51
|
Al‐Hilphy AR, Al‐Mtury AAA, Al‐Iessa SA, Gavahian M, Al‐Shatty SM, Jassim MA, Mohusen ZAA, Mousavi Khaneghah A. A pilot‐scale rotary infrared dryer of shrimp (
Metapenaeus affinis
): Mathematical modeling and effect on physicochemical attributes. J FOOD PROCESS ENG 2021. [DOI: 10.1111/jfpe.13945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Asaad R. Al‐Hilphy
- Department of Food Science College of Agriculture, University of Basrah Basrah Iraq
| | | | - Sajedah A. Al‐Iessa
- Department of Food Science College of Agriculture, University of Basrah Basrah Iraq
| | - Mohsen Gavahian
- Department of Food Science National Pingtung University of Science and Technology Pingtung Taiwan, Republic of China
| | | | - Muhammad Ali Jassim
- Department of Food Science College of Agriculture, University of Basrah Basrah Iraq
| | | | - Amin Mousavi Khaneghah
- Department of Food Science and Nutrition, Faculty of Food Engineering State University of Campinas (U.N.I.C.A.M.P.) Campinas São Paulo Brazil
| |
Collapse
|
52
|
Uncertainty, insightful ignorance, and curiosity: Improving future food science research. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.10.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
53
|
Effects of microsecond pulsed electric field (μsPEF) and modular micro reaction system (MMRS) treatments on whey protein aggregation. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2021.105170] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
54
|
Moens LG, Van Wambeke J, De Laet E, Van Ceunebroeck JC, Goos P, Van Loey AM, Hendrickx ME. Effect of postharvest storage on potato (Solanum tuberosum L.) texture after pulsed electric field and thermal treatments. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
55
|
Djukić-Vuković A, Meglič SH, Flisar K, Mojović L, Miklavčič D. Pulsed electric field treatment of Lacticaseibacillus rhamnosus and Lacticaseibacillus paracasei, bacteria with probiotic potential. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
56
|
Effect of Pulsed Electric Field (PEF) on Bacterial Viability and Whey Protein in the Processing of Raw Milk. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112311281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
There is growing concern regarding the nutritional value of processed food products. Although thermal pasteurization, used in food processing, is a safe method and is widely applied in the food industry, food products lack quality and nutritional value because of the high temperatures used during pasteurization. In this study, the effect of pulsed electric field (PEF) processing on whey protein content and bacterial viability in raw milk was evaluated by changing the PEF strength and number of pulses. For comparison, traditional pasteurization techniques, such as low-temperature long-time (LTLT), ultra-high temperature (UHT), and microfiltration (MF), were also tested for total whey protein content, bacterial activity, and coliforms. We found that, after treatment with PEF, a significant decrease in total bacterial viability of 2.43 log and coliforms of 0.9 log was achieved, although undenatured whey protein content was not affected at 4.98 mg/mL. While traditional pasteurization techniques showed total bacterial inactivation, they were detrimental for whey protein content: β-lactoglobulin was not detected using HPLC in samples treated with UHT. LTLT treatment led to a significant decrease of 75% in β-lactoglobulin concentration; β-lactoglobulin content in milk samples treated with MF was the lowest compared to LTLT and UHT pasteurization, and ~10% and 27% reduction was observed.
Collapse
|
57
|
Yuliangsih S, Waturangi DE, Yogiara. Microbial analysis and virulence genes detection of milk preserved using heat-assisted pulsed electric field. BMC Res Notes 2021; 14:397. [PMID: 34702364 PMCID: PMC8549208 DOI: 10.1186/s13104-021-05805-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/10/2021] [Indexed: 11/29/2022] Open
Abstract
Objective Microbial analysis in milk preserved using heat-assisted Pulsed Electric Field (PEF) need to be assessed. In this study we analyze the microbial quality and virulence-associated genes in milk samples preserved using heat-assisted PEF from several producers in Indonesia. Results Milk samples were collected consisting of raw milk, milks taken after the heating, PEF, mixing, cooling, and packaging. Microbiological and Polymerase Chain Reaction (PCR) detection for virulence genes were performed. Heat-assisted PEF treatment gave 2.7–7.47 log reduction for TPC; 1.6–2.56 log reduction for MPN number; 3.13–6.48 log reduction for S. aureus; and for B. cereus there was an increase of 0.76 log and a reduction of 0.46 log. While milk samples from thermal pasteurization gave log reduction numbers of TPC, MPN, and S. aureus respectively 5.28; 2.56; and 4.73, for B. cereus was increasing 2.4 log. Producer C performed the best results with significant reduction compared with others (p < 0.005). There were no colonies of L. monocytogenes found in all of the samples. PCR results showed that milk samples possessed virulence genes 17.5% (10/57) of invA genes, 54.4% (31/57) of nheA genes, 68.4% (39/57) of cytK genes, 38.6% (22/57) of nuc genes, 63.2% (36/57) of ileS genes, while hly and actA genes were not detected. Supplementary Information The online version contains supplementary material available at 10.1186/s13104-021-05805-3.
Collapse
Affiliation(s)
- Suci Yuliangsih
- Indonesian Food and Drug Authority, Jalan Percetakan Negara No. 23, Jakarta Pusat, 10560, Indonesia.,Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jalan Jenderal Sudirman 51, Jakarta, 12930, Indonesia
| | - Diana Elizabeth Waturangi
- Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jalan Jenderal Sudirman 51, Jakarta, 12930, Indonesia.
| | - Yogiara
- Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jalan Jenderal Sudirman 51, Jakarta, 12930, Indonesia
| |
Collapse
|
58
|
Visockis M, Bobinaitė R, Ruzgys P, Barakauskas J, Markevičius V, Viškelis P, Šatkauskas S. Assessment of plant tissue disintegration degree and its related implications in the pulsed electric field (PEF)–assisted aqueous extraction of betalains from the fresh red beetroot. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102761] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
59
|
Emerging Green Techniques for the Extraction of Antioxidants from Agri-Food By-Products as Promising Ingredients for the Food Industry. Antioxidants (Basel) 2021; 10:antiox10091417. [PMID: 34573049 PMCID: PMC8471374 DOI: 10.3390/antiox10091417] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 09/01/2021] [Indexed: 11/18/2022] Open
Abstract
Nowadays, the food industry is heavily involved in searching for green sources of valuable compounds, to be employed as potential food ingredients, to cater to the evolving consumers’ requirements for health-beneficial food ingredients. In this frame, agri-food by-products represent a low-cost source of natural bioactive compounds, including antioxidants. However, to effectively recover these intracellular compounds, it is necessary to reduce the mass transfer resistances represented by the cellular envelope, within which they are localized, to enhance their extractability. To this purpose, emerging extraction technologies, have been proposed, including Supercritical Fluid Extraction, Microwave-Assisted Extraction, Ultrasound-Assisted Extraction, High-Pressure Homogenization, Pulsed Electric Fields, High Voltage Electrical Discharges. These technologies demonstrated to be a sustainable alternative to conventional extraction, showing the potential to increase the extraction yield, decrease the extraction time and solvent consumption. Additionally, in green extraction processes, also the contribution of solvent selection, as well as environmental and economic aspects, represent a key factor. Therefore, this review focused on critically analyzing the main findings on the synergistic effect of low environmental impact technologies and green solvents towards the green extraction of antioxidants from food by-products, by discussing the main associated advantages and drawbacks, and the criteria of selection for process sustainability.
