51
|
Rodriguez-Carres M, White G, Tsuchiya D, Taga M, VanEtten HD. The supernumerary chromosome of Nectria haematococca that carries pea-pathogenicity-related genes also carries a trait for pea rhizosphere competitiveness. Appl Environ Microbiol 2008; 74:3849-56. [PMID: 18408061 PMCID: PMC2446569 DOI: 10.1128/aem.00351-08] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Accepted: 04/07/2008] [Indexed: 11/20/2022] Open
Abstract
Fungi are found in a wide range of environments, and the ecological and host diversity of the fungus Nectria haematococca has been shown to be due in part to unique genes on different supernumerary chromosomes. These chromosomes have been called "conditionally dispensable" (CD) since they are not needed for axenic growth but are important for expanding the host range of individual isolates. From a biological perspective, the CD chromosomes can be compared to bacterial plasmids that carry unique genes that can define the habits of these microorganisms. The current study establishes that the N. haematococca PDA1-CD chromosome, which contains the genes for pea pathogenicity (PEP cluster) on pea roots, also carries a gene(s) for the utilization of homoserine, a compound found in large amounts in pea root exudates. Competition studies demonstrate that an isolate that lacks the PEP cluster but carries a portion of the CD chromosome which includes the homoserine utilization (HUT) gene(s) is more competitive in the pea rhizosphere than an isolate without the CD chromosome.
Collapse
Affiliation(s)
- M Rodriguez-Carres
- Division of Plant Pathology and Microbiology, Department of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA
| | | | | | | | | |
Collapse
|
52
|
Kuo CH, Kissinger JC. Consistent and contrasting properties of lineage-specific genes in the apicomplexan parasites Plasmodium and Theileria. BMC Evol Biol 2008; 8:108. [PMID: 18405380 PMCID: PMC2330040 DOI: 10.1186/1471-2148-8-108] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2007] [Accepted: 04/11/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Lineage-specific genes, the genes that are restricted to a limited subset of related organisms, may be important in adaptation. In parasitic organisms, lineage-specific gene products are possible targets for vaccine development or therapeutics when these genes are absent from the host genome. RESULTS In this study, we utilized comparative approaches based on a phylogenetic framework to characterize lineage-specific genes in the parasitic protozoan phylum Apicomplexa. Genes from species in two major apicomplexan genera, Plasmodium and Theileria, were categorized into six levels of lineage specificity based on a nine-species phylogeny. In both genera, lineage-specific genes tend to have a higher level of sequence divergence among sister species. In addition, species-specific genes possess a strong codon usage bias compared to other genes in the genome. We found that a large number of genus- or species-specific genes are putative surface antigens that may be involved in host-parasite interactions. Interestingly, the two parasite lineages exhibit several notable differences. In Plasmodium, the (G + C) content at the third codon position increases with lineage specificity while Theileria shows the opposite trend. Surface antigens in Plasmodium are species-specific and mainly located in sub-telomeric regions. In contrast, surface antigens in Theileria are conserved at the genus level and distributed across the entire lengths of chromosomes. CONCLUSION Our results provide further support for the model that gene duplication followed by rapid divergence is a major mechanism for generating lineage-specific genes. The result that many lineage-specific genes are putative surface antigens supports the hypothesis that lineage-specific genes could be important in parasite adaptation. The contrasting properties between the lineage-specific genes in two major apicomplexan genera indicate that the mechanisms of generating lineage-specific genes and the subsequent evolutionary fates can differ between related parasite lineages. Future studies that focus on improving functional annotation of parasite genomes and collection of genetic variation data at within- and between-species levels will be important in facilitating our understanding of parasite adaptation and natural selection.
