51
|
Candel FJ, Santerre Henriksen A, Longshaw C, Yamano Y, Oliver A. In vitro activity of the novel siderophore cephalosporin, cefiderocol, in Gram-negative pathogens in Europe by site of infection. Clin Microbiol Infect 2022; 28:447.e1-447.e6. [PMID: 34298176 DOI: 10.1016/j.cmi.2021.07.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/02/2021] [Accepted: 07/11/2021] [Indexed: 11/03/2022]
Abstract
OBJECTIVES We assessed the activity of the novel siderophore cephalosporin, cefiderocol and selected other antibacterial agents against Gram-negative bacterial isolates in Europe. METHODS Isolates were obtained between 2013 and 2018 from European countries participating in the SIDERO-WT and SIDERO-Proteeae multinational surveillance studies. Isolates were categorised by infection site, focusing on bloodstream infections, hospital-acquired/ventilator-associated bacterial pneumonia (HABP/VABP), complicated intra-abdominal infections and complicated urinary tract infections. Cefiderocol activity was compared with ceftazidime-avibactam, ceftolozane-tazobactam, colistin and meropenem using standard susceptibility testing methods. European Committee on Antimicrobial Susceptibility Testing (EUCAST) breakpoints were used to interpret susceptibility data. RESULTS Isolates (n = 20 911) were collected from 145 sites in 24 countries in Europe, the highest proportion (34%) being from patients with HABP/VABP. Enterobacterales (66.6% of isolates) were more frequent than glucose non-fermenting species (33.4%) overall, with some differences between infection sites. Across all infection sites, the MIC50/MIC90 for cefiderocol was ≤0.5/≤2 mg/L for Enterobacter spp., ≤0.25/<2 mg/L for Klebsiella spp., 0.12/2 mg/L for Acinetobacter spp., ≤0.25/1 mg/L for Pseudomonas aeruginosa and ≤0.12/≤0.5 mg/L for Stenotrophomonas maltophilia. Across all infection sites, cefiderocol MICs were ≤2 mg/L for ≥96% of Enterobacter spp., ≥95% of Klebsiella spp., ≥90% of Acinetobacter spp. and ≥99% of Pseudomonas aeruginosa and Stenotrophomonas maltophilia isolates. Cefiderocol maintained high activity in carbapenem-resistant isolates, and the difference in activity between carbapenem-resistant (percentage susceptibility at EUCAST breakpoint: E. coli 77.8%, Klebsiella spp. 69.2%, Pseudomonas aeruginosa 97.5%, Acinetobacter spp. 90.7%, Stenotrophomonas maltophilia 99.6%) and carbapenem-susceptible (percentage susceptibility at EUCAST breakpoint: E. coli 99.4%, Klebsiella spp. 98.0%, Pseudomonas aeruginosa 99.7%, Acinetobacter spp. 94.9%) isolates was lower for cefiderocol than other agents. CONCLUSIONS Cefiderocol had excellent activity against all Gram-negative species, independent of key infection site and carbapenem MIC. Cefiderocol is a useful addition to the therapeutic options available for these difficult-to-treat infections.
Collapse
Affiliation(s)
- Francisco Javier Candel
- Department of Clinical Microbiology and Infectious Diseases, Hospital Clínico San Carlos, IdISSC and IML Institutes, Complutense University of Madrid, Spain.
| | | | | | - Yoshinori Yamano
- Pharmaceutical Research Division, Shionogi & Co, Ltd, Osaka, Japan
| | - Antonio Oliver
- Hospital Universitari Son Espases, Palma de Mallorca, Spain
| |
Collapse
|
52
|
Karlowsky JA, Hackel MA, Takemura M, Yamano Y, Echols R, Sahm DF. In Vitro Susceptibility of Gram-Negative Pathogens to Cefiderocol in Five Consecutive Annual Multinational SIDERO-WT Surveillance Studies, 2014 to 2019. Antimicrob Agents Chemother 2022; 66:e0199021. [PMID: 34807757 PMCID: PMC8846469 DOI: 10.1128/aac.01990-21] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/07/2021] [Indexed: 11/28/2022] Open
Abstract
We report in vitro susceptibility data from five consecutive annual SIDERO-WT surveillance studies (2014 to 2019) for cefiderocol and comparators tested against Gram-negative clinical isolates from North America and Europe. CLSI broth microdilution was used to determine MICs for Enterobacterales (n = 31,896), Pseudomonas aeruginosa (n = 7,700), Acinetobacter baumannii complex (n = 5,225), Stenotrophomonas maltophilia (n = 2,030), and Burkholderia cepacia complex (n = 425). MICs were interpreted by CLSI-approved clinical breakpoints (February 2021). Cefiderocol inhibited 99.8, 96.7, 91.6, and 97.7% of all Enterobacterales, meropenem-nonsusceptible, ceftazidime-avibactam-nonsusceptible, and ceftolozane-tazobactam-nonsusceptible isolates, respectively, at ≤4 μg/mL (susceptible breakpoint). Cefiderocol inhibited 99.9, 99.8, 100, and 99.8% of all P. aeruginosa, meropenem-nonsusceptible, ceftazidime-avibactam-nonsusceptible, and ceftolozane-tazobactam-nonsusceptible isolates, respectively, at ≤4 μg/mL (susceptible breakpoint). Cefiderocol inhibited 96.0% of all A. baumannii complex isolates and 94.2% of meropenem-nonsusceptible isolates at ≤4 μg/mL (susceptible breakpoint) and 98.6% of S. maltophilia isolates at ≤1 μg/mL (susceptible breakpoint). B. cepacia complex isolates were tested with a MIC50 of ≤0.03 μg/mL and MIC90 of 0.5 μg/mL. Annual cefiderocol percent susceptible rates for Enterobacterales (North America range, 99.6 to 100%/year; Europe range, 99.3 to 99.9%/year) and P. aeruginosa (North America range, 99.8 to 100%; Europe range, 99.9 to 100%) were unchanged from 2014 to 2019. Annual percent susceptible rates for A. baumannii complex demonstrated sporadic, nondirectional differences (North America range, 97.5 to 100%; Europe range, 90.4 to 97.5%); the wider range for Europe (∼7%) was due to isolates from Russia. Annual percent susceptible rates for S. maltophilia showed minor, nondirectional differences (North America range, 96.4 to 100%; Europe range, 95.6 to 100%). We conclude that clinical isolates of Enterobacterales (99.8% susceptible), P. aeruginosa (99.9%), A. baumannii (96.0%), and S. maltophilia (98.6%) collected in North America and Europe from 2014 to 2019 were highly susceptible to cefiderocol.
Collapse
Affiliation(s)
- James A. Karlowsky
- IHMA, Schaumburg, Illinois, USA
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | - Miki Takemura
- Laboratory for Drug Discovery and Disease Research, Shionogi & Co., Ltd., Osaka, Japan
| | - Yoshinori Yamano
- Research Planning Department, Shionogi & Co., Ltd., Osaka, Japan
| | - Roger Echols
- Infectious Disease Drug Development Consulting, LLC, Easton, Connecticut, USA
| | | |
Collapse
|
53
|
Price TK, Davar K, Contreras D, Ward KW, Garner OB, Simner PJ, Yang S, Chandrasekaran S. Case Report and Genomic Analysis of Cefiderocol-Resistant Escherichia coli Clinical Isolates. Am J Clin Pathol 2022; 157:257-265. [PMID: 34542575 DOI: 10.1093/ajcp/aqab115] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/01/2021] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES Cefiderocol is a novel siderophore cephalosporin with in vitro activity against multidrug-resistant (MDR), gram-negative bacteria and intrinsic structural stability to all classes of carbapenemases. We sought to identify gene variants that could affect the mechanism of action (MOA) of cefiderocol. METHODS We report a case of bacteremia in a liver transplant candidate with a strain of carbapenem-resistant Escherichia coli that was found to be resistant to cefiderocol despite no prior treatment with this antimicrobial agent. Using whole-genome sequencing, we characterized the genomic content of this E coli isolate and assessed for genetic variants between related strains that were found to be cefiderocol susceptible. RESULTS We identified several variants in genes with the potential to affect the mechanism of action of cefiderocol. CONCLUSIONS The cefiderocol resistance in the E coli isolate identified in this study is likely due to mutations in the cirA gene, an iron transporter gene.
Collapse
Affiliation(s)
- Travis K Price
- Department of Pathology and Laboratory Medicine, Los Angeles, CA, USA
| | - Kusha Davar
- Division of Infectious Disease, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Deisy Contreras
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Kevin W Ward
- Department of Pathology and Laboratory Medicine, Los Angeles, CA, USA
| | - Omai B Garner
- Department of Pathology and Laboratory Medicine, Los Angeles, CA, USA
| | - Patricia J Simner
- Division of Medical Microbiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shangxin Yang
- Department of Pathology and Laboratory Medicine, Los Angeles, CA, USA
| | | |
Collapse
|
54
|
Simner PJ, Beisken S, Bergman Y, Ante M, Posch AE, Tamma PD. Defining Baseline Mechanisms of Cefiderocol Resistance in the Enterobacterales. Microb Drug Resist 2022; 28:161-170. [PMID: 34619049 PMCID: PMC8885434 DOI: 10.1089/mdr.2021.0095] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The objective of this study was to identify putative mechanisms contributing to baseline cefiderocol resistance among carbapenem-resistant Enterobacterales (CRE). We evaluated 56 clinical CRE isolates with no previous exposure to cefiderocol. Cefiderocol and comparator agent minimum inhibitory concentrations (MICs) were determined by broth microdilution. Short-read and/or long-read whole genome sequencing was pursued. Cefiderocol nonwild type (NWT; i.e., MICs ≥4 mg/L) CRE were compared with species-specific reference genomes and with cefiderocol wild type (WT) CRE isolates to identify genes or missense mutations, potentially contributing to elevated cefiderocol MICs. A total of 14 (25%) CRE isolates met cefiderocol NWT criteria. Of the 14 NWT isolates, various β-lactamases (e.g., carbapenemases in Klebsiella pneumoniae and AmpC β-lactamases in Enterobacter cloacae complex) in combination with permeability defects were associated with a ≥ 80% positive predictive value in identifying NWT isolates. Unique mutations in the sensor kinase gene baeS were identified among NWT isolates. Cefiderocol NWT isolates were more likely to be resistant to colistin than WT isolates (29% vs. 0%). Our findings suggest that no consistent antimicrobial resistance markers contribute to baseline cefiderocol resistance in CRE isolates and, rather, cefiderocol resistance results from a combination of heterogeneous mechanisms.
Collapse
Affiliation(s)
- Patricia J. Simner
- Division of Medical Microbiology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Yehudit Bergman
- Division of Medical Microbiology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | - Pranita D. Tamma
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
55
|
Assessment of In Vitro Cefiderocol Susceptibility and Comparators against an Epidemiologically Diverse Collection of Acinetobacter baumannii Clinical Isolates. Antibiotics (Basel) 2022; 11:antibiotics11020187. [PMID: 35203791 PMCID: PMC8868317 DOI: 10.3390/antibiotics11020187] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/24/2022] [Accepted: 01/29/2022] [Indexed: 12/10/2022] Open
Abstract
Cefiderocol is a catechol-substituted siderophore cephalosporin combining rapid penetration into the periplasmic space with increased stability against β-lactamases. This study provides additional data on the in vitro antimicrobial activity of cefiderocol and commercially available comparators against an epidemiologically diverse collection of Acinetobacter baumannii clinical isolates. Antimicrobial susceptibility was tested using pre-prepared frozen 96-well microtiter plates containing twofold serial dilutions of: cefepime, ceftazidime/avibactam, imipenem/relebactam, ampicillin/sulbactam, meropenem, meropenem/vaborbactam, ciprofloxacin, minocycline, tigecycline, trimethoprim/sulfamethoxazole and colistin using the standard broth microdilution procedure in cation-adjusted Mueller–Hinton broth (CAMHB). For cefiderocol, iron-depleted CAMHB was used. A collection of 113 clinical strains of A. baumannii isolated from Argentina, Azerbaijan, Croatia, Greece, Italy, Morocco, Mozambique, Peru and Spain were included. The most active antimicrobial agents against our collection were colistin and cefiderocol, with 12.38% and 21.23% of non-susceptibility, respectively. A high proportion of multidrug-resistant (76.77%) and carbapenem-resistant (75.28%) A. baumannii isolates remained susceptible to cefiderocol, which was clearly superior to novel β-lactam/β-lactamase inhibitor combinations. Cefiderocol-resistance was higher among carbapenem-resistant isolates and isolates belonging to ST2, but could not be associated with any particular resistance mechanism or clonal lineage. Our data suggest that cefiderocol is a good alternative to treat infections caused by MDR A. baumanni, including carbapenem-resistant strains.
Collapse
|
56
|
Bassetti M, Mularoni A, Giacobbe DR, Castaldo N, Vena A. New Antibiotics for Hospital-Acquired Pneumonia and Ventilator-Associated Pneumonia. Semin Respir Crit Care Med 2022; 43:280-294. [PMID: 35088403 DOI: 10.1055/s-0041-1740605] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hospital-acquired pneumonia (HAP) and ventilator-associated pneumonia (VAP) represent one of the most common hospital-acquired infections, carrying a significant morbidity and risk of mortality. Increasing antibiotic resistance among the common bacterial pathogens associated with HAP and VAP, especially Enterobacterales and nonfermenting gram-negative bacteria, has made the choice of empiric treatment of these infections increasingly challenging. Moreover, failure of initial empiric therapy to cover the causative agents associated with HAP and VAP has been associated with worse clinical outcomes. This review provides an overview of antibiotics newly approved or in development for the treatment of HAP and VAP. The approved antibiotics include ceftobiprole, ceftolozane-tazobactam, ceftazidime-avibactam, meropenem-vaborbactam, imipenem-relebactam, and cefiderocol. Their major advantages include their high activity against multidrug-resistant gram-negative pathogens.