Collapse
|
60
|
Nowacka M, Dadan M, Janowicz M, Wiktor A, Witrowa-Rajchert D, Mandal R, Pratap-Singh A, Janiszewska-Turak E. Effect of nonthermal treatments on selected natural food pigments and color changes in plant material. Compr Rev Food Sci Food Saf 2021; 20:5097-5144. [PMID: 34402592 DOI: 10.1111/1541-4337.12824] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/21/2021] [Accepted: 07/12/2021] [Indexed: 12/01/2022]
Abstract
In recent years, traditional high-temperature food processing is continuously being replaced by nonthermal processes. Nonthermal processes have a positive effect on food quality, including color and maintaining natural food pigments. Thus, this article describes the influence of nonthermal, new, and traditional treatments on natural food pigments and color changes in plant materials. Characteristics of natural pigments, such as anthocyanins, betalains, carotenoids, chlorophylls, and so forth available in the plant tissue, are shortly presented. Also, the characteristics and mechanism of nonthermal processes such as pulsed electric field, ultrasound, high hydrostatic pressure, pulsed light, cold plasma, supercritical fluid extraction, and lactic acid fermentation are described. Furthermore, the disadvantages of these processes are mentioned. Each treatment is evaluated in terms of its effects on all types of natural food pigments, and the possible applications are discussed. Analysis of the latest literature showed that the use of nonthermal technologies resulted in better preservation of pigments contained in the plant tissue and improved yield of extraction. However, it is important to select the appropriate processing parameters and to optimize this process in relation to a specific type of raw material.
Collapse
Affiliation(s)
- Małgorzata Nowacka
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Magdalena Dadan
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Monika Janowicz
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Artur Wiktor
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Dorota Witrowa-Rajchert
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Ronit Mandal
- Food, Nutrition and Health Program, Faculty of Land and Food Systems (LFS), The University of British Columbia, Vancouver, British Columbia, Canada
| | - Anubhav Pratap-Singh
- Food, Nutrition and Health Program, Faculty of Land and Food Systems (LFS), The University of British Columbia, Vancouver, British Columbia, Canada
| | - Emilia Janiszewska-Turak
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| |
Collapse
|
61
|
PEF as pretreatment to ultrasound-assisted convective drying: Influence on quality parameters of orange peel. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
62
|
Heat and Mass Transfer Modeling to Predict Temperature Distribution during Potato Frying after Pre-Treatment with Pulsed Electric Field. Foods 2021; 10:foods10081679. [PMID: 34441456 PMCID: PMC8391427 DOI: 10.3390/foods10081679] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 12/04/2022] Open
Abstract
Based on unsteady state heat conduction, a mathematical model has been developed to describe the simultaneous heat and moisture transfer during potato frying. For the first time, the equation was solved using both enthalpy and Variable Space Network (VSN) methods, based on a moving interface defined by the boiling temperature of water in a potato disc during frying. Two separate regions of the potato disc namely fried (crust) and unfried (core), were considered as heat transfer domains. A variable boiling temperature of the water in potato discs was required as an input parameter for the model as the water is evaporated during frying, resulting in an increase in the soluble solid concentration of the potato sample. Pulsed electric field (PEF) pretreatment prior to frying had no significant effect on the measured moisture content, thermal conductivity or frying time compared to potatoes that did not receive a PEF pretreatment. However, a PEF pretreatment at 1.1 kV/cm and 56 kJ/kg reduced the temperature variation in the experimentally measured potato center by up to 30%. The proposed heat and moisture transfer model based on unsteady state heat conduction successfully predicted the experimental measurements, especially when the equation was solved using the enthalpy method.
Collapse
|
63
|
Castro LMG, Alexandre EMC, Saraiva JA, Pintado M. Starch Extraction and Modification by Pulsed Electric Fields. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1945620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Luís M. G. Castro
- CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, Porto 4169-005, Portugal
- University of Aveiro, LAQV-REQUIMTE, Laboratório Associado, Department of Chemistry, Aveiro 3810-193, Portugal
| | - Elisabete M. C. Alexandre
- CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, Porto 4169-005, Portugal
- University of Aveiro, LAQV-REQUIMTE, Laboratório Associado, Department of Chemistry, Aveiro 3810-193, Portugal
| | - Jorge A. Saraiva
- University of Aveiro, LAQV-REQUIMTE, Laboratório Associado, Department of Chemistry, Aveiro 3810-193, Portugal
| | - Manuela Pintado
- CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, Porto 4169-005, Portugal
| |
Collapse
|
64
|
Carpentieri S, Mazza L, Nutrizio M, Jambrak AR, Ferrari G, Pataro G. Pulsed electric fields‐ and ultrasound‐assisted green extraction of valuable compounds from
Origanum v
ulgare
L. and
Thymus serpyllum
L. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15159] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Serena Carpentieri
- Department of Industrial Engineering University of Salerno via Giovanni Paolo II Fisciano (SA) 132 ‐ 84084 Italy
| | - Luisa Mazza
- Department of Industrial Engineering University of Salerno via Giovanni Paolo II Fisciano (SA) 132 ‐ 84084 Italy
| | - Marinela Nutrizio
- Faculty of Food Technology and Biotechnology University of Zagreb Pierottijeva 6 Zagreb 10000 Croatia
| | - Anet R. Jambrak
- Faculty of Food Technology and Biotechnology University of Zagreb Pierottijeva 6 Zagreb 10000 Croatia
| | - Giovanna Ferrari
- Department of Industrial Engineering University of Salerno via Giovanni Paolo II Fisciano (SA) 132 ‐ 84084 Italy
- ProdAl Scarl – University of Salerno via Giovanni Paolo II Fisciano (SA) 132 ‐ 84084 Italy
| | - Gianpiero Pataro
- Department of Industrial Engineering University of Salerno via Giovanni Paolo II Fisciano (SA) 132 ‐ 84084 Italy
| |
Collapse
|
65
|
Pulsed Electric Field (PEF) Enhances Iron Uptake by the Yeast Saccharomyces cerevisiae. Biomolecules 2021; 11:biom11060850. [PMID: 34200319 PMCID: PMC8227778 DOI: 10.3390/biom11060850] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/01/2021] [Accepted: 06/04/2021] [Indexed: 01/20/2023] Open
Abstract
The aim of the study was to investigate the influence of a pulsed electric field (PEF) on the level of iron ion accumulation in Saccharomyces cerevisiae cells and to select PEF conditions optimal for the highest uptake of this element. Iron ions were accumulated most efficiently when their source was iron (III) nitrate. When the following conditions of PEF treatment were used: voltage 1500 V, pulse width 10 μs, treatment time 20 min, and a number of pulses 1200, accumulation of iron ions in the cells from a 20 h-culture reached a maximum value of 48.01 mg/g dry mass. Application of the optimal PEF conditions thus increased iron accumulation in cells by 157% as compared to the sample enriched with iron without PEF. The second derivative of the FTIR spectra of iron-loaded and -unloaded yeast cells allowed us to determine the functional groups which may be involved in metal ion binding. The exposure of cells to PEF treatment only slightly influenced the biomass and cell viability. However, iron-enriched yeast (both with or without PEF) showed lower fermentative activity than a control sample. Thus obtained yeast biomass containing a high amount of incorporated iron may serve as an alternative to pharmacological supplementation in the state of iron deficiency.