Collapse
Affiliation(s)
- Chih-Horng Kuo
- Department of Genetics, University of Georgia, Athens, GA 30602, USA.
| | | |
Collapse
|
53
|
Altered patterns of gene duplication and differential gene gain and loss in fungal pathogens. BMC Genomics 2008; 9:147. [PMID: 18373860 PMCID: PMC2330156 DOI: 10.1186/1471-2164-9-147] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Accepted: 03/28/2008] [Indexed: 11/21/2022] Open
Abstract
Background Duplication, followed by fixation or random loss of novel genes, contributes to genome evolution. Particular outcomes of duplication events are possibly associated with pathogenic life histories in fungi. To date, differential gene gain and loss have not been studied at genomic scales in fungal pathogens, despite this phenomenon's known importance in virulence in bacteria and viruses. Results To determine if patterns of gene duplication differed between pathogens and non-pathogens, we identified gene families across nine euascomycete and two basidiomycete species. Gene family size distributions were fit to power laws to compare gene duplication trends in pathogens versus non-pathogens. Fungal phytopathogens showed globally altered patterns of gene duplication, as indicated by differences in gene family size distribution. We also identified sixteen examples of gene family expansion and five instances of gene family contraction in pathogenic lineages. Expanded gene families included those predicted to be important in melanin biosynthesis, host cell wall degradation and transport functions. Contracted families included those encoding genes involved in toxin production, genes with oxidoreductase activity, as well as subunits of the vacuolar ATPase complex. Surveys of the functional distribution of gene duplicates indicated that pathogens show enrichment for gene duplicates associated with receptor and hydrolase activities, while euascomycete pathogens appeared to have not only these differences, but also significantly more duplicates associated with regulatory and carbohydrate binding functions. Conclusion Differences in the overall levels of gene duplication in phytopathogenic species versus non-pathogenic relatives implicate gene inventory flux as an important virulence-associated process in fungi. We hypothesize that the observed patterns of gene duplicate enrichment, gene family expansion and contraction reflect adaptation within pathogenic life histories. These adaptations were likely shaped by ancient, as well as contemporary, intimate associations with monocot hosts.
Collapse
|
54
|
Hershberg R, Tang H, Petrov DA. Reduced selection leads to accelerated gene loss in Shigella. Genome Biol 2008; 8:R164. [PMID: 17686180 PMCID: PMC2374995 DOI: 10.1186/gb-2007-8-8-r164] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Revised: 07/22/2007] [Accepted: 08/08/2007] [Indexed: 11/25/2022] Open
Abstract
The rate of gene loss was studied in the facultative pathogens, E. coli and Shigella, and was found to be greater in the more niche-limited Shigella. This is demonstrated to be due to a genome-wide reduction in the effectiveness of selection. Background Obligate pathogenic bacteria lose more genes relative to facultative pathogens, which, in turn, lose more genes than free-living bacteria. It was suggested that the increased gene loss in obligate pathogens may be due to a reduction in the effectiveness of purifying selection. Less attention has been given to the causes of increased gene loss in facultative pathogens. Results We examined in detail the rate of gene loss in two groups of facultative pathogenic bacteria: pathogenic Escherichia coli, and Shigella. We show that Shigella strains are losing genes at an accelerated rate relative to pathogenic E. coli. We demonstrate that a genome-wide reduction in the effectiveness of selection contributes to the observed increase in the rate of gene loss in Shigella. Conclusion When compared with their closely related pathogenic E. coli relatives, the more niche-limited Shigella strains appear to be losing genes at a significantly accelerated rate. A genome-wide reduction in the effectiveness of purifying selection plays a role in creating this observed difference. Our results demonstrate that differences in the effectiveness of selection contribute to differences in rate of gene loss in facultative pathogenic bacteria. We discuss how the lifestyle and pathogenicity of Shigella may alter the effectiveness of selection, thus influencing the rate of gene loss.
Collapse
Affiliation(s)
- Ruth Hershberg
- Department of Biological Sciences, Stanford University, Serra Mall, Stanford, CA 94305, USA
| | - Hua Tang
- Department of Genetics, Stanford University, Serra Mall, Stanford, CA 94305, USA
| | - Dmitri A Petrov
- Department of Biological Sciences, Stanford University, Serra Mall, Stanford, CA 94305, USA
| |
Collapse
|
55
|
Clark CG, Alsmark UCM, Tazreiter M, Saito-Nakano Y, Ali V, Marion S, Weber C, Mukherjee C, Bruchhaus I, Tannich E, Leippe M, Sicheritz-Ponten T, Foster PG, Samuelson J, Noël CJ, Hirt RP, Embley TM, Gilchrist CA, Mann BJ, Singh U, Ackers JP, Bhattacharya S, Bhattacharya A, Lohia A, Guillén N, Duchêne M, Nozaki T, Hall N. Structure and content of the Entamoeba histolytica genome. ADVANCES IN PARASITOLOGY 2008; 65:51-190. [PMID: 18063096 DOI: 10.1016/s0065-308x(07)65002-7] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The intestinal parasite Entamoeba histolytica is one of the first protists for which a draft genome sequence has been published. Although the genome is still incomplete, it is unlikely that many genes are missing from the list of those already identified. In this chapter we summarise the features of the genome as they are currently understood and provide previously unpublished analyses of many of the genes.