Collapse
Affiliation(s)
- Matteo Bassetti
- Infectious Diseases Unit, San Martino Policlinico Hospital-IRCCS for Oncology and Neurosciences, Genoa, Italy.,Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Alessandra Mularoni
- Department of Infectious Diseases, Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione (IRCCS), Palermo, Italy
| | - Daniele Roberto Giacobbe
- Infectious Diseases Unit, San Martino Policlinico Hospital-IRCCS for Oncology and Neurosciences, Genoa, Italy.,Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Nadia Castaldo
- Division of Infectious Diseases, Department of Medicine, Azienda Sanitaria Universitaria Integrata di Udine, Udine, Italy.,Department of Pulmonology, Azienda Sanitaria Universitaria Integrata di Udine, Udine, Italy
| | - Antonio Vena
- Infectious Diseases Unit, San Martino Policlinico Hospital-IRCCS for Oncology and Neurosciences, Genoa, Italy.,Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| |
Collapse
|
57
|
Yao J, Wang J, Chen M, Cai Y. Cefiderocol: An Overview of Its in-vitro and in-vivo Activity and Underlying Resistant Mechanisms. Front Med (Lausanne) 2021; 8:741940. [PMID: 34950677 PMCID: PMC8688709 DOI: 10.3389/fmed.2021.741940] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/02/2021] [Indexed: 11/20/2022] Open
Abstract
Treatment of multidrug-resistant (MDR) Gram-negative bacteria (GNB) infections has led to a global public health challenging due to the bacterial resistance and limited choices of antibiotics. Cefiderocol (CFDC), a novel siderophore cephalosporin possessed unique drug delivery systems and stability to β-lactamases, has the potential to become first-line therapy for most aggressive MDR Gram-negative pathogens infection. However, there have been reports of drug resistance in the course of using CFDC. This study provides an overview of the in-vitro and in-vivo activity of CFDC and potential resistance mechanism was also summarized. In general, CFDC shows excellent activity against a broad range of MDR GNB pathogens including Enterobacteriaceae, Klebsiella pneumoniae, Pseudomonas aeruginosa, Acinetobacter baumannii, and Stenotrophomonas maltophilia. The expressions of metallo-β-lactamases such as inosine 5'-monophosphate (IMP), Verona integron-mediated metallo-β-lactamase (VIM), and New Delhi metallo-β-lactamase (NDM) are associated with a higher resistance rate of CFDC. Carbapenem-resistant phenotype has little effect on the resistance rate, although the acquisition of a particular carbapenemase may affect the susceptibility of the pathogens to CFDC. For potential resistance mechanism, mutations in β-lactamases and TonB-dependent receptors, which assist CFDC entering bacteria, would increase a minimum inhibitory concentration (MIC)90 value of CFDC against MDR pathogens. Since the development of CFDC, resistance during its utilization has been reported thus, prudent clinical applications are still necessary to preserve the activity of CFDC.
Collapse
Affiliation(s)
- Jiahui Yao
- Center of Medicine Clinical Research, Department of Pharmacy, Medical Supplies Center, People's Liberation Army of Chinese General Hospital, Beijing, China
| | - Jin Wang
- Center of Medicine Clinical Research, Department of Pharmacy, Medical Supplies Center, People's Liberation Army of Chinese General Hospital, Beijing, China
| | - Mengli Chen
- Department of Pharmacy, Medical Supplies Center, People's Liberation Army of Chinese General Hospital, Beijing, China
| | - Yun Cai
- Center of Medicine Clinical Research, Department of Pharmacy, Medical Supplies Center, People's Liberation Army of Chinese General Hospital, Beijing, China
| |
Collapse
|
58
|
Tamma PD, Aitken SL, Bonomo RA, Mathers AJ, van Duin D, Clancy CJ. Infectious Diseases Society of America Guidance on the Treatment of AmpC β-lactamase-Producing Enterobacterales, Carbapenem-Resistant Acinetobacter baumannii, and Stenotrophomonas maltophilia Infections. Clin Infect Dis 2021; 74:2089-2114. [PMID: 34864936 DOI: 10.1093/cid/ciab1013] [Citation(s) in RCA: 288] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The Infectious Diseases Society of America (IDSA) is committed to providing up-to-date guidance on the treatment of antimicrobial-resistant infections. A previous guidance document focused on infections caused by extended-spectrum β-lactamase-producing Enterobacterales (ESBL-E), carbapenem-resistant Enterobacterales (CRE), and Pseudomonas aeruginosa with difficult-to-treat resistance (DTR-P. aeruginosa). Here, guidance is provided for treating AmpC β-lactamase-producing Enterobacterales (AmpC-E), carbapenem-resistant Acinetobacter baumannii (CRAB), and Stenotrophomonas maltophilia infections. METHODS A panel of six infectious diseases specialists with expertise in managing antimicrobial-resistant infections formulated questions about the treatment of AmpC-E, CRAB, and S. maltophilia infections. Answers are presented as suggestions and corresponding rationales. In contrast to guidance in the previous document, published data on optimal treatment of AmpC-E, CRAB, and S. maltophilia infections are limited. As such, guidance in this document is provided as "suggested approaches" based on clinical experience, expert opinion, and a review of the available literature. Because of differences in the epidemiology of resistance and availability of specific anti-infectives internationally, this document focuses on the treatment of infections in the United States. RESULTS Preferred and alternative treatment suggestions are provided, assuming the causative organism has been identified and antibiotic susceptibility results are known. Approaches to empiric treatment, duration of therapy, and other management considerations are also discussed briefly. Suggestions apply for both adult and pediatric populations. CONCLUSIONS The field of antimicrobial resistance is highly dynamic. Consultation with an infectious diseases specialist is recommended for the treatment of antimicrobial-resistant infections. This document is current as of September 17, 2021 and will be updated annually. The most current versions of IDSA documents, including dates of publication, are available at www.idsociety.org/practice-guideline/amr-guidance-2.0/.
Collapse
Affiliation(s)
- Pranita D Tamma
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Samuel L Aitken
- Department of Pharmacy, University of Michigan Health, Ann Arbor, Michigan, USA
| | - Robert A Bonomo
- Medical Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, University Hospitals Cleveland Medical Center and Departments of Medicine, Pharmacology, Molecular Biology, and Microbiology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Amy J Mathers
- Departments of Medicine and Pathology, University of Virginia, Charlottesville, Virginia, USA
| | - David van Duin
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Cornelius J Clancy
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
59
|
Gant V, Hussain A, Bain M, Longshaw C, Henriksen AS. In vitro activity of cefiderocol and comparators against Gram-negative bacterial isolates from a series of surveillance studies in England: 2014-2018. J Glob Antimicrob Resist 2021; 27:1-11. [PMID: 34329792 DOI: 10.1016/j.jgar.2021.07.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/30/2021] [Accepted: 07/11/2021] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES The prevalence of Gram-negative bacteria (GNB) demonstrating extensive, multiple antimicrobial resistance is increasing in England, leaving few treatment choices. Cefiderocol is a novel siderophore cephalosporin approved in Europe for the treatment of aerobic GNB infections in adults with limited treatment options. We report pooled data for a clinical isolate set collected in England between 2014-2018. METHODS MICs were determined by broth microdilution according to International Organization for Standardization guidelines. Cefiderocol susceptibility was tested using iron-depleted cation-adjusted Muller-Hinton broth. Susceptibility rates were based on EUCAST breakpoints. In the absence of a species-specific breakpoint, pharmacokinetic/pharmacodynamic breakpoints were used. RESULTS Of 1886 isolates from England [74.1% Enterobacterales (18.7% Escherichia coli, 17.2% Klebsiella pneumoniae), 25.9% non-fermenters (18.4% Pseudomonas aeruginosa, 3.7% Acinetobacter baumannii)], 98.7% were cefiderocol-susceptible. Cefiderocol susceptibility in Enterobacterales (99.0%) was significantly (P < 0.01) greater than ceftolozane/tazobactam (94.3%), but similar to meropenem (99.3%) and ceftazidime/avibactam (99.4%). Overall, cefiderocol susceptibility (98.0%) in non-fermenters was significantly (P < 0.01) higher than comparators (range, 84.5-92.4%). Susceptibility to cefiderocol was 98.3-99.6% by infection source and was significantly (P < 0.01) greater than comparators for isolates from patients with nosocomial pneumonia (cefiderocol, 98.3%; comparators range, 79.8-93.8%). Excluding intrinsically meropenem-resistant Stenotrophomonas maltophilia, 47/1846 isolates (2.5%) were meropenem-resistant. A high proportion of meropenem-resistant P. aeruginosa were susceptible to cefiderocol (95.0%). All S. maltophilia isolates (40/40) were cefiderocol-susceptible. CONCLUSION A substantial proportion of clinical isolates from England, representing a wide range of pathogens across multiple infection sources, was cefiderocol-susceptible. Cefiderocol retained activity against meropenem-resistant strains.
Collapse
Affiliation(s)
- Vanya Gant
- University College London Hospitals NHS Foundation Trust, London, UK.
| | - Abid Hussain
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.
| | | | | | | |
Collapse
|
60
|
Abstract
PURPOSE OF REVIEW To discuss the current literature on novel agents for the treatment of carbapenem-resistant nonfermenting Gram-negative bacteria (NF-GNB) infections. RECENT FINDINGS Some novel agents have recently become available that are expected to replace classical polymyxins as the first-line options for the treatment of carbapenem-resistant NF-GNB infections. SUMMARY In this narrative review, we provide a brief overview of the differential activity of various recently approved agents against NF-GNB most encountered in the daily clinical practice, as well as the results from phase-3 randomized clinical trials and large postapproval observational studies, with special focus on NF-GNB. Since resistance to novel agents has already been reported, the use of novel agents needs to be optimized, based on their differential activity (not only in terms of targeted bacteria, but also of resistance determinants), the local microbiological epidemiology, and the most updated pharmacokinetic/pharmacodynamic data. Large real-life experiences remain of crucial importance for further refining the optimal treatment of NF-GNB infections in the daily clinical practice.
Collapse
|
61
|
Bilal M, El Tabei L, Büsker S, Krauss C, Fuhr U, Taubert M. Clinical Pharmacokinetics and Pharmacodynamics of Cefiderocol. Clin Pharmacokinet 2021; 60:1495-1508. [PMID: 34420182 PMCID: PMC8613110 DOI: 10.1007/s40262-021-01063-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2021] [Indexed: 11/28/2022]
Abstract
Cefiderocol is a new broad-spectrum cephalosporin antibiotic with promising activity against various Gram-negative bacteria including carbapenem-resistant strains. A chlorocatechol group in the C-3 side chain provides cefiderocol with a siderophore activity, improving its stability against β-lactamases and facilitating the transportation of cefiderocol across outer bacterial membranes. Cefiderocol shows linear pharmacokinetics over a broad range of clinically relevant doses, with unchanged renal excretion constituting the main route of elimination. Geometric means (coefficient of variation) of the volume of distribution and clearance in individuals with normal kidney function were 15.8 (15%) L and 4.70 (27%) L/h, respectively. In patients with end-stage renal disease, clearance was 1.10 (24%) L/h. Time above the minimum inhibitory concentration is the main predictor of efficacy. There is no evidence for clinically relevant interactions of cefiderocol with other drugs mediated by metabolizing enzymes or drug transporters. Simulations based on population pharmacokinetic modeling suggest that dosing regimens should be adjusted based on kidney function to optimize therapeutic exposure to cefiderocol. Clinical efficacy trials indicated that cefiderocol is non-inferior to imipenem/cilastatin in the treatment of complicated urinary tract infections and acute uncomplicated pyelonephritis, and to meropenem in the treatment of nosocomial pneumonia. In the one study currently available, cefiderocol performed similarly to the best available therapy in the treatment of severe carbapenem-resistant Gram-negative infections regarding clinical and microbiological efficacy. In summary, cefiderocol shows favorable pharmacokinetic/pharmacodynamic properties and an acceptable safety profile, suggesting that cefiderocol might be a viable option to treat infections with bacteria resistant to other antibiotics.
Collapse
Affiliation(s)
- Muhammad Bilal
- Department I of Pharmacology, Faculty of Medicine and University Hospital Cologne, Center for Pharmacology, University of Cologne, Gleueler Straße 24, 50931, Cologne, Germany
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Bonn, Bonn, Germany
| | - Lobna El Tabei
- Department I of Pharmacology, Faculty of Medicine and University Hospital Cologne, Center for Pharmacology, University of Cologne, Gleueler Straße 24, 50931, Cologne, Germany
| | - Sören Büsker
- Department I of Pharmacology, Faculty of Medicine and University Hospital Cologne, Center for Pharmacology, University of Cologne, Gleueler Straße 24, 50931, Cologne, Germany
| | - Christian Krauss
- Department I of Pharmacology, Faculty of Medicine and University Hospital Cologne, Center for Pharmacology, University of Cologne, Gleueler Straße 24, 50931, Cologne, Germany
| | - Uwe Fuhr
- Department I of Pharmacology, Faculty of Medicine and University Hospital Cologne, Center for Pharmacology, University of Cologne, Gleueler Straße 24, 50931, Cologne, Germany
| | - Max Taubert
- Department I of Pharmacology, Faculty of Medicine and University Hospital Cologne, Center for Pharmacology, University of Cologne, Gleueler Straße 24, 50931, Cologne, Germany.
| |
Collapse
|
62
|
Gavioli EM, Guardado N, Haniff F, Deiab N, Vider E. Does Cefiderocol Have a Potential Role in Cystic Fibrosis Pulmonary Exacerbation Management? Microb Drug Resist 2021; 27:1726-1732. [PMID: 34077286 DOI: 10.1089/mdr.2020.0602] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Cystic fibrosis (CF) is associated with frequent pulmonary exacerbations and the need for novel antibiotics against antimicrobial resistance. Cefiderocol is a newly approved therapeutic option active against a variety of multidrug resistant (MDR) bacteria such as gram-negative species commonly encountered by CF patients. This review describes the potential role of cefiderocol against Pseudomonas aeruginosa, Stenotrophomonas maltophilia, Achromobacter xylosoxidans, and Burkholderia cepacia complex. Cefiderocol is a potential therapeutic option for MDR pathogens with minimum inhibitory concentrations (MICs) of ≤4 mg/L. Due to the lack of in vivo evidence in the CF population, cefiderocol may be utilized in patients in which alternative options are lacking due to MDR organisms or rapid pulmonary decline.
