51
|
Włodarski A, Strycharz J, Wróblewski A, Kasznicki J, Drzewoski J, Śliwińska A. The Role of microRNAs in Metabolic Syndrome-Related Oxidative Stress. Int J Mol Sci 2020; 21:ijms21186902. [PMID: 32962281 PMCID: PMC7555602 DOI: 10.3390/ijms21186902] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023] Open
Abstract
Oxidative stress (OxS) is the cause and the consequence of metabolic syndrome (MetS), the incidence and economic burden of which is increasing each year. OxS triggers the dysregulation of signaling pathways associated with metabolism and epigenetics, including microRNAs, which are biomarkers of metabolic disorders. In this review, we aimed to summarize the current knowledge regarding the interplay between microRNAs and OxS in MetS and its components. We searched PubMed and Google Scholar to summarize the most relevant studies. Collected data suggested that different sources of OxS (e.g., hyperglycemia, insulin resistance (IR), hyperlipidemia, obesity, proinflammatory cytokines) change the expression of numerous microRNAs in organs involved in the regulation of glucose and lipid metabolism and endothelium. Dysregulated microRNAs either directly or indirectly affect the expression and/or activity of molecules of antioxidative signaling pathways (SIRT1, FOXOs, Keap1/Nrf2) along with effector enzymes (e.g., GPx-1, SOD1/2, HO-1), ROS producers (e.g., NOX4/5), as well as genes of numerous signaling pathways connected with inflammation, insulin sensitivity, and lipid metabolism, thus promoting the progression of metabolic imbalance. MicroRNAs appear to be important epigenetic modifiers in managing the delicate redox balance, mediating either pro- or antioxidant biological impacts. Summarizing, microRNAs may be promising therapeutic targets in ameliorating the repercussions of OxS in MetS.
Collapse
Affiliation(s)
- Adam Włodarski
- Department of Internal Diseases, Diabetology and Clinical Pharmacology, Medical University of Lodz, 92-213 Lodz, Poland;
- Correspondence: (A.W.); (J.S.); (A.Ś.)
| | - Justyna Strycharz
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland;
- Correspondence: (A.W.); (J.S.); (A.Ś.)
| | - Adam Wróblewski
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland;
| | - Jacek Kasznicki
- Department of Internal Diseases, Diabetology and Clinical Pharmacology, Medical University of Lodz, 92-213 Lodz, Poland;
| | - Józef Drzewoski
- Central Teaching Hospital of the Medical University of Lodz, 92-213 Lodz, Poland;
| | - Agnieszka Śliwińska
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 92-213 Lodz, Poland
- Correspondence: (A.W.); (J.S.); (A.Ś.)
| |
Collapse
|
52
|
MiR-155-5p and MiR-203a-3p Are Prognostic Factors in Soft Tissue Sarcoma. Cancers (Basel) 2020; 12:cancers12082254. [PMID: 32806571 PMCID: PMC7463991 DOI: 10.3390/cancers12082254] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 07/31/2020] [Accepted: 08/05/2020] [Indexed: 02/06/2023] Open
Abstract
Soft tissue sarcoma (STS) is a heterogeneous group of rare malignancies with a five-year survival rate of approximately 50%. Reliable molecular markers for risk stratification and subsequent therapy management are still needed. Therefore, we analyzed the prognostic potential of miR-155-5p and miR-203a-3p expression in a cohort of 79 STS patients. MiR-155-5p and miR-203a-3p expression was measured from tumor total RNA by qPCR and correlated with the demographic, clinicopathological, and prognostic data of the patients. Elevated miR-155-5p expression was significantly associated with increased tumor stage and hypoxia-associated mRNA/protein expression. High miR-155-5p expression and low miR-203a-3p expression, as well as a combination of high miR-155-5p and low miR-203a-3p expression, were significantly associated with poor disease-specific survival in STS patients in the Kaplan–Meier survival analyses (p = 0.027, p = 0.001 and p = 0.0003, respectively) and in the univariate Cox regression analyses (RR = 1.96; p = 0.031; RR = 2.59; p = 0.002 and RR = 4.76; p = 0.001, respectively), but not in the multivariate Cox regression analyses. In conclusion, the oncomiR miR-155-5p and the tumor suppressor-miR miR-203a-3p exhibit an association with STS patient prognosis and are suggested as candidates for risk assessment.
