51
|
Yang Y, Dai M, Wilson TM, Omelchenko I, Klimek JE, Wilmarth PA, David LL, Nuttall AL, Gillespie PG, Shi X. Na+/K+-ATPase α1 identified as an abundant protein in the blood-labyrinth barrier that plays an essential role in the barrier integrity. PLoS One 2011; 6:e16547. [PMID: 21304972 PMCID: PMC3031570 DOI: 10.1371/journal.pone.0016547] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Accepted: 12/21/2010] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The endothelial-blood/tissue barrier is critical for maintaining tissue homeostasis. The ear harbors a unique endothelial-blood/tissue barrier which we term "blood-labyrinth-barrier". This barrier is critical for maintaining inner ear homeostasis. Disruption of the blood-labyrinth-barrier is closely associated with a number of hearing disorders. Many proteins of the blood-brain-barrier and blood-retinal-barrier have been identified, leading to significant advances in understanding their tissue specific functions. In contrast, capillaries in the ear are small in volume and anatomically complex. This presents a challenge for protein analysis studies, which has resulted in limited knowledge of the molecular and functional components of the blood-labyrinth-barrier. In this study, we developed a novel method for isolation of the stria vascularis capillary from CBA/CaJ mouse cochlea and provided the first database of protein components in the blood-labyrinth barrier as well as evidence that the interaction of Na(+)/K(+)-ATPase α1 (ATP1A1) with protein kinase C eta (PKCη) and occludin is one of the mechanisms of loud sound-induced vascular permeability increase. METHODOLOGY/PRINCIPAL FINDINGS Using a mass-spectrometry, shotgun-proteomics approach combined with a novel "sandwich-dissociation" method, more than 600 proteins from isolated stria vascularis capillaries were identified from adult CBA/CaJ mouse cochlea. The ion transporter ATP1A1 was the most abundant protein in the blood-labyrinth barrier. Pharmacological inhibition of ATP1A1 activity resulted in hyperphosphorylation of tight junction proteins such as occludin which increased the blood-labyrinth-barrier permeability. PKCη directly interacted with ATP1A1 and was an essential mediator of ATP1A1-initiated occludin phosphorylation. Moreover, this identified signaling pathway was involved in the breakdown of the blood-labyrinth-barrier resulting from loud sound trauma. CONCLUSIONS/SIGNIFICANCE The results presented here provide a novel method for capillary isolation from the inner ear and the first database on protein components in the blood-labyrinth-barrier. Additionally, we found that ATP1A1 interaction with PKCη and occludin was involved in the integrity of the blood-labyrinth-barrier.
Collapse
Affiliation(s)
- Yue Yang
- Department of Otolaryngology/Head and Neck Surgery, Oregon Hearing Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Min Dai
- Department of Otolaryngology/Head and Neck Surgery, Oregon Hearing Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Teresa M. Wilson
- Department of Otolaryngology/Head and Neck Surgery, Oregon Hearing Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Irina Omelchenko
- Department of Otolaryngology/Head and Neck Surgery, Oregon Hearing Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
| | - John E. Klimek
- Proteomic Shared Resources, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Phillip A. Wilmarth
- Proteomic Shared Resources, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Larry L. David
- Proteomic Shared Resources, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Alfred L. Nuttall
- Department of Otolaryngology/Head and Neck Surgery, Oregon Hearing Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
- Kresge Hearing Research Institute, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Otolaryngology, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Peter G. Gillespie
- Department of Otolaryngology/Head and Neck Surgery, Oregon Hearing Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
- Vollum Institute, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Xiaorui Shi
- Department of Otolaryngology/Head and Neck Surgery, Oregon Hearing Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
- Department of Otolaryngology, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
- The Institute of Microcirculation, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- * E-mail:
| |
Collapse
|
52
|
Ohlemiller KK, Rybak Rice ME, Rellinger EA, Ortmann AJ. Divergence of noise vulnerability in cochleae of young CBA/J and CBA/CaJ mice. Hear Res 2010; 272:13-20. [PMID: 21108998 DOI: 10.1016/j.heares.2010.11.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 11/09/2010] [Accepted: 11/10/2010] [Indexed: 11/28/2022]
Abstract