Collapse
Affiliation(s)
- C G Clark
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Molecular analysis as an aid to assess the public health risk of non-O157 Shiga toxin-producing Escherichia coli strains. Appl Environ Microbiol 2008; 74:2153-60. [PMID: 18245257 DOI: 10.1128/aem.02566-07] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) strains are commensal bacteria in cattle with high potential for environmental and zoonotic transmission to humans. Although O157:H7 is the most common STEC serotype, there is growing concern over the emergence of more than 200 highly virulent non-O157 STEC serotypes that are globally distributed, several of which are associated with outbreaks and/or severe human illness such as hemolytic-uremic syndrome (HUS) and hemorrhagic colitis. At present, the underlying genetic basis of virulence potential in non-O157 STEC is unknown, although horizontal gene transfer and the acquisition of new pathogenicity islands are an expected origin. We used seropathotype classification as a framework to identify genetic elements that distinguish non-O157 STEC strains posing a serious risk to humans from STEC strains that are not associated with severe and epidemic disease. We report the identification of three genomic islands encoding non-LEE effector (nle) genes and 14 individual nle genes in non-O157 STEC strains that correlate independently with outbreak and HUS potential in humans. The implications for transmissible zoonotic spread and public health are discussed. These results and methods offer a molecular risk assessment strategy to rapidly recognize and respond to non-O157 STEC strains from environmental and animal sources that might pose serious public health risks to humans.
Collapse
|
57
|
Zaghloul L, Tang C, Chin HY, Bek EJ, Lan R, Tanaka MM. The distribution of insertion sequences in the genome ofShigella flexneristrain 2457T. FEMS Microbiol Lett 2007; 277:197-204. [DOI: 10.1111/j.1574-6968.2007.00957.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
58
|
Belbahri L, Calmin G, Mauch F, Andersson JO. Evolution of the cutinase gene family: evidence for lateral gene transfer of a candidate Phytophthora virulence factor. Gene 2007; 408:1-8. [PMID: 18024004 DOI: 10.1016/j.gene.2007.10.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Revised: 10/04/2007] [Accepted: 10/08/2007] [Indexed: 10/22/2022]
Abstract
Lateral gene transfer (LGT) can facilitate the acquisition of new functions in recipient lineages, which may enable them to colonize new environments. Several recent publications have shown that gene transfer between prokaryotes and eukaryotes occurs with appreciable frequency. Here we present a study of interdomain gene transfer of cutinases -- well documented virulence factors in fungi -- between eukaryotic plant pathogens Phytophthora species and prokaryotic bacterial lineages. Two putative cutinase genes were cloned from Phytophthora brassicae and Northern blotting experiments showed that these genes are expressed early during the infection of the host Arabidopsis thaliana and induced during cyst germination of the pathogen. Analysis of the gene organisation of this gene family in Phytophthora ramorum and P. sojae showed three and ten copies in tight succession within a region of 5 and 25 kb, respectively, probably indicating a recent expansion in Phytophthora lineages by gene duplications. Bioinformatic analyses identified orthologues only in three genera of Actinobacteria, and in two distantly related eukaryotic groups: oomycetes and fungi. Together with phylogenetic analyses this limited distribution of the gene in the tree of life strongly support a scenario where cutinase genes originated after the origin of land plants in a microbial lineage living in proximity of plants and subsequently were transferred between distantly related plant-degrading microbes. More precisely, a cutinase gene was likely acquired by an ancestor of P. brassicae, P. sojae, P. infestans and P. ramorum, possibly from an actinobacterial source, suggesting that gene transfer might be an important mechanism in the evolution of their virulence. These findings could indeed provide an interesting model system to study acquisition of virulence factors in these important plant pathogens.