Collapse
Affiliation(s)
| | - Nerli Guardado
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Brooklyn, New York, USA
| | - Farah Haniff
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Brooklyn, New York, USA
| | - Nouran Deiab
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Brooklyn, New York, USA
| | - Etty Vider
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Brooklyn, New York, USA
| |
Collapse
|
63
|
Bassetti M, Falletta A, Cenderello G, Giacobbe DR, Vena A. Safety evaluation of current therapies for high-risk severely ill patients with carbapenem-resistant infections. Expert Opin Drug Saf 2021; 21:487-498. [PMID: 34632905 DOI: 10.1080/14740338.2022.1990262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Infections due to carbapenem-resistant Gram-negative bacteria (CR-GNB) are increasingly frequent events, which are associated with a high mortality rate. Traditionally, combination regimens including high doses of "old antibiotics" such as polymyxins, tigecycline, and aminoglycosides have been used to treat these infections, but they were often associated with low efficacy and high excess of side effects and toxicity, especially nephrotoxicity. Along with the development of new compounds, the last decade has seen substantial improvements in the management of CR infections. AREAS COVERED In this review, we aimed to discuss the safety characteristics and tolerability of different new options for treatment of CR infections. EXPERT OPINION The availability of new drugs showing a potent in vitro activity against CR-GNB represents a unique opportunity to face the threat of resistance, while potentially reducing toxicity. A thorough understanding of the safety profile from clinical trials may guide the use of these new drugs in critically ill patients at high risk for the development of adverse events. Future data coming from real-life studies for drugs targeting CR infections are crucial to confirm the safety profile observed in pivotal trials.
Collapse
Affiliation(s)
- Matteo Bassetti
- Clinica Malattie Infettive, San Martino Policlinico Hospital - IRCCS for Oncology and Neurosciences, Genoa, Italy.,Department of Health Sciences, University of Genoa, Genoa, Italy
| | - Antonio Falletta
- Clinica Malattie Infettive, San Martino Policlinico Hospital - IRCCS for Oncology and Neurosciences, Genoa, Italy.,Department of Health Sciences, University of Genoa, Genoa, Italy
| | | | - Daniele R Giacobbe
- Clinica Malattie Infettive, San Martino Policlinico Hospital - IRCCS for Oncology and Neurosciences, Genoa, Italy.,Department of Health Sciences, University of Genoa, Genoa, Italy
| | - Antonio Vena
- Clinica Malattie Infettive, San Martino Policlinico Hospital - IRCCS for Oncology and Neurosciences, Genoa, Italy
| |
Collapse
|
64
|
Jacob AS, Chong GL, Lagrou K, Depypere M, Desmet S. No in vitro activity of cefiderocol against OXA-427-producing Enterobacterales. J Antimicrob Chemother 2021; 76:3317-3318. [PMID: 34427311 DOI: 10.1093/jac/dkab304] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 07/28/2021] [Indexed: 01/29/2023] Open
Affiliation(s)
- Ann-Sophie Jacob
- Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Ga-Lai Chong
- Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
- Erasmus University Medical Center, Department of Medical Microbiology and Infectious Diseases, Rotterdam, The Netherlands
| | - Katrien Lagrou
- Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
- Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical Bacteriology and Mycology, KU Leuven, Leuven, Belgium
| | - Melissa Depypere
- Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
- Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical Bacteriology and Mycology, KU Leuven, Leuven, Belgium
| | - Stefanie Desmet
- Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
- Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical Bacteriology and Mycology, KU Leuven, Leuven, Belgium
| |
Collapse
|
65
|
Pandey A, Śmiłowicz D, Boros E. Galbofloxacin: a xenometal-antibiotic with potent in vitro and in vivo efficacy against S. aureus. Chem Sci 2021; 12:14546-14556. [PMID: 34881006 PMCID: PMC8580130 DOI: 10.1039/d1sc04283a] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/14/2021] [Indexed: 11/21/2022] Open
Abstract
Siderophore-antibiotic drug conjugates are considered potent tools to deliver and potentiate the antibacterial activity of antibiotics, but only few have seen preclinical and clinical success. Here, we introduce the gallium(iii) complex of a ciprofloxacin-functionalized linear desferrichrome, Galbofloxacin, with a cleavable serine linker as a potent therapeutic for S. aureus bacterial infections. We employed characterization using in vitro inhibitory assays, radiochemical, tracer-based uptake and pharmacokinetic assessment of our lead compound, culminating in in vivo efficacy studies in a soft tissue model of infection. Galbofloxacin exhibits a minimum inhibitory concentration of (MIC98) 93 nM in wt S. aureus, exceeding the potency of the parent antibiotic ciprofloxacin (0.9 μM). Galbofloxacin is a protease substrate that can release the antibiotic payload in the bacterial cytoplasm. Radiochemical experiments with wt bacterial strains reveal that 67Galbofloxacin is taken up efficiently using siderophore mediated, active uptake. Biodistribution of 67Galbofloxacin in a mouse model of intramuscular S. aureus infection revealed renal clearance and enhanced uptake in infected muscle when compared to 67Ga-citrate, which showed no selectivity. A subsequent in vivo drug therapy study reveals efficient reduction in S. aureus infection burden and sustained survival with Galbofloxacin for 7 days. Ciprofloxacin had no treatment efficacy at identical molecular dose (9.3 μmol kg−1) and resulted in death of all study animals in <24 hours. Taken together, the favorable bacterial growth inhibitory, pharmacokinetic and in vivo efficacy properties qualify Galbofloxacin as the first rationally designed Ga-coordination complex for the management of S. aureus bacterial infections. Galbofloxacin, a novel theranostic xenosiderophore antibiotic, exhibits unparalleled potency in combating S. aureus infections in vivo.![]()
Collapse
Affiliation(s)
- Apurva Pandey
- Department of Chemistry, Stony Brook University 100 Nicolls Road, Stony Brook New York 11790 USA
| | - Dariusz Śmiłowicz
- Department of Chemistry, Stony Brook University 100 Nicolls Road, Stony Brook New York 11790 USA
| | - Eszter Boros
- Department of Chemistry, Stony Brook University 100 Nicolls Road, Stony Brook New York 11790 USA
| |
Collapse
|
66
|
Katsube T, Nicolau DP, Rodvold KA, Wunderink RG, Echols R, Matsunaga Y, Menon A, Portsmouth S, Wajima T. Intrapulmonary pharmacokinetic profile of cefiderocol in mechanically ventilated patients with pneumonia. J Antimicrob Chemother 2021; 76:2902-2905. [PMID: 34383901 PMCID: PMC8521398 DOI: 10.1093/jac/dkab280] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/08/2021] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Lung penetration of cefiderocol, a novel siderophore cephalosporin approved for treatment of nosocomial pneumonia, has previously been evaluated in healthy subjects. This study assessed the intrapulmonary pharmacokinetic profile of cefiderocol at steady state in hospitalized, mechanically ventilated pneumonia patients. METHODS Patients received cefiderocol 2 g (or ≤1.5 g if renally impaired), administered IV q8h as a 3 h infusion, or 2 g q6h if patients had augmented renal function (estimated CLCR > 120 mL/min). After multiple doses, each patient underwent a single bronchoalveolar lavage (BAL) procedure either at the end of the infusion or at 2 h after the end of infusion. Plasma samples were collected at 1, 3, 5 and 7 h after the start of infusion. After correcting for BAL dilution, cefiderocol concentrations in epithelial lining fluid (ELF) for each patient and the ELF/unbound plasma concentration ratio (RC, E/P) were calculated. Safety was assessed up to 7 days after the last cefiderocol dose. RESULTS Seven patients received cefiderocol. Geometric mean ELF concentration of cefiderocol was 7.63 mg/L at the end of infusion and 10.40 mg/L at 2 h after the end of infusion. RC, E/P was 0.212 at the end of infusion and 0.547 at 2 h after the end of infusion, suggesting delayed lung distribution. There were no adverse drug reactions. CONCLUSIONS The results suggest that cefiderocol penetrates the ELF in critically ill pneumonia patients with concentrations that are sufficient to treat Gram-negative bacteria with an MIC of ≤4 mg/L.
Collapse
Affiliation(s)
| | - David P Nicolau
- Centre for Anti-Infective Research & Development, Hartford
Hospital, Hartford, CT, USA
| | - Keith A Rodvold
- College of Pharmacy, University of Illinois at Chicago, Chicago,
IL, USA
| | - Richard G Wunderink
- Division of Pulmonary and Critical Care Medicine, Northwestern University
Feinberg School of Medicine, Chicago, IL, USA
| | - Roger Echols
- Infectious Disease Drug Development Consulting, LLC, Easton, CT,
USA
| | | | | | | | | |
Collapse
|
67
|
Warner NC, Bartelt LA, Lachiewicz AM, Tompkins KM, Miller MB, Alby K, Jones MB, Carr AL, Alexander J, Gainey AB, Daniels R, Burch AK, Brown DE, Brownstein MJ, Cheema F, Linder KE, Shields RK, Longworth S, van Duin D. Cefiderocol for the Treatment of Adult and Pediatric Patients With Cystic Fibrosis and Achromobacter xylosoxidans Infections. Clin Infect Dis 2021; 73:e1754-e1757. [PMID: 33313656 PMCID: PMC8678443 DOI: 10.1093/cid/ciaa1847] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Indexed: 11/14/2022] Open
Abstract
Treatment options for Achromobacter xylosoxidans are limited. Eight cystic fibrosis patients with A. xylosoxidans were treated with 12 cefiderocol courses. Pretreatment in vitro resistance was seen in 3 of 8 cases. Clinical response occurred after 11 of 12 treatment courses. However, microbiologic relapse was observed after 11 of 12 treatment courses, notably without emergence of resistance.
Collapse
Affiliation(s)
- Nathaniel C Warner
- Division of Infectious Diseases, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Luther A Bartelt
- Division of Infectious Diseases, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Anne M Lachiewicz
- Division of Infectious Diseases, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Kathleen M Tompkins
- Division of Infectious Diseases, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Melissa B Miller
- Clinical Microbiology Laboratory, University of North Carolina Hospitals, Chapel Hill, North Carolina, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Kevin Alby
- Clinical Microbiology Laboratory, University of North Carolina Hospitals, Chapel Hill, North Carolina, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Melissa B Jones
- Clinical Microbiology Laboratory, University of North Carolina Hospitals, Chapel Hill, North Carolina, USA
| | - Amy L Carr
- Department of Pharmacy, Advent Health Orlando, Orlando, Florida, USA
| | - Jose Alexander
- Department of Microbiology/Virology/Immunology, Advent Health, Orlando, Florida, USA
| | - Andrew B Gainey
- Prisma Health Children’s Hospital–Midlands, Columbia, South Carolina, USA
| | - Robert Daniels
- Prisma Health Children’s Hospital–Midlands, Columbia, South Carolina, USA
| | - Anna-Kathryn Burch
- Prisma Health Children’s Hospital–Midlands, Columbia, South Carolina, USA
- Department of Pediatrics, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - David E Brown
- Prisma Health Children’s Hospital–Midlands, Columbia, South Carolina, USA
- Department of Pediatrics, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | | | - Faiqa Cheema
- Division of Infectious Diseases, University of Connecticut, Farmington, Connecticut, USA
| | - Kristin E Linder
- Department of Pharmacy, Hartford Hospital, Hartford, Connecticut, USA
| | - Ryan K Shields
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Antibiotic Management Program, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Sarah Longworth
- Division of Infectious Diseases, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David van Duin
- Division of Infectious Diseases, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
68
|
Cercenado E, Cardenoso L, Penin R, Longshaw C, Henriksen AS, Pascual A. In vitro activity of cefiderocol and comparators against isolates of Gram-negative bacterial pathogens from a range of infection sources: SIDERO‑WT‑2014-2018 studies in Spain. J Glob Antimicrob Resist 2021; 26:292-300. [PMID: 34274538 DOI: 10.1016/j.jgar.2021.06.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/10/2021] [Accepted: 06/17/2021] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVES The incidence of antimicrobial resistance in Europe is rising. Cefiderocol is approved in Europe for treatment of aerobic Gram-negative bacterial (GNB) infections in adults with limited treatment options. We report the in vitro activity of cefiderocol versus comparators against GNB clinical isolates from Spain. METHODS MICs were determined by broth microdilution according to International Organization for Standardization guidelines. Cefiderocol was tested using iron-depleted cation-adjusted Mueller-Hinton broth. Susceptibility rates were based on EUCAST breakpoints; if a species-specific breakpoint was unavailable, pharmacokinetic/pharmacodynamic breakpoints were used. RESULTS Of 2303 isolates [1502 (65.2%) Enterobacterales and 801 (34.8%) non-fermenters], 2260 (98.1%) were susceptible to cefiderocol compared with 80.8-86.9% for comparators. By infection source, susceptibility to cefiderocol ranged from 97.3% (721/741) in isolates from patients with nosocomial pneumonia to 98.9% (349/353) in bloodstream infection isolates and was greater than susceptibility to comparators (70.7-93.6% across infection sources). Overall, 368/2303 isolates (16.0%) were meropenem-resistant. A high proportion of meropenem-resistant Acinetobacter baumannii [169/175 (96.6%)] and Pseudomonas aeruginosa [48/50 (96.0%)] were cefiderocol-susceptible, similar to colistin [169/175 (96.6%) and 47/50 (94.0%), respectively] but higher than ceftazidime/avibactam [26/175 (14.9%) and 20/50 (40.0%), respectively] and ceftolozane/tazobactam [17/175 (9.7%) and 25/50 (50.0%), respectively]. All meropenem-resistant Stenotrophomonas maltophilia isolates [120/120 (100%)] were cefiderocol-susceptible, including one trimethoprim/sulfamethoxazole-resistant isolate, with fewer susceptible to colistin [86/120 (71.7%)], ceftazidime/avibactam [42/120 (35.0%)] and ceftolozane/tazobactam [35/120 (29.2%)]. CONCLUSION A high proportion of clinical isolates from Spain, representing a wide range of pathogens across multiple infection sources, were susceptible to cefiderocol. Cefiderocol retained activity against meropenem-resistant isolates.