Collapse
|
53
|
Ghafouri-Fard S, Shoorei H, Taheri M. Non-coding RNAs are involved in the response to oxidative stress. Biomed Pharmacother 2020; 127:110228. [DOI: 10.1016/j.biopha.2020.110228] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 04/20/2020] [Accepted: 05/03/2020] [Indexed: 01/17/2023] Open
|
54
|
Climent M, Viggiani G, Chen YW, Coulis G, Castaldi A. MicroRNA and ROS Crosstalk in Cardiac and Pulmonary Diseases. Int J Mol Sci 2020; 21:ijms21124370. [PMID: 32575472 PMCID: PMC7352701 DOI: 10.3390/ijms21124370] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/14/2020] [Accepted: 06/16/2020] [Indexed: 12/12/2022] Open
Abstract
Reactive oxygen species (ROS) affect many cellular functions and the proper redox balance between ROS and antioxidants contributes substantially to the physiological welfare of the cell. During pathological conditions, an altered redox equilibrium leads to increased production of ROS that in turn may cause oxidative damage. MicroRNAs (miRNAs) regulate gene expression at the post-transcriptional level contributing to all major cellular processes, including oxidative stress and cell death. Several miRNAs are expressed in response to ROS to mediate oxidative stress. Conversely, oxidative stress may lead to the upregulation of miRNAs that control mechanisms to buffer the damage induced by ROS. This review focuses on the complex crosstalk between miRNAs and ROS in diseases of the cardiac (i.e., cardiac hypertrophy, heart failure, myocardial infarction, ischemia/reperfusion injury, diabetic cardiomyopathy) and pulmonary (i.e., idiopathic pulmonary fibrosis, acute lung injury/acute respiratory distress syndrome, asthma, chronic obstructive pulmonary disease, lung cancer) compartments. Of note, miR-34a, miR-144, miR-421, miR-129, miR-181c, miR-16, miR-31, miR-155, miR-21, and miR-1/206 were found to play a role during oxidative stress in both heart and lung pathologies. This review comprehensively summarizes current knowledge in the field.
Collapse
Affiliation(s)
- Montserrat Climent
- Humanitas Clinical and Research Center—IRCCS, Via Manzoni 56, 20089 Rozzano, MI, Italy;
| | - Giacomo Viggiani
- Department of Biomedical Sciences, Humanitas University, 20090 Pieve Emanuele, MI, Italy;
| | - Ya-Wen Chen
- Hastings Center for Pulmonary Research and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA;
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Gerald Coulis
- Department of Physiology and Biophysics, and Institute for Immunology, University of California Irvine, Irvine, CA 92697, USA;
| | - Alessandra Castaldi
- Hastings Center for Pulmonary Research and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA;
- Correspondence:
| |
Collapse
|
55
|
Wang W, Liu Q, Zhang T, Chen L, Li S, Xu S. Glyphosate induces lymphocyte cell dysfunction and apoptosis via regulation of miR-203 targeting of PIK3R1 in common carp (Cyprinus carpio L.). FISH & SHELLFISH IMMUNOLOGY 2020; 101:51-57. [PMID: 32217141 DOI: 10.1016/j.fsi.2020.03.047] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/12/2020] [Accepted: 03/21/2020] [Indexed: 06/10/2023]
Abstract
Glyphosate is a widely used pesticide worldwide. The problem surrounding glyphosate is worth investigating, especially with its increased use, and an increasing number of studies have found that the toxic effect of glyphosate is objective. MiR-203 was seldom found in fish diseases or glyphosate researches. This article aims to explore the effect of miR-203 on carp lymphocytes during glyphosate exposure. Therefore, acridine orange/ethidium bromide (AO/EB) and flow cytometry were carried out to evaluate apoptosis, and we also detected CYPs (CYP1A1, CYP1B1, CYP1C), cytokine secretion (IL-1β, IL-8, IL-10, IFN-γ, TNF-α), inflammatory factors (NF-κB, cox-2), and the expression of miR-203 and the PI3K/AKT pathway by RT-PCR and Western blot analyses. Our results demonstrated that glyphosate exposure could induce lymphocyte apoptosis via regulation of miR-203 targeting of PI3K/AKT, which was accompanied by CYPs activation, abnormal cytokine expression and an inflammatory response. These results show that glyphosate is not nontoxic to fish and provide new insights for the usage of glyphosate as an herbicide in the future.