Collapse
Affiliation(s)
- Lassaad Belbahri
- Laboratory of Applied Genetics, University of Applied Sciences of Western Switzerland, Jussy, Switzerland.
| | | | | | | |
Collapse
|
59
|
Dailidiene D, Tan S, Ogura K, Zhang M, Lee AH, Severinov K, Berg DE. Urea sensitization caused by separation of Helicobacter pylori RNA polymerase beta and beta' subunits. Helicobacter 2007; 12:103-11. [PMID: 17309746 DOI: 10.1111/j.1523-5378.2007.00479.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND The beta and beta' subunits of RNA polymerase are fused in all Helicobacters, but separate in most other taxa. Prior studies had shown that this fusion is not essential for viability in culture or in vivo, but had not tested it for potentially important quantitative effects on phenotype. METHODS The effect of separating rpoB and rpoC sequences on Helicobacter pylori growth was tested in culture and during mouse infection. RESULTS Derivatives of strains X47 and SS1 carrying this "rpoBCsplit" allele colonized mice less vigorously than their wild-type parents in competition tests. With X47 rpoBCsplit, this reduced vigor was evident in wild-type mice, whereas with SS1 rpoBCsplit it was seen only in cytokine IL-10- and IL-12beta-deficient mice. In culture, the rpoBCsplit allele sensitized each of four strains tested (X47, SS1, 88-3887, and AM1) to urea, a metabolite that is secreted into the gastric mucosa; urea sensitization was more severe in X47 than in SS1 genetic backgrounds. The rpoBCsplit allele also caused poorer growth on Ham's F12 agar, a nutritionally limiting medium, but had little effect on sensitivity to mild acidity. CONCLUSIONS H. pylori's normal RNA polymerase beta-beta' subunit fusion contributes quantitatively to fitness. We propose that urea, although important to H. pylori in vivo, also be considered inhibitory; and that H. pylori's natural beta-beta' subunit fusion helps it cope with urea exposure.
Collapse
Affiliation(s)
- Daiva Dailidiene
- Department of Molecular Microbiology, Washington University Medical School, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | |
Collapse
|
60
|
Andersson JO, Sjögren ÅM, Horner DS, Murphy CA, Dyal PL, Svärd SG, Logsdon JM, Ragan MA, Hirt RP, Roger AJ. A genomic survey of the fish parasite Spironucleus salmonicida indicates genomic plasticity among diplomonads and significant lateral gene transfer in eukaryote genome evolution. BMC Genomics 2007; 8:51. [PMID: 17298675 PMCID: PMC1805757 DOI: 10.1186/1471-2164-8-51] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Accepted: 02/14/2007] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Comparative genomic studies of the mitochondrion-lacking protist group Diplomonadida (diplomonads) has been lacking, although Giardia lamblia has been intensively studied. We have performed a sequence survey project resulting in 2341 expressed sequence tags (EST) corresponding to 853 unique clones, 5275 genome survey sequences (GSS), and eleven finished contigs from the diplomonad fish parasite Spironucleus salmonicida (previously described as S. barkhanus). RESULTS The analyses revealed a compact genome with few, if any, introns and very short 3' untranslated regions. Strikingly different patterns of codon usage were observed in genes corresponding to frequently sampled ESTs versus genes poorly sampled, indicating that translational selection is influencing the codon usage of highly expressed genes. Rigorous phylogenomic analyses identified 84 genes--mostly encoding metabolic proteins--that have been acquired by diplomonads or their relatively close ancestors via lateral gene transfer (LGT). Although most acquisitions were from prokaryotes, more than a dozen represent likely transfers of genes between eukaryotic lineages. Many genes that provide novel insights into the genetic basis of the biology and pathogenicity of this parasitic protist were identified including 149 that putatively encode variant-surface cysteine-rich proteins which are candidate virulence factors. A number of genomic properties that distinguish S. salmonicida from its human parasitic relative G. lamblia were identified such as nineteen putative lineage-specific gene acquisitions, distinct mutational biases and codon usage and distinct polyadenylation signals. CONCLUSION Our results highlight the power of comparative genomic studies to yield insights into the biology of parasitic protists and the evolution of their genomes, and suggest that genetic exchange between distantly-related protist lineages may be occurring at an appreciable rate in eukaryote genome evolution.