Collapse
Affiliation(s)
- Emilia Cercenado
- Servicio de Microbiología y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón/Departamento de Medicina, Facultad de Medicina, Universidad Complutense, CIBERES, Madrid, Spain.
| | - Laura Cardenoso
- Servicio de Microbiología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria, Hospital Universitario de La Princesa, Madrid, Spain
| | - Rocio Penin
- Infectious Diseases, Shionogi B.V., London, UK
| | | | | | - Alvaro Pascual
- Unidad Clínica de Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Hospital Universitario Virgen Macarena/Departamento de Medicina, Universidad de Sevilla/Instituto de Biomedicina de Sevilla, Seville, Spain
| |
Collapse
|
69
|
Abstract
Intravenous cefiderocol (Fetroja®; Fetcroja®) is the first siderophore cephalosporin approved for the treatment of adults with serious Gram-negative bacterial infections. Cefiderocol is stable against all four Ambler classes of β-lactamases (including metallo-β-lactamases) and exhibits excellent in vitro activity against many clinically relevant Gram-negative pathogens, including multidrug resistant strains. In randomized, double-blind clinical trials, cefiderocol was noninferior to imipenem/cilastatin for the treatment of complicated urinary tract infections (cUTI) and to meropenem for nosocomial pneumonia. Furthermore, in a pathogen-focused clinical trial in patients with carbapenem-resistant (CR) infections, cefiderocol showed comparable efficacy to best available therapy (BAT), albeit all-cause mortality rate was higher in the cefiderocol arm, the cause of which has not been established. Cefiderocol had a good tolerability and safety profile in clinical trials. Thus cefiderocol is a novel, emerging, useful addition to the current treatment options for adults with susceptible Gram-negative bacterial infections (including cUTI and nosocomial pneumonia) for whom there are limited treatment options.
Collapse
Affiliation(s)
- Yahiya Y Syed
- Springer Nature, Private Bag 65901, Mairangi Bay, Auckland, 0754, New Zealand.
| |
Collapse
|
70
|
McCreary EK, Heil EL, Tamma PD. New Perspectives on Antimicrobial Agents: Cefiderocol. Antimicrob Agents Chemother 2021; 65:e0217120. [PMID: 34031052 PMCID: PMC8373209 DOI: 10.1128/aac.02171-20] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Bacterial resistance to carbapenem agents has reached alarming levels. Accordingly, collaborative efforts between national and international organizations and the pharmaceutical industry have led to an impressive expansion of commercially available β-lactam agents in recent years. No available agent comes close to the broad range of activity afforded by cefiderocol, a novel siderophore-cephalosporin conjugate. The novelty of and need for cefiderocol are clear, but available clinical data are conflicting, leaving infectious diseases specialists puzzled as to when to prescribe this agent in clinical practice. After a brief overview of cefiderocol pharmacokinetics and pharmacodynamics, safety data, cefiderocol susceptibility testing, and putative mechanisms of cefiderocol resistance, this review focuses on determining cefiderocol's role in the management of specific pathogens, including carbapenem-resistant Acinetobacter baumannii complex, carbapenem-resistant Pseudomonas aeruginosa, carbapenem-resistant Enterobacterales, and less commonly identified glucose-nonfermenting organisms such as Stenotrophomonas maltophilia, Burkholderia species, and Achromobacter species. Available preclinical, clinical trial, and postmarketing data are summarized for each organism, and each section concludes with our opinions on where to position cefiderocol as a clinical therapeutic.
Collapse
Affiliation(s)
- Erin K. McCreary
- Department of Medicine, Division of Infectious Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Emily L. Heil
- Department of Pharmacy Practice and Science, University of Maryland School of Pharmacy, Baltimore, Maryland, USA
| | - Pranita D. Tamma
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Baltimore, Maryland, USA
| |
Collapse
|
71
|
Jorda A, Zeitlinger M. Pharmacological and clinical profile of cefiderocol, a siderophore cephalosporin against gram-negative pathogens. Expert Rev Clin Pharmacol 2021; 14:777-791. [PMID: 33849355 DOI: 10.1080/17512433.2021.1917375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/12/2021] [Indexed: 10/21/2022]
Abstract
Introduction: Increasing resistance of gram-negative bacteria poses a serious threat to global health. Thus, efficacious and safe antibiotics against resistant pathogens are urgently needed. Cefiderocol, a siderophore cephalosporin, addresses this unmet need.Areas covered: For this article, we screened all preclinical and clinical studies on cefiderocol published by January 2021 on PubMed. Also, regulatory documents, recent conference contributions, and selected data of antibiotic competitors are reviewed. We provide a comprehensive overview of the mode of action, in vitro and in vivo activity, pharmacokinetics/pharmacodynamics, and human pharmacokinetics. Last, we discuss the efficacy and safety data from the pivotal trials.Expert opinion: Cefiderocol was in vitro potent against virtually all gram-negative pathogens and resistance was rare. The target site pharmacokinetics (i.e. urinary and lung penetration) have been well described in humans and important PK/PD targets were reached. In the clinical trials, cefiderocol was non-inferior to carbapenems in the treatment of complicated urinary tract infections and nosocomial pneumonia. Against carbapenem-resistant gram-negative pathogens, cefiderocol was similar to the best available therapy, which was mainly based on the backbone agent colistin. Overall, a substantial body of evidence supports the clinical use of cefiderocol in patients with gram-negative infections and limited treatment options.
Collapse
Affiliation(s)
- Anselm Jorda
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Markus Zeitlinger
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
72
|
O'Donnell JN, Putra V, Lodise TP. Treatment of patients with serious infections due to carbapenem-resistant Acinetobacter baumannii: How viable are the current options? Pharmacotherapy 2021; 41:762-780. [PMID: 34170571 DOI: 10.1002/phar.2607] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/14/2021] [Accepted: 06/14/2021] [Indexed: 11/07/2022]
Abstract
This review critically appraises the published microbiologic and clinical data on the treatment of patients with carbapenem-resistant Acinetobacter baumannii infections. Despite being recognized as an urgent threat pathogen by the CDC and WHO, optimal treatment of patients with serious CRAB infections remains ill-defined. Few commercially available agents exhibit reliable in vitro activity against CRAB. Historically, polymyxins have been the most active agents in vitro, though interpretations of susceptibility data are difficult given issues surrounding MIC testing methodologies and lack of correlation between MICs and clinical outcomes. Most available preclinical and clinical data involve use of polymyxins, tetracyclines, and sulbactam, alone and in combination. As the number of viable treatment options is limited, combination therapy with a polymyxin is often used for patients with CRAB infections, despite the significant risk of nephrotoxicity. However, no treatment regimen has been found to reduce mortality, which exceeds 40% across most studies, or substantially improve clinical response. While some newer agents, such as eravacycline and cefiderocol, have demonstrated in vitro activity, clinical efficacy has not been fully established. New agents with clinically relevant activity against CRAB isolates and favorable toxicity profiles are sorely needed.
Collapse
Affiliation(s)
- J Nicholas O'Donnell
- Department of Pharmacy Practice, Albany College of Pharmacy and Health Sciences, Albany, New York, USA
| | - Vibert Putra
- Department of Basic and Clinical Sciences, Albany College of Pharmacy and Health Sciences, Albany, New York, USA
| | - Thomas P Lodise
- Department of Pharmacy Practice, Albany College of Pharmacy and Health Sciences, Albany, New York, USA
| |
Collapse
|
73
|
Mabayoje DA, NicFhogartaigh C, Cherian BP, Tan MGM, Wareham DW. Compassionate use of cefiderocol for carbapenem-resistant Acinetobacter baumannii prosthetic joint infection. JAC Antimicrob Resist 2021; 3:i21-i24. [PMID: 34223152 PMCID: PMC8251250 DOI: 10.1093/jacamr/dlab055] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background Cefiderocol is a recently licensed novel siderophore-conjugated cephalosporin stable to hydrolysis by serine and MBLs. It has been successfully used to treat Enterobacterales infections and is approved for the treatment of infections due to aerobic Gram-negative organisms in adults with limited treatment options. Objectives To describe the compassionate use of cefiderocol and clinical outcome in a case of prosthetic joint infection due to MDR Acinetobacter baumannii. Patients and methods This case study follows a 66-year-old woman who sustained an open fracture of the left distal humerus in Pakistan. She underwent open reduction and internal fixation and on return to the UK presented to hospital with a discharging surgical wound. Results Debridement of her wound cultured NDM carbapenemase-producing A. baumannii susceptible to colistin, tobramycin and tigecycline only. She developed vomiting with acute kidney injury with colistin and tigecycline. Antimicrobial efficacy of cefiderocol was predicted from in vitro and in vivo susceptibility tests. A successful request was made to Shionogi for compassionate use of cefiderocol, which was added to tigecycline. Cefiderocol was well tolerated with no toxicity and improved renal function. In total she received 25 days of cefiderocol and continued on tigecycline for a further 6 weeks in the community. She has well-healed wounds and good range of elbow movement. Conclusions Cefiderocol’s novel mode of cell entry is effective against MDR Gram-negative bacteria with reduced toxicity compared with other last line antibiotics. Our case demonstrates that cefiderocol may be useful as therapy for patients with limited treatment options due to antimicrobial resistance. The prescribing information for cefiderocol is available at: https://shionogi-eu-content.com/gb/fetcroja/pi.
Collapse
Affiliation(s)
| | | | | | - Mei Gie Meiqi Tan
- Antimicrobial Research Group, Blizard Institute, Queen Mary University of London, London, UK
| | - David W Wareham
- Division of Infection, Barts Health NHS Trust, London, UK.,Antimicrobial Research Group, Blizard Institute, Queen Mary University of London, London, UK
| |
Collapse
|
74
|
Naas T, Lina G, Santerre Henriksen A, Longshaw C, Jehl F. In vitro activity of cefiderocol and comparators against isolates of Gram-negative pathogens from a range of infection sources: SIDERO-WT-2014-2018 studies in France. JAC Antimicrob Resist 2021; 3:dlab081. [PMID: 34223140 PMCID: PMC8251251 DOI: 10.1093/jacamr/dlab081] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/14/2021] [Indexed: 11/12/2022] Open
Abstract
Objectives Over recent years, France has experienced an increase of infections caused by carbapenem-resistant Gram-negative (GN) pathogens. Cefiderocol is approved in Europe for the treatment of aerobic GN infections in adults with limited treatment options. This study evaluated the in vitro activity of cefiderocol and comparators against GN clinical isolates from France. Methods MICs were determined by broth microdilution, according to International Organization for Standardization guidelines. Cefiderocol was tested using iron-depleted CAMHB. Susceptibility rates were based on EUCAST breakpoints. In the absence of a species-specific breakpoint, pharmacokinetic/pharmacodynamic breakpoints were used. Results Of 2027 isolates, 1344 (66.3%) were Enterobacterales and 683 (33.7%) were non-fermenters. The most common pathogen was Pseudomonas aeruginosa (16.8%), followed by Escherichia coli (16.0%), Klebsiella pneumoniae (13.1%), Acinetobacter baumannii (7.9%) and Stenotrophomonas maltophilia (5.1%). Isolates represented a range of infection sources including nosocomial pneumonia (33.6%), complicated urinary tract infection (24.3%), bloodstream infection (13.1%) and complicated intra-abdominal infection (18.0%). In total, 135/2027 (6.7%) isolates were meropenem resistant (MIC >8 mg/L); 133/135 (98.5%) were non-fermenters. Overall, 1330/1344 (99.0%) Enterobacterales and 681/683 (99.7%) non-fermenters were cefiderocol susceptible, including 100% of meropenem-resistant S. maltophilia (n = 98) and P. aeruginosa (n = 18) isolates. Susceptibility to cefiderocol was significantly higher (P < 0.01) in nosocomial pneumonia isolates (681/682 [99.9%]) than susceptibility to meropenem (586/682 [85.9%]), ceftolozane/tazobactam (593/682 [87.0%]), ceftazidime/avibactam (612/682 [89.7%]) and colistin (538/682 [78.9%]). Conclusions Cefiderocol demonstrated high in vitro susceptibility rates against a wide range of Gram-negative pathogens, including meropenem-resistant strains, and was significantly more active than comparators against pneumonia isolates.
