51
|
Wu ML, Ye GY, Zhu JY, Chen XX, Hu C. Isolation and characterization of an immunosuppressive protein from venom of the pupa-specific endoparasitoid Pteromalus puparum. J Invertebr Pathol 2008; 99:186-91. [PMID: 18700148 DOI: 10.1016/j.jip.2008.07.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Revised: 06/30/2008] [Accepted: 07/08/2008] [Indexed: 11/24/2022]
|
52
|
Lu Z, Beck MH, Wang Y, Jiang H, Strand MR. The viral protein Egf1.0 is a dual activity inhibitor of prophenoloxidase-activating proteinases 1 and 3 from Manduca sexta. J Biol Chem 2008; 283:21325-33. [PMID: 18519564 DOI: 10.1074/jbc.m801593200] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Some pathogens are capable of suppressing the melanization response of host insects, but the virulence factors responsible are largely unknown. The insect pathogen Microplitis demolitor bracovirus encodes the Egf family of small serine proteinase inhibitors. One family member, Egf1.0, was recently shown to suppress melanization of hemolymph in Manduca sexta in part by inhibiting the enzymatic activity of prophenoloxidase activating proteinase 3 (PAP3). However, other experiments suggested this viral protein suppresses melanization by more than one mechanism. Here we report that Egf1.0 inhibited the amidolytic activity of PAP1 and dose-dependently blocked processing of pro-PAP1 and pro-PAP3. Consistent with its PAP inhibitory activity, Egf1.0 also prevented processing of pro-phenoloxidase, serine proteinase homolog (SPH) 1, and SPH2. Isolation of Egf1.0-protein complexes from plasma indicated that Egf1.0 binds PAPs through its C-terminal repeat domain. Egf1.0 also potentially interacts with SPH2 and two other proteins, ferritin and gloverin, not previously associated with the phenoloxidase cascade. Overall, our results indicate that Egf1.0 is a dual activity PAP inhibitor that strongly suppresses the insect melanization response.
Collapse
Affiliation(s)
- Zhiqiang Lu
- Department of Entomology, University of Georgia, Athens, GA 30602, USA
| | | | | | | | | |
Collapse
|
53
|
Zhu JY, Ye GY, Hu C. Molecular cloning and characterization of acid phosphatase in venom of the endoparasitoid wasp Pteromalus puparum (Hymenoptera: Pteromalidae). Toxicon 2008; 51:1391-9. [DOI: 10.1016/j.toxicon.2008.03.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Revised: 03/04/2008] [Accepted: 03/05/2008] [Indexed: 11/25/2022]
|
54
|
The proPO-system: pros and cons for its role in invertebrate immunity. Trends Immunol 2008; 29:263-71. [PMID: 18457993 DOI: 10.1016/j.it.2008.02.009] [Citation(s) in RCA: 769] [Impact Index Per Article: 48.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 02/18/2008] [Accepted: 02/19/2008] [Indexed: 12/13/2022]
Abstract
Melanisation is an important immune response in many invertebrates. Recent evidence also strongly implies that the melanisation (prophenoloxidase activating) cascade is intimately associated with the appearance of factors stimulating cellular defence by aiding phagocytosis and encapsulation reactions. However, some controversy exists in the field, and at least in flies and mosquitoes, the successful combat of some pathogens does not seem to be dependent on phenoloxidase activity. This may be because of redundancy among separate immune mechanisms, inappropriate testing, species differences or a combination thereof. Recently, by using RNA interference against phenoloxidase or in specific host-pathogen interactions where the pathogen prevents melanin production by the host, convincing data have confirmed the importance of this cascade in invertebrate innate immunity.
