay Sarkar
- Department of Food Processing Technology, Malda Polytechnic, West Bengal State Council of Technical Education, Government of West Bengal, Malda, India
| | - Siddhartha Pati
- NatNov Bioscience Private Limited, Balasore, India
- Skills Innovation & Academic Network (SIAN) Institute, Association for Biodiversity Conservation and Research (ABC), Balasore, India
| | - Zulhisyam Abdul Kari
- Faculty of Agro Based Industry, Universiti Malaysia Kelantan, Kota Bharu, Malaysia
| | | | - Hisham Atan Edinur
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Rina Rani Ray
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Haringhata, India
| |
Collapse
|
63
|
Skowron K, Budzyńska A, Grudlewska-Buda K, Wiktorczyk-Kapischke N, Andrzejewska M, Wałecka-Zacharska E, Gospodarek-Komkowska E. Two Faces of Fermented Foods-The Benefits and Threats of Its Consumption. Front Microbiol 2022; 13:845166. [PMID: 35330774 PMCID: PMC8940296 DOI: 10.3389/fmicb.2022.845166] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/15/2022] [Indexed: 12/17/2022] Open
Abstract
In underdeveloped and developing countries, due to poverty, fermentation is one of the most widely used preservation methods. It not only allows extending the shelf life of food, but also brings other benefits, including inhibiting the growth of pathogenic microorganisms, improving the organoleptic properties and product digestibility, and can be a valuable source of functional microorganisms. Today, there is a great interest in functional strains, which, in addition to typical probiotic strains, can participate in the treatment of numerous diseases, disorders of the digestive system, but also mental diseases, or stimulate our immune system. Hence, fermented foods and beverages are not only a part of the traditional diet, e.g., in Africa but also play a role in the nutrition of people around the world. The fermentation process for some products occurs spontaneously, without the use of well-defined starter cultures, under poorly controlled or uncontrolled conditions. Therefore, while this affordable technology has many advantages, it can also pose a potential health risk. The use of poor-quality ingredients, inadequate hygiene conditions in the manufacturing processes, the lack of standards for safety and hygiene controls lead to the failure food safety systems implementation, especially in low- and middle-income countries or for small-scale products (at household level, in villages and scale cottage industries). This can result in the presence of pathogenic microorganisms or their toxins in the food contributing to cases of illness or even outbreaks. Also, improper processing and storage, as by well as the conditions of sale affect the food safety. Foodborne diseases through the consumption of traditional fermented foods are not reported frequently, but this may be related, among other things, to a low percentage of people entering healthcare care or weaknesses in foodborne disease surveillance systems. In many parts of the world, especially in Africa and Asia, pathogens such as enterotoxigenic and enterohemorrhagic Escherichia coli, Shigella spp., Salmonella spp., enterotoxigenic Staphylococcus aureus, Listeria monocytogenes, and Bacillus cereus have been detected in fermented foods. Therefore, this review, in addition to the positive aspects, presents the potential risk associated with the consumption of this type of products.
Collapse
Affiliation(s)
- Krzysztof Skowron
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| | - Anna Budzyńska
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| | - Katarzyna Grudlewska-Buda
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| | - Natalia Wiktorczyk-Kapischke
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| | - Małgorzata Andrzejewska
- Department of Hygiene, Epidemiology, Ergonomy and Postgraduate Education, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| | - Ewa Wałecka-Zacharska
- Department of Food Hygiene and Consumer Health, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Eugenia Gospodarek-Komkowska
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| |
Collapse
|
64
|
A Review on Factors Influencing the Fermentation Process of Teff (Eragrostis teff) and Other Cereal-Based Ethiopian Injera. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2022; 2022:4419955. [PMID: 35368804 PMCID: PMC8970856 DOI: 10.1155/2022/4419955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/22/2022] [Accepted: 02/26/2022] [Indexed: 11/17/2022]
Abstract
Fermented foods and beverages are the product of the enzymaticcally transformed food components which are acived by different microorganisms. Fermented foods have grown in popularity in recent years because of their alleged health benefits. Biogenic amines, bioactive peptides, antinutrient reduction, and polyphenol conversion to physiologically active chemicals are all possible health benefits of fermentation process products. In Ethiopian-fermented foods, which are mostly processed using spontaneous fermentation process. Injera is one of the fermented food products consumed in all corners of the country which sourdough fermentation could be achieved using different LAB and yeast strains. Moreover, the kind and concentration of the substrate and the type of microbial flora, as well as temperature, air supply, and pH, all influence the fermentation process of injera. This review article gives an overview of factors influencing the fermentation process of teff ('Eragrostis tef.') and other cereal-based Ethiopian injera.
Collapse
|
65
|
Simões S, Santos R, Bento-Silva A, Santos MV, Mota M, Duarte N, Sousa I, Raymundo A, Prista C. Improving nutritional quality of unripe tomato through fermentation by a consortium of yeast and lactic acid bacteria. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:1422-1429. [PMID: 34388265 DOI: 10.1002/jsfa.11476] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/12/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Portugal is one of the main producers of industrial tomato and tomato paste, an important intermediate ingredient used in many added-value foods. The tomato processing industry rigorously selects the fruits by colour during mechanical harvest, picking only completely ripe fruits to produce high quality tomato paste. The latest available data shows that about 1.12 × 108 kg yr-1 of non-red/not-ripe tomatoes are left in the field, representing a major side product/field residue with great impact on the environment and for tomato producers. RESULTS The aim of the work was to use fermentation by a consortium of yeast and lactic acid bacteria to improve the nutritional quality of unripe tomato paste. A consortium of Lactobacillus plantarum, Leuconostoc mesenteroides and Kluyveromyces marxianus was selected, producing an acidic paste with olive-like flavours after 4 days of fermentation. Nutritional characterization revealed a significant improvement (P < 0.05) in the content of ascorbic acid and antioxidant potential. In addition, ultrahigh-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) analysis showed that the fermented green tomato paste content in glycoalkaloid α-tomatine represents no hazard to the consumer. CONCLUSION Therefore, the obtained fermented green tomato paste can be further used to produce new food products, such as salad dressings and sauces. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Sara Simões
- LEAF (Linking Landscape Environment Agriculture and Food) Research Centre, School of Agronomy, University of Lisbon, Lisbon, Portugal
| | - Rafaela Santos
- LEAF (Linking Landscape Environment Agriculture and Food) Research Centre, School of Agronomy, University of Lisbon, Lisbon, Portugal
| | | | - Marisa V Santos
- LEAF (Linking Landscape Environment Agriculture and Food) Research Centre, School of Agronomy, University of Lisbon, Lisbon, Portugal
| | - Mariana Mota
- LEAF (Linking Landscape Environment Agriculture and Food) Research Centre, School of Agronomy, University of Lisbon, Lisbon, Portugal
| | - Noélia Duarte
- Research Institute for Medicines (iMED.Ulisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Isabel Sousa
- LEAF (Linking Landscape Environment Agriculture and Food) Research Centre, School of Agronomy, University of Lisbon, Lisbon, Portugal
| | - Anabela Raymundo
- LEAF (Linking Landscape Environment Agriculture and Food) Research Centre, School of Agronomy, University of Lisbon, Lisbon, Portugal
| | - Catarina Prista
- LEAF (Linking Landscape Environment Agriculture and Food) Research Centre, School of Agronomy, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
66
|
Hou Q, Wang Y, Ni H, Cai W, Liu W, Yang S, Zhang Z, Shan C, Guo Z. Deep sequencing reveals changes in prokaryotic taxonomy and functional diversity of pit muds in different distilleries of China. ANN MICROBIOL 2022. [DOI: 10.1186/s13213-022-01671-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Abstract
Purpose
The microbial community in the pit mud correlated closely with the quality of the final product of Chinese strong-flavored Baijiu (CSFB). However, environmental conditions and brewing processes can vary by region and distilleries. This may lead to differences in microbial composition and function in pit mud. Therefore, revealing the features of the pit mud microbial community structure and functions of different distilleries will provide key information for understanding the diversity and difference of microbes in the brewing of CSFB, which will be beneficial for the improvement of the quality of pit mud and CSFB in the future.