CBA/CaJ and CBA/J inbred mouse strains appear relatively resistant to age- and noise-related cochlear pathology, and constitute the predominant 'good hearing' control strains in mouse studies of hearing and deafness. These strains have often been treated as nearly equivalent in their hearing characteristics, and have even been mixed in some studies. Nevertheless, we recently showed that their trajectories with regard to age-associated cochlear pathology diverge after one year of age (Ohlemiller et al., 2010a). We also recently reported that they show quite different susceptibility to cochlear noise injury during the 'sensitive period' of heightened vulnerability to noise common to many models, CBA/J being far more vulnerable than CBA/CaJ (Fernandez et al., 2010 J. Assoc. Res. Otolaryngol. 11:235-244). Here we explore this relation in a side-by-side comparison of the effect of varying noise exposure duration in young (6 week) and older (6 month) CBA/J and CBA/CaJ mice, and in F1 hybrids formed from these. Both the extent of permanent noise-induced threshold shifts (NIPTS) and the probability of a defined NIPTS were determined as exposure to intense broadband noise (4-45 kHz, 110 dB SPL) increased by factors of two from 7 s to 4 h. At 6 months of age the two strains appeared very similar by both measures. At 6 weeks of age, however, both the extent and probability of NIPTS grew much more rapidly with noise duration in CBA/J than in CBA/CaJ. The 'threshold' exposure duration for NIPTS was <1.0 min in CBA/J versus >4.0 min in CBA/CaJ. F1 hybrid mice showed both NIPTS and hair cell loss similar to that in CBA/J. This suggests that dominant-acting alleles at unknown loci distinguish CBA/J from CBA/CaJ. These loci have novel effects on hearing phenotype, as they come into play only during the sensitive period, and may encode factors that demarcate this period. Since the cochlear cells whose fragility defines the early window appear to be hair cells, these loci may principally impact the mechanical or metabolic resiliency of hair cells or the organ of Corti.
Collapse
Affiliation(s)
- Kevin K Ohlemiller
- Program in Audiology and Communication Sciences, Washington University School of Medicine, United States.
| | | | | | | |
Collapse
|
53
|
Sullivan JM, Cohen MA, Pandit SR, Sahota RS, Borecki AA, Oleskevich S. Effect of epithelial stem cell transplantation on noise-induced hearing loss in adult mice. Neurobiol Dis 2010; 41:552-9. [PMID: 21059389 DOI: 10.1016/j.nbd.2010.11.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 10/19/2010] [Accepted: 11/01/2010] [Indexed: 12/20/2022] Open
Abstract
Noise trauma in mammals can result in damage to multiple epithelial cochlear cell types, producing permanent hearing loss. Here we investigate whether epithelial stem cell transplantation can ameliorate noise-induced hearing loss in mice. Epithelial stem/progenitor cells isolated from adult mouse tongue displayed extensive proliferation in vitro as well as positive immunolabelling for the epithelial stem cell marker p63. To examine the functional effects of cochlear transplantation of these cells, mice were exposed to noise trauma and the cells were transplanted via a lateral wall cochleostomy 2 days post-trauma. Changes in auditory function were assessed by determining auditory brainstem response (ABR) threshold shifts 4 weeks after stem cell transplantation or sham surgery. Stem/progenitor cell transplantation resulted in a significantly reduced permanent ABR threshold shift for click stimuli compared to sham-injected mice, as corroborated using two distinct analyses. Cell fate analyses revealed stem/progenitor cell survival and integration into suprastrial regions of the spiral ligament. These results suggest that transplantation of adult epithelial stem/progenitor cells can attenuate the ototoxic effects of noise trauma in a mammalian model of noise-induced hearing loss.
Collapse
Affiliation(s)
- Jeremy M Sullivan
- Hearing Research Group, Neuroscience Program, Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia
| | | | | | | | | | | |
Collapse
|
54
|
Lin Y, Kashio A, Sakamoto T, Suzukawa K, Kakigi A, Yamasoba T. Hydrogen in drinking water attenuates noise-induced hearing loss in guinea pigs. Neurosci Lett 2010; 487:12-6. [PMID: 20888392 DOI: 10.1016/j.neulet.2010.09.064] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 09/17/2010] [Accepted: 09/23/2010] [Indexed: 01/05/2023]
Abstract
It has been shown that molecular hydrogen acts as a therapeutic and preventive antioxidant by selectively reducing the hydroxyl radical, the most cytotoxic of the reactive oxygen species. In the present study, we tested the hypothesis that acoustic damage in guinea pigs can be attenuated by the consumption of molecular hydrogen. Guinea pigs received normal water or hydrogen-rich water for 14 days before they were exposed to 115 dB SPL 4-kHz octave band noise for 3h. Animals in each group underwent measurements for auditory brainstem response (ABR) or distortion-product otoacoustic emissions (DPOAEs) before the treatment (baseline) and immediately, 1, 3, 7, and 14 days after noise exposure. The ABR thresholds at 2 and 4 kHz were significantly better on post-noise days 1, 3, and 14 in hydrogen-treated animals when compared to the normal water-treated controls. Compared to the controls, the hydrogen-treated animals showed greater amplitude of DPOAE input/output growth functions during the recovery process, with statistical significance detected on post-noise days 3 and 7. These findings suggest that hydrogen can facilitate the recovery of hair cell function and attenuate noise-induced temporary hearing loss.