Collapse
|
55
|
Doucet D, Béliveau C, Dowling A, Simard J, Feng Q, Krell PJ, Cusson M. Prophenoloxidases 1 and 2 from the spruce budworm, Choristoneura fumiferana: molecular cloning and assessment of transcriptional regulation by a polydnavirus. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2008; 67:188-201. [PMID: 18348246 DOI: 10.1002/arch.20227] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Immune challenge in arthropods is frequently accompanied by melanization of the hemolymph, a reaction triggered by the activation of prophenoloxidase (PPO). Because their immature stages are spent inside the hemocoel of insect larvae, endoparasitoids have evolved strategies to escape or counter melanin formation. Very little molecular information is available on these endoparasitoid counterstrategies. We have sought to shed light on the inhibition of melanization in the spruce budworm, Choristoneura fumiferana, by the parasitic wasp Tranosema rostrale, by cloning two host PPO homologs and studying their transcriptional regulation after parasitization. The two polypeptides are encoded by transcripts of approximately 3.3 kb (for CfPPO1) and 3.0 kb (for CfPPO2) and possess structural features typical of other insect PPOs. While there appears to be a single CfPPO2 gene in the C. fumiferana genome, we detected three CfPPO1 mRNA variants displaying insertions/deletions in the 3' untranslated region, suggesting that there may be more than one CfPPO1 gene copy. Both CfPPO1 and CfPPO2 were expressed at high levels in C. fumiferana 6th instars, and parasitization by T. rostrale had no apparent impact on the level of their transcripts. Injection of a large dose (0.5 female-equivalent) of polydnavirus-laden calyx fluid extracted from T. rostrale, which is known to inhibit melanization in C. fumiferana, only caused a transient decrease in CfPPO1 and CfPPO2 transcript accumulation at 2-3 d post injection. It thus appears that transcriptional downregulation of C. fumiferana PPO by T. rostrale plays a minor role in the inhibition of hemolymph melanization in this host-parasitoid system.
Collapse
Affiliation(s)
- Daniel Doucet
- Laurentian Forestry Centre, Natural Resources Canada, Quebec, Canada.
| | | | | | | | | | | | | |
Collapse
|
56
|
Abdel-latief M, Hilker M. Innate immunity: eggs of Manduca sexta are able to respond to parasitism by Trichogramma evanescens. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2008; 38:136-45. [PMID: 18207075 DOI: 10.1016/j.ibmb.2007.10.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Revised: 10/01/2007] [Accepted: 10/04/2007] [Indexed: 05/12/2023]
Abstract
So far, it was unknown whether immune responses of insect eggs are inducible or suppressed by parasitism. We investigated whether transcription of immune related genes in eggs of Manduca sexta changed in response to parasitism by Trichogramma evanescens. First, using DDRT-PCR, several cDNA elements known to represent immune related M. sexta genes inducible by bacterial challenge were isolated from eggs. In addition, two novel cDNAs were found: (a) immulectin-V (IML-V) suggested to be involved in recognition of foreign bodies, and (b) a new like-moricin protein with possible antimicrobial effects (L-Mor). Quantitative real time RT-PCR analyses revealed enhanced transcription in parasitized eggs compared to unparasitized ones for IML-V, prophenoloxidase (ProPO), prophenoloxidase activating protease I (PAP I), and proparalytic peptide (ProPP). No significant differences between parasitized and unparasitized eggs were detected for sequences encoding the antimicrobial peptides L-Mor, leureptin Leu, and attacin II Att II. Transcript levels of other antibacterial peptides were suppressed after parasitization for 3d (cecropin 6, Cec 6) and 2d (gloverin, Glov). While nearly 100% of the Manduca eggs contained Trichogramma specimens 1d after exposure to parasitoids, only 64% of the host eggs harbored parasitoid larvae 4d after parasitization. Our data demonstrate that the immune system of Manduca eggs shows differentiated responses to parasitization and suggest that insect eggs can defend against parasitization.
Collapse
Affiliation(s)
- M Abdel-latief
- Department of Applied Zoology/Animal Ecology, Institute of Biology, Freie Universität Berlin, 12163 Berlin, Germany
| | | |
Collapse
|
57
|
Beck MH, Strand MR. A novel polydnavirus protein inhibits the insect prophenoloxidase activation pathway. Proc Natl Acad Sci U S A 2007; 104:19267-72. [PMID: 18032603 PMCID: PMC2148279 DOI: 10.1073/pnas.0708056104] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2007] [Indexed: 11/18/2022] Open
Abstract
Pathogens often suppress the melanization response of host insects, but the underlying molecular mechanisms are largely unknown. Here we report that Microplitis demolitor bracovirus (MdBV) carried by the wasp M. demolitor produces a protein, Egf1.0, which inhibits the phenoloxidase (PO) cascade. Egf1.0 belongs to a larger gene family that shares a cysteine-rich motif with similarities to the trypsin inhibitor-like (TIL) domains of small serine proteinase inhibitors (smapins). Gain-of-function and RNAi experiments indicated that the Egf genes are the only MdBV-encoded factors responsible for disabling the insect melanization response. Known smapins bind target proteinases in a substrate-like fashion and are cleaved at a single reactive site bond. The P1-P1' position for Egf1.0 has the sequence Arg-Phe, which suggested that its target proteinase is a prophenoloxidase-activating proteinase (PAP). Wild-type Egf1.0 inhibited PAP-3 from Manduca sexta, whereas Egf1.0(R51A), whose reactive-site arginine was replaced with an alanine, had no PAP-3 inhibitory activity. Other experiments using wild-type and mutant constructs indicated that Egf1.0 blocks activation of the PO cascade via PAP inhibition. Overall, our results identify a novel inhibitor of the PO cascade and indicate that suppression of the host melanization response is functionally important for both the virus and its associated wasp.