Methods and results
Illumina MiSeq sequencing of 16S rRNA gene amplicons was used to analyze the similarities and differences in microbial community structure and function in pit muds of different distilleries located in Shihezi (Xinjiang), Xiangyang (Hubei), and Yibin (Sichuan). At the genus level, Clostridium, Lactobacillus, Aminobacterium, Petrimonas, Syntrophomonas, Methanoculleus, Syntrophaceticus, Sedimentibacter, Caloramator, Ruminococcus, Bacillus, Methanosarcina, and Garciella were the dominated genera of pit muds. There were great differences in the composition of microorganisms in pit muds used by different distilleries. The significantly enriched prokaryotic microbiotas of pit muds collected in the distilleries of Xiangyang were mainly affiliated with Bacillus, Lactobacillus, and Croceifilum, and the relative abundance of methanogens, such as Methanomicrobia and Methanobacteria, were only significantly enriched in the pit mud collected from the distilleries of Yibin (P < 0.05). Functional analysis indicated that the difference of microbial composition in pit mud will further lead to significant differences in various metabolic functions.
Conclusion
The compositions and functions of dominant microorganisms in pit mud used for the production of CSFB by different enterprises across regions in China were greatly different, and there was a close relationship between the compositions and functions of microorganisms in pit mud. Therefore, it may be an effective method to improve CSFB fermentation processes by directionally regulating the microbial community functions of pit mud using specific strains.
Collapse
|
67
|
Dynamic analysis of physicochemical characteristics and microbial communities of Aspergillus-type douchi during fermentation. Food Res Int 2022; 153:110932. [DOI: 10.1016/j.foodres.2021.110932] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 12/19/2021] [Accepted: 12/28/2021] [Indexed: 11/20/2022]
|
68
|
Lactic Acid Bacteria from African Fermented Cereal-Based Products: Potential Biological Control Agents for Mycotoxins in Kenya. J Toxicol 2022; 2022:2397767. [PMID: 35242183 PMCID: PMC8888082 DOI: 10.1155/2022/2397767] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/29/2022] [Indexed: 12/26/2022] Open
Abstract
Cereals play an important role in global food security. Data from the UN Food and Agriculture Organization projects increased consumption of cereals from 2.6 billion tonnes in 2017 to approximately 2.9 billion tonnes by 2027. However, cereals are prone to contamination by toxigenic fungi, which lead to mycotoxicosis. The current methods for mycotoxin control involve the use of chemical preservatives. However, there are concerns about the use of chemicals in food preservation due to their effects on the health, nutritional quality, and organoleptic properties of food. Therefore, alternative methods are needed that are affordable and simple to use. The fermentation technique is based on the use of microorganisms mainly to impart desirable sensory properties and shelf-life extension. The lactic acid bacteria (LAB) are generally regarded as safe (GRAS) due to their long history of application in food fermentation systems and ability to produce antimicrobial compounds (hydroxyl fatty acids, organic acids, phenyllactic acid, hydrogen peroxide, bacteriocins, and carbon dioxide) with a broad range of antifungal activity. Hence, LAB can inhibit the growth of mycotoxin-producing fungi, thereby preventing the production of mycotoxins. Fermentation is also an efficient technique for improving nutrient bioavailability and other functional properties of cereal-based products. This review seeks to provide evidence of the potential of LAB from African fermented cereal-based products as potential biological agents against mycotoxin-producing fungi.
Collapse
|
69
|
|
70
|
Garcia HS, Santiago-López L, González-Córdova AF, Vallejo-Cordoba B, Hernández-Mendoza A. Evaluation of a pseudocereal suitability to prepare a functional fermented beverage with epiphytic lactic acid bacteria of Huauzontle (Chenopodium berlandieri spp. nuttalliae). Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
71
|
DELA ROSA JGL, MEDINA PMB. Philippine rice wine (Tapuy) made from Ballatinao black rice and traditional starter culture (Bubod) showed high alcohol content, total phenolic content, and antioxidant activity. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.45120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
72
|
Traditional fermented foods as vehicle of non-dairy probiotics: Perspectives in South East Asia countries. Food Res Int 2021; 150:110814. [PMID: 34863504 DOI: 10.1016/j.foodres.2021.110814] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/29/2021] [Accepted: 11/09/2021] [Indexed: 11/22/2022]
Abstract
Food fermentation is a food processing technology that utilizes the growth and metabolic activity of microorganisms for the stabilization and transformation of food materials. Notwithstanding, the technology has evolved beyond food preservation into a tool for creating desirable organoleptic, nutritional, and functional attributes in food products. This narrative review outlines a compilation of traditional fermented foods which available in the South East Asia (SEA) regions as a source vehicle for non-dairy probiotics. The nutritional values of traditional fermented foods are well-appreciated, especially in the resource-poor regions. The sensory and organoleptic preferences of traditional fermented foods as means of dietary routine variations were demonstrated. Furthermore, the evidence underlying its potent impacts on public health promotion and disease prevention is outlined. Lastly, the challenges and future prospects for the integration of traditional fermented foods practice are elucidated.