Collapse
Affiliation(s)
- Jan O Andersson
- Institute of Cell and Molecular Biology, Uppsala University, Biomedical Center, Uppsala, Sweden
| | - Åsa M Sjögren
- The Canadian Institute for Advanced Research, Program in Evolutionary Biology, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Microbiology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - David S Horner
- Department of Zoology, The Natural History Museum, London, UK
- Dipartimento di Scienze Biomolecolare e Biotecnologie, University of Milan, Milan, Italy
| | - Colleen A Murphy
- Institute for Marine Biosciences, National Research Council of Canada, Halifax, Nova Scotia, Canada
| | - Patricia L Dyal
- Department of Zoology, The Natural History Museum, London, UK
| | - Staffan G Svärd
- Institute of Cell and Molecular Biology, Uppsala University, Biomedical Center, Uppsala, Sweden
| | - John M Logsdon
- Roy J. Carver Center for Comparative Genomics, Department of Biological Sciences, University of Iowa, Iowa City, USA
| | - Mark A Ragan
- Institute for Marine Biosciences, National Research Council of Canada, Halifax, Nova Scotia, Canada
- ARC Centre in Bioinformatics, and Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Robert P Hirt
- Department of Zoology, The Natural History Museum, London, UK
- School of Biology, The Devonshire building, The University of Newcastle upon Tyne, UK
| | - Andrew J Roger
- The Canadian Institute for Advanced Research, Program in Evolutionary Biology, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
61
|
Heinemann JA, Rosén H, Savill M, Burgos-Caraballo S, Toranzos GA. Environment arrays: a possible approach for predicting changes in waterborne bacterial disease potential. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2006; 40:7150-6. [PMID: 17180961 DOI: 10.1021/es060331x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Current molecular techniques for identifying bacteria in water have proven useful, but they are not reliably predictive of impending disease outbreaks. Genomics-based approaches will help to detect the presence of pathogens quickly and well before they grow into a population that poses a risk to public health. We suggest that genomics is only one component of the toolbox that will be needed to identify emerging waterborne threats. We propose a methodology beyond genomics, based on activity in the mobile genome. This approach makes use of a new device called an environment array. The array will depend upon the same research necessary for genomics-based detection, but will not require an a priori knowledge of virulence genes. Environment arrays are assembled from molecular profiles of the infectious elements that transfer between bacteria. The advantage of the array is that it monitors the activity of the mobile genome, rather than the presence of particular DNA sequences. Environmental arrays should thus be many times more sensitive than traditional hybridization or PCR-based techniques that target already-known DNA sequences. Mobile elements are known to respond to new environmental conditions that may correlate with a chemical contamination or the bloom of bacterial pathogens, potentially allowing for a much broader application in detecting unknown or unanticipated biological and chemical contaminants.
Collapse
Affiliation(s)
- Jack A Heinemann
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand.