Collapse
Affiliation(s)
- Markus H. Beck
- Department of Entomology, University of Georgia, Athens, GA 30602
| | | |
Collapse
|
58
|
Asgari S. Venom proteins from polydnavirus-producing endoparasitoids: their role in host-parasite interactions. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2006; 61:146-56. [PMID: 16482579 DOI: 10.1002/arch.20109] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Endoparasitoid wasps have evolved various mechanisms to ensure successful development of their progeny, including co-injection of a cocktail of maternal secretions into the host hemocoel, including venom, calyx fluid, and polydnaviruses. The components of each type of secretion may influence host physiology and development independently or in a synergistic fashion. For example, venom fluid consists of several peptides and proteins that promote expression of polydnavirus genes in addition to other activities, such as inhibition of prophenoloxidase activation, inhibition of hemocytes spreading and aggregation, and inhibition of development. This review provides a brief overview of advances and prospects in the study of venom proteins from polydnavirus-producing endoparasitoid wasps with a special emphasis on the role of C. rubecula venom proteins in host-parasitoid interactions.
Collapse
Affiliation(s)
- Sassan Asgari
- School of Integrative Biology, University of Queensland, St. Lucia, Queensland, Australia.
| |
Collapse
|
59
|
Donnell DM, Strand MR. Caste-based differences in gene expression in the polyembryonic wasp Copidosoma floridanum. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2006; 36:141-53. [PMID: 16431281 DOI: 10.1016/j.ibmb.2005.11.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2005] [Revised: 11/22/2005] [Accepted: 11/23/2005] [Indexed: 05/06/2023]
Abstract
The polyembryonic parasitoid Copidosoma floridanum produces two larval castes, soldiers and reproductives, during development within its host. Soldier larvae defend the brood against competitors while reproductive larvae develop into adult wasps. As with other caste-forming insects, the distinct morphological and behavioral features of soldier and reproductive larvae likely involve differential gene expression. In this study we used a bi-directional suppression subtractive hybridization (SSH) approach to isolate differentially expressed genes from C. floridanum soldier and reproductive larvae. We isolated 230 novel expressed sequence tags (ESTs) from the two subtractions (114 soldier/116 reproductive ESTs). Among these ESTs were sequences with significant similarity to genes coding for serine proteinases, proteinase inhibitors, odorant-binding and chemosensory proteins, and cuticular proteins. Also, three novel genes were isolated that resemble one another in conceptual translation and share the cysteine spacing pattern of short scorpion toxins and insect defensins. Reverse transcription-polymerase chain reaction (RT-PCR) analysis of 20 ESTs from the two libraries indicated that 85% were differentially expressed in one caste or the other. We conclude that our SSH strategy was effective in identifying a number of genes differentially expressed in soldier and reproductive larvae and that several of these genes will be useful in characterizing caste-specific gene networks in C. floridanum.
Collapse
Affiliation(s)
- David M Donnell
- Department of Entomology, University of Georgia, Athens, GA 30602, USA.
| | | |
Collapse
|
60
|
Zhang G, Schmidt O, Asgari S. A calreticulin-like protein from endoparasitoid venom fluid is involved in host hemocyte inactivation. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2006; 30:756-64. [PMID: 16364437 DOI: 10.1016/j.dci.2005.11.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2005] [Revised: 10/19/2005] [Accepted: 11/03/2005] [Indexed: 05/05/2023]
Abstract
During oviposition, most endoparasitoid wasps inject maternal factors into their hosts to interfere with host immune reactions and ensure successful development of their progeny. Since encapsulation is a major cellular defensive response of insects against intruding parasites, parasitoids have developed numerous mechanisms to suppress the host encapsulation capability by interfering with every step in the process, including recognition, adherence and spreading. In previous studies, components of Cotesia rubecula venom were shown to inhibit melanization of host hemolymph by interfering with the prophenoloxidase activation cascade and facilitate expression of polydnavirus genes. Here we report the isolation and characterization of another venom protein with similarity to calreticulin. Results indicate that C. rubecula calreticulin (CrCRT) inhibits hemocyte spreading behavior, thus preventing encapsulation of the developing parasitoid. It is possible that the protein might function as an antagonist competing for binding sites with the host hemocyte calreticulin, which mediates early-encapsulation reactions.