Collapse
|
73
|
Shin Yee C, Sohedein MNA, Poh Suan O, Weng Loen AW, Abd Rahim MH, Soumaya S, Ilham Z, Wan-Mohtar WAAQI. The production of functional γ-aminobutyric acid Malaysian soy sauce koji and moromi using the trio of Aspergillus oryzae NSK, Bacillus cereus KBC, and the newly identified Tetragenococcus halophilus KBC in liquid-state fermentation. FUTURE FOODS 2021. [DOI: 10.1016/j.fufo.2021.100055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
74
|
Lang B, Zhao Y, Yang R, Liu A, Ranjitkar S, Yang L. Antioxidant and tyrosinase inhibitory activities of traditional fermented Rosa from Dali Bai communities, Northwest Yunnan, China. Sci Rep 2021; 11:22700. [PMID: 34811448 PMCID: PMC8608822 DOI: 10.1038/s41598-021-02160-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 10/27/2021] [Indexed: 11/10/2022] Open
Abstract
Traditional fermented Rosa (TFR) is a typical food and medical product among the Dali Bai people, and its popularity is growing. A few studies have looked into TFR's medicinal advantages, linked germplasm resources, traditional processing procedures, and functional food qualities. Our goal was to look into Rosa's traditional processing, examine the dominant strains in TFR, and prove how these strains affected antioxidant and tyrosinase inhibitory activities. We used a snowball selection strategy to pick 371 informants for a semi-structured interview, supplemented with direct observations and sample collection. A microbial strain was isolated and identified from a TFR sample collected in the field. We synthesized TFR in the lab using the traditional way. Both of 2, 2-diphenyl-1 picrylhydrazyl (DPPH) free radical scavenging and tyrosinase inhibitory properties of the fermented solution of Rosa 'Dianhong' have been tested in this study. Altogether 15 species belonging to the genus Rosa, which are utilized in herbal medicine and fermented foods. Rosa 'Dianhong' was the Bai community's principal species with considerable cultural value and consumption. Raw Rosa petals included 15 major flavonoids and phenols, which were identified as TFR's active components. TFR-1 was discovered to be the dominating microbial strain in TFR, increasing total phenolic and flavonoid content in the fermented solution of Rosa 'Dianhong' by 0.45 mg GAE/ml and 0.60 mg RE/ml, respectively, after 30 days. TFR-1 also exhibited promising activity in terms of DPPH free radical scavenging and tyrosinase inhibition. TFR showed potent antioxidant and free-radical scavenger properties and is beneficial in skincare and nutrition, according to the findings. TFR's medicinal and edible properties suggest that it could be used as a cosmetic or nutraceutical product.
Collapse
Affiliation(s)
- Bayi Lang
- grid.9227.e0000000119573309Bio-Innovation Center of DR PLANT, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China ,grid.9227.e0000000119573309Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China ,Center of Biodiversity and Indigenous Knowledge, Kunming, 650034 Yunnan China
| | - Yanqiang Zhao
- College of Forestry and Vocational Technology in Yunnan, Kunming, 650224 Yunnan China
| | - Rong Yang
- Center of Biodiversity and Indigenous Knowledge, Kunming, 650034 Yunnan China ,grid.412720.20000 0004 1761 2943Southwest Forestry University, Kunming, 650224 Yunnan China
| | - Aizhong Liu
- Center of Biodiversity and Indigenous Knowledge, Kunming, 650034 Yunnan China ,grid.412720.20000 0004 1761 2943Southwest Forestry University, Kunming, 650224 Yunnan China
| | - Sailesh Ranjitkar
- N.Gene Solution of Natural Innovation, Kathmandu, GPO, 44614, Nepal. .,Faculty of Humanities and Social Science, Mid-Western University, Naya Bato, Lalitpur, 44600, Nepal.
| | - Lixin Yang
- Bio-Innovation Center of DR PLANT, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China. .,Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China. .,Center of Biodiversity and Indigenous Knowledge, Kunming, 650034, Yunnan, China.
| |
Collapse
|
75
|
Aaslyng MD, Højer R. Introducing Tempeh as a New Plant-Based Protein Food Item on the Danish Market. Foods 2021; 10:foods10112865. [PMID: 34829145 PMCID: PMC8619156 DOI: 10.3390/foods10112865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 11/16/2022] Open
Abstract
Decreasing meat consumption has resulted in a need for new high-quality protein sources. Tempeh is relatively unknown in Denmark and might be capable of meeting this need. The aim of the study was to describe the success criteria for introducing locally produced tempeh and to investigate the sensory quality of three types of tempeh. Only 24% of the consumers in the survey (n = 395) used meat alternatives, which might be explained by a low level of satisfaction with availability. Tempeh was known by 26%—the less meat eaten, the greater the knowledge of tempeh. Twenty-three per cent of the consumers had positive attitudes towards tempeh. The three types of tempeh had markedly different sensory profiles. Nevertheless, the home use test showed that they could be used interchangeably in different recipes. In addition, the consumers were more positive about recipes in which tempeh did not resemble meat compared with meat-inspired recipes. In conclusion, introducing locally produced tempeh on the Danish market is possible but would require further knowledge of the product. In addition, tempeh should be sold as a tasty, high-quality protein food item in its own right. Recipes using tempeh should reflect this and not mimic meat recipes.
Collapse
|
76
|
Mannaa M, Han G, Seo YS, Park I. Evolution of Food Fermentation Processes and the Use of Multi-Omics in Deciphering the Roles of the Microbiota. Foods 2021; 10:2861. [PMID: 34829140 PMCID: PMC8618017 DOI: 10.3390/foods10112861] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/11/2021] [Accepted: 11/17/2021] [Indexed: 12/22/2022] Open
Abstract
Food fermentation has been practised since ancient times to improve sensory properties and food preservation. This review discusses the process of fermentation, which has undergone remarkable improvement over the years, from relying on natural microbes and spontaneous fermentation to back-slopping and the use of starter cultures. Modern biotechnological approaches, including genome editing using CRISPR/Cas9, have been investigated and hold promise for improving the fermentation process. The invention of next-generation sequencing techniques and the rise of meta-omics tools have advanced our knowledge on the characterisation of microbiomes involved in food fermentation and their functional roles. The contribution and potential advantages of meta-omics technologies in understanding the process of fermentation and examples of recent studies utilising multi-omics approaches for studying food-fermentation microbiomes are reviewed. Recent technological advances in studying food fermentation have provided insights into the ancient wisdom in the practice of food fermentation, such as the choice of substrates and fermentation conditions leading to desirable properties. This review aims to stimulate research on the process of fermentation and the associated microbiomes to produce fermented food efficiently and sustainably. Prospects and the usefulness of recent advances in molecular tools and integrated multi-omics approaches are highlighted.
Collapse
Affiliation(s)
- Mohamed Mannaa
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea; (M.M.); (G.H.)