Collapse
Affiliation(s)
- Thierry Naas
- Team ReSIST, INSERM U1184, School of Medicine Université Paris-Saclay, LabEx LERMIT, Le Kremlin-Bicêtre, France.,Bacteriology-Hygiene unit, Assistance Publique/Hôpitaux de Paris, Bicêtre Hospital, Le Kremlin-Bicêtre, France.,French National Reference Center for Antibiotic Resistance: Carbapenemase-producing Enterobacteriaceae, Le Kremlin-Bicêtre, France
| | - Gerard Lina
- CIRI Centre International de Recherche en Infectiologie, Inserm U1111, Université Lyon 1, Ecole Normale Supérieure de Lyon, CNRS UMR, 5308, Lyon, France.,Institut des Agent infectieux, Hôpital de la Croix Rousse, Hospices Civils de Lyon, Lyon, France
| | | | | | - Francois Jehl
- Laboratory of Bacteriology, School of Medicine and University Hospital, Strasbourg, France
| |
Collapse
|
75
|
Stracquadanio S, Torti E, Longshaw C, Henriksen AS, Stefani S. In vitro activity of cefiderocol and comparators against isolates of Gram-negative pathogens from a range of infection sources: SIDERO-WT-2014-2018 studies in Italy. J Glob Antimicrob Resist 2021; 25:390-398. [PMID: 34020073 DOI: 10.1016/j.jgar.2021.04.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/12/2021] [Accepted: 04/24/2021] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVES Antimicrobial resistance, particularly carbapenem resistance, in Gram-negative pathogens poses a significant healthcare threat. Carbapenem resistance rates in Italy are among the highest in Europe. We report the in vitro activity of cefiderocol, a novel siderophore cephalosporin, and comparator antibiotics against Gram-negative isolates from Italy as part of the SIDERO-WT studies. METHODS Isolates were collected between 2014 and 2018. Minimum inhibitory concentrations (MICs) were determined using International Organization for Standardization and EUCAST guidelines. Antimicrobial susceptibilities were interpreted using EUCAST breakpoints; pharmacodynamic/pharmacokinetic breakpoints were used if EUCAST breakpoints were not specified. RESULTS The 2472 isolates [1545 (62.5%) Enterobacterales and 927 (37.5%) non-fermenters] represented a range of infection sources, including nosocomial pneumonia (902; 36.5%), complicated urinary tract infection (374; 15.1%), bloodstream infection (596; 24.1%), complicated intra-abdominal infection (257; 10.4%) and other infection sources (343; 13.9%). Cefiderocol was active against the majority of isolates, regardless of infection source (susceptibility, 94.2-97.3%). A high proportion of non-fermenters (97.6%) and Enterobacterales (95.6%) were cefiderocol-susceptible, although susceptibility was lower in Klebsiella pneumoniae (88.1%). Susceptibility to cefiderocol was significantly (P < 0.01) greater than comparators overall (96.4% vs. 71.3-81.6%) and in non-fermenters (97.6% vs. 44.3-90.3%) across infection sources. Overall 612/2472 isolates (24.8%) were meropenem-resistant (MIC > 8 mg/L), comprising 516/927 (55.7%) non-fermenters and 96/1545 (6.2%) Enterobacterales. Cefiderocol (499/516; 96.7%) activity was greater than colistin (440/516; 85.3%), ceftazidime/avibactam (123/516; 23.8%) and ceftolozane/tazobactam (89/516; 17.2%) in meropenem-resistant non-fermenter isolates. CONCLUSION Susceptibility to cefiderocol was significantly greater than meropenem, colistin, ceftazidime/avibactam and ceftolozane/tazobactam overall, regardless of infection source.
Collapse
Affiliation(s)
- Stefano Stracquadanio
- Department of Biomedical and Biotechnological Sciences, Università di Catania, Via Santa Sofia 97, I-95123 Catania, Italy.
| | | | | | | | - Stefania Stefani
- Department of Biomedical and Biotechnological Sciences, Università di Catania, Via Santa Sofia 97, I-95123 Catania, Italy
| |
Collapse
|
76
|
Abstract
Stenotrophomonas maltophilia is an opportunistic pathogen of significant concern to susceptible patient populations. This pathogen can cause nosocomial and community-acquired respiratory and bloodstream infections and various other infections in humans. Sources include water, plant rhizospheres, animals, and foods. Studies of the genetic heterogeneity of S. maltophilia strains have identified several new genogroups and suggested adaptation of this pathogen to its habitats. The mechanisms used by S. maltophilia during pathogenesis continue to be uncovered and explored. S. maltophilia virulence factors include use of motility, biofilm formation, iron acquisition mechanisms, outer membrane components, protein secretion systems, extracellular enzymes, and antimicrobial resistance mechanisms. S. maltophilia is intrinsically drug resistant to an array of different antibiotics and uses a broad arsenal to protect itself against antimicrobials. Surveillance studies have recorded increases in drug resistance for S. maltophilia, prompting new strategies to be developed against this opportunist. The interactions of this environmental bacterium with other microorganisms are being elucidated. S. maltophilia and its products have applications in biotechnology, including agriculture, biocontrol, and bioremediation.
Collapse
|
77
|
Parsels KA, Mastro KA, Steele JM, Thomas SJ, Kufel WD. Cefiderocol: a novel siderophore cephalosporin for multidrug-resistant Gram-negative bacterial infections. J Antimicrob Chemother 2021; 76:1379-1391. [PMID: 33532823 DOI: 10.1093/jac/dkab015] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cefiderocol is a novel siderophore cephalosporin that forms a complex with extracellular free ferric iron, which leads to transportation across the outer cell membrane to exert its bactericidal activity through cell wall synthesis inhibition. This pharmacological property has rendered cefiderocol active against several clinically relevant MDR Gram-negative bacteria as evidenced by several in vitro and in vivo studies. Cefiderocol was first approved by the US FDA on 14 November 2019 for the treatment of complicated urinary tract infections. On 28 September 2020, cefiderocol was approved for the treatment of hospital-acquired bacterial pneumonia and ventilator-associated bacterial pneumonia. The FDA-approved indications are based on clinical data from the APEKS-cUTI, APEKS-NP and CREDIBLE-CR trials. In APEKS-cUTI, cefiderocol demonstrated non-inferiority to imipenem/cilastatin for the treatment of complicated urinary tract infection caused by MDR Gram-negative bacteria. In APEKS-NP, cefiderocol demonstrated non-inferiority to meropenem for treatment of nosocomial pneumonia. However, in CREDIBLE-CR, higher all-cause mortality was observed with cefiderocol compared with best available therapy for the treatment of severe infections caused by Gram-negative bacteria, primarily in the subset of patients with Acinetobacter spp. infections. Several case reports/series have demonstrated clinical success with cefiderocol for a variety of severe infections. The purpose of this article is to review available data on the mechanism of action, in vitro and in vivo data, pharmacokinetics, pharmacodynamics, susceptibility testing, efficacy and safety of cefiderocol to address its role in therapy.
Collapse
Affiliation(s)
- Katie A Parsels
- State University of New York Upstate University Hospital, Syracuse, NY, USA
| | - Keri A Mastro
- Binghamton University School of Pharmacy and Pharmaceutical Sciences, Binghamton, NY, USA
| | - Jeffrey M Steele
- State University of New York Upstate University Hospital, Syracuse, NY, USA
- State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Stephen J Thomas
- State University of New York Upstate University Hospital, Syracuse, NY, USA
- State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Wesley D Kufel
- State University of New York Upstate University Hospital, Syracuse, NY, USA
- Binghamton University School of Pharmacy and Pharmaceutical Sciences, Binghamton, NY, USA
- State University of New York Upstate Medical University, Syracuse, NY, USA
| |
Collapse
|
78
|
Terreni M, Taccani M, Pregnolato M. New Antibiotics for Multidrug-Resistant Bacterial Strains: Latest Research Developments and Future Perspectives. Molecules 2021; 26:2671. [PMID: 34063264 PMCID: PMC8125338 DOI: 10.3390/molecules26092671] [Citation(s) in RCA: 206] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/18/2022] Open
Abstract
The present work aims to examine the worrying problem of antibiotic resistance and the emergence of multidrug-resistant bacterial strains, which have now become really common in hospitals and risk hindering the global control of infectious diseases. After a careful examination of these phenomena and multiple mechanisms that make certain bacteria resistant to specific antibiotics that were originally effective in the treatment of infections caused by the same pathogens, possible strategies to stem antibiotic resistance are analyzed. This paper, therefore, focuses on the most promising new chemical compounds in the current pipeline active against multidrug-resistant organisms that are innovative compared to traditional antibiotics: Firstly, the main antibacterial agents in clinical development (Phase III) from 2017 to 2020 are listed (with special attention on the treatment of infections caused by the pathogens Neisseria gonorrhoeae, including multidrug-resistant isolates, and Clostridium difficile), and then the paper moves on to the new agents of pharmacological interest that have been approved during the same period. They include tetracycline derivatives (eravacycline), fourth generation fluoroquinolones (delafloxacin), new combinations between one β-lactam and one β-lactamase inhibitor (meropenem and vaborbactam), siderophore cephalosporins (cefiderocol), new aminoglycosides (plazomicin), and agents in development for treating drug-resistant TB (pretomanid). It concludes with the advantages that can result from the use of these compounds, also mentioning other approaches, still poorly developed, for combating antibiotic resistance: Nanoparticles delivery systems for antibiotics.
Collapse
Affiliation(s)
| | | | - Massimo Pregnolato
- Department of Drug Science, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (M.T.); (M.T.)
| |
Collapse
|
79
|
Vrancianu CO, Dobre EG, Gheorghe I, Barbu I, Cristian RE, Chifiriuc MC. Present and Future Perspectives on Therapeutic Options for Carbapenemase-Producing Enterobacterales Infections. Microorganisms 2021; 9:730. [PMID: 33807464 PMCID: PMC8065494 DOI: 10.3390/microorganisms9040730] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/26/2021] [Accepted: 03/30/2021] [Indexed: 12/26/2022] Open
Abstract
Carbapenem-resistant Enterobacterales (CRE) are included in the list of the most threatening antibiotic resistance microorganisms, being responsible for often insurmountable therapeutic issues, especially in hospitalized patients and immunocompromised individuals and patients in intensive care units. The enzymatic resistance to carbapenems is encoded by different β-lactamases belonging to A, B or D Ambler class. Besides compromising the activity of last-resort antibiotics, CRE have spread from the clinical to the environmental sectors, in all geographic regions. The purpose of this review is to present present and future perspectives on CRE-associated infections treatment.
Collapse
Affiliation(s)
- Corneliu Ovidiu Vrancianu
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania; (C.O.V.); (E.G.D.); (I.B.); (M.C.C.)
- The Research Institute of the University of Bucharest, 050095 Bucharest, Romania
| | - Elena Georgiana Dobre
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania; (C.O.V.); (E.G.D.); (I.B.); (M.C.C.)
| | - Irina Gheorghe
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania; (C.O.V.); (E.G.D.); (I.B.); (M.C.C.)
- The Research Institute of the University of Bucharest, 050095 Bucharest, Romania
| | - Ilda Barbu
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania; (C.O.V.); (E.G.D.); (I.B.); (M.C.C.)
- The Research Institute of the University of Bucharest, 050095 Bucharest, Romania
| | - Roxana Elena Cristian
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania;
| | - Mariana Carmen Chifiriuc
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania; (C.O.V.); (E.G.D.); (I.B.); (M.C.C.)
- The Research Institute of the University of Bucharest, 050095 Bucharest, Romania
| |
Collapse
|
80
|
Nakamura R, Oota M, Matsumoto S, Sato T, Yamano Y. In Vitro Activity and In Vivo Efficacy of Cefiderocol against Stenotrophomonas maltophilia. Antimicrob Agents Chemother 2021; 65:e01436-20. [PMID: 33526491 PMCID: PMC8097474 DOI: 10.1128/aac.01436-20] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 01/19/2021] [Indexed: 12/19/2022] Open
Abstract
Cefiderocol is a novel siderophore cephalosporin antibiotic with broad coverage against difficult-to-treat Gram-negative bacteria, including those resistant to carbapenems. Its activity against Stenotrophomonas maltophilia was investigated in vitro against clinical isolates and in lung infection models using strains either resistant (SR202006) or susceptible (SR201934, SR200614) to trimethoprim-sulfamethoxazole. Cefiderocol demonstrated potent in vitro activity against all 217 S. maltophilia clinical isolates tested (MIC50, 0.063 μg/ml; MIC90, 0.25 μg/ml). Cefiderocol also demonstrated low MICs against the trimethoprim-sulfamethoxazole-resistant S. maltophilia strains (i.e., SR202006; MIC, 0.125 μg/ml). In a neutropenic mouse lung infection model, cefiderocol (30 mg/kg body weight and 100 mg/kg) demonstrated a significant, dose-dependent reduction in the lung viable bacteria cell count compared with untreated controls in S. maltophilia infection and was the only antibiotic tested to show a similar significant effect in a trimethoprim-sulfamethoxazole-resistant S. maltophilia infection. In immunocompetent rat lung infection models of S. maltophilia, humanized dosing of cefiderocol (2 g every 8 h) and meropenem (1 g every 8 h) revealed pharmacokinetic profiles similar to those in human subjects, and the humanized cefiderocol dosing significantly reduced the lung viable bacteria cell count compared with baseline controls, which received no intervention. Together, the results from these studies suggest that cefiderocol could provide an effective alternative treatment option for S. maltophilia infections in the lower respiratory tract, particularly strains resistant to empirical antibiotics, such as trimethoprim-sulfamethoxazole or minocycline.