Collapse
Affiliation(s)
- Guangmei Zhang
- Insect Molecular Biology Laboratory, Plant and Pest Science, Waite Campus, University of Adelaide, Glen Osmond, SA 5064, Australia
| | | | | |
Collapse
|
61
|
Pennacchio F, Strand MR. Evolution of developmental strategies in parasitic hymenoptera. ANNUAL REVIEW OF ENTOMOLOGY 2006; 51:233-58. [PMID: 16332211 DOI: 10.1146/annurev.ento.51.110104.151029] [Citation(s) in RCA: 342] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Parasitoid wasps have evolved a wide spectrum of developmental interactions with hosts. In this review we synthesize and interpret results from the phylogenetic, ecological, physiological, and molecular literature to identify factors that have influenced the evolution of parasitoid developmental strategies. We first discuss the origins and radiation of the parasitoid lifestyle in the Hymenoptera. We then summarize how parasitoid developmental strategies are affected by ecological interactions and assess the inventory of physiological and molecular traits parasitoids use to successfully exploit hosts. Last, we discuss how certain parasitoid virulence genes have evolved and how these changes potentially affect parasitoid-host interactions. The combination of phylogenetic data with comparative and functional genomics offers new avenues for understanding the evolution of biological diversity in this group of insects.
Collapse
Affiliation(s)
- Francesco Pennacchio
- Dipartimento di Biologia, Difesa e Biotecnologie Agro-Forestali, Università della Basilicata, Potenza, Italy.
| | | |
Collapse
|
62
|
Lin CY, Hu KY, Ho SH, Song YL. Cloning and characterization of a shrimp clip domain serine protease homolog (c-SPH) as a cell adhesion molecule. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2006; 30:1132-44. [PMID: 16701896 DOI: 10.1016/j.dci.2006.03.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Revised: 03/19/2006] [Accepted: 03/21/2006] [Indexed: 05/09/2023]
Abstract
Clip domain serine protease homologs (c-SPHs) are involved in various innate immune functions in arthropods such as antimicrobial activity, cell adhesion, pattern recognition, opsonization, and regulation of the prophenoloxidase system. In the present study, we cloned a c-SPH cDNA from tiger shrimp (Penaeus monodon) hemocytes. It is 1337 bp in length with a coding region of 1068 bp consisting a protein of 355 amino acid residues. The deduced protein includes one clip domain and one catalytically inactive serine protease-like (SP-like) domain. Its molecular weight is estimated to be 38 kDa with an isoelectric point of 7.9. The predicted cutting site of the signal peptide is located between Gly(21) and Gln(22). We aligned 15 single clip domain SPH protein sequences from 12 arthropod species; the identity of these clip domains is low and that of SP-like domains is from 34% to 46%. The conserved regions are located near the amino acid residues which served as substrate interaction sites in catalytically active serine protease. Phylogenetically, the tiger shrimp c-SPH is most similar to a low molecular mass masquerade-like protein of crayfish, but less similar to c-SPHs in Chelicerata and Insecta. Nested reverse transcription polymerase chain reaction (RT-PCR) revealed that c-SPH mRNA is expressed most in tissues with the highest hemocyte abundance. Antimicrobial and opsonization activities of the molecule were not detected. The expression of c-SPH mRNA in hemocytes was up-regulated at the 12-day post beta-glucan immersion. Recombinant c-SPH could significantly enhance hemocyte adhesion. The result suggests that the shrimp c-SPH protein plays a role in innate immunity.
Collapse
Affiliation(s)
- Chun-Yu Lin
- Institute of Zoology, National Taiwan University, Taipei, Taiwan
| | | | | | | |
Collapse
|
63
|
Castillejo-López C, Häcker U. The serine protease Sp7 is expressed in blood cells and regulates the melanization reaction in Drosophila. Biochem Biophys Res Commun 2005; 338:1075-82. [PMID: 16256951 DOI: 10.1016/j.bbrc.2005.10.042] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2005] [Accepted: 10/07/2005] [Indexed: 01/15/2023]
Abstract
Serine proteases play a central role in defense against pathogens by regulating processes such as blood clotting, melanization of injured surfaces, and proteolytic activation of signaling pathways involved in innate immunity. Here, we present the functional characterization of the Drosophila serine protease Sp7 (CG3006) by inducible RNA interference. We show that Sp7 is constitutively expressed in blood cells during embryonic and larval stages. Silencing of the gene impairs the melanization reaction upon injury. Our data demonstrate that Sp7 is required for phenoloxidase activation and its activity is restricted to a subclass of blood cells, the crystal cells. Transcriptional up-regulation of Sp7 was observed after clean, septic injury and in flies expressing an activated form of Toll; however, mutations in the Toll or the IMD pathway did not abolish expression of Sp7, indicating the existence of other regulatory pathways and/or independent basal transcription.