Collapse
|
66
|
Haberkorn I, Siegenthaler L, Buchmann L, Neutsch L, Mathys A. Enhancing single-cell bioconversion efficiency by harnessing nanosecond pulsed electric field processing. Biotechnol Adv 2021; 53:107780. [PMID: 34048886 DOI: 10.1016/j.biotechadv.2021.107780] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 04/23/2021] [Accepted: 05/18/2021] [Indexed: 11/29/2022]
Abstract
Nanosecond pulsed electric field (nsPEF) processing is gaining momentum as a physical means for single-cell bioconversion efficiency enhancement. The technology allows biomass yields per substrate (YX/S) to be leveraged and poses a viable option for stimulating intracellular compound production. NsPEF processing thus resonates with myriad domains spanning the pharmaceutical and medical sectors, as well as food and feed production. The exact working mechanisms underlying nsPEF-based enhancement of bioconversion efficiency, however, remain elusive, and a better understanding would be pivotal for leveraging process control to broaden the application of nsPEF and scale-up industrial implementation. To bridge this gap, the study provides the electrotechnological and metabolic fundamentals of nsPEF processing in the bio-based domain to enable a critical evaluation of pathways underlying the enhancement of single-cell bioconversion efficiency. Evidence suggests that treating cells during the rapid proliferating and thus the early to mid-exponential state of cellular growth is critical to promoting bioconversion efficiency. A combined effect of transient intracellular and sublethal stress induction and effects caused on the plasma membrane level result in an enhancement of cellular bioconversion efficiency. Congruency exists regarding the involvement of transient cytosolic Ca2+ hubs in nsPEF treatment responses, as well as that of reactive oxygen species formation culminating in the onset of cellular response pathways. A distinct assignment of single effects and their contributions to enhancing bioconversion efficiency, however, remains challenging. Current applications of nsPEF processing comprise microalgae, bacteria, and yeast biorefineries, but these endeavors are in their infancies with limitations associated with a lack of understanding of the underlying treatment mechanisms, an incomplete reporting, insufficient characterization, and control of processing parameters. The study aids in fostering the upsurge of nsPEF applications in the bio-based domain by providing a basis to gain a better understanding of cellular mechanisms underlying an nsPEF-based enhancement of cellular bioconversion efficiency and suggests best practice guidelines for nsPEF documentation for improved knowledge transfer. Better understanding and reporting of processes parameters and consequently improved process control could foster industrial-scale nsPEF realization and ultimately aid in perpetuating nsPEF applicability within the bio-based domain.
Collapse
Affiliation(s)
- Iris Haberkorn
- ETH Zürich, Laboratory of Sustainable Food Processing, Institute of Food, Nutrition and Health, Schmelzbergstrasse 9, 8092 Zürich, Switzerland.
| | - Lya Siegenthaler
- ETH Zürich, Laboratory of Sustainable Food Processing, Institute of Food, Nutrition and Health, Schmelzbergstrasse 9, 8092 Zürich, Switzerland.
| | | | - Lukas Neutsch
- ZHAW, Bioprocess Technology Research Group, Grüentalstrasse 14, 8820 Wädenswil, Switzerland.
| | - Alexander Mathys
- ETH Zürich, Laboratory of Sustainable Food Processing, Institute of Food, Nutrition and Health, Schmelzbergstrasse 9, 8092 Zürich, Switzerland.
| |
Collapse
|
67
|
|
68
|
Dimopoulos G, Katsimichas A, Tsimogiannis D, Oreopoulou V, Taoukis P. Cell permeabilization processes for improved encapsulation of oregano essential oil in yeast cells. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2020.110408] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
69
|
Gómez-López VM, Pataro G, Tiwari B, Gozzi M, Meireles MÁA, Wang S, Guamis B, Pan Z, Ramaswamy H, Sastry S, Kuntz F, Cullen PJ, Vidyarthi SK, Ling B, Quevedo JM, Strasser A, Vignali G, Veggi PC, Gervilla R, Kotilainen HM, Pelacci M, Viganó J, Morata A. Guidelines on reporting treatment conditions for emerging technologies in food processing. Crit Rev Food Sci Nutr 2021; 62:5925-5949. [PMID: 33764212 DOI: 10.1080/10408398.2021.1895058] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In the last decades, different non-thermal and thermal technologies have been developed for food processing. However, in many cases, it is not clear which experimental parameters must be reported to guarantee the experiments' reproducibility and provide the food industry a straightforward way to scale-up these technologies. Since reproducibility is one of the most important science features, the current work aims to improve the reproducibility of studies on emerging technologies for food processing by providing guidelines on reporting treatment conditions of thermal and non-thermal technologies. Infrared heating, microwave heating, ohmic heating and radiofrequency heating are addressed as advanced thermal technologies and isostatic high pressure, ultra-high-pressure homogenization sterilization, high-pressure homogenization, microfluidization, irradiation, plasma technologies, power ultrasound, pressure change technology, pulsed electric fields, pulsed light and supercritical CO2 are approached as non-thermal technologies. Finally, growing points and perspectives are highlighted.
Collapse
Affiliation(s)
- Vicente M Gómez-López
- Departamento de Ciencia y Tecnología de Alimentos, Universidad Católica de Murcia (UCAM), Guadalupe, Murcia, Spain
| | - Gianpiero Pataro
- Department of Industrial Engineering, University of Salerno, Fisciano, SA, Italy
| | - Brijesh Tiwari
- Food Biosciences Department, Teagasc Food Research Centre, Dublin, Ireland
| | - Mario Gozzi
- Catelli Food Technology Group; CFT S.p.A., Parma, Italy
| | - María Ángela A Meireles
- Department of Chemical Engineering, Institute of Environmental, Chemical and Pharmaceutical Sciences, Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Shaojin Wang
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Buenaventura Guamis
- Centre d'Innovació, Recerca i Transferència en Tecnologia dels Aliments (CIRTTA), TECNIO, XaRTA, Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Zhongli Pan
- Department of Biological and Agricultural Engineering, University of California, Davis, California, USA
| | - Hosahalli Ramaswamy
- Department of Food Science and Agricultural Chemistry, McGill University, Macdonald Campus, Montreal, Quebec, Canada
| | - Sudhir Sastry
- Department of Food, Agricultural and Biological Engineering, The Ohio State University, Columbus, Ohio, USA
| | | | - Patrick J Cullen
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, Australia
| | - Sriram K Vidyarthi
- Department of Biological and Agricultural Engineering, University of California, Davis, California, USA
| | - Bo Ling
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Joan Miquel Quevedo
- SPTA-Servei Planta Tecnologia Aliments, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | | | - Giuseppe Vignali
- Department of Engineering and Architecture, University of Parma, Parma, Italy
| | - Priscilla C Veggi
- Department of Food Engineering, School of Food Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Ramon Gervilla
- SPTA-Servei Planta Tecnologia Aliments, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | | | | | - Juliane Viganó
- Department of Food Engineering, School of Food Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Antonio Morata
- Dept. Química y Tecnología de Alimentos, ETSIAAB, Universidad Politécnica de Madrid, Madrid, Spain
| |
Collapse
|
70
|
Emanuel E, Dubrovin I, Pogreb R, Pinhasi GA, Cahan R. Resuscitation of Pulsed Electric Field-Treated Staphylococcus aureus and Pseudomonas putida in a Rich Nutrient Medium. Foods 2021; 10:foods10030660. [PMID: 33808827 PMCID: PMC8003612 DOI: 10.3390/foods10030660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/04/2021] [Accepted: 03/16/2021] [Indexed: 11/16/2022] Open
Abstract
Pulsed electric fields (PEFs) technology was reported to be useful as a disinfection method in the liquid food industry. This technology may lead to membrane permeabilization and bacterial death. However, resuscitation of viable but non-culturable cells and sublethally injured microorganisms in food was reported to be associated with foodborne outbreaks. The main aim of this study was to investigate the possible recovery of injured PEF-treated bacteria. The PEF treatment of Staphylococcus aureus and Pseudomonas putida led to a reduction of 3.2 log10 and 4.8 log10, respectively. After 5 h, no colony forming units (CFUs) were observed when the bacteria were suspended in phosphate buffer saline (PBS); and for 24 h, no recovery was observed. The PEF-treated S. aureus in brain-heart infusion (BHI) medium were maintained at 1.84 × 104 CFU mL−1 for about 1.5 h. While P. putida decreased to zero CFU mL−1 by the 4th hour. However, after that, both bacteria recovered and began to multiply. Flow cytometry analysis showed that PEF treatment led to significant membrane permeabilization. Mass spectrometry analysis of PEF-treated P. putida which were suspended in BHI revealed over-expression of 22 proteins, where 55% were related to stress conditions. Understanding the recovery conditions of PEF-treated bacteria is particularly important in food industry pasteurization. To our knowledge, this is the first comprehensive study describing the recovery of injured PEF-treated S. aureus and P. putida bacteria.