Collapse
Affiliation(s)
- Wei Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Qingqing Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Tianyi Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Lu Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
56
|
Abstract
Diabetes mellitus predisposes affected individuals to a significant spectrum of cardiovascular complications, one of the most debilitating in terms of prognosis is heart failure. Indeed, the increasing global prevalence of diabetes mellitus and an aging population has given rise to an epidemic of diabetes mellitus-induced heart failure. Despite the significant research attention this phenomenon, termed diabetic cardiomyopathy, has received over several decades, understanding of the full spectrum of potential contributing mechanisms, and their relative contribution to this heart failure phenotype in the specific context of diabetes mellitus, has not yet been fully resolved. Key recent preclinical discoveries that comprise the current state-of-the-art understanding of the basic mechanisms of the complex phenotype, that is, the diabetic heart, form the basis of this review. Abnormalities in each of cardiac metabolism, physiological and pathophysiological signaling, and the mitochondrial compartment, in addition to oxidative stress, inflammation, myocardial cell death pathways, and neurohumoral mechanisms, are addressed. Further, the interactions between each of these contributing mechanisms and how they align to the functional, morphological, and structural impairments that characterize the diabetic heart are considered in light of the clinical context: from the disease burden, its current management in the clinic, and where the knowledge gaps remain. The need for continued interrogation of these mechanisms (both known and those yet to be identified) is essential to not only decipher the how and why of diabetes mellitus-induced heart failure but also to facilitate improved inroads into the clinical management of this pervasive clinical challenge.
Collapse
Affiliation(s)
- Rebecca H. Ritchie
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville campus), Parkville, Victoria 3052, Australia
| | - E. Dale Abel
- Division of Endocrinology and Metabolism, University of Iowa Carver College of Medicine, Iowa City, IA 52242, United States
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, United States
| |
Collapse
|
57
|
You A, Fu L, Li Y, Li X, You B. MicroRNA-203 restrains epithelial-mesenchymal transition, invasion and migration of papillary thyroid cancer by downregulating AKT3. Cell Cycle 2020; 19:1105-1121. [PMID: 32308106 PMCID: PMC7217351 DOI: 10.1080/15384101.2020.1746490] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/15/2020] [Accepted: 03/06/2020] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) have been reported to serve pivotal roles in the regulation of papillary thyroid cancer (PTC) development; thus, the aim of this study is to identify the impact of miR-203 and AKT3 on the epithelial-mesenchymal transition (EMT), migration and invasion of PTC. MiR-203 and AKT3 expression in PTC tissues and cells were tested. TPC-1 cells and K1 cells were screened for follow-up experiments. Apoptosis-related proteins (Bcl-2 and Bax), EMT-related proteins (Vimentin and E-cadherin), proliferation-associated proteins (Ki67 and CDK4), invasion- and migration-related protein (MMP-2 and MMP-9) were verified. The effects of upregulated miR-203 and downregulated AKT3 on the biological characteristics of PTC cells in each group were detected via the gain- and loss-of-function assays. The targeting relationship between miR-203 and AKT3 was verified.MiR-203 expression declined and AKT3 heightened in PTC tissues and cells. Upregulated miR-203 and downregulated AKT3 reduced the tumor volume and weight, suppressed cell migration, colony formation, proliferation, invasion, proliferation-associated proteins (Ki67 and CDK4), invasion- and migration-related protein (MMP-2 and MMP-9) and promoted cell apoptosis, raised E-cadherin and decreased Vimentin protein expression in TPC-1 cells. On the contrary, the K1 cells with the downregulated miR-203 or upregulated AKT3 exhibited an opposite result. This study suggests that upregulated miR-203 suppresses EMT, invasion, proliferation and migration as well as induces apoptosis of PTC cells via downregulated AKT3.
Collapse
Affiliation(s)
- Anmin You
- Department of Nuclear Medicine, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan, China
| | - Liwu Fu
- Department of Nuclear Medicine, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan, China
| | - Yongjiao Li
- Department of Nuclear Medicine, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan, China
| | - Xingyi Li
- Department of Nuclear Medicine, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan, China
| | - Bin You
- Department of Nuclear Medicine, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan, China
| |
Collapse
|
58
|
Zaiou M. circRNAs Signature as Potential Diagnostic and Prognostic Biomarker for Diabetes Mellitus and Related Cardiovascular Complications. Cells 2020; 9:cells9030659. [PMID: 32182790 PMCID: PMC7140626 DOI: 10.3390/cells9030659] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/28/2020] [Accepted: 03/05/2020] [Indexed: 12/15/2022] Open
Abstract
Circular RNAs (circRNAs) belong to the ever-growing class of naturally occurring noncoding RNAs (ncRNAs) molecules. Unlike linear RNA, circRNAs are covalently closed transcripts mostly generated from precursor-mRNA by a non-canonical event called back-splicing. They are highly stable, evolutionarily conserved, and widely distributed in eukaryotes. Some circRNAs are believed to fulfill a variety of functions inside the cell mainly by acting as microRNAs (miRNAs) or RNA-binding proteins (RBPs) sponges. Furthermore, mounting evidence suggests that the misregulation of circRNAs is among the first alterations in various metabolic disorders including obesity, hypertension, and cardiovascular diseases. More recent research has revealed that circRNAs also play a substantial role in the pathogenesis of diabetes mellitus (DM) and related vascular complications. These findings have added a new layer of complexity to our understanding of DM and underscored the need to reexamine the molecular pathways that lead to this disorder in the context of epigenetics and circRNA regulatory mechanisms. Here, I review current knowledge about circRNAs dysregulation in diabetes and describe their potential role as innovative biomarkers to predict diabetes-related cardiovascular (CV) events. Finally, I discuss some of the actual limitations to the promise of these RNA transcripts as emerging therapeutics and provide recommendations for future research on circRNA-based medicine.