Collapse
Affiliation(s)
- Casimiro Castillejo-López
- Department of Experimental Medical Science and Lund Strategic Research Center for Stem Cell Biology and Cell Therapy, Lund University, BMC B13, Klinikgatan 26, 22184 Lund, Sweden.
| | | |
Collapse
|
64
|
Piao S, Kim D, Won Park J, Leul Lee B, Ha NC. Overexpression and preliminary X-ray crystallographic analysis of prophenoloxidase activating factor II, a clip domain family of serine proteases. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1752:103-6. [PMID: 15953772 DOI: 10.1016/j.bbapap.2005.05.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2005] [Revised: 05/11/2005] [Accepted: 05/12/2005] [Indexed: 11/19/2022]
Abstract
A clip domain family of serine proteases has been identified in invertebrates as a crucial enzyme involved in diverse biological processes including immune responses and embryonic development. Although these proteins contain at least one clip domain at the N-terminal of the serine protease domain, the roles and three-dimensional structure of the clip domain are unknown. Prophenoloxidase activating factor-II (PPAF-II), a clip domain family of serine proteases, derived from the beetle Holotrichia diomphalia larvae, was overexpressed in the baculovirus system, and crystallized using the hanging-drop vapor-diffusion method. High-quality single crystals of PPAF-II were obtained in a precipitant solution containing 0.15 M ammonium sulfate, 1.25 M lithium sulfate monohydrate, and 0.1 M sodium citrate dehydrate (pH 5.5). These crystals belong to space group C2 with unit-cell parameters a=107.84, b=76.78, c=70.49 A and beta=113.93 degrees , and contain one or two molecules in the asymmetric unit. Determination of the three-dimensional structure of PPAF-II would clarify the functions of the clip domains.
Collapse
Affiliation(s)
- Shunfu Piao
- National Research Laboratory of Defense Proteins, College of Pharmacy, Pusan National University, Jangjeon Dong, Geumjeong Gu, Busan 609-735, Korea
| | | | | | | | | |
Collapse
|
65
|
Nappi AJ, Christensen BM. Melanogenesis and associated cytotoxic reactions: applications to insect innate immunity. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2005; 35:443-459. [PMID: 15804578 DOI: 10.1016/j.ibmb.2005.01.014] [Citation(s) in RCA: 377] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2004] [Revised: 01/05/2005] [Accepted: 01/07/2005] [Indexed: 05/24/2023]
Abstract
Insects transmit the causative agents for such debilitating diseases as malaria, lymphatic filariases, sleeping sickness, Chagas' disease, leishmaniasis, river blindness, Dengue, and yellow fever. The persistence of these diseases provides testimony to the genetic capacity of parasites to evolve strategies that ensure their successful development in two genetically diverse host species: insects and mammals. Current efforts to address the problems posed by insect-borne diseases benefit from a growing understanding of insect and mammalian immunity. Of considerable interest are recent genomic investigations that show several similarities in the innate immune effector responses and associated regulatory mechanisms manifested by insects and mammals. One notable exception, however, is the nearly universal presence of a brown-black pigment accompanying cellular innate immunity in insects. This response, which is unique to arthropods and certain other invertebrates, has focused attention on the elements involved in pigment synthesis as causing or contributing to the death of the parasite, and has even prompted speculation that the enzyme cascade mediating melanogenesis constitutes an ill-defined recognition mechanism. Experimental evidence defining the role of melanin and its precursors in insect innate immunity is severely lacking. A great deal of what is known about melanogenesis comes from studies of the process occurring in mammalian systems, where the pigment is synthesized by such diverse cells as those comprising portions of the skin, hair, inner ear, brain, and retinal epithelium. Fortunately, many of the components in the metabolic pathways leading to the formation of melanin have been found to be common to both insects and mammals. This review examines some of the factors that influence enzyme-mediated melanogenic responses, and how these responses likely contribute to blood cell-mediated, target-specific cytotoxicity in immune challenged insects.