Collapse
Affiliation(s)
- Rio Nakamura
- Department of Anti-Infectious Drug Efficacy Evaluation Ι, Shionogi TechnoAdvance Research & Co., Ltd., Osaka, Japan
| | - Merime Oota
- Department of Anti-Infectious Drug Efficacy Evaluation Ι, Shionogi TechnoAdvance Research & Co., Ltd., Osaka, Japan
| | - Shuhei Matsumoto
- Drug Discovery & Disease Research Laboratory, Shionogi & Co., Ltd., Osaka, Japan
| | - Takafumi Sato
- Drug Discovery & Disease Research Laboratory, Shionogi & Co., Ltd., Osaka, Japan
| | - Yoshinori Yamano
- Drug Discovery & Disease Research Laboratory, Shionogi & Co., Ltd., Osaka, Japan
| |
Collapse
|
81
|
Hsueh SC, Chao CM, Wang CY, Lai CC, Chen CH. Clinical efficacy and safety of cefiderocol in the treatment of acute bacterial infections: A systematic review and meta-analysis of randomised controlled trials. J Glob Antimicrob Resist 2021; 24:376-382. [PMID: 33596476 DOI: 10.1016/j.jgar.2021.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/17/2021] [Accepted: 02/02/2021] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES The aim of this study was to investigate the clinical efficacy and safety of cefiderocol in the treatment of acute bacterial infections. METHODS The PubMed, Embase and Cochrane Library databases as well as the clinical trials registries of ClinicalTrials.gov and the WHO International Clinical Trials Registry Platform were searched up to 8 November 2020. Only randomised controlled trials (RCTs) that compared the treatment efficacy of cefiderocol with that of other antibiotics for adult patients with acute bacterial infections were included in this meta-analysis. The primary outcome was clinical response at test of cure (TOC). RESULTS Three RCTs, including one phase 2 and two phase 3 trials, were included. No significant difference in clinical response rate was observed between cefiderocol and comparators [odds ratio (OR)=1.04]. In a subgroup analysis, no significant difference was observed in the clinical response at TOC between cefiderocol and comparators in patients with nosocomial pneumonia (OR=0.92) or complicated urinary tract infection (OR=1.28). In addition, all-cause mortality at Days 14 and 28 did not differ between the cefiderocol and control groups (14-day mortality, OR=1.25; 28-day mortality, OR=1.12). Furthermore, cefiderocol was associated with similar microbiological response to comparators at the TOC assessment (OR=1.44). Finally, cefiderocol was associated with a similar risk of adverse events as comparators. CONCLUSION Cefiderocol can achieve similar clinical and microbiological responses as comparators for patients with serious bacterial infections. In addition, cefiderocol shares a safety profile similar to that of comparators.
Collapse
Affiliation(s)
- Shun-Chung Hsueh
- Department of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chien-Ming Chao
- Department of Intensive Care Medicine, Chi Mei Medical Center, Liouying, Tainan, Taiwan
| | - Cheng-Yi Wang
- Department of Internal Medicine, Cardinal Tien Hospital, New Taipei City, Taiwan
| | - Chih-Cheng Lai
- Department of Internal Medicine, Kaohsiung Veterans General Hospital, Tainan Branch, Tainan, Taiwan.
| | - Chao-Hsien Chen
- Division of Pulmonary, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan; Department of Medicine, MacKay Medical College, New Taipei City, Taiwan.
| |
Collapse
|
82
|
Wunderink RG, Matsunaga Y, Ariyasu M, Clevenbergh P, Echols R, Kaye KS, Kollef M, Menon A, Pogue JM, Shorr AF, Timsit JF, Zeitlinger M, Nagata TD. Cefiderocol versus high-dose, extended-infusion meropenem for the treatment of Gram-negative nosocomial pneumonia (APEKS-NP): a randomised, double-blind, phase 3, non-inferiority trial. THE LANCET. INFECTIOUS DISEASES 2021; 21:213-225. [PMID: 33058798 DOI: 10.1016/s1473-3099(20)30731-3] [Citation(s) in RCA: 270] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Nosocomial pneumonia due to multidrug-resistant Gram-negative pathogens poses an increasing challenge. We compared the efficacy and safety of cefiderocol versus high-dose, extended-infusion meropenem for adults with nosocomial pneumonia. METHODS We did a randomised, double-blind, parallel-group, phase 3, non-inferiority trial in 76 centres in 17 countries in Asia, Europe, and the USA (APEKS-NP). We enrolled adults aged 18 years and older with hospital-acquired, ventilator-associated, or health-care-associated Gram-negative pneumonia, and randomly assigned them (1:1 by interactive response technology) to 3-h intravenous infusions of either cefiderocol 2 g or meropenem 2 g every 8 h for 7-14 days. All patients also received open-label intravenous linezolid (600 mg every 12 h) for at least 5 days. An unmasked pharmacist prepared the assigned treatments; investigators and patients were masked to treatment assignment. Only the unmasked pharmacist was aware of the study drug assignment for the infusion bags, which were administered in generic infusion bags labelled with patient and study site identification numbers. Participants were stratified at randomisation by infection type and Acute Physiology and Chronic Health Evaluation II (APACHE II) score (≤15 and ≥16). The primary endpoint was all-cause mortality at day 14 in the modified intention-to-treat (ITT) population (ie, all patients receiving at least one dose of study drug, excluding patients with Gram-positive monomicrobial infections). The analysis was done for all patients with known vital status. Non-inferiority was concluded if the upper bound of the 95% CI for the treatment difference between cefiderocol and meropenem groups was less than 12·5%. Safety was investigated to the end of the study in the safety population, which included all patients who received at least one dose of study drug. This trial is registered with ClinicalTrials.gov, NCT03032380, and EudraCT, 2016-003020-23. FINDINGS Between Oct 23, 2017, and April 14, 2019, we randomly assigned 148 participants to cefiderocol and 152 to meropenem. Of 292 patients in the modified ITT population, 251 (86%) had a qualifying baseline Gram-negative pathogen, including Klebsiella pneumoniae (92 [32%]), Pseudomonas aeruginosa (48 [16%]), Acinetobacter baumannii (47 [16%]), and Escherichia coli (41 [14%]). 142 (49%) patients had an APACHE II score of 16 or more, 175 (60%) were mechanically ventilated, and 199 (68%) were in intensive care units at the time of randomisation. All-cause mortality at day 14 was 12·4% with cefiderocol (18 patients of 145) and 11·6% with meropenem (17 patients of 146; adjusted treatment difference 0·8%, 95% CI -6·6 to 8·2; p=0·002 for non-inferiority hypothesis). Treatment-emergent adverse events were reported in 130 (88%) of 148 participants in the cefiderocol group and 129 (86%) of 150 in the meropenem group. The most common treatment-emergent adverse event was urinary tract infection in the cefiderocol group (23 patients [16%] of 148) and hypokalaemia in the meropenem group (23 patients [15%] of 150). Two participants (1%) of 148 in the cefiderocol group and two (1%) of 150 in the meropenem group discontinued the study because of drug-related adverse events. INTERPRETATION Cefiderocol was non-inferior to high-dose, extended-infusion meropenem in terms of all-cause mortality on day 14 in patients with Gram-negative nosocomial pneumonia, with similar tolerability. The results suggest that cefiderocol is a potential option for the treatment of patients with nosocomial pneumonia, including those caused by multidrug-resistant Gram-negative bacteria. FUNDING Shionogi.
Collapse
Affiliation(s)
- Richard G Wunderink
- Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | | | | | - Roger Echols
- Infectious Disease Drug Development Consulting, Easton, CT, USA
| | - Keith S Kaye
- Division of Infectious Diseases, Department of Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Marin Kollef
- Division of Pulmonary and Critical Care Medicine, John T Milliken Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | | | - Jason M Pogue
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
| | - Andrew F Shorr
- Pulmonary and Critical Care Medicine, Medstar Washington Hospital Center, Washington DC, USA; Georgetown University, Washington DC, USA
| | - Jean-Francois Timsit
- UMR 1137, IAME Inserm/Université de Paris - Paris Diderot, Paris, France; APHP, Bichat Hospital, Medical and Infectious Diseases ICU, F75018 Paris, France
| | - Markus Zeitlinger
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
83
|
Bassetti M, Echols R, Matsunaga Y, Ariyasu M, Doi Y, Ferrer R, Lodise TP, Naas T, Niki Y, Paterson DL, Portsmouth S, Torre-Cisneros J, Toyoizumi K, Wunderink RG, Nagata TD. Efficacy and safety of cefiderocol or best available therapy for the treatment of serious infections caused by carbapenem-resistant Gram-negative bacteria (CREDIBLE-CR): a randomised, open-label, multicentre, pathogen-focused, descriptive, phase 3 trial. THE LANCET. INFECTIOUS DISEASES 2021; 21:226-240. [PMID: 33058795 DOI: 10.1016/s1473-3099(20)30796-9] [Citation(s) in RCA: 453] [Impact Index Per Article: 113.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/27/2020] [Accepted: 09/11/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND New antibiotics are needed for the treatment of patients with life-threatening carbapenem-resistant Gram-negative infections. We assessed the efficacy and safety of cefiderocol versus best available therapy in adults with serious carbapenem-resistant Gram-negative infections. METHODS We did a randomised, open-label, multicentre, parallel-group, pathogen-focused, descriptive, phase 3 study in 95 hospitals in 16 countries in North America, South America, Europe, and Asia. We enrolled patients aged 18 years or older admitted to hospital with nosocomial pneumonia, bloodstream infections or sepsis, or complicated urinary tract infections (UTI), and evidence of a carbapenem-resistant Gram-negative pathogen. Participants were randomly assigned (2:1 by interactive web or voice response system) to receive either a 3-h intravenous infusion of cefiderocol 2 g every 8 h or best available therapy (pre-specified by the investigator before randomisation and comprised of a maximum of three drugs) for 7-14 days. For patients with pneumonia or bloodstream infection or sepsis, cefiderocol treatment could be combined with one adjunctive antibiotic (excluding polymyxins, cephalosporins, and carbapenems). The primary endpoint for patients with nosocomial pneumonia or bloodstream infection or sepsis was clinical cure at test of cure (7 days [plus or minus 2] after the end of treatment) in the carbapenem-resistant microbiological intention-to-treat population (ITT; ie, patients with a confirmed carbapenem-resistant Gram-negative pathogen receiving at least one dose of study drug). For patients with complicated UTI, the primary endpoint was microbiological eradication at test of cure in the carbapenem-resistant microbiological ITT population. Safety was evaluated in the safety population, consisting of all patients who received at least one dose of study drug. Mortality was reported through to the end of study visit (28 days [plus or minus 3] after the end of treatment). Summary statistics, including within-arm 95% CIs calculated using the Clopper-Pearson method, were collected for the primary and safety endpoints. This trial is registered with ClinicalTrials.gov (NCT02714595) and EudraCT (2015-004703-23). FINDINGS Between Sept 7, 2016, and April 22, 2019, we randomly assigned 152 patients to treatment, 101 to cefiderocol, 51 to best available therapy. 150 patients received treatment: 101 cefiderocol (85 [85%] received monotherapy) and 49 best available therapy (30 [61%] received combination therapy). In 118 patients in the carbapenem-resistant microbiological ITT population, the most frequent carbapenem-resistant pathogens were Acinetobacter baumannii (in 54 patients [46%]), Klebsiella pneumoniae (in 39 patients [33%]), and Pseudomonas aeruginosa (in 22 patients [19%]). In the same population, for patients with nosocomial pneumonia, clinical cure was achieved by 20 (50%, 95% CI 33·8-66·2) of 40 patients in the cefiderocol group and ten (53%, 28·9-75·6) of 19 patients in the best available therapy group; for patients with bloodstream infection or sepsis, clinical cure was achieved by ten (43%, 23·2-65·5) of 23 patients in the cefiderocol group and six (43%, 17·7-71·1) of 14 patients in the best available therapy group. For patients with complicated UTIs, microbiological eradication was achieved by nine (53%, 27·8-77·0) of 17 patients in the cefiderocol group and one (20%, 0·5-71·6) of five patients in the best available therapy group. In the safety population, treatment-emergent adverse events were noted for 91% (92 patients of 101) of the cefiderocol group and 96% (47 patients of 49) of the best available therapy group. 34 (34%) of 101 patients receiving cefiderocol and nine (18%) of 49 patients receiving best available therapy died by the end of the study; one of these deaths (in the best available therapy group) was considered to be related to the study drug. INTERPRETATION Cefiderocol had similar clinical and microbiological efficacy to best available therapy in this heterogeneous patient population with infections caused by carbapenem-resistant Gram-negative bacteria. Numerically more deaths occurred in the cefiderocol group, primarily in the patient subset with Acinetobacter spp infections. Collectively, the findings from this study support cefiderocol as an option for the treatment of carbapenem-resistant infections in patients with limited treatment options. FUNDING Shionogi.
Collapse
Affiliation(s)
- Matteo Bassetti
- Infectious Diseases Clinic, Department of Health Sciences, University of Genoa, Genoa and Hospital Policlinico San Martino IRCCS, Genoa, Italy
| | - Roger Echols
- Infectious Disease Drug Development Consulting, Easton, CT, USA
| | | | | | - Yohei Doi
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ricard Ferrer
- Department of Intensive Care Medicine and SODIR-VHIR Research Group, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Thomas P Lodise
- Albany College of Pharmacy and Health Sciences, Albany, NY, USA
| | - Thierry Naas
- Department of Medical Microbiology, Bicêtre Hospital, Paris, France
| | - Yoshihito Niki
- Department of Clinical Infectious Diseases, Showa University School of Medicine, Tokyo, Japan
| | - David L Paterson
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, QLD, Australia
| | | | - Julian Torre-Cisneros
- Maimonides Institute for Biomedical Research, Reina Sofia University Hospital, University of Córdoba, Córdoba, Spain
| | | | - Richard G Wunderink
- Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | |
Collapse
|
84
|
Burnard D, Robertson G, Henderson A, Falconer C, Bauer MJ, Cottrell K, Gassiep I, Norton R, Paterson DL, Harris PNA. Burkholderia pseudomallei Clinical Isolates Are Highly Susceptible In Vitro to Cefiderocol, a Siderophore Cephalosporin. Antimicrob Agents Chemother 2021; 65:e00685-20. [PMID: 33168603 PMCID: PMC7848980 DOI: 10.1128/aac.00685-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 10/22/2020] [Indexed: 12/11/2022] Open
Abstract
Cefiderocol is a cephalosporin designed to treat multidrug-resistant Gram-negative infections. By forming a chelated complex with ferric iron, cefiderocol is transported into the periplasmic space via bacterial iron transport systems and primarily binds to penicillin-binding protein 3 (PBP3) to inhibit peptidoglycan synthesis. This mode of action results in cefiderocol having greater in vitro activity against many Gram-negative bacilli than currently used carbapenems, β-lactam/β-lactamase inhibitor combinations, and cephalosporins. Thus, we investigated the in vitro activity of cefiderocol against a total of 246 clinical isolates of Burkholderia pseudomallei from Queensland, Australia. The collection was composed primarily of bloodstream (56.1%), skin and soft tissue (16.3%), and respiratory (15.9%) isolates. MICs of cefiderocol ranged from ≤0.03 to 16 mg/liter, whereas the MIC90 was 0.125 mg/liter. Based upon CLSI clinical breakpoints for cefiderocol against Pseudomonas aeruginosa, Acinetobacter baumannii, and Stenotrophomonas maltophilia, three isolates (1.2%) would be classified as nonsusceptible (MIC > 4 mg/liter). Using EUCAST non-species-specific (pharmacokinetic/pharmacodynamic [PK/PD]) clinical breakpoints or those set for Pseudomonas aeruginosa, four isolates (1.6%) would be resistant (MIC > 2 mg/liter). Further testing for coresistance to meropenem, ceftazidime, trimethoprim-sulfamethoxazole, amoxicillin-clavulanate, and doxycycline was performed on the four isolates with elevated cefiderocol MICs (>2 mg/liter); all isolates exhibited resistance to amoxicillin-clavulanic acid, while three isolates also displayed resistance to at least one other antimicrobial. Cefiderocol was found to be highly active in vitro against B. pseudomallei primary clinical isolates. This compound shows great potential for the treatment of melioidosis in countries of endemicity and should be explored further.