Collapse
Affiliation(s)
- Efrat Emanuel
- Department of Chemical Engineering, Ariel University, Ariel 40700, Israel; (E.E.); (I.D.); (G.A.P.)
| | - Irina Dubrovin
- Department of Chemical Engineering, Ariel University, Ariel 40700, Israel; (E.E.); (I.D.); (G.A.P.)
| | - Roman Pogreb
- Department of Physics, Ariel University, Ariel 40700, Israel;
| | - Gad A. Pinhasi
- Department of Chemical Engineering, Ariel University, Ariel 40700, Israel; (E.E.); (I.D.); (G.A.P.)
| | - Rivka Cahan
- Department of Chemical Engineering, Ariel University, Ariel 40700, Israel; (E.E.); (I.D.); (G.A.P.)
- Correspondence: ; Tel.: +972-54-7740293
| |
Collapse
|
71
|
Pulsed electric fields (PEF) treatment to enhance starch 3D printing application: Effect on structure, properties, and functionality of wheat and cassava starches. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102602] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
72
|
Bassaganya-Riera J, Berry EM, Blaak EE, Burlingame B, le Coutre J, van Eden W, El-Sohemy A, German JB, Knorr D, Lacroix C, Muscaritoli M, Nieman DC, Rychlik M, Scholey A, Serafini M. Goals in Nutrition Science 2020-2025. Front Nutr 2021; 7:606378. [PMID: 33665201 PMCID: PMC7923694 DOI: 10.3389/fnut.2020.606378] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/26/2020] [Indexed: 12/12/2022] Open
Abstract
Five years ago, with the editorial board of Frontiers in Nutrition, we took a leap of faith to outline the Goals for Nutrition Science - the way we see it (1). Now, in 2020, we can put ourselves to the test and take a look back. Without a doubt we got it right with several of the key directions. To name a few, Sustainable Development Goals (SDGs) for Food and Nutrition are part of the global public agenda, and the SDGs contribute to the structuring of international science and research. Nutritional Science has become a critical element in strengthening work on the SDGs, and the development of appropriate methodologies is built on the groundwork of acquiring and analyzing big datasets. Investigation of the Human Microbiome is providing novel insight on the interrelationship between nutrition, the immune system and disease. Finally, with an advanced definition of the gut-brain-axis we are getting a glimpse into the potential for Nutrition and Brain Health. Various milestones have been achieved, and any look into the future will have to consider the lessons learned from Covid-19 and the sobering awareness about the frailty of our food systems in ensuring global food security. With a view into the coming 5 years from 2020 to 2025, the editorial board has taken a slightly different approach as compared to the previous Goals article. A mind map has been created to outline the key topics in nutrition science. Not surprisingly, when looking ahead, the majority of scientific investigation required will be in the areas of health and sustainability. Johannes le Coutre, Field Chief Editor, Frontiers in Nutrition.
Collapse
Affiliation(s)
- Josep Bassaganya-Riera
- Nutritional Immunology and Molecular Medicine Laboratory (NIMML) Institute, Blacksburg, VA, United States
| | - Elliot M Berry
- Braun School of Public Health, Hebrew University - Hadassah Medical School, Jerusalem, Israel
| | - Ellen E Blaak
- Department of Human Biology, Maastricht University, Maastricht, Netherlands
| | | | - Johannes le Coutre
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Willem van Eden
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, Netherlands
| | - Ahmed El-Sohemy
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| | - J Bruce German
- Department of Food Science and Technology, University of California, Davis, Davis, CA, United States
| | - Dietrich Knorr
- Institute of Food Technology and Chemistry, Technische Universität Berlin, Berlin, Germany
| | - Christophe Lacroix
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Maurizio Muscaritoli
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - David C Nieman
- Human Performance Laboratory, Department of Biology, Appalachian State University, Kannapolis, NC, United States
| | - Michael Rychlik
- Technical University of Munich, Analytical Food Chemistry, Freising, Germany
| | - Andrew Scholey
- Centre for Human Psychopharmacology, Swinburne University, Melbourne, VIC, Australia
| | - Mauro Serafini
- Functional Food and Metabolic Stress Prevention Laboratory, Faculty of Biosciences and Technologies for Agriculture, Food and Environment, University of Teramo, Teramo, Italy
| |
Collapse
|
73
|
|
74
|
Kovačić Đ, Rupčić S, Kralik D, Jovičić D, Spajić R, Tišma M. Pulsed electric field: An emerging pretreatment technology in a biogas production. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 120:467-483. [PMID: 33139189 DOI: 10.1016/j.wasman.2020.10.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 10/01/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
This review focuses on current status of pulsed electric field (PEF) technology and its implementation in biogas production. First, basic principles of PEF and a schematic overview of typical PEF processing system were provided. Thereafter, lab- and pilot-scale PEF pretreatments of sludge with subsequent anaerobic digestion (AD) were provided. Furthermore, PEF technology, as an emerging technology for the lignocellulose (LC) pretreatment in biogas production which is still predominantly used at lab-scale, was outlined. Eventually, conclusion together with future perspectives and challenges were outlined.
Collapse
Affiliation(s)
- Đurđica Kovačić
- J. J. Strossmayer University of Osijek, Faculty of Agrobiotechnical Sciences Osijek, Vladimira Preloga 1, HR - 31000 Osijek, Croatia.
| | - Slavko Rupčić
- J. J. Strossmayer University of Osijek, Faculty of Electrical Engineering, Computer Science and Information Technology Osijek, Kneza Trpimira 2B, HR - 31000 Osijek, Croatia
| | - Davor Kralik
- J. J. Strossmayer University of Osijek, Faculty of Agrobiotechnical Sciences Osijek, Vladimira Preloga 1, HR - 31000 Osijek, Croatia
| | - Daria Jovičić
- J. J. Strossmayer University of Osijek, Faculty of Agrobiotechnical Sciences Osijek, Vladimira Preloga 1, HR - 31000 Osijek, Croatia
| | - Robert Spajić
- J. J. Strossmayer University of Osijek, Faculty of Agrobiotechnical Sciences Osijek, Vladimira Preloga 1, HR - 31000 Osijek, Croatia
| | - Marina Tišma
- J. J. Strossmayer University of Osijek, Faculty of Food Technology Osijek, F. Kuhača 18, HR - 31000 Osijek, Croatia
| |
Collapse
|
75
|
Baldi G, D’Elia F, Soglia F, Tappi S, Petracci M, Rocculi P. Exploring the Effect of Pulsed Electric Fields on the Technological Properties of Chicken Meat. Foods 2021; 10:241. [PMID: 33504106 PMCID: PMC7911002 DOI: 10.3390/foods10020241] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 11/17/2022] Open
Abstract
Pulsed electric field (PEF) is a non-thermal technology which is increasingly drawing the interest of the meat industry. This study aimed at evaluating the effect of PEF on the main technological properties of chicken meat, by investigating the role of the most relevant process parameters such as the number of pulses (150 vs. 300 and 450 vs. 600) and the electric field strength (0.60 vs. 1.20 kV/cm). Results indicated that PEF does not exert any effect on meat pH and just slightly affects lightness and yellowness. Low-intensity PEF treatments improved the water holding capacity of chicken meat by significantly (p < 0.001) reducing drip loss up to 28.5% during 4 days of refrigerated storage, without damaging proteins' integrity and functionality. Moreover, from the analysis of the process parameters, it has been possible to highlight that increasing the number of pulses is more effective in reducing meat drip loss rather than doubling the electric field strengths. From an industrial point of view, the results of this explorative study suggested the potential of PEF to reduce the undesired liquid inside the package, thus improving consumer acceptance.