Collapse
Affiliation(s)
- Mohamed Zaiou
- School of Pharmacy, Institut Jean-Lamour, The University of Lorraine, 7 Avenue de la Foret de Haye, CEDEX BP 90170, 54500 Vandoeuvre les Nancy, France
| |
Collapse
|
59
|
Gu Y, Zhu Z, Pei H, Xu D, Jiang Y, Zhang L, Xiao L. Long non-coding RNA NNT-AS1 promotes cholangiocarcinoma cells proliferation and epithelial-to-mesenchymal transition through down-regulating miR-203. Aging (Albany NY) 2020; 12:2333-2346. [PMID: 32019904 PMCID: PMC7041725 DOI: 10.18632/aging.102747] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 01/07/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Cholangiocarcinoma (CCA) is a serious malignant tumor. Long non-coding RNA NNT-AS1 (NNT-AS1) takes crucial roles in several tumors. So, we planned to research the roles and underlying mechanism of NNT-AS1 in CCA. RESULTS NNT-AS1 overexpression was appeared in CCA tissues and cell lines. Proliferation was promoted by NNT-AS1 overexpression in CCLP1 and TFK1 cells. Besides, NNT-AS1 overexpression reduced E-cadherin level and raised levels of N-cadherin, vimentin, Snail and Slug. However, the opposite trend was occurred by NNT-AS1 knockdown. Further, NNT-AS1 overexpression promoted phosphatidylinositol 3 kinase (PI3K)/AKT and extracellular signal-regulated kinase (ERK)1/2 pathways. MiR-203 was sponged by NNT-AS1 and miR-203 mimic reversed the above promoting effects of NNT-AS1. Additionally, insulin-like growth factor type 1 receptor (IGF1R) and zinc finger E-box binding homeobox 1 (ZEB1) were two potential targets of miR-203. CONCLUSION NNT-AS1 promoted proliferation, EMT and PI3K/AKT and ERK1/2 pathways in CCLP1 and TFK1 cells through down-regulating miR-203. METHODS CCLP1 and TFK1 cells were co-transfected with pcDNA-NNT-AS1 and miR-203 mimic. Bromodeoxyuridine (BrdU), flow cytometry, quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blot were employed to detect roles and mechanism of NNT-AS1. Interaction between NNT-AS1 and miR-203 or miR-203 and target genes was examined through luciferase activity experiment.