- Department of Plant Pathology, Cairo University, Giza 12613, Egypt
| | - Gil Han
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea; (M.M.); (G.H.)
| | - Young-Su Seo
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea; (M.M.); (G.H.)
| | - Inmyoung Park
- School of Culinary Arts, Youngsan University, Busan 48015, Korea
| |
Collapse
|
77
|
Liu Y, Chandran Matheyambath A, Ivusic Polic I, LaPointe G. Differential fermentation of raw and processed high-amylose and waxy maize starches in the Simulator of the Human Intestinal Microbial Ecosystem (SHIME®). J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
78
|
Ballester E, Ribes S, Barat JM, Fuentes A. Spoilage yeasts in fermented vegetables: conventional and novel control strategies. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03888-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
79
|
Gao Y, Hou L, Gao J, Li D, Tian Z, Fan B, Wang F, Li S. Metabolomics Approaches for the Comprehensive Evaluation of Fermented Foods: A Review. Foods 2021; 10:2294. [PMID: 34681343 PMCID: PMC8534989 DOI: 10.3390/foods10102294] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 09/22/2021] [Indexed: 12/15/2022] Open
Abstract
Fermentation is an important process that can provide new flavors and nutritional and functional foods, to deal with changing consumer preferences. Fermented foods have complex chemical components that can modulate unique qualitative properties. Consequently, monitoring the small molecular metabolites in fermented food is critical to clarify its qualitative properties and help deliver personalized nutrition. In recent years, the application of metabolomics to nutrition research of fermented foods has expanded. In this review, we examine the application of metabolomics technologies in food, with a primary focus on the different analytical approaches suitable for food metabolomics and discuss the advantages and disadvantages of these approaches. In addition, we summarize emerging studies applying metabolomics in the comprehensive analysis of the flavor, nutrition, function, and safety of fermented foods, as well as emphasize the applicability of metabolomics in characterizing the qualitative properties of fermented foods.
Collapse
Affiliation(s)
- Yaxin Gao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China; (Y.G.); (L.H.); (J.G.); (D.L.); (Z.T.); (B.F.)
| | - Lizhen Hou
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China; (Y.G.); (L.H.); (J.G.); (D.L.); (Z.T.); (B.F.)
| | - Jie Gao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China; (Y.G.); (L.H.); (J.G.); (D.L.); (Z.T.); (B.F.)
| | - Danfeng Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China; (Y.G.); (L.H.); (J.G.); (D.L.); (Z.T.); (B.F.)
| | - Zhiliang Tian
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China; (Y.G.); (L.H.); (J.G.); (D.L.); (Z.T.); (B.F.)
| | - Bei Fan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China; (Y.G.); (L.H.); (J.G.); (D.L.); (Z.T.); (B.F.)
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fengzhong Wang
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shuying Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China; (Y.G.); (L.H.); (J.G.); (D.L.); (Z.T.); (B.F.)
| |
Collapse
|
80
|
Kim IS, Hwang CW, Yang WS, Kim CH. Multiple Antioxidative and Bioactive Molecules of Oats ( Avena sativa L.) in Human Health. Antioxidants (Basel) 2021; 10:antiox10091454. [PMID: 34573086 PMCID: PMC8471765 DOI: 10.3390/antiox10091454] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 02/06/2023] Open
Abstract
Oats (Avena sativa L.) are rich in protein, fiber, calcium, vitamins (B, C, E, and K), amino acids, and antioxidants (beta-carotene, polyphenols, chlorophyll, and flavonoids). β-glucan and avenanthramides improve the immune system, eliminate harmful substances from the body, reduce blood cholesterol, and help with dietary weight loss by enhancing the lipid profile and breaking down fat in the body. β-glucan regulates insulin secretion, preventing diabetes. Progladins also lower cholesterol levels, suppress the accumulation of triglycerides, reduce blood sugar levels, suppress inflammation, and improve skin health. Saponin-based avanacosidase and functional substances of flavone glycoside improve the immune function, control inflammation, and prevent infiltration in the skin. Moreover, lignin and phytoestrogen prevent hormone-related cancer and improve the quality of life of postmenopausal women. Sprouted oats are rich in saponarin in detoxifying the liver. The literatures have been reviewed and the recent concepts and prospects have been summarized with figures and tables. This review discusses recent trends in research on the functionality of oats rather than their nutritional value with individual immunity for self-medication. The oat and its acting components have been revisited for the future prospect and development of human healthy and functional sources.
Collapse
Affiliation(s)
- Il-Sup Kim
- Advanced Bio-Resource Research Center, Kyungpook National University, Daegu 41566, Korea;
| | - Cher-Won Hwang
- Global Leadership School, Handong Global University, Pohang 37554, Gyeongsangbuk-Do, Korea
- Correspondence: (C.-W.H.); (W.-S.Y.); (C.-H.K.)
| | - Woong-Suk Yang
- Nodaji Co., Ltd., Pohang 37927, Gyeongsangbuk-Do, Korea
- Correspondence: (C.-W.H.); (W.-S.Y.); (C.-H.K.)
| | - Cheorl-Ho Kim
- Department of Biological Sciences, SungKyunKwan University, Suwon 16419, Gyunggi-Do, Korea
- Samsung Advanced Institute of Health Science and Technology (SAIHST), Sungkyunkwan University, Seoul 06351, Korea
- Correspondence: (C.-W.H.); (W.-S.Y.); (C.-H.K.)
| |
Collapse
|
81
|
Effect of Microbial Enzymes on the Changes in the Composition and Microstructure of Hydrolysates from Poultry By-Products. FERMENTATION 2021. [DOI: 10.3390/fermentation7030190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Poultry by-products are promising for the production of protein hydrolysates by enzymatic hydrolysis. The aim of the study is to research the effect of bacterial concentrates on the changes in the amino acid composition and microstructure of poultry by-products during fermentation. Hydrolysis of the gizzards and combs was carried out with a liquid concentrate of bifidobacteria and propionic acid bacteria. As a result of microstructural study of fermented by-products, a decrease in the perception of histological dyes, poor visualization of the cell elements and blurring of the connective tissue matrix were established. During morphometric analyses, we found a reduction in the specific area of connective tissue, the diameter of collagen fibers and the thickness of muscle fibers. A significant effect of the fermentation on the particle size distribution was noted; samples hydrolyzed by microbial enzymes were characterized by a high uniformity of particle sizes and a large number of small particles. Our research revealed an increase in the concentration of free amino acids in the hydrolysates during the fermentation period. The results of biochemical and microscopic analysis confirm the good hydrolysability of hen combs and gizzards under the action of microbial enzymes.
Collapse
|
82
|
DeBEER J, Bell JW, Nolte F, Arcieri J, Correa G. Histamine Limits by Country: A Survey and Review. J Food Prot 2021; 84:1610-1628. [PMID: 33984131 DOI: 10.4315/jfp-21-129] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/07/2021] [Indexed: 11/11/2022]
Abstract
Histamine is a biogenic amine and a food safety hazard, and it is the only biogenic amine regulated by statute or hazard analysis and critical control point guidance. This article reviews the regulations for histamine levels in fish in countries around the world, including maximum limits or levels and sampling procedures in different fish preparations. The maximum histamine levels, sampling plans, and fish products are listed. The country-by-country regulations for maximum histamine acceptance levels in some food products vary by a factor of 8, from 50 ppm in some countries to a maximum of 400 ppm in other countries. For similar food products, the maximum histamine levels vary by a factor of 4 (from 50 ppm to 200 ppm) in, for example, fresh tuna. The country-by-country sampling plans vary widely as well, and these, too, are covered in detail.