Collapse
Affiliation(s)
- Giulia Baldi
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; (G.B.); (F.D.); (F.S.); (S.T.)
| | - Fabio D’Elia
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; (G.B.); (F.D.); (F.S.); (S.T.)
| | - Francesca Soglia
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; (G.B.); (F.D.); (F.S.); (S.T.)
| | - Silvia Tappi
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; (G.B.); (F.D.); (F.S.); (S.T.)
- Interdepartmental Centre for Agri-Food Industrial Research, Alma Mater Studiorum, Campus of Food Science, University of Bologna, 47521 Cesena, Italy
| | - Massimiliano Petracci
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; (G.B.); (F.D.); (F.S.); (S.T.)
- Interdepartmental Centre for Agri-Food Industrial Research, Alma Mater Studiorum, Campus of Food Science, University of Bologna, 47521 Cesena, Italy
| | - Pietro Rocculi
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; (G.B.); (F.D.); (F.S.); (S.T.)
- Interdepartmental Centre for Agri-Food Industrial Research, Alma Mater Studiorum, Campus of Food Science, University of Bologna, 47521 Cesena, Italy
| |
Collapse
|
76
|
Iaccheri E, Castagnini J, Dalla Rosa M, Rocculi P. New insights into the glass transition of dried fruits and vegetables and the effect of pulsed electric field treatment. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2020.102566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
77
|
Al-Hilphy AR, Abdulstar AR, Gavahian M. Moderate electric field pasteurization of milk in a continuous flow unit: Effects of process parameters, energy consumption, and shelf-life determination. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2020.102568] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
78
|
Yang G, Wang R, Gao J, Niu D, Li J, Wen Q, Zeng X. The effect of moderate pulsed electric fields on autolysis of
Saccharomyces cerevisiae
and the amino acid content in autolysates. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.14659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Geng Yang
- School of Food Sciences and Engineering South China University of Technology Guangzhou 510641 China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center) Guangzhou 510641 China
| | - Rui Wang
- School of Food Sciences and Engineering South China University of Technology Guangzhou 510641 China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center) Guangzhou 510641 China
| | - Jing‐Rong Gao
- School of Food Sciences and Engineering South China University of Technology Guangzhou 510641 China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center) Guangzhou 510641 China
| | - Debao Niu
- School of Food Sciences and Engineering South China University of Technology Guangzhou 510641 China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center) Guangzhou 510641 China
| | - Jian Li
- School of Food Sciences and Engineering South China University of Technology Guangzhou 510641 China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center) Guangzhou 510641 China
| | - Qing‐Hui Wen
- School of Food Sciences and Engineering South China University of Technology Guangzhou 510641 China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center) Guangzhou 510641 China
| | - Xin‐An Zeng
- School of Food Sciences and Engineering South China University of Technology Guangzhou 510641 China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center) Guangzhou 510641 China
| |
Collapse
|
79
|
Neri L, Giancaterino M, Rocchi R, Tylewicz U, Valbonetti L, Faieta M, Pittia P. Pulsed electric fields (PEF) as hot air drying pre-treatment: Effect on quality and functional properties of saffron (Crocus sativus L.). INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2020.102592] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
80
|
Use of a Pulsed Electric Field to Improve the Biogas Potential of Maize Silage. ENERGIES 2020. [DOI: 10.3390/en14010119] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Some types of biomass require great inputs to guarantee high conversion rates to methane. The complex structure of lignocellulose impedes its penetration by cellulolytic enzymes, as a result of which a longer retention time is necessary to increase the availability of nutrients. To use the full biogas potential of lignocellulosic substrates, a substrate pretreatment is necessary before the proper methane fermentation. This article discusses the impact of the pretreatment of maize silage with a pulsed electric field on biogas productivity. The experiment showed a slight decrease in cellulose, hemicellulose and lignin content in the substrate following pretreatment with a pulsed electric field, which resulted in a higher carbohydrate content in the liquid substrate fraction. The highest biogas production output was obtained for the pretreated sample at the retention time of 180 s for 751.97 mL/g volatile solids (VS), which was approximately 14% higher than for the control sample. The methane production rate for the control sample was 401.83 mL CH4/g VS, and for the sample following disintegration it was 465.62 mL CH4/g VS. The study found that pretreatment of maize silage with a pulsed electric field increased the biogas potential.
Collapse
|
81
|
Pulsed electric field pre-treatment for enhanced bacterial survival after drying: Effect of carrier matrix and strain variability. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2020.102515] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
82
|
Eradication of Saccharomyces cerevisiae by Pulsed Electric Field Treatments. Microorganisms 2020; 8:microorganisms8111684. [PMID: 33138324 PMCID: PMC7692574 DOI: 10.3390/microorganisms8111684] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 12/29/2022] Open
Abstract
One of the promising technologies that can inactivate microorganisms without heat is pulsed electric field (PEF) treatment. The aim of this study was to examine the influence of PEF treatment (2.9 kV cm−1, 100 Hz, 5000 pulses in trains mode of 500 pulses with a pulse duration of 10 µs) on Saccharomyces cerevisiae eradication and resealing in different conditions, such as current density (which is influenced by the medium conductivity), the sort of medium (phosphate buffered saline (PBS) vs. yeast malt broth (YMB) and a combined treatment of PEF with the addition of preservatives. When the S. cerevisiae were suspended in PBS, increasing the current density from 0.02 to 3.3 A cm−2 (corresponding to a total specific energy of 22.04 to 614.59 kJ kg−1) led to an increase of S. cerevisiae eradication. At 3.3 A cm−2, a total S. cerevisiae eradication was observed. However, when the S. cerevisiae in PBS was treated with the highest current density of 3.3 A cm−2, followed by dilution in a rich YMB medium, a phenomenon of cell membrane resealing was observed by flow cytometry (FCM) and CFU analysis. The viability of S. cerevisiae was also examined when the culture was exposed to repeating PEF treatments (up to four cycles) with and without the addition of preservatives. This experiment was performed when the S. cerevisiae were suspended in YMB containing tartaric acid (pH 3.4) and ethanol to a final concentration of 10% (v/v), which mimics wine. It was shown that one PEF treatment cycle led to a reduction of 1.35 log10, compared to 2.24 log10 when four cycles were applied. However, no synergic effect was observed when the preservatives, free SO2, and sorbic acid were added. This study shows the important and necessary knowledge about yeast eradication and membrane recovery processes after PEF treatment, in particular for application in the liquid food industry.