Collapse
Affiliation(s)
- Ying Lin
- Department of Otolaryngology and Head and Neck Surgery, Xijing Hospital, Xi'an, China
| | | | | | | | | | | |
Collapse
|
55
|
Reduced P2x(2) receptor-mediated regulation of endocochlear potential in the ageing mouse cochlea. Purinergic Signal 2010; 6:263-72. [PMID: 20806017 DOI: 10.1007/s11302-010-9195-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Accepted: 06/28/2010] [Indexed: 02/07/2023] Open
Abstract
Extracellular adenosine triphosphate (ATP) has profound effects on the cochlea, including an effect on the regulation of the endocochlear potential (EP). Noise-induced release of ATP into the endolymph activates a shunt conductance mediated by P2X(2) receptors in tissues lining the endolymphatic compartment, which reduces the EP and, consequentially, hearing sensitivity. This may be a mechanism of adaptation or protection from high sound levels. As inaction of such a process could contribute to hearing loss, this study examined whether the action of ATP on EP changes with age and noise exposure in the mouse. The EP and the endolymphatic compartment resistance (CoPR) were measured in mice (CBA/CaJ) aged between 3 and 15 months. The EP and CoPR declined slightly with age with an associated small, but significant, reduction in auditory brainstem response thresholds. ATP (100-1,000 muM) microinjected into the endolymphatic compartment caused a dose-dependent decline in EP correlated to a similar decrease in CoPR. This was blocked by pyridoxal-phosphate-6-azophenyl-2',4'-disulfonate, consistent with a P2X(2) receptor-mediated shunt conductance. There was no substantial difference in the ATP response with age. Noise exposure (octave-band noise 80-100 decibels sound pressure level (dBSPL), 48 h) in young animals induced an upregulation of the P2X(2) receptor expression in the organ of Corti and spiral limbus, most noticeably with the 90-dB exposure. This did not occur in the aged animals except following exposure at 90 dBSPL. The EP response to ATP was muted in the noise-exposed aged animals except following the 90-dB exposure. These findings provide some evidence that the adaptive response of the cochlea to noise may be reduced in older animals, and it is speculated that this could increase their susceptibility to noise-induced injury.
Collapse
|
56
|
Abstract
Sensory hair cells of the inner ear are responsible for translating auditory or vestibular stimuli into electrical energy that can be perceived by the nervous system. Although hair cells are exquisitely mechanically sensitive, they can be easily damaged by excessive stimulation by ototoxic drugs and by the effects of aging. In mammals, auditory hair cells are never replaced, such that cumulative damage to the ear causes progressive and permanent deafness. In contrast, non-mammalian vertebrates are capable of replacing lost hair cells, which has led to efforts to understand the molecular and cellular basis of regenerative responses in different vertebrate species. In this review, we describe recent progress in understanding the limits to hair cell regeneration in mammals and discuss the obstacles that currently exist for therapeutic approaches to hair cell replacement.
Collapse
Affiliation(s)
- Andrew K Groves
- Department of Neuroscience, Baylor College of Medicine, BCM 295, 1 Baylor Plaza, Houston, TX 77030, USA.
| |
Collapse
|
57
|
Coffin AB, Ou H, Owens KN, Santos F, Simon JA, Rubel EW, Raible DW. Chemical screening for hair cell loss and protection in the zebrafish lateral line. Zebrafish 2010; 7:3-11. [PMID: 20192852 PMCID: PMC2935285 DOI: 10.1089/zeb.2009.0639] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In humans, most hearing loss results from death of hair cells, the mechanosensory receptors of the inner ear. Two goals of current hearing research are to protect hair cells from degeneration and to regenerate new hair cells, replacing those that are lost due to aging, disease, or environmental challenges. One limitation of research in the auditory field has been the relative inaccessibility of the mechanosensory systems in the inner ear. Zebrafish possess hair cells in both their inner ear and their lateral line system that are morphologically and functionally similar to human hair cells. The external location of the mechanosensory hair cells in the lateral line and the ease of in vivo labeling and imaging make the zebrafish lateral line a unique system for the study of hair cell toxicity, protection, and regeneration. This review focuses on the lateral line system as a model for understanding loss and protection of mechanosensory hair cells. We discuss chemical screens to identify compounds that induce hair cell loss and others that protect hair cells from known toxins and the potential application of these screens to human medicine.