Collapse
Affiliation(s)
- John DeBEER
- Chicken of the Sea International, 1630 Burgundy Road, Encinitas, California 92024, USA
| | - Jon W Bell
- National Oceanic and Atmospheric Administration (NOAA), National Seafood Inspection Laboratory, Pascagoula, Mississippi, USA
| | - Fred Nolte
- Fred Nolte Consulting, 2503 West 5th Avenue, Vancouver, British Columbia, Canada V6K 1S9
| | - Julian Arcieri
- Grupo Alimentario de Atlántico S.A. (GRALCO S.A.), Barranquilla, Colombia
| | - Gerson Correa
- Sociedad Ecuatoriana de Alimentos y Frigorificos Manta C.A. (SEAFMAN), Manta, Ecuador
| |
Collapse
|
83
|
Evaluation of Chemical Compositions, Antioxidant Capacity and Intracellular Antioxidant Action in Fish Bone Fermented with Monascus purpureus. Molecules 2021; 26:molecules26175288. [PMID: 34500721 PMCID: PMC8434028 DOI: 10.3390/molecules26175288] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 01/15/2023] Open
Abstract
Fish bones (FBs) are aquatic by-products that are sources of antioxidant-active peptides, calcium dietary supplements, and biomedical materials. Usually, fermentation of these by-products via microorganisms brings desirable changes, enhancing their value. This study investigates the value addition of FB when fermented with Monascus purpureus (MP) for different time intervals, such as 3 days (F3) and 6 days (F6). The results indicate that the soluble protein, peptide, amino acid and total phenol content, as well as the antioxidant capacity (DPPH, ABTS+ radical scavenging activity, and relative reducing power), of F3 and F6 were significantly increased after fermentation. Furthermore, the ROS contents of F3 and F6 were reduced to a greater extent than that of hydrogen peroxide (H2O2) in Clone-9 cells. The MMP integrity, as well as the SOD, CAT, and GPx activity, of F3 and F6 were also increased significantly compared to the H2O2 in Clone-9 cells. Notably, F3 and F6 displayed significant reductions in ROS content, as well as elevate, SOD activity and MMP integrity in Clone-9 cells, when compared with the native FB. These results indicate that the FBs fermented with MP for 3 days (F3), and 6 days (F6) have antioxidant capacity, with possible applications as natural food supplements.
Collapse
|
84
|
Deciphering Bacterial Community Structure, Functional Prediction and Food Safety Assessment in Fermented Fruits Using Next-Generation 16S rRNA Amplicon Sequencing. Microorganisms 2021; 9:microorganisms9081574. [PMID: 34442653 PMCID: PMC8401261 DOI: 10.3390/microorganisms9081574] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 01/02/2023] Open
Abstract
Fermented fruits and vegetables play an important role in safeguarding food security world-wide. Recently, robust sequencing-based microbial community analysis platforms have improved microbial safety assessment. This study aimed to examine the composition of bacteria and evaluate the bacterial safety of fermented fruit products using high-throughput 16S-rRNA metagenomic analysis. The operational taxonomic unit-based taxonomic classification of DNA sequences revealed 53 bacterial genera. However, the amplicon sequencing variant (ASV)-based clustering revealed 43 classifiable bacterial genera. Taxonomic classifications revealed that the abundance of Sphingomonas, which was the predominant genus in the majority of tested samples, was more than 85–90% among the total identified bacterial community in most samples. Among these identified genera, 13 low abundance genera were potential opportunistic pathogens, including Acinetobacter, Bacillus, Staphylococcus, Clostridium, Klebsiella, Mycobacterium, Ochrobactrum, Chryseobacterium, Stenotrophomonas, and Streptococcus. Of these 13 genera, 13 major opportunistic pathogenic species were validated using polymerase chain reaction. The pathogens were not detected in the samples of different stages and the final products of fermentation, except in one sample from the first stage of fermentation in which S. aureus was detected. This finding was consistent with that of ASV-based taxonomic classification according to which S. aureus was detected only in the sample from the first stage of fermentation. However, S. aureus was not significantly correlated with the human disease pathways. These results indicated that fermentation is a reliable and safe process as pathogenic bacteria were not detected in the fermentation products. The hybrid method reported in this study can be used simultaneously to evaluate the bacterial diversity, their functional predictions and safety assessment of novel fermentation products. Additionally, this hybrid method does not involve the random detection of pathogens, which can markedly decrease the time of detection and food safety verification. Furthermore, this hybrid method can be used for the quality control of products and the identification of external contamination.
Collapse
|
85
|
Gustaw K, Niedźwiedź I, Rachwał K, Polak-Berecka M. New Insight into Bacterial Interaction with the Matrix of Plant-Based Fermented Foods. Foods 2021; 10:1603. [PMID: 34359473 PMCID: PMC8304663 DOI: 10.3390/foods10071603] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/24/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022] Open
Abstract
Microorganisms have been harnessed to process raw plants into fermented foods. The adaptation to a variety of plant environments has resulted in a nearly inseparable association between the bacterial species and the plant with a characteristic chemical profile. Lactic acid bacteria, which are known for their ability to adapt to nutrient-rich niches, have altered their genomes to dominate specific habitats through gene loss or gain. Molecular biology approaches provide a deep insight into the evolutionary process in many bacteria and their adaptation to colonize the plant matrix. Knowledge of the adaptive characteristics of microorganisms facilitates an efficient use thereof in fermentation to achieve desired final product properties. With their ability to acidify the environment and degrade plant compounds enzymatically, bacteria can modify the textural and organoleptic properties of the product and increase the bioavailability of plant matrix components. This article describes selected microorganisms and their competitive survival and adaptation in fermented fruit and vegetable environments. Beneficial changes in the plant matrix caused by microbial activity and their beneficial potential for human health are discussed as well.
Collapse
Affiliation(s)
| | | | - Kamila Rachwał
- Department of Biotechnology, Microbiology and Human Nutrition, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, 8 Skromna Street, 20-704 Lublin, Poland; (K.G.); (I.N.); (M.P.-B.)