Collapse
|
83
|
Gorte O, Nazarova N, Papachristou I, Wüstner R, Leber K, Syldatk C, Ochsenreither K, Frey W, Silve A. Pulsed Electric Field Treatment Promotes Lipid Extraction on Fresh Oleaginous Yeast Saitozyma podzolica DSM 27192. Front Bioeng Biotechnol 2020; 8:575379. [PMID: 33015025 PMCID: PMC7516276 DOI: 10.3389/fbioe.2020.575379] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 08/14/2020] [Indexed: 11/13/2022] Open
Abstract
This study reports on the use of pulsed electric field (PEF) as a pre-treatment step to enhance lipid extraction yield using extraction with ethanol-hexane blend on fresh oleaginous yeast Saitozyma podzolica. The yeasts were cultivated on nitrogen-depleted condition and had a lipid content of 26.4 ± 4.6% of dry weight. PEF-treatment was applied on the yeast suspension either directly after harvesting (unwashed route) or after a washing step (washed route) which induced a reduction of conductivity by a factor eight. In both cases, cell concentration was 20 g of biomass per liter of suspension. In the unwashed route, the lipid extraction efficiency increased from 7% (untreated) to 54% thanks to PEF-treatment. In case an additional washing step was added after PEF-treatment, up to 81% of the lipid content could be recovered. The washed route was even more efficient since lipid extraction yields increased from 26% (untreated) to 99% of total lipid. The energy input for the PEF-treatment never exceeded 150 kJ per liter of initial suspension. The best lipid recovery scenario was obtained using pulses of 1 μs, an electric field of 40 kV/cm and it required slightly less than 11 MJ/kgLIPID. This amount of energy can be further reduced by at least a factor five by optimizing the treatment and especially by increasing the concentration of the treated biomass. The process can be easily up-scaled and does not require any expensive handling of the biomass such as freezing or freeze-drying. These findings demonstrate the potential benefit of PEF-treatment in the downstream processing of oleaginous yeast. From a basic research point of view, the influence of conductivity on PEF energy requirements and extraction yields was examined, and results suggest a higher efficiency of PEF-treatment in terms of energy when treatment is performed at lower conductivity.
Collapse
Affiliation(s)
- Olga Gorte
- Institute of Process Engineering in Life Science 2: Technical Biology, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Natalja Nazarova
- Institute for Pulse Power and Microwave Technology (IHM), Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Ioannis Papachristou
- Institute for Pulse Power and Microwave Technology (IHM), Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Rüdiger Wüstner
- Institute for Pulse Power and Microwave Technology (IHM), Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Klaus Leber
- Institute for Pulse Power and Microwave Technology (IHM), Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Christoph Syldatk
- Institute of Process Engineering in Life Science 2: Technical Biology, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Katrin Ochsenreither
- Institute of Process Engineering in Life Science 2: Technical Biology, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Wolfgang Frey
- Institute for Pulse Power and Microwave Technology (IHM), Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Aude Silve
- Institute for Pulse Power and Microwave Technology (IHM), Karlsruhe Institute of Technology, Karlsruhe, Germany
| |
Collapse
|
84
|
Electrical systems for pulsed electric field applications in the food industry: An engineering perspective. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.07.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
85
|
Gomez-Gomez A, Brito-de la Fuente E, Gallegos C, Garcia-Perez JV, Benedito J. Non-thermal pasteurization of lipid emulsions by combined supercritical carbon dioxide and high-power ultrasound treatment. ULTRASONICS SONOCHEMISTRY 2020; 67:105138. [PMID: 32339868 DOI: 10.1016/j.ultsonch.2020.105138] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 06/11/2023]
Abstract
Supercritical carbon dioxide (SC-CO2) is a novel method for food pasteurization, but there is still room for improvement in terms of the process shortening and its use in products with high oil content. This study addressed the effect of high power ultrasound (HPU) on the intensification of the SC-CO2 inactivation of E. coli and B. diminuta in soybean oil-in-water emulsions. Inactivation kinetics were obtained at different pressures (100 and 350 bar), temperatures (35 and 50 °C) and oil contents (0, 10, 20 and 30%) and were satisfactorily described using the Weibull model. The experimental results showed that for SC-CO2 treatments, the higher the pressure or the temperature, the higher the level of inactivation. Ultrasound greatly intensified the inactivation capacity of SC-CO2, shortening the process time by approximately 1 order of magnitude (from 50 to 90 min to 5-10 min depending on the microorganism and process conditions). Pressure and temperature also had a significant (p < 0.05) effect on SC-CO2 + HPU inactivation for both bacteria, although the effect was less intense than in the SC-CO2 treatments. E. coli was found to be more resistant than B. diminuta in SC-CO2 treatments, while no differences were found when HPU was applied. HPU decreased the protective effect of oil in the inactivation and similar microbial reductions were obtained regardless of the oil content in the emulsion. Therefore, HPU intensification of SC-CO2 treatments is a promising alternative to the thermal pasteurization of lipid emulsions with heat sensitive compounds.
Collapse
Affiliation(s)
- Angela Gomez-Gomez
- Grupo ASPA, Departamento de Tecnología de Alimentos, Universitat Politècnica de València, Camí de Vera s/n, València E46022, Spain
| | - Edmundo Brito-de la Fuente
- Fresenius-Kabi Deutschland GmbH, Product and Process Engineering Center, Pharmaceuticals & Device Division, Bad Homburg, Germany
| | - Críspulo Gallegos
- Fresenius-Kabi Deutschland GmbH, Product and Process Engineering Center, Pharmaceuticals & Device Division, Bad Homburg, Germany
| | - Jose Vicente Garcia-Perez
- Grupo ASPA, Departamento de Tecnología de Alimentos, Universitat Politècnica de València, Camí de Vera s/n, València E46022, Spain
| | - Jose Benedito
- Grupo ASPA, Departamento de Tecnología de Alimentos, Universitat Politècnica de València, Camí de Vera s/n, València E46022, Spain.
| |
Collapse
|
86
|
Castagnini J, Iaccheri E, Tylewicz U, Dalla Rosa M, Rocculi P. Pulsed electric fields effect on mechanical and sorption properties of dried apple tissue. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2020.102442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
87
|
Vaessen EMJ, Kemme HA, Timmermans RAH, Schutyser MAI, den Besten HMW. Temperature and presence of ethanol affect accumulation of intracellular trehalose in Lactobacillus plantarum WCFS1 upon pulsed electric field treatment. Bioelectrochemistry 2020; 137:107680. [PMID: 33120293 DOI: 10.1016/j.bioelechem.2020.107680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/19/2020] [Accepted: 09/24/2020] [Indexed: 11/17/2022]
Abstract
Pulsed electric field (PEF) treatment can be used to increase intracellular small molecule concentrations in bacteria, which can lead to enhanced robustness of these cells during further processing. In this study we investigated the effects of the PEF treatment temperature and the presence of 8% (v/v) ethanol in the PEF medium on cell survival, membrane fluidity and intracellular trehalose concentrations of Lactobacillus plantarum WCFS1. A moderate PEF treatment temperature of 21 °C resulted in a high cell survival combined with higher intracellular trehalose concentrations compared to a treatment at 10 and 35 °C. Interestingly, highest intracellular trehalose concentrations were observed upon supplementing the PEF medium with 8% ethanol, which resulted in more than a doubling in intracellular trehalose concentrations, while culture survival was retained. Overall, this study shows that treatment temperature and PEF medium optimization are important directions for improving molecule uptake upon PEF processing.
Collapse
Affiliation(s)
- E M J Vaessen
- Food Process Engineering, Wageningen University and Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands; Food Microbiology, Wageningen University and Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands
| | - H A Kemme
- Food Process Engineering, Wageningen University and Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands; Food Microbiology, Wageningen University and Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands
| | - R A H Timmermans
- Wageningen Food and Biobased Research, Wageningen University and Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands
| | - M A I Schutyser
- Food Process Engineering, Wageningen University and Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands
| | - H M W den Besten
- Food Microbiology, Wageningen University and Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands.
| |
Collapse
|
88
|
Schouten MA, Genovese J, Tappi S, Di Francesco A, Baraldi E, Cortese M, Caprioli G, Angeloni S, Vittori S, Rocculi P, Romani S. Effect of innovative pre-treatments on the mitigation of acrylamide formation in potato chips. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2020.102397] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
89
|
Pulsed electric field (PEF) as pre-treatment to improve the phenolic compounds recovery from brewers' spent grains. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2020.102402] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
90
|
Delso C, Martínez JM, Cebrián G, Álvarez I, Raso J. Understanding the occurrence of tailing in survival curves of Salmonella Typhimurium treated by pulsed electric fields. Bioelectrochemistry 2020; 135:107580. [PMID: 32526677 DOI: 10.1016/j.bioelechem.2020.107580] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/25/2020] [Accepted: 05/31/2020] [Indexed: 02/02/2023]
Abstract
This study aimed to gain more in-depth knowledge of the mechanisms involved in microbial inactivation by pulsed electric fields (PEF) to understand the tailing observed in survival curves of Salmonella Typhimurium (STCC 878). The comparison of the inactivation achieved by the application of one train of pulses with those obtained with pulses applied in two trains shows that the tail of the survival curves was a consequence of a transient increment of the microbial resistance to the effect of the electric field in a proportion of the cells. After some time following the application of the first pulse train, cells became again sensitive to the second train, and tailing tended to disappear. The required time was highly dependent on the characteristics of the incubation medium. Similar effects were observed when the treatments were validated on whole milk and orange juice. This study has demonstrated by the first time on microbial cells the benefits of splitting the delivered PEF treatment in two trains with a period of delay between them. Therefore, this insight opens up the possibility of developing new strategies to achieve the required inactivation levels to guarantee food safety by moderate PEF treatments.