Collapse
Affiliation(s)
- Delaney Burnard
- University of Queensland Centre for Clinical Research, Herston, Queensland, Australia
| | - Gemma Robertson
- University of Queensland Centre for Clinical Research, Herston, Queensland, Australia
- Pathology Queensland, Queensland Health, Herston, Queensland, Australia
- Forensic and Scientific Services, Queensland Health, Coopers Plains, Queensland, Australia
| | - Andrew Henderson
- University of Queensland Centre for Clinical Research, Herston, Queensland, Australia
- Princess Alexandra Hospital, Queensland Health, Woolloongabba, Queensland, Australia
| | - Caitlin Falconer
- University of Queensland Centre for Clinical Research, Herston, Queensland, Australia
| | - Michelle J Bauer
- University of Queensland Centre for Clinical Research, Herston, Queensland, Australia
| | - Kyra Cottrell
- University of Queensland Centre for Clinical Research, Herston, Queensland, Australia
| | - Ian Gassiep
- University of Queensland Centre for Clinical Research, Herston, Queensland, Australia
- Department of Infectious Diseases, Mater Hospital, Brisbane, Queensland, Australia
| | - Robert Norton
- Townsville Hospital and Health Service, Townsville, Queensland, Australia
- Faculty of Medicine, University of Queensland, Herston, Queensland, Australia
| | - David L Paterson
- University of Queensland Centre for Clinical Research, Herston, Queensland, Australia
- Royal Brisbane and Women's Hospital, Queensland Health, Herston, Queensland, Australia
| | - Patrick N A Harris
- University of Queensland Centre for Clinical Research, Herston, Queensland, Australia
- Pathology Queensland, Queensland Health, Herston, Queensland, Australia
| |
Collapse
|
85
|
Taheri Y, Joković N, Vitorović J, Grundmann O, Maroyi A, Calina D. The Burden of the Serious and Difficult-to-Treat Infections and a New Antibiotic Available: Cefiderocol. Front Pharmacol 2021; 11:578823. [PMID: 33628170 PMCID: PMC7898678 DOI: 10.3389/fphar.2020.578823] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/23/2020] [Indexed: 12/11/2022] Open
Abstract
Background: Infection is a disease that can occur due to the entrance of a virus, bacteria, and other infectious agents. Cefiderocol is innovative cephalosporin drug that belongs to a special class of antibiotics, sideromycins, which are taken up by bacterial cells through active transport. The unique cell entry and stability to β-lactamases allow cefiderocol to overcome the most common resistance mechanisms in Gram-negative bacteria. Objective: This article aims to highlight the therapeutic efficacy, safety and tolerability of cefiderocol, with a focus on the FDA label. Methods: The pharmacological properties of cefiderocol are also summarized. In this review, we conducted literature research on the PubMed database using the following keywords: "antimicrobial treatment", "new antibiotic", "cefiderocol", "siderophore cephalosporin"; "multidrug-resistant", "Gram-negative bacilli", "critically ill patients"; "severe bacterial infections". Results: There were identified the most relevant data about the pathophysiology of serious bacterial infections, antibacterial mechanism of action, microbiology, mechanisms of resistance, pharmacokinetic and pharmacodynamic properties of cefiderocol. Conclusion: The results highlighted there appeared to be clinical benefit from cefiderocol in the treatment of infections caused by Gram-negative aerobic microorganisms in adult patients with severe infections and limited treatment options.
Collapse
Affiliation(s)
- Yasaman Taheri
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nataša Joković
- The Faculty of Science and Mathematics, University of Niš, Niš, Serbia
| | - Jelena Vitorović
- The Faculty of Science and Mathematics, University of Niš, Niš, Serbia
| | - Oliver Grundmann
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, United States.,Department of Biobehavioral Nursing Science, College of Nursing, University of Florida, Gainesville, FL, United States
| | - Alfred Maroyi
- Department of Botany, University of Fort Hare, Alice, South Africa
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| |
Collapse
|
86
|
De Rosa M, Verdino A, Soriente A, Marabotti A. The Odd Couple(s): An Overview of Beta-Lactam Antibiotics Bearing More Than One Pharmacophoric Group. Int J Mol Sci 2021; 22:E617. [PMID: 33435500 PMCID: PMC7826672 DOI: 10.3390/ijms22020617] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 01/15/2023] Open
Abstract
β-lactam antibiotics are among the most important and widely used antimicrobials worldwide and are comprised of a large family of compounds, obtained by chemical modifications of the common scaffolds. Usually these modifications include the addition of active groups, but less frequently, molecules were synthesized in which either two β-lactam rings were joined to create a single bifunctional compound, or the azetidinone ring was joined to another antibiotic scaffold or another molecule with a different activity, in order to create a molecule bearing two different pharmacophoric functions. In this review, we report some examples of these derivatives, highlighting their biological properties and discussing how this strategy can lead to the development of innovative antibiotics that can represent either novel weapons against the rampant increase of antimicrobial resistance, or molecules with a broader spectrum of action.
Collapse
Affiliation(s)
- Margherita De Rosa
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, 84084 Fisciano (SA), Italy; (A.V.); (A.S.)
| | | | | | - Anna Marabotti
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, 84084 Fisciano (SA), Italy; (A.V.); (A.S.)
| |
Collapse
|
87
|
Salvage Treatment with Cefiderocol Regimens in Two Intravascular Foreign Body Infections by MDR Gram-Negative Pathogens, Involving Non-Removable Devices. Infect Dis Ther 2021; 10:575-581. [PMID: 33417231 PMCID: PMC7955010 DOI: 10.1007/s40121-020-00385-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2020] [Indexed: 01/07/2023] Open
Abstract
Introduction The objective of this study was to describe two challenging cases of intravascular foreign body infections caused by multidrug-resistant Gram-negative pathogens requiring complex antimicrobial regimens including cefiderocol and successfully treated without implant removal. Methods Clinical charts and microbiological reports of the clinical cases. Results Case 1 included a left ventricular assist device (HEARTMATE 3™Abbot®) infection due to Achromobacter xylosoxidans, while case 2 included a portal prosthesis infection due to Pseudomonas aeruginosa. As the pathogens were multidrug-resistant (MDR), both cases required antimicrobial regimens with cefiderocol; treatment was successful without implant removal. Importantly, case 1 presented a probable, drug-induced thrombocytopenia, a non-previously described side effect related to cefiderocol. Conclusion Cefiderocol may be an additional, promising drug to the available arsenal, even for challenging foreign body infections caused by MDR Gram-negative pathogens.
Collapse
|
88
|
Giacobbe DR, Ciacco E, Girmenia C, Pea F, Rossolini GM, Sotgiu G, Tascini C, Tumbarello M, Viale P, Bassetti M. Evaluating Cefiderocol in the Treatment of Multidrug-Resistant Gram-Negative Bacilli: A Review of the Emerging Data. Infect Drug Resist 2020; 13:4697-4711. [PMID: 33402840 PMCID: PMC7778378 DOI: 10.2147/idr.s205309] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 12/02/2020] [Indexed: 12/13/2022] Open
Abstract
Infections due to multidrug-resistant Gram-negative bacteria (MDR-GNB), especially when carbapenem resistant, have been very difficult to manage in the last fifteen years, owing to the paucity of dependable therapeutic options. Cefiderocol is a siderophore cephalosporin recently approved by the Food and Drug Administration (FDA) and European Medicines Agency (EMA) that may have the potential to fill some of the remaining gaps in the treatment of MDR-GNB infections. Among others, cefiderocol demonstrated in vitro activity against carbapenem-resistant Acinetobacter baumannii and metallo-β-lactamases producers. Clinical data from both registrative studies and post-marketing experiences are essential to confirm whether these promises from in vitro studies could readily translate into clinical practice, as well as to delineate the precise place in therapy for cefiderocol for the treatment of MDR-GNB in the near future. Because of its unique potential, it is essential to provide both randomized controlled trials (RCT) and real-life data to improve the ability of clinicians to exploit its benefit in both empirical and targeted treatment of MDR-GNB infections. In this narrative review, we discuss the emerging data from pivotal RCT and initial real-life experiences on the use of cefiderocol for the treatment of MDR-GNB infections.
Collapse
Affiliation(s)
- Daniele Roberto Giacobbe
- Clinica Malattie Infettive, Ospedale Policlinico San Martino - IRCCS, Genoa, Italy.,Department of Health Sciences, University of Genoa, Genoa, Italy
| | - Eugenio Ciacco
- Pharmacy Unit, S. Salvatore Hospital, ASL1 Abruzzo, L'Aquila, Italy
| | - Corrado Girmenia
- Hematology, Dipartimento Medicina Traslazionale e di Precisione, AOU Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Federico Pea
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy.,University Hospital IRCCS Policlinico Sant'Orsola Bologna, Bologna, Italy
| | - Gian Maria Rossolini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.,Clinical Microbiology and Virology Unit, Florence Careggi University Hospital, Florence, Italy
| | - Giovanni Sotgiu
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Carlo Tascini
- SOC Malattie Infettive, Azienda Sanitaria Integrata, University of Udine, Udine, Italy
| | - Mario Tumbarello
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Dipartimento di Sicurezza e Bioetica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Pierluigi Viale
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy.,University Hospital IRCCS Policlinico Sant'Orsola Bologna, Bologna, Italy
| | - Matteo Bassetti
- Clinica Malattie Infettive, Ospedale Policlinico San Martino - IRCCS, Genoa, Italy.,Department of Health Sciences, University of Genoa, Genoa, Italy
| | | |
Collapse
|
89
|
Albano M, Karau MJ, Schuetz AN, Patel R. Comparison of Agar Dilution to Broth Microdilution for Testing In Vitro Activity of Cefiderocol against Gram-Negative Bacilli. J Clin Microbiol 2020; 59:e00966-20. [PMID: 32967901 PMCID: PMC7771473 DOI: 10.1128/jcm.00966-20] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/13/2020] [Indexed: 11/30/2022] Open
Abstract
Cefiderocol (CFDC) is a siderophore cephalosporin with activity against Gram-negative bacterial species that are resistant to carbapenems and other drugs. The MICs of CFDC were determined for 610 Gram-negative bacilli, including 302 multinational Enterobacterales isolates with characterized mechanisms of beta-lactam resistance, 180 clinical isolates from the Mayo Clinic and Mayo Clinic Laboratories not characterized for specific resistance mechanisms, and 128 isolates with CFDC MICs of ≥8 μg/ml obtained from International Health Management Associates, Inc. (IHMA, Schaumburg, IL). Broth microdilution using standard cation-adjusted Mueller-Hinton broth (BMD) and iron-depleted cation-adjusted Mueller-Hinton broth (ID-BMD), and agar dilution (AD) using standard Mueller-Hinton agar were performed according to Clinical and Laboratory Standards Institute (CLSI) guidelines. MICs were interpreted according to the investigational CLSI, FDA, and EUCAST breakpoints, and results were compared. MICs inhibiting 50 and 90% of organisms (MIC50 and MIC90, respectively), essential agreement (EA), categorical agreement (CA), and error of different types were determined. Results showed considerable discordance between AD and ID-BMD. CFDC showed low EA and CA rates and high error rates for AD in comparison to ID-BMD. Overall, this study does not support use of standard AD for determining CFDC MICs.