| | | |
Collapse
|
86
|
Yi C, Li Y, Zhu H, Liu Y, Quan K. Effect of Lactobacillus plantarum fermentation on the volatile flavors of mung beans. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111434] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
87
|
Tak Y, Kaur M, Amarowicz R, Bhatia S, Gautam C. Pulse Derived Bioactive Peptides as Novel Nutraceuticals: A Review. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10234-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
88
|
Kamala K, Sivaperumal P, Paray BA, Al‐Sadoon MK. Identification of haloarchaea during fermentation of
Sardinella
longiceps
for being the starter culture to accelerate fish sauce production. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15183] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Kannan Kamala
- Department of Pharmacology Saveetha Dental College and Hospitals Saveetha Institute of Medical and Technical Sciences Poonamallee High Road, Velappanchavadi Chennai Tamilnadu 600077 India
| | - Pitchiah Sivaperumal
- Department of Pharmacology Saveetha Dental College and Hospitals Saveetha Institute of Medical and Technical Sciences Poonamallee High Road, Velappanchavadi Chennai Tamilnadu 600077 India
| | - Bilal Ahamad Paray
- Department of Zoology College of Science King Saud University PO Box 2455 Riyadh 11451 Saudi Arabia
| | - Mohammad K. Al‐Sadoon
- Department of Zoology College of Science King Saud University PO Box 2455 Riyadh 11451 Saudi Arabia
| |
Collapse
|
89
|
Garrido-Galand S, Asensio-Grau A, Calvo-Lerma J, Heredia A, Andrés A. The potential of fermentation on nutritional and technological improvement of cereal and legume flours: A review. Food Res Int 2021; 145:110398. [PMID: 34112401 DOI: 10.1016/j.foodres.2021.110398] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 04/16/2021] [Accepted: 05/06/2021] [Indexed: 12/18/2022]
Abstract
Nowadays there is an increasing demand for vegetable protein sources as an alternative to that of animal origin, not only for its greater environmental sustainability but also for its relationship with lower risk of suffering cardiovascular diseases. Legumes, cereals and seeds are seen as a good proteinaceous source providing as well dietetic fiber and phytochemicals with antioxidant properties. However, their digestibility and bioavailability are limited by the presence of anti-nutritional factors (ANFs) but susceptible of being improved by soaking, cooking or fermentation. The objective of this work is to review the solid-state and submerged fermentation effect on nutritional and functional properties of legumes, cereals and seeds. The microorganisms involved (bacteria, fungus and yeasts) are able to produce enzymes that degrade ANFs giving rise to more digestible flours with a more interesting nutritional, sensorial and technological profile. Solid-state fermentation is more commonly used for its higher efficiency, accepting agro-industrial residues as substrates and its lower volume of effluents. Fermented legumes had their technological properties enhanced while an increment in antioxidant properties was characteristic of cereals. The present review highlights fermentation of cereals and legumes mainly as a key process that at industrial scale could generate new products with enhanced nutritional and technological properties.
Collapse
Affiliation(s)
- S Garrido-Galand
- Instituto Universitario de Ingeniería de Alimentos para el Desarrollo (IU-IAD), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - A Asensio-Grau
- Instituto Universitario de Ingeniería de Alimentos para el Desarrollo (IU-IAD), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - J Calvo-Lerma
- Instituto Universitario de Ingeniería de Alimentos para el Desarrollo (IU-IAD), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - A Heredia
- Instituto Universitario de Ingeniería de Alimentos para el Desarrollo (IU-IAD), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain.
| | - A Andrés
- Instituto Universitario de Ingeniería de Alimentos para el Desarrollo (IU-IAD), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| |
Collapse
|
90
|
Recent developments on production, purification and biological activity of marine peptides. Food Res Int 2021; 147:110468. [PMID: 34399466 DOI: 10.1016/j.foodres.2021.110468] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/18/2021] [Accepted: 05/23/2021] [Indexed: 12/11/2022]
Abstract
Marine peptides are one of the richest sources of structurally diverse bioactive compounds and a considerable attention has been drawn towards their production and bioactivity. However, there is a paucity in consolidation of emerging trends encompassing both production techniques and biological application. Herein, we intend to review the recent advancements on different production, purification and identification technologies used for marine peptides along with presenting their potential health benefits. Bibliometric analysis revealed a growing number of scientific publications on marine peptides (268 documents per year) with both Asia (37.2%) and Europe (33.1%) being the major contributors. Extraction and purification by ultrafiltration and enzymatic hydrolysis, followed by identification by chromatographic techniques coupled with an appropriate detector could yield a high content of peptides with improved bioactivity. Moreover, the multifunctional health benefits exerted by marine peptides including anti-microbial, antioxidant, anti-hypertension, anti-diabetes and anti-cancer along with their structure-activity relationship were presented. The future perspective on marine peptide research should focus on finding improved separation and purification technologies with enhanced selectivity and resolution for obtaining more novel peptides with high yield and low cost. In addition, by employing encapsulation strategies such as nanoemulsion and nanoliposome, oral bioavailability and bioactivity of peptides can be greatly enhanced. Also, the potential health benefits that are demonstrated by in vitro and in vivo models should be validated by conducting human clinical trials for a technology transfer from bench to bedside.
Collapse
|
91
|
Kim IS, Hwang CW, Yang WS, Kim CH. Current Perspectives on the Physiological Activities of Fermented Soybean-Derived Cheonggukjang. Int J Mol Sci 2021; 22:5746. [PMID: 34072216 PMCID: PMC8198423 DOI: 10.3390/ijms22115746] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 12/11/2022] Open
Abstract
Cheonggukjang (CGJ, fermented soybean paste), a traditional Korean fermented dish, has recently emerged as a functional food that improves blood circulation and intestinal regulation. Considering that excessive consumption of refined salt is associated with increased incidence of gastric cancer, high blood pressure, and stroke in Koreans, consuming CGJ may be desirable, as it can be made without salt, unlike other pastes. Soybeans in CGJ are fermented by Bacillus strains (B. subtilis or B. licheniformis), Lactobacillus spp., Leuconostoc spp., and Enterococcus faecium, which weaken the activity of putrefactive bacteria in the intestines, act as antibacterial agents against pathogens, and facilitate the excretion of harmful substances. Studies on CGJ have either focused on improving product quality or evaluating the bioactive substances contained in CGJ. The fermentation process of CGJ results in the production of enzymes and various physiologically active substances that are not found in raw soybeans, including dietary fiber, phospholipids, isoflavones (e.g., genistein and daidzein), phenolic acids, saponins, trypsin inhibitors, and phytic acids. These components prevent atherosclerosis, oxidative stress-mediated heart disease and inflammation, obesity, diabetes, senile dementia, cancer (e.g., breast and lung), and osteoporosis. They have also been shown to have thrombolytic, blood pressure-lowering, lipid-lowering, antimutagenic, immunostimulatory, anti-allergic, antibacterial, anti-atopic dermatitis, anti-androgenetic alopecia, and anti-asthmatic activities, as well as skin improvement properties. In this review, we examined the physiological activities of CGJ and confirmed its potential as a functional food.
Collapse
Affiliation(s)
- Il-Sup Kim
- Advanced Bio-Resource Research Center, Kyungpook National University, Daegu 41566, Korea;
| | - Cher-Won Hwang
- Global Leadership School, Handong Global University, Pohang 37554, Korea
| | | | - Cheorl-Ho Kim
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Suwon 16419, Korea
- Samsung Advanced Institute of Health Science and Technology (SAIHST), Sungkyunkwan University, Seoul 06351, Korea
| |
Collapse
|
92
|
Kewuyemi YO, Kesa H, Adebo OA. Trends in functional food development with three-dimensional (3D) food printing technology: prospects for value-added traditionally processed food products. Crit Rev Food Sci Nutr 2021; 62:7866-7904. [PMID: 33970701 DOI: 10.1080/10408398.2021.1920569] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
One of the recent, innovative, and digital food revolutions gradually gaining acceptance is three-dimensional food printing (3DFP), an additive technique used to develop products, with the possibility of obtaining foods with complex geometries. Recent interest in this technology has opened the possibilities of complementing existing processes with 3DFP for better value addition. Fermentation and malting are age-long traditional food processes known to improve food value, functionality, and beneficial health constituents. Several studies have demonstrated the applicability of 3D printing to manufacture varieties of food constructs, especially cereal-based, from root and tubers, fruit and vegetables as well as milk and milk products, with potential for much more value-added products. This review discusses the extrusion-based 3D printing of foods and the major factors affecting the process development of successful edible 3D structures. Though some novel food products have emanated from 3DFP, considering the beneficial effects of traditional food processes, particularly fermentation and malting in food, concerted efforts should also be directed toward developing 3D products using substrates from these conventional techniques. Such experimental findings will significantly promote the availability of minimally processed, affordable, and convenient meals customized in complex geometric structures with enhanced functional and nutritional values.