Collapse
Affiliation(s)
- Carlota Delso
- Food Technology, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - Juan Manuel Martínez
- Food Technology, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - Guillermo Cebrián
- Food Technology, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - Ignacio Álvarez
- Food Technology, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - Javier Raso
- Food Technology, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, (Universidad de Zaragoza-CITA), Zaragoza, Spain.
| |
Collapse
|
91
|
Pankiewicz U, Góral M, Kozłowicz K, Góral D. Application of pulsed electric field in production of ice cream enriched with probiotic bacteria (L. rhamnosus B 442) containing intracellular calcium ions. J FOOD ENG 2020. [DOI: 10.1016/j.jfoodeng.2019.109876] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
92
|
Microbial inactivation by ohmic heating: Literature review and influence of different process variables. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.03.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
93
|
Semenoglou I, Dimopoulos G, Tsironi T, Taoukis P. Mathematical modelling of the effect of solution concentration and the combined application of pulsed electric fields on mass transfer during osmotic dehydration of sea bass fillets. FOOD AND BIOPRODUCTS PROCESSING 2020. [DOI: 10.1016/j.fbp.2020.02.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
94
|
Martínez JM, Schottroff F, Haas K, Fauster T, Sajfrtová M, Álvarez I, Raso J, Jaeger H. Evaluation of pulsed electric fields technology for the improvement of subsequent carotenoid extraction from dried Rhodotorula glutinis yeast. Food Chem 2020; 323:126824. [PMID: 32334308 DOI: 10.1016/j.foodchem.2020.126824] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/09/2020] [Accepted: 04/13/2020] [Indexed: 11/20/2022]
Abstract
This research aims to evaluate whether the electroporation of Rhodotorula glutinis fresh biomass improved the subsequent extraction of carotenoids from dry biomass using supercritical CO2 and traditional solvent extraction. Supercritical CO2 extraction yields were low after all treatments assayed. Similarly, solvent extraction of carotenoids from untreated or PEF treated cells that were immediately freeze-dried after the pre-treatment was neither effective (extraction yield < 20% total content). Conversely, PEF-treatment and subsequent intermediate incubation in aqueous buffer for 24 h, followed by freeze-drying and extraction, led to a large improvement with the three solvents assayed (acetone, hexane, ethanol). Ethanol was the most efficient, reaching an extraction yield of 80% of total carotenoid, which represents a recovery of 267 µg/gdw. Torularhodin esters constituted the main carotenoid found in the extracts. This is of great interest, as ethanol is eco-friendly solvent and potential applications of torularhodin range from food to medical purposes.
Collapse
Affiliation(s)
- J M Martínez
- Food Technology, University of Zaragoza, Spain; Institute of Food Technology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria.
| | - F Schottroff
- Institute of Food Technology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - K Haas
- Institute of Food Technology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - T Fauster
- Institute of Food Technology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - M Sajfrtová
- Institute of Chemical Process Fundamentals of the CAS, v.v.i., Prague, Czech Republic
| | - I Álvarez
- Food Technology, University of Zaragoza, Spain
| | - J Raso
- Food Technology, University of Zaragoza, Spain
| | - H Jaeger
- Institute of Food Technology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| |
Collapse
|
95
|
Knappert J, McHardy C, Rauh C. Kinetic Modeling and Numerical Simulation as Tools to Scale Microalgae Cell Membrane Permeabilization by Means of Pulsed Electric Fields (PEF) From Lab to Pilot Plants. Front Bioeng Biotechnol 2020; 8:209. [PMID: 32269988 PMCID: PMC7109448 DOI: 10.3389/fbioe.2020.00209] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/03/2020] [Indexed: 11/26/2022] Open
Abstract
Pulsed Electric Fields (PEF) is a promising technology for the gentle and energy efficient disruption of microalgae cells such as Chlorella vulgaris. The technology is based on the exposure of cells to a high voltage electric field, which causes the permeabilization of the cell membrane. Due to the dependency of the effective treatment conditions on the specific design of the treatment chamber, it is difficult to compare data obtained in different chambers or at different scales, e.g., lab or pilot scale. This problem can be overcome by the help of numerical simulation since it enables the accessibility to the local treatment conditions (electric field strength, temperature, flow field) inside a treatment chamber. To date, no kinetic models for the cell membrane permeabilization of microalgae are available what makes it difficult to decide if and in what extent local treatment conditions have an impact on the permeabilization. Therefore, a kinetic model for the perforation of microalgae cells of the species Chlorella vulgaris was developed in the present work. The model describes the fraction of perforated cells as a function of the electric field strength, the temperature and the treatment time by using data which were obtained in a milliliter scale batchwise treatment chamber. Thereafter, the model was implemented in a CFD simulation of a pilot-scale continuous treatment chamber with colinear electrode arrangement. The numerical results were compared to experimental measurements of cell permeabilization in a similar continuous treatment chamber. The predicted values and the experimental data agree reasonably well what demonstrates the validity of the proposed model. Therefore, it can be applied to any possible treatment chamber geometry and can be used as a tool for scaling cell permeabilization of microalgae by means of PEF from lab to pilot scale. The present work provides the first contribution showing the applicability of kinetic modeling and numerical simulation for designing PEF processes for the purpose of biorefining microalgae biomass. This can help to develop new processes and to reduce the costs for the development of new treatment chamber designs.
Collapse
Affiliation(s)
- Justus Knappert
- Department of Food Biotechnology and Food Process Engineering, Technische Universität Berlin, Berlin, Germany
| | - Christopher McHardy
- Department of Food Biotechnology and Food Process Engineering, Technische Universität Berlin, Berlin, Germany
| | - Cornelia Rauh
- Department of Food Biotechnology and Food Process Engineering, Technische Universität Berlin, Berlin, Germany
| |
Collapse
|
96
|
Dermol-Černe J, Pirc E, Miklavčič D. Mechanistic view of skin electroporation - models and dosimetry for successful applications: an expert review. Expert Opin Drug Deliv 2020; 17:689-704. [PMID: 32192364 DOI: 10.1080/17425247.2020.1745772] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Introduction: Skin electroporation is a promising treatment for transdermal drug delivery, gene electrotransfer, skin rejuvenation, electrochemotherapy, and wound disinfection. Although a considerable amount of in vitro and in vivo studies exists, the translation to clinics is not as fast as one would hope. We hypothesize the reason lies in the inadequate dosimetry, i.e. electrode configurations, pulse parameters, and pulse generators used. We suggest adequate dosimetry can be determined by mathematical modeling which would allow comparison of protocols and facilitate translation into clinics.Areas covered: We introduce the mechanisms and applications of skin electroporation, present existing mathematical models and compare the influence of different model parameters. We review electrodes and pulse generators, prototypes, as well as commercially available models.Expert opinion: The reasons for slow translation of skin electroporation treatments into clinics lie in uncontrolled and inadequate dosimetry, poor reporting rendering comparisons between studies difficult, and significant differences in animal and human skin morphology often dismissed in reports. Mathematical models enable comparison of studies, however, when the parameters of the pulses and electrode configuration are not adequately reported, as is often the case, comparisons are difficult, if not impossible. For each skin electroporation treatment, systematic studies determining optimal parameters should be performed and treatment parameters standardized.