Collapse
Affiliation(s)
- A J Nappi
- Department of Animal Health and Biomedical Sciences, University of Wisconsin-Madison, WI 53706, USA.
| | | |
Collapse
|
66
|
Abstract
Polydnaviruses (PDVs) are endogenous particles that are used by some endoparasitic hymenoptera to disrupt host immunity and development. Recent analyses of encapsidated PDV genes have increased the number of known PDV gene families, which are often closely related to insect genes. Several PDV proteins inactivate host haemocytes by damaging their actin cytoskeleton. These proteins share no significant sequence homology and occur in polyphyletic PDV genera, possibly indicating that convergent evolution has produced functionally similar immune-suppressive molecules causing a haemocyte phenotype characterised by damaged cytoskeleton and inactivation. These phenomena provide further insights into the immune-suppressive activity of PDVs and raise interesting questions about PDV evolution, a topic that has puzzled researchers ever since the discovery of PDVs.
Collapse
Affiliation(s)
- Richard V Glatz
- Insect Molecular Biology Laboratory, University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia.
| | | | | |
Collapse
|
67
|
Nappi AJ, Frey F, Carton Y. Drosophila serpin 27A is a likely target for immune suppression of the blood cell-mediated melanotic encapsulation response. JOURNAL OF INSECT PHYSIOLOGY 2005; 51:197-205. [PMID: 15749104 DOI: 10.1016/j.jinsphys.2004.10.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2004] [Revised: 10/06/2004] [Accepted: 10/07/2004] [Indexed: 05/24/2023]
Abstract
Avirulent strains of the endoparasitoid Leptopilina boulardi succumb to a blood cell-mediated melanotic encapsulation response in host larvae of Drosophila melanogaster. Virulent wasp strains effectively abrogate the cellular response with substances introduced into the host that specifically target and effectively suppress one or more immune signaling pathways, including elements that control phenoloxidase-mediated melanotic encapsulation. The present study implicates involvement of the Drosophila Toll pathway in cellular innate immunity by regulating the serine protease inhibitor Serpin 27A (Spn27A), which normally functions as a negative regulator of phenoloxidase. The introduction of Spn27A into normally highly immune competent D. melanogaster larvae significantly reduced their ability to form melanotic capsules around eggs of L. boulardi. This study confirms the role of Spn27A in the melanization cascade and establishes that this pathway and associated blood cell responses can be activated by parasitization. The activation of phenoloxidase and the site-specific localization of the ensuing melanotic response are such critical components of the blood cell response that Spn27A and the signaling elements mediating its activity are likely to represent prime targets for immune suppression by L. boulardi.
Collapse
Affiliation(s)
- A J Nappi
- Department of Animal Health and Biomedical Sciences, University of Wisconsin, Madison, 1556 Linden Drive, Wisconsin 53706, USA.
| | | | | |
Collapse
|
68
|
Zhang G, Schmidt O, Asgari S. A novel venom peptide from an endoparasitoid wasp is required for expression of polydnavirus genes in host hemocytes. J Biol Chem 2004; 279:41580-5. [PMID: 15292189 DOI: 10.1074/jbc.m406865200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Maternal factors introduced into host insects by endoparasitoid wasps are usually essential for successful parasitism. This includes polydnaviruses (PDVs) that are produced in the reproductive organ of female hymenopteran endoparasitoids and are injected, together with venom proteins, into the host hemocoel at oviposition. Inside the host, PDVs enter various tissue cells and hemocytes where viral genes are expressed, leading to developmental and physiological alterations in the host, including the suppression of the host immune system. Although several studies have shown that some PDVs are only effective when accompanied by venom proteins, there is no report of an active venom ingredient(s) facilitating PDV infection and/or gene expression. In this study, we describe a novel peptide (Vn1.5) isolated from Cotesia rubecula venom that is required for the expression of C. rubecula bracoviruses (CrBVs) in host hemocytes (Pieris rapae), although it is not essential for CrBV entry into host cells. The peptide consists of 14 amino acids with a molecular mass of 1598 Da. In the absence of Vn1.5 or total venom proteins, CrBV genes are not expressed in host cells and did not cause inactivation of host hemocytes.
Collapse
Affiliation(s)
- Guangmei Zhang
- Insect Molecular Biology Laboratory, Department of Plant and Pest Science, Waite Campus, University of Adelaide, Glen Osmond SA 5064, Australia
| | | | | |
Collapse
|