| | | | | | | | | |
Collapse
|
62
|
Lucchini S, Rowley G, Goldberg MD, Hurd D, Harrison M, Hinton JCD. H-NS mediates the silencing of laterally acquired genes in bacteria. PLoS Pathog 2006; 2:e81. [PMID: 16933988 PMCID: PMC1550270 DOI: 10.1371/journal.ppat.0020081] [Citation(s) in RCA: 397] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Accepted: 07/06/2006] [Indexed: 11/18/2022] Open
Abstract
Histone-like nucleoid structuring protein (H-NS) is a modular protein that is associated with the bacterial nucleoid. We used chromatin immunoprecipitation to determine the binding sites of H-NS and RNA polymerase on the Salmonella enterica serovar Typhimurium chromosome. We found that H-NS does not bind to actively transcribed genes and does not co-localize with RNA polymerase. This shows that H-NS principally silences gene expression by restricting the access of RNA polymerase to the DNA. H-NS had previously been shown to preferentially bind to curved DNA in vitro. In fact, at the genomic level we discovered that the level of H-NS binding correlates better with the AT-content of DNA. This is likely to have evolutionary consequences because we show that H-NS binds to many Salmonella genes acquired by lateral gene transfer, and functions as a gene silencer. The removal of H-NS from the cell causes un-controlled expression of several Salmonella pathogenicity islands, and we demonstrate that this has deleterious consequences for bacterial fitness. Our discovery of this novel role for H-NS may have implications for the acquisition of foreign genes by enteric bacteria. In recent decades, gene silencing has been well-characterised in plants and animals, and involves the prevention of transcription by DNA-methylation and histone-modification, or interference with translation by small RNA molecules. This issue of PLoS Pathogens reports the discovery that global gene silencing also occurs in bacteria. The novel mechanism is mediated by the highly abundant histone-like nucleoid structuring protein (H-NS), which blocks the expression of 254 genes in wild-type Salmonella. Many of these genes were acquired through horizontal gene transfer, including pathogenicity islands, and these are silenced by the binding of H-NS to AT-rich chromosomal regions. The study reveals that H-NS prevents the uncontrolled transcription of genes within pathogenicity islands to ensure that bacterial fitness is maintained. It is suggested that H-NS plays a role in bacterial evolution by influencing both the acquisition and maintenance of foreign DNA.
Collapse
Affiliation(s)
- Sacha Lucchini
- Molecular Microbiology Group, Institute of Food Research, Colney, Norwich, United Kingdom
| | - Gary Rowley
- Molecular Microbiology Group, Institute of Food Research, Colney, Norwich, United Kingdom
| | - Martin D Goldberg
- Molecular Microbiology Group, Institute of Food Research, Colney, Norwich, United Kingdom
| | - Douglas Hurd
- Oxford Gene Technology, Yarnton, Oxford, United Kingdom
| | | | - Jay C. D Hinton
- Molecular Microbiology Group, Institute of Food Research, Colney, Norwich, United Kingdom
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
63
|
Vickers TJ, Orsomando G, de la Garza RD, Scott DA, Kang SO, Hanson AD, Beverley SM. Biochemical and genetic analysis of methylenetetrahydrofolate reductase in Leishmania metabolism and virulence. J Biol Chem 2006; 281:38150-8. [PMID: 17032644 DOI: 10.1074/jbc.m608387200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Methylenetetrahydrofolate reductase (MTHFR; EC 1.5.1.20) is the sole enzyme responsible for generation of 5-methyltetrahydrofolate, which is required for methionine synthesis and provision of methyl groups via S-adenosylmethionine. Genome analysis showed that Leishmania species, unlike Trypanosoma brucei and Trypanosoma cruzi, contain genes encoding MTHFR and two distinct methionine synthases. Leishmania MTHFR differed from those in other eukaryotes by the absence of a C-terminal regulatory domain. L. major MTHFR was expressed in yeast and recombinant enzyme was produced in Escherichia coli. MTHFR was not inhibited by S-adenosylmethionine and, uniquely among folate-metabolizing enzymes, showed dual-cofactor specificity with NADH and NADPH under physiological conditions. MTHFR null mutants (mthfr(-)) lacked 5-methyltetrahydrofolate, the most abundant intracellular folate, and could not utilize exogenous homocysteine for growth. Under conditions of methionine limitation mthfr(-) mutant cells grew poorly, whereas their growth was normal in standard culture media. Neither in vitro MTHFR activity nor the growth of mthfr(-) mutants or MTHFR overexpressors were differentially affected by antifolates known to inhibit parasite growth via targets beyond dihydrofolate reductase and pteridine reductase 1. In a mouse model of infection mthfr(-) mutants showed good infectivity and virulence, indicating that sufficient methionine is available within the parasitophorous vacuole to meet the needs of the parasite.
Collapse
Affiliation(s)
- Tim J Vickers
- Department of Molecular Microbiology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | | | | | | | | | | | | |
Collapse
|
64
|
Abstract
Oomycetes and filamentous parasitic fungi are plant pathogens that have undergone convergent evolution. A recent study has shown that these microbial eukaryotes have exchanged metabolic genes, which might explain some of their phenotypic similarities.