Collapse
Affiliation(s)
- Janja Dermol-Černe
- Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Eva Pirc
- Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Damijan Miklavčič
- Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
97
|
Andreou V, Psarianos M, Dimopoulos G, Tsimogiannis D, Taoukis P. Effect of pulsed electric fields and high pressure on improved recovery of high-added-value compounds from olive pomace. J Food Sci 2020; 85:1500-1512. [PMID: 32267966 DOI: 10.1111/1750-3841.15122] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 02/28/2020] [Accepted: 03/03/2020] [Indexed: 12/13/2022]
Abstract
Olive pomace is considered a solid by-product and a rich source of valuable compounds such as polyphenols, flavonoids with antioxidant properties, and proteins. Nonthermal technologies, which cause alterations to cell permeability, are being explored to assist conventional recovery techniques. The aim of this study was to assess the effect of pulsed electric fields (PEF) and high pressure (HP) on improved recovery yield of the high-added-value compounds or to shorten the extraction time of these compounds. Olive pomace (Tsounati cv) was pretreated with PEF (1.0 to 6.5 kV/cm, 0.9 to 51.1 kJ/kg, and 15 µs pulse width) or HP (200 to 600 MPa and 0 to 40 min). Evaluation of the intracellular compounds extracted via solid-liquid extraction (50% ethanol-water solution) was performed. More intense PEF and HP conditions resulted in a significant increase of the phenolic concentration up to 91.6% and 71.8%, respectively. The increased antioxidant capacity of each extract was correlated to phenolic compound concentration. The protein concentration that was achieved with PEF pretreatment was doubled; however, HP-pretreated extracts reached 88.1% higher yield than untreated for pressures up to 200 MPa. HP and PEF pretreatment decreased extraction completion time t98 (needed time to recover the equal amount of phenolics and proteins of untreated after 60 min of conventional extraction) to 12 min and lower than 1 min, respectively. To conclude, both pretreatments are effective in improving the conventional extraction process for increased yield recovery of high-added-value compounds from olive pomace.
Collapse
Affiliation(s)
- Varvara Andreou
- Laboratory of Food Chemistry and Technology, School of Chemical Engineering, National Technical University of Athens, Athens, 15780, Greece
| | - Marios Psarianos
- Laboratory of Food Chemistry and Technology, School of Chemical Engineering, National Technical University of Athens, Athens, 15780, Greece
| | - George Dimopoulos
- Laboratory of Food Chemistry and Technology, School of Chemical Engineering, National Technical University of Athens, Athens, 15780, Greece
| | - Dimitrios Tsimogiannis
- Laboratory of Food Chemistry and Technology, School of Chemical Engineering, National Technical University of Athens, Athens, 15780, Greece
| | - Petros Taoukis
- Laboratory of Food Chemistry and Technology, School of Chemical Engineering, National Technical University of Athens, Athens, 15780, Greece
| |
Collapse
|
98
|
Application of pulsed electric fields to improve product yield and waste valorization in industrial tomato processing. J FOOD ENG 2020. [DOI: 10.1016/j.jfoodeng.2019.109778] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
99
|
Nagarajan D, Chang JS, Lee DJ. Pretreatment of microalgal biomass for efficient biohydrogen production - Recent insights and future perspectives. BIORESOURCE TECHNOLOGY 2020; 302:122871. [PMID: 32007310 DOI: 10.1016/j.biortech.2020.122871] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 01/19/2020] [Accepted: 01/20/2020] [Indexed: 06/10/2023]
Abstract
Biohydrogen is a plausible alternative fuel solution for the contemporary issues regarding global warming and the steadily increasing greenhouse gas emissions, because of its high energy content and carbon-free combustion properties. Hydrogen does not exist in its natural state and the current hydrogen production technologies (steam methane reforming, water splitting) are energy-intensive, accompanied by a huge carbon footprint. Dark fermentative hydrogen production by anaerobic hydrogen-producing bacteria is a green, sustainable and emission-free pathway for hydrogen production. Microalgal biomass is considered as the third generation biofuel feedstock and is receiving academic and industrial research attention for its carbon sequestration abilities. This review discusses in detail about the pretreatment methods that could be adapted for microalgal biomass for effective biohydrogen production. Microalgal cell wall structure and the associated polymeric carbohydrates that offer certain recalcitrance are critically analyzed and future research perspectives are presented.
Collapse
Affiliation(s)
- Dillirani Nagarajan
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Department of Chemical Engineering, National Taiwan University, Taipei 10617 Taiwan
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan; Center for Nanotechnology, Tunghai University, Taichung 407, Taiwan.
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 10617 Taiwan; Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607 Taiwan
| |
Collapse
|
100
|
Głral M, Pankiewicz U, Sujka M, Kowalski R, Góral D, Kozłowicz K. Influence of Pulsed Electric Field on Accumulation of Calcium in Lactobacillus rhamnosus B 442. J Microbiol Biotechnol 2020; 30:44-53. [PMID: 31838798 PMCID: PMC9728274 DOI: 10.4014/jmb.1908.08064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Calcium is an element that performs many important functions in the human body. A study was conducted on the use of a pulsed electric field (PEF) to enrich cells of Lactobacillus rhamnosus B 442 in calcium ions. The highest concentration of calcium ions in bacterial cells (7.30 mg/g d.m.) was obtained at ion concentration of 200 µg/ml of medium and with the use of the following PEF parameters: field strength 3.0 kV/cm, exposure time 10 min, pulse width 75 ms and 20 h of culturing after which bacteria were treated with the field. Cell biomass varied in the range from 0.09 g/g d.m. to 0.252 g/g d.m., and the total number of bacteria ranged from 1010 CFU/ml to 1012 CFU/ml. Microscope photographs prove that calcium ions were situated within the cells of the bacteria, and electroporation contributed to an increase in the effectiveness of the ion bioaccumulation process. Samples containing calcium and subjected to electroporation displayed intensive fluorescence. The significance of this research was the possibility of using probiotic bacteria enriched with calcium ions for the production of functional food in subsequent studies.
Collapse
Affiliation(s)
- Maógorzata Głral
- Department of Analysis and Food Quality Assessment, Faculty of Food Science and Biotechnology University of Life Sciences, Skromna 8, 20-704, Lublin, Poland
| | - Urszula Pankiewicz
- Department of Analysis and Food Quality Assessment, Faculty of Food Science and Biotechnology University of Life Sciences, Skromna 8, 20-704, Lublin, Poland,Corresponding author Phone: +48-81-462-33-29 E-mail:
| | - Monika Sujka
- Department of Analysis and Food Quality Assessment, Faculty of Food Science and Biotechnology University of Life Sciences, Skromna 8, 20-704, Lublin, Poland
| | - Radosław Kowalski
- Department of Analysis and Food Quality Assessment, Faculty of Food Science and Biotechnology University of Life Sciences, Skromna 8, 20-704, Lublin, Poland
| | - Dariusz Góral
- Department of Analysis and Food Quality Assessment, Faculty of Food Science and Biotechnology University of Life Sciences, Skromna 8, 20-704, Lublin, Poland
| | - Katarzyna Kozłowicz
- Department of Biological Bases of Food and Feed Technologies, Faculty of Production Engineering, University of Life Sciences, Głęboka 8, 0-61, Lublin, Poland
| |
Collapse
|