Collapse
Affiliation(s)
- Allison B Coffin
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, Washington 98195-7923, USA.
| | | | | | | | | | | | | |
Collapse
|
58
|
Protection against noise-induced hearing loss in young CBA/J mice by low-dose kanamycin. J Assoc Res Otolaryngol 2010; 11:235-44. [PMID: 20094753 DOI: 10.1007/s10162-009-0204-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Accepted: 12/09/2009] [Indexed: 10/19/2022] Open
Abstract
Animal studies indicate that a combination of kanamycin (KM) and noise produces a synergistic effect, whereby the threshold shift from the combination is greater than the sum of the shifts caused by either agent alone. Most such studies have focused on adult animals, and it has remained unclear whether younger, presumably more susceptible, animals show an even greater synergistic effect. The present study tested the hypothesis that young CBA/J mice receiving a low dose of KM (300 mg/kg, 2x/day, s.c.) from 20 to 30 days post-gestational age followed by brief noise exposure (110 dB SPL; 4-45 kHz, 30 s) would show greater noise-induced permanent threshold shifts (NIPTS) than mice receiving either treatment alone. Noise exposure produced 30-40 dB of NIPTS and moderate hair cell loss in young saline-treated mice. KM alone at this dose had no effect on thresholds. Surprisingly, mice receiving KM plus noise were protected from NIPTS, showing ABR thresholds not significantly different from unexposed controls. Mice receiving KM prior to noise exposure also showed significantly less outer hair cell loss than saline-treated mice. Additional experiments indicated protection by KM when the noise was applied either 24 or 48 h after the last KM injection. Our results demonstrate a powerful protective effect of sub-chronic low-dose kanamycin against NIPTS in young CBA/J mice. Repeated kanamycin exposure may establish a preconditioned protective state, the molecular bases of which remain to be determined.
Collapse
|
59
|
Ohlemiller KK, Rosen AD, Gagnon PM. A major effect QTL on chromosome 18 for noise injury to the mouse cochlear lateral wall. Hear Res 2009; 260:47-53. [PMID: 19913606 DOI: 10.1016/j.heares.2009.11.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 10/31/2009] [Accepted: 11/09/2009] [Indexed: 10/20/2022]
Abstract
We recently demonstrated a striking difference among inbred mouse strains in the effects of a single noise exposure, whereby CBA/J and CBA/CaJ (CBA) mice show moderate reversible reduction in the endocochlear potential (EP) while C57BL/6J (B6) mice do not (Ohlemiller, K.K., Gagnon, P.M., 2007. Genetic dependence of cochlear cells and structures injured by noise. Hear. Res. 224, 34-50). Acute EP reduction in CBA was reliably associated with characteristic pathology of the spiral ligament and stria vascularis, both immediately after noise and 8weeks later. Analysis of B6xCBA F1 hybrid mice indicated that EP reduction and its anatomic correlates are co-inherited in an autosomal dominant manner. Further analysis of N2 mice resulting from the backcross of F1 hybrids to B6 mice led us to suggest that the EP reduction phenotype principally reflects the influence of a small number of quantitative trait loci (QTLs). Here we report the results of QTL mapping of the EP reduction phenotype in CBA/J using 106 N2 mice from a (CBAxB6)xB6 backcross. Correlation of acute post-noise EP with 135 markers distributed throughout the genome revealed a single major effect QTL on chromosome 18 (12.5 cM, LOD 3.57) (Nirep, for noise-induced reduction in EP QTL), and two marginally significant QTLs on chromosomes 5 and 16 (LOD 1.43 and 1.73, respectively). Our results underscore that fact that different cochlear structures may possess different susceptibilities to noise through the influence of non-overlapping genes. While Nirep and similar-acting QTLs do not appear to influence the extent of permanent hearing loss from a single noise exposure, they could reduce the homeostatic 'reserve' of the lateral wall in protracted or continual exposures, and thereby influence long term threshold stability.
Collapse
Affiliation(s)
- Kevin K Ohlemiller
- Program in Audiology and Communication Sciences, Washington University School of Medicine, St. Louis, MO 63110, United States.
| | | | | |
Collapse
|