Collapse
Affiliation(s)
- Jan O Andersson
- Institute of Cell and Molecular Biology, Uppsala University, Biomedical Center, Box 596, S-751 24 Uppsala, Sweden.
| |
Collapse
|
65
|
Eppinger M, Baar C, Linz B, Raddatz G, Lanz C, Keller H, Morelli G, Gressmann H, Achtman M, Schuster SC. Who ate whom? Adaptive Helicobacter genomic changes that accompanied a host jump from early humans to large felines. PLoS Genet 2006; 2:e120. [PMID: 16789826 PMCID: PMC1523251 DOI: 10.1371/journal.pgen.0020120] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2006] [Accepted: 06/15/2006] [Indexed: 01/10/2023] Open
Abstract
Helicobacter pylori infection of humans is so old that its population genetic structure reflects that of ancient human migrations. A closely related species, Helicobacter acinonychis, is specific for large felines, including cheetahs, lions, and tigers, whereas hosts more closely related to humans harbor more distantly related Helicobacter species. This observation suggests a jump between host species. But who ate whom and when did it happen? In order to resolve this question, we determined the genomic sequence of H. acinonychis strain Sheeba and compared it to genomes from H. pylori. The conserved core genes between the genomes are so similar that the host jump probably occurred within the last 200,000 (range 50,000-400,000) years. However, the Sheeba genome also possesses unique features that indicate the direction of the host jump, namely from early humans to cats. Sheeba possesses an unusually large number of highly fragmented genes, many encoding outer membrane proteins, which may have been destroyed in order to bypass deleterious responses from the feline host immune system. In addition, the few Sheeba-specific genes that were found include a cluster of genes encoding sialylation of the bacterial cell surface carbohydrates, which were imported by horizontal genetic exchange and might also help to evade host immune defenses. These results provide a genomic basis for elucidating molecular events that allow bacteria to adapt to novel animal hosts.
Collapse
Affiliation(s)
- Mark Eppinger
- Department of Biochemistry and Molecular Biology, Center for Comparative Genomics and Bioinformatics, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Claudia Baar
- Department of Biochemistry and Molecular Biology, Center for Comparative Genomics and Bioinformatics, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Bodo Linz
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Günter Raddatz
- Genomics Group, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Christa Lanz
- Genomics Group, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Heike Keller
- Genomics Group, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Giovanna Morelli
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Helga Gressmann
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Mark Achtman
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Stephan C Schuster
- Department of Biochemistry and Molecular Biology, Center for Comparative Genomics and Bioinformatics, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Genomics Group, Max Planck Institute for Developmental Biology, Tübingen, Germany
- Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
66
|
Eppinger M, Baar C, Linz B, Raddatz G, Lanz C, Keller H, Morelli G, Gressmann H, Achtman M, Schuster SC. Who ate whom? Adaptive Helicobacter genomic changes that accompanied a host jump from early humans to large felines. PLoS Genet 2006. [PMID: 16789826 DOI: 10.1371/journal.pgen.0020120.eor] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Helicobacter pylori infection of humans is so old that its population genetic structure reflects that of ancient human migrations. A closely related species, Helicobacter acinonychis, is specific for large felines, including cheetahs, lions, and tigers, whereas hosts more closely related to humans harbor more distantly related Helicobacter species. This observation suggests a jump between host species. But who ate whom and when did it happen? In order to resolve this question, we determined the genomic sequence of H. acinonychis strain Sheeba and compared it to genomes from H. pylori. The conserved core genes between the genomes are so similar that the host jump probably occurred within the last 200,000 (range 50,000-400,000) years. However, the Sheeba genome also possesses unique features that indicate the direction of the host jump, namely from early humans to cats. Sheeba possesses an unusually large number of highly fragmented genes, many encoding outer membrane proteins, which may have been destroyed in order to bypass deleterious responses from the feline host immune system. In addition, the few Sheeba-specific genes that were found include a cluster of genes encoding sialylation of the bacterial cell surface carbohydrates, which were imported by horizontal genetic exchange and might also help to evade host immune defenses. These results provide a genomic basis for elucidating molecular events that allow bacteria to adapt to novel animal hosts.
Collapse
Affiliation(s)
- Mark Eppinger
- Department of Biochemistry and Molecular Biology, Center for Comparative Genomics and Bioinformatics, Pennsylvania State University, University Park, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|