Collapse
Affiliation(s)
- Mariana Albano
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Melissa J Karau
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Audrey N Schuetz
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Robin Patel
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
- Division of Infectious Diseases, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
90
|
Simner PJ, Patel R. Cefiderocol Antimicrobial Susceptibility Testing Considerations: the Achilles' Heel of the Trojan Horse? J Clin Microbiol 2020; 59:e00951-20. [PMID: 32727829 PMCID: PMC7771437 DOI: 10.1128/jcm.00951-20] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cefiderocol (formerly S-649266) is a novel siderophore-conjugated cephalosporin with activity against a broad array of multidrug-resistant (MDR), aerobic Gram-negative bacilli. The siderophore component binds iron and uses active iron transport for drug entry into the bacterial periplasmic space. The cephalosporin moiety is the active antimicrobial component, structurally resembling a hybrid between ceftazidime and cefepime. Like other β-lactam agents, the principal bactericidal activity of cefiderocol occurs via inhibition of bacterial cell wall synthesis by binding of penicillin-binding proteins (PBPs) and inhibiting peptidoglycan synthesis, leading to cell death. Iron concentrations need to be taken into consideration when in vitro antimicrobial susceptibility to cefiderocol is determined. Broth microdilution (BMD) and disk diffusion methods have been developed to determine in vitro activity of cefiderocol. For BMD, cation-adjusted Mueller-Hinton broth (CAMHB) requires iron depletion to provide MICs predictive of in vivo activity. A method to prepare iron-depleted CAMHB (ID-CAMHB) has been described by the Clinical and Laboratory Standards Institute (CLSI). For disk diffusion, standard Mueller-Hinton agar is recommended, presumably because iron is bound in the medium. Currently, clinical FDA and European Committee on Antimicrobial Susceptibility Testing (EUCAST) breakpoints and investigational (research-use-only) CLSI breakpoints exist for interpreting cefiderocol susceptibility results for certain Gram-negative bacilli. Cefiderocol does not have clinically relevant activity against Gram-positive or anaerobic organisms. FDA or EUCAST breakpoints should be applied to interpret results for Enterobacterales, Pseudomonas aeruginosa, and Acinetobacter baumannii complex for patient care until the investigational status has been removed from CLSI breakpoints. Further clinical outcome data are required to assess the effectiveness of cefiderocol for treatment of other Acinetobacter species (non-baumannii complex) and Stenotrophomonas maltophilia at this time, and, as such, antimicrobial susceptibility testing of these organisms should be limited to research use in the scenario of limited treatment options.
Collapse
Affiliation(s)
- Patricia J Simner
- Division of Medical Microbiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Robin Patel
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
- Division of Infectious Diseases, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
91
|
Abstract
OBJECTIVE This article reviews the available data on the chemistry, spectrum of activity, pharmacokinetic and pharmacodynamic properties, clinical efficacy, and potential place in therapy of cefiderocol. DATA SOURCES A literature search through PubMed, Google Scholar, and ClinicalTrials.gov was conducted (2009 to March 2020) using the search terms cefiderocol and S-649266. Abstracts presented at recent conferences, prescribing information, and information from the US Food and Drug Administration (FDA) and the manufacturer's website were reviewed. STUDY SELECTION AND DATA EXTRACTION All relevant published articles, package inserts, and unpublished meeting abstracts on cefiderocol were reviewed. DATA SYNTHESIS Cefiderocol is the first siderophore antibiotic to be approved by the FDA. It was shown to be active against a wide range of resistant Gram-negative pathogens, including multidrug-resistant (MDR) Pseudomonas aeruginosa, Acinetobacter baumannii, Enterobacteriaceae, and Stenotrophomonas maltophilia. Cefiderocol was studied in the treatment of adult patients with complicated urinary tract infections (cUTIs) and nosocomial pneumonia and was well tolerated. In a recently completed prospective study, higher mortality was observed with cefiderocol in the treatment of serious infections caused by carbapenem-resistant (CR) Gram-negative pathogens. RELEVANCE TO PATIENT CARE AND CLINICAL PRACTICE The approval of cefiderocol provides a new option in the treatment of cUTIs and potentially treatment of nosocomial pneumonia caused by resistant Gram-negative pathogens. Given the higher mortality observed with cefiderocol, its use in the treatment of CR Gram-negative infections should be carefully considered. CONCLUSION Cefiderocol shows promising activity against MDR Gram-negative pathogens. Its use in the treatment of serious infections caused by CR Gram-negative bacteria needs further evaluation in phase III clinical studies.
Collapse
Affiliation(s)
| | - John George Rizk
- Lebanese American University, School of Phramacy, Byblos Campus, Byblos, Lebanon
| |
Collapse
|
92
|
Blomquist KC, Nix DE. A Critical Evaluation of Newer β-Lactam Antibiotics for Treatment of Pseudomonas aeruginosa Infections. Ann Pharmacother 2020; 55:1010-1024. [PMID: 33228374 DOI: 10.1177/1060028020974003] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVE This article critically evaluates common Pseudomonas aeruginosa resistance mechanisms and the properties newer β-lactam antimicrobials possess to evade these mechanisms. DATA SOURCES An extensive PubMed, Google Scholar, and ClinicalTrials.gov search was conducted (January 1995 to July 2020) to identify relevant literature on epidemiology, resistance mechanisms, antipseudomonal agents, newer β-lactam agents, and clinical data available pertaining to P aeruginosa. STUDY SELECTION AND DATA EXTRACTION Relevant published articles and package inserts were reviewed for inclusion. DATA SYNTHESIS Therapeutic options to treat P aeruginosa infections are limited because of its intrinsic and acquired resistance mechanisms. The goal was to identify advances with newer β-lactams and characterize improvements in therapeutic potential for P aeruginosa infections. RELEVANCE TO PATIENT CARE AND CLINICAL PRACTICE Multidrug-resistant (MDR) P aeruginosa isolates are increasingly encountered from a variety of infections. This review highlights potential activity gains of newer β-lactam antibacterial drugs and the current clinical data to support their use. Pharmacists will be asked to recommend or evaluate the use of these agents and need to be aware of information specific to P aeruginosa, which differs from experience derived from Enterobacterales infections. CONCLUSIONS Newer agents, including ceftazidime-avibactam, ceftolozane-tazobactam, imipenem-relebactam, and cefiderocol, are useful for the treatment of MDR P aeruginosa infections. These agents offer improved efficacy and less toxicity compared with aminoglycosides and polymyxins and can be used for pathogens that are resistant to first-line antipseudomonal β-lactams. Selection of one agent over another should consider availability, turnaround of susceptibility testing, and product cost. Efficacy data specific for pseudomonal infections are limited, and there are no direct comparisons between the newer agents.
Collapse
Affiliation(s)
- Kathleen C Blomquist
- Department of Pharmacy Practice & Science, University of Arizona, Tucson, Arizona, USA
| | - David E Nix
- Department of Pharmacy Practice & Science, University of Arizona, Tucson, Arizona, USA
- Department of Medicine, Division of Infectious Diseases, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
93
|
Abdul-Mutakabbir JC, Alosaimy S, Morrisette T, Kebriaei R, Rybak MJ. Cefiderocol: A Novel Siderophore Cephalosporin against Multidrug-Resistant Gram-Negative Pathogens. Pharmacotherapy 2020; 40:1228-1247. [PMID: 33068441 DOI: 10.1002/phar.2476] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cefiderocol (CFDC), (formerly S-649266), is a novel injectable siderophore cephalosporin developed by Shionogi & Co., Ltd., with potent in vitro activity against Gram-negative pathogens including multidrug-resistant (MDR) Enterobacteriaceae and non-fermenting organisms, such as Pseudomonas aeruginosa, Acinetobacter baumannii, Burkholderia cepacia, and Stenotrophomonas maltophilia. Characterized by its siderophore catechol-moiety, CFDC uses a "trojan-horse approach" to navigate through the bacterial periplasmic space, thus evading various beta-lactam degrading enzymes and other mechanisms of resistance present in Gram-negative bacteria. More specifically in carbapenem-resistant Enterobacteriaceae, CFDC has been shown to have activity against extended spectrum beta-lactamases (ESBLs), such as CTX-type, SHV-type, and TEM-type, as well as the Ambler classes of beta-lactamases, including class A (KPC), class B (NDM, IMP, and VIM), class C (AmpC), and class D (OXA, OXA-24, OXA-48, and OXA-48-like). In addition to the strong activity that CFDC has been shown to have against MDR P. aeruginosa, it has also displayed activity against the OXA-23, OXA-24, and OXA-51, beta-lactamases commonly found in MDR A. baumannii. Cefiderocol was recently approved by the US Food and Drug Administration (FDA) for use in complicated urinary tract infections (cUTI), including pyelonephritis, for use in patients 18 years or older with limited or no alternative options for treatment, and is currently being evaluated in a phase III trial for use in nosocomial pneumonia caused by Gram-negative pathogens. The unique features and enhanced activity of CFDC suggest that it is likely to serve as a viable therapeutic option in the treatment of MDR Gram-negative infections. The purpose of this review is to provide an overview of previously published literature explaining CFDC's pharmacology, pharmacokinetic / pharmacodynamic (PK / PD) properties, microbiologic activity, resistance mechanisms, safety parameters, dosing and administration, clinical data, and potential place in therapy.
Collapse
Affiliation(s)
- Jacinda C Abdul-Mutakabbir
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA.,Department of Pharmacy Practice, Loma Linda University School of Pharmacy, Loma Linda, California, USA
| | - Sara Alosaimy
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Taylor Morrisette
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Razieh Kebriaei
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Michael J Rybak
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA.,Division of Infectious Diseases, School of Medicine, Wayne State University, Detroit, Michigan, USA.,Department of Pharmacy, Detroit Receiving Hospital, Detroit, Michigan, USA
| |
Collapse
|
94
|
Isler B, Kidd TJ, Stewart AG, Harris P, Paterson DL. Achromobacter Infections and Treatment Options. Antimicrob Agents Chemother 2020; 64:e01025-20. [PMID: 32816734 PMCID: PMC7577122 DOI: 10.1128/aac.01025-20] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Achromobacter is a genus of nonfermenting Gram-negative bacteria under order Burkholderiales Although primarily isolated from respiratory tract of people with cystic fibrosis, Achromobacter spp. can cause a broad range of infections in hosts with other underlying conditions. Their rare occurrence and ever-changing taxonomy hinder defining their clinical features, risk factors for acquisition and adverse outcomes, and optimal treatment. Achromobacter spp. are intrinsically resistant to several antibiotics (e.g., most cephalosporins, aztreonam, and aminoglycosides), and are increasingly acquiring resistance to carbapenems. Carbapenem resistance is mainly caused by multidrug efflux pumps and metallo-β-lactamases, which are not expected to be overcome by new β-lactamase inhibitors. Among the other new antibiotics, cefiderocol, and eravacycline were used as salvage therapy for a limited number of patients with Achromobacter infections. In this article, we aim to give an overview of the antimicrobial resistance in Achromobacter species, highlighting the possible place of new antibiotics in their treatment.
Collapse
Affiliation(s)
- Burcu Isler
- University of Queensland, Faculty of Medicine, UQ Center for Clinical Research, Brisbane, Australia
| | - Timothy J Kidd
- Central Microbiology, Pathology Queensland, Royal Brisbane and Women's Hospital, Brisbane, Australia
- University of Queensland, Faculty of Science, School of Chemistry and Molecular Biosciences, Brisbane, Australia
| | - Adam G Stewart
- University of Queensland, Faculty of Medicine, UQ Center for Clinical Research, Brisbane, Australia
- Infectious Diseases Unit, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Patrick Harris
- University of Queensland, Faculty of Medicine, UQ Center for Clinical Research, Brisbane, Australia
- Central Microbiology, Pathology Queensland, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - David L Paterson
- University of Queensland, Faculty of Medicine, UQ Center for Clinical Research, Brisbane, Australia
- Infectious Diseases Unit, Royal Brisbane and Women's Hospital, Brisbane, Australia
| |
Collapse
|
95
|
Lee YR, Yeo S. Cefiderocol, a New Siderophore Cephalosporin for the Treatment of Complicated Urinary Tract Infections Caused by Multidrug-Resistant Pathogens: Preclinical and Clinical Pharmacokinetics, Pharmacodynamics, Efficacy and Safety. Clin Drug Investig 2020; 40:901-913. [PMID: 32700154 PMCID: PMC7374078 DOI: 10.1007/s40261-020-00955-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cefiderocol (Fetroja®) is a siderophore cephalosporin and has demonstrated potent activity against extended-spectrum beta-lactamases producing Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae, and nonfermenting Gram-negative bacilli, including Pseudomonas aeruginosa, Stenotrophomonas maltophilia, and Acinetobacter baumannii, Burkholderia cepacia, and Klebsiella pneumoniae. However, cefiderocol has limited activity against Gram-positive bacteria and anaerobes like Bacterodies fragilis. In the APEKS-cUTI study, 183 (73%) of 252 patients in the cefiderocol group versus 65 (55%) of 119 patients in the imipenem-cilastatin group achieved the composite outcome of clinical and microbiological eradication of Gram-negative bacteria (treatment difference of 18.58%; 95% CI 8.23-28.92, p = 0.0004) in complicated urinary tract infections (cUTIs). Cefiderocol was non-inferior to imipenem-cilastatin in cUTIs caused by Gram-negative bacteria such as E. coli, K. pneumoniae, P. aeruginosa, Proteus mirabilis, Enterobacter cloacae, Morganella morganii, and Citrobacter freundii. Cefiderocol required dose adjustment in patients with renal impairment and percentage of time that free drug concentrations above the minimum inhibitory concentration (%fT > MIC) best correlated with clinical outcomes. The most common adverse events with cefiderocol were gastrointestinal symptoms such as diarrhea, constipation, nausea, vomiting, or upper abdominal pain. Two phase III clinical trials, the CREDIBLE-CR study and the APEKS-NP study, investigated the efficacy and safety of cefiderocol for the treatment of pneumonia or cUTI, and both studies showed higher all-cause mortality associated with cefiderocol. Therefore, the use of cefiderocol should be limited only to the treatment of cUTIs from Gram-negative bacteria, especially in patients who have limited or no alternative treatment options.
Collapse
Affiliation(s)
- Young Ran Lee
- Department of Pharmacy Practice, Adult Medicine Division, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, 1718 Pine Street, Abilene, TX, 79601, USA.
| | - Suyeon Yeo
- Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| |
Collapse
|
96
|
Kresken M, Korte-Berwanger M, Gatermann SG, Pfeifer Y, Pfennigwerth N, Seifert H, Werner G. In vitro activity of cefiderocol against aerobic Gram-negative bacterial pathogens from Germany. Int J Antimicrob Agents 2020; 