Collapse
Affiliation(s)
- Yusuf Olamide Kewuyemi
- School of Tourism and Hospitality, College of Business and Economics, University of Johannesburg, Gauteng, South Africa
| | - Hema Kesa
- School of Tourism and Hospitality, College of Business and Economics, University of Johannesburg, Gauteng, South Africa
| | - Oluwafemi Ayodeji Adebo
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Gauteng, South Africa
| |
Collapse
|
93
|
Mashitoa FM, Akinola SA, Manhevi VE, Garcia C, Remize F, Slabbert RM, Sivakumar D. Influence of Fermentation of Pasteurised Papaya Puree with Different Lactic Acid Bacterial Strains on Quality and Bioaccessibility of Phenolic Compounds during In Vitro Digestion. Foods 2021; 10:foods10050962. [PMID: 33924943 PMCID: PMC8145966 DOI: 10.3390/foods10050962] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/25/2021] [Accepted: 04/25/2021] [Indexed: 12/23/2022] Open
Abstract
This study describes the impact of utilising different strains of lactic acid bacteria (LAB) for the fermentation of papaya puree and their effect on the quality parameters and bioaccessibility of phenolic compounds during simulated in vitro gastrointestinal digestion. Papaya was processed into puree; pasteurised and fermented at 37 °C for 2 days; and stored for 7 days at 4 °C using LAB strains Lactiplantibacillus plantarum 75 (L75*D2; L75*D7), Weissella cibaria64 (W64*D2; W64*D7) and Leuconostoc pseudomesenteroides 56 (L56*D2; L56*D7), respectively. Non-fermented samples at 0 (PPD0), 2 (PPD2) and 7 days (PPD7) served as controls. pH was reduced with fermentation and was lowest in L56*D2 (3.03) and L75*D2 (3.16) after storage. The colour change (ΔE) increased with the fermentation and storage of purees; L75*D7 showed the highest ΔE (13.8), and its sourness reduced with storage. The fermentation by W64*D7 and L75*D7 increased the % recovery of chlorogenic, vanillic, syringic, ellagic, ferulic acids, catechin, epicatechin and quercetin in the intestinal fraction compared to the L56*D7 and PPD7. Fermentation by W64*D7 and L75*D7 significantly improved the antioxidant capacity of the dialysed fraction compared to the L56*D7 or PPD7. L56*D7-fermented papaya puree showed the highest inhibitory effect of α-glucosidase activity followed by L75*D7. L75*D7 had a significantly higher survival rate. LAB fermentation affected the bioacessibilities of phenolics and was strain dependent. This study recommends the use of Lpb. plantarum 75 for fermenting papaya puree.
Collapse
Affiliation(s)
- Florence M. Mashitoa
- Department of Horticulture, Tshwane University of Technology, Pretoria West 0001, South Africa; (F.M.M.); (R.M.S.)
| | - Stephen A. Akinola
- Phytochemical Food Network Group, Department of Crop Sciences, Pretoria West 0001, South Africa; (S.A.A.); (V.E.M.)
| | - Vimbainashe E. Manhevi
- Phytochemical Food Network Group, Department of Crop Sciences, Pretoria West 0001, South Africa; (S.A.A.); (V.E.M.)
| | - Cyrielle Garcia
- Qualisud, Univ Montpellier, Univ de La Réunion, CIRAD, Institut Agro, Avignon Université, F-34398 Montpellier, France; (C.G.); (F.R.)
| | - Fabienne Remize
- Qualisud, Univ Montpellier, Univ de La Réunion, CIRAD, Institut Agro, Avignon Université, F-34398 Montpellier, France; (C.G.); (F.R.)
| | - Retha. M. Slabbert
- Department of Horticulture, Tshwane University of Technology, Pretoria West 0001, South Africa; (F.M.M.); (R.M.S.)
| | - Dharini Sivakumar
- Phytochemical Food Network Group, Department of Crop Sciences, Pretoria West 0001, South Africa; (S.A.A.); (V.E.M.)
- Correspondence:
| |
Collapse
|
94
|
Uncovering Prospective Role and Applications of Existing and New Nutraceuticals from Bacterial, Fungal, Algal and Cyanobacterial, and Plant Sources. SUSTAINABILITY 2021. [DOI: 10.3390/su13073671] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nutraceuticals are a category of products more often associated with food but having pharmaceuticals property and characteristics. However, there is still no internationally accepted concept of these food-pharmaceutical properties, and their interpretation can differ from country to country. Nutraceuticals are used as part of dietary supplements in most countries. They can be phytochemicals which are biologically active and have health benefits. These can be supplied as a supplement and/or as a functional food to the customer. For human health and longevity, these materials are likely to play a vital role. Consumption of these items is typical without a therapeutic prescription and/or supervision by the vast majority of the public. The development of nutraceuticals can be achieved through many bioresources and organisms. This review article will discuss the current research on nutraceuticals from different biological sources and their potential use as an agent for improving human health and well-being, as well as the gaps and future perspective of research related to nutraceutical development.