Collapse
Affiliation(s)
- Yulei Gu
- Emergency Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zhiqiang Zhu
- Emergency Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Hui Pei
- Emergency Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Dong Xu
- Emergency Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yumin Jiang
- Emergency Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Luanluan Zhang
- Emergency Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Lili Xiao
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
60
|
The role of microRNAs in the pathogenesis, grading and treatment of hepatic fibrosis in schistosomiasis. Parasit Vectors 2019; 12:611. [PMID: 31888743 PMCID: PMC6937654 DOI: 10.1186/s13071-019-3866-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 12/19/2019] [Indexed: 12/16/2022] Open
Abstract
Schistosomiasis is a prevalent parasitic disease worldwide. The main pathological changes of hepatosplenic schistosomiasis are hepatic granuloma and fibrosis due to worm eggs. Portal hypertension and ascites induced by hepatic fibrosis are usually the main causes of death in patients with chronic hepatosplenic schistosomiasis. Currently, no effective vaccine exists for preventing schistosome infections. For quite a long time, praziquantel (PZQ) was widely used for the treatment of schistosomiasis and has shown benefit in treating liver fibrosis. However, drug resistance and chemical toxicity from PZQ are being increasingly reported in recent years; therefore, new and effective strategies for treating schistosomiasis-induced hepatic fibrosis are urgently needed. MicroRNA (miRNA), a non-coding RNA, has been proved to be associated with the development of many human diseases, including schistosomiasis. In this review, we present a balanced and comprehensive view of the role of miRNAs in the pathogenesis, grading, and treatment of schistosomiasis-associated hepatic fibrosis. The multiple regulatory roles of miRNAs, such as promoting or inhibiting the development of liver pathology in murine schistosomiasis are also discussed in depth. Additionally, miRNAs may serve as candidate biomarkers for diagnosing liver pathology of schistosomiasis and as novel therapeutic targets for treating schistosomiasis-associated hepatic fibrosis.![]()
Collapse
|
61
|
Yang X, Tao L, Zhu J, Zhang S. Long Noncoding RNA FTX Reduces Hypertrophy of Neonatal Mouse Cardiac Myocytes and Regulates the PTEN/PI3K/Akt Signaling Pathway by Sponging MicroRNA-22. Med Sci Monit 2019; 25:9609-9617. [PMID: 31840653 PMCID: PMC6929539 DOI: 10.12659/msm.919654] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Cardiac myocyte hypertrophy results from clinical conditions that include hypertension and valvular heart disease, and can result in heart failure. This study aimed to investigate the expression and role of the long noncoding RNA FTX (lnc-FTX), an X-inactive-specific transcript (XIST) regulator transcribed from the X chromosome, in hypertrophy of neonatal mouse cardiac myocytes induced by angiotensin II (Ang II) in vitro. MATERIAL AND METHODS Cardiac myocytes were isolated from neonatal mice and cultured with and without Ang II. Immunofluorescence, with localization of an antibody to alpha-smooth muscle actin (alpha-SMA), was used to identify the neonatal mouse cardiac myocytes. Quantitative real-time polymerase chain reaction (qRT-PCR) measured gene expression levels. The cell counting kit-8 (CCK-8) assay was used to determine cell viability, and Western blot measured protein expression. StarBase v2.0 bioinformatics software was used for target gene prediction and was confirmed with the luciferase reporter assay. RESULTS The expression of lnc-FTX was reduced in mouse cardiac myocytes treated with Ang II. Overexpression of lnc-FTX reduced cell apoptosis, cardiomyocyte contractility, and the expression of c-Jun, A-type natriuretic peptide (ANP), and B-type natriuretic peptide (BNP) induced by Ang II. The target of lnc-FTX was micro-RNA 22 (miRNA-22). The mechanism of action of lnc-FTX in neonatal mouse cardiac myocytes was through suppression of the PI3K/Akt signaling pathway by promoting the release of PTEN by sponging miRNA-22. CONCLUSIONS The expression of lnc-FTX was associated with reduced hypertrophy of neonatal mouse cardiac myocytes and regulated the PTEN/PI3K/Akt signaling pathway by sponging miRNA-22.
Collapse
Affiliation(s)
- Xiaoyu Yang
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China (mainland)
| | - Lichan Tao
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China (mainland)
| | - Jin Zhu
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China (mainland)
| | - Sheng Zhang
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China (mainland)
| |
Collapse
|
62
|
Qadir MMF, Klein D, Álvarez-Cubela S, Domínguez-Bendala J, Pastori RL. The Role of MicroRNAs in Diabetes-Related Oxidative Stress. Int J Mol Sci 2019; 20:E5423. [PMID: 31683538 PMCID: PMC6862492 DOI: 10.3390/ijms20215423] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 10/28/2019] [Indexed: 12/14/2022] Open
Abstract
Cellular stress, combined with dysfunctional, inadequate mitochondrial phosphorylation, produces an excessive amount of reactive oxygen species (ROS) and an increased level of ROS in cells, which leads to oxidation and subsequent cellular damage. Because of its cell damaging action, an association between anomalous ROS production and disease such as Type 1 (T1D) and Type 2 (T2D) diabetes, as well as their complications, has been well established. However, there is a lack of understanding about genome-driven responses to ROS-mediated cellular stress. Over the last decade, multiple studies have suggested a link between oxidative stress and microRNAs (miRNAs). The miRNAs are small non-coding RNAs that mostly suppress expression of the target gene by interaction with its 3'untranslated region (3'UTR). In this paper, we review the recent progress in the field, focusing on the association between miRNAs and oxidative stress during the progression of diabetes.
Collapse
Affiliation(s)
- Mirza Muhammad Fahd Qadir
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
- Department of Cell Biology and Anatomy, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Dagmar Klein
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Silvia Álvarez-Cubela
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Juan Domínguez-Bendala
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
- Department of Cell Biology and Anatomy, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Ricardo Luis Pastori
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
- Department of Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|