Collapse
|
95
|
Tzamourani AP, Di Napoli E, Paramithiotis S, Economou‐Petrovits G, Panagiotidis S, Panagou EZ. Microbiological and physicochemical characterisation of green table olives of Halkidiki and Conservolea varieties processed by the Spanish method on industrial scale. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15000] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Aikaterini P. Tzamourani
- Laboratory of Microbiology and Biotechnology of Foods Department of Food Science and Human Nutrition School of Food and Nutritional Sciences Agricultural University of Athens Iera Odos 75 Athens11855Greece
| | - Elisa Di Napoli
- Department of Agricultural, Forest and Food Sciences University of Torino Largo Paolo Braccini 2 Grugliasco, Torino10095Italy
| | - Spiros Paramithiotis
- Laboratory of Food Quality Control and Hygiene Department of Food Science and Human Nutrition School of Food and Nutritional Sciences Agricultural University of Athens Athens Greece
| | | | - Stavros Panagiotidis
- PELOPAC S.A. Block 38, NB1A Street, Thessaloniki Industrial Area Sindos57022Greece
| | - Efstathios Z. Panagou
- Laboratory of Microbiology and Biotechnology of Foods Department of Food Science and Human Nutrition School of Food and Nutritional Sciences Agricultural University of Athens Iera Odos 75 Athens11855Greece
| |
Collapse
|
96
|
Combination of Extrusion and Fermentation with Lactobacillus plantarum and L. uvarum Strains for Improving the Safety Characteristics of Wheat Bran. Toxins (Basel) 2021; 13:toxins13020163. [PMID: 33669853 PMCID: PMC7923204 DOI: 10.3390/toxins13020163] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 12/24/2022] Open
Abstract
Processed wheat bran (W) is of great importance for food and feed. Consequently, the biosafety of W should be evaluated and improved with valorisation strategies. This study tested a design combining extrusion (at temperature of 115 and 130 °C; screw speeds of 16, 20, and 25 rpm) and fermentation with Lactobacillus plantarum and L. uvarum strains for the valorisation of W to provide safer food and feed stock. The influence of different treatments on biogenic amine formation, mycotoxin content, and free amino acids, as well as acidity, microbiological parameters, and sugar concentration, were analysed. This research showed that a combination of extrusion and fermentation with selected strains can change several aspects of W characteristics. There was a significant effect of applied treatments on acidity and the microbiological parameters of W, as well as biogenic amines content. The lowest total mycotoxin concentration (29.8 µg/kg) was found in extruded (130 °C; 25 rpm) and fermented with L. uvarum sample. Finally, the combination of the abovementioned treatments can be confirmed as a prospective innovative pre-treatment for W, capable of potentially enhancing their safety characteristics and composition.
Collapse
|
97
|
Yeast Fermentation at Low Temperatures: Adaptation to Changing Environmental Conditions and Formation of Volatile Compounds. Molecules 2021; 26:molecules26041035. [PMID: 33669237 PMCID: PMC7919833 DOI: 10.3390/molecules26041035] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 12/12/2022] Open
Abstract
Yeast plays a key role in the production of fermented foods and beverages, such as bread, wine, and other alcoholic beverages. They are able to produce and release from the fermentation environment large numbers of volatile organic compounds (VOCs). This is the reason for the great interest in the possibility of adapting these microorganisms to fermentation at reduced temperatures. By doing this, it would be possible to obtain better sensory profiles of the final products. It can reduce the addition of artificial flavors and enhancements to food products and influence other important factors of fermented food production. Here, we reviewed the genetic and physiological mechanisms by which yeasts adapt to low temperatures. Next, we discussed the importance of VOCs for the food industry, their biosynthesis, and the most common volatiles in fermented foods and described the beneficial impact of decreased temperature as a factor that contributes to improving the composition of the sensory profiles of fermented foods.
Collapse
|
98
|
Liu X, Qian M, Shen Y, Qin X, Huang H, Yang H, He Y, Bai W. An high-throughput sequencing approach to the preliminary analysis of bacterial communities associated with changes in amino acid nitrogen, organic acid and reducing sugar contents during soy sauce fermentation. Food Chem 2021; 349:129131. [PMID: 33581434 DOI: 10.1016/j.foodchem.2021.129131] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/25/2022]
Abstract
Soy sauce is a traditional fermented soy food for enhancing the umami taste in Asian cuisines. In this study, 16S rRNA gene throughput sequencing analysis showed the bacterial communities and the changes in soy sauce during fermentation. Weissella, Bacillus and Lactococcus were the most abundant at genus level. The uncultured bacterium Weissella and Lactococcus had relatively high abundance at species level. Alpha diversity analysis indicated the bacterial community diversity increased at fermentation initiation, while decreased as fermentation progressed. Based on beta-diversity analysis, four clusters including cluster I (time point A-F), cluster II (G,H), cluster III (I,J) and cluster IV(K) were distinctly separated, indicating the fermentation time significantly affected bacterial community diversity. Also, close associations were found between the bacterial communities in soy sauce and its amino acid nitrogen, organic acid and reducing sugar contents during fermentation. Therefore, it will provide important information for optimization of the soy sauce production process.
Collapse
Affiliation(s)
- Xiaoyan Liu
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China; Key Laboratory of Cantonese Traditional Food Processing and Safety Control of Guangzhou, Guangzhou, China
| | - Min Qian
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China; Key Laboratory of Cantonese Traditional Food Processing and Safety Control of Guangzhou, Guangzhou, China
| | - Yixiao Shen
- College of Food Science Shenyang Agricultural University, Shenyang, China
| | - Xuan Qin
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Hancong Huang
- Guangzhou Rufeng Fruit Seasoning Food Co., Ltd., Guangzhou, China
| | - Hong Yang
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yilong He
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Weidong Bai
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China; Key Laboratory of Cantonese Traditional Food Processing and Safety Control of Guangzhou, Guangzhou, China.
| |
Collapse
|
99
|
Probiotic properties of lactic acid bacteria isolated from traditionally prepared dry starters of the Eastern Himalayas. World J Microbiol Biotechnol 2021; 37:7. [PMID: 33392833 DOI: 10.1007/s11274-020-02975-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/01/2020] [Indexed: 12/13/2022]
Abstract
The Himalayan people prepare dry and oval to round-shaped starter cultures to ferment cereals into mild-alcoholic beverages, which contain lactic acid bacteria (LAB) as one of the essential microbiota. There is no report on probiotic characters of LAB isolated from dry starters. Hence, we screened the probiotic and some functional properties of 37 LAB strains isolated from dry starters of the Eastern Himalayas viz. marcha, phab, paa, pee and phut. About 38% of the LAB strains showed high survival rate (> 50%) at pH 3 and 0.3% bile salts. Enterococcus durans BPB21 and SMB7 showed the highest hydrophobicity percentage of 98%. E. durans DMB4 and SMB7 showed maximum cholesterol assimilation activity. About 65% of the LAB strains showed the ability to produce β galactosidase. Majority of the strains showed phytase activity, whereas none of the strain showed amylase activity. About 86% of LAB strains showed an optimum tolerance of 10% ethanol concentration. Genetic screening of some probiotic and functional marker genes have also been analysed. The occurrence of clp L gene, agu A gene (survival of gastrointestinal tract conditions), apf, mub1 and map A gene (adhesion genes) was higher compared to other genes. The occurrence of bsh gene (bile salt tolerance) was detected in Pediococcus pentosaceus SMB13-1 and Enterococcus faecium BPB11. Gene ped B for pediocin with amplicon size of 375 bp was detected in E. durans DMB13 and Pediococcus acidilactici AKB3. Detection of nutritional marker gene rib A and fol P in some strains showed the potential ability to synthesize riboflavin and folic acid. LAB with probiotic and functional properties may be explored for food industry in future.
Collapse
|
100
|
Zhang M, Fan S, Hao M, Hou H, Zheng H, Darwesh OM. Improving the production of fungal exopolysaccharides with application of repeated batch fermentation technology coupling with foam separation in the presence of surfactant. Process Biochem 2021. [DOI: 10.1016/j.procbio.2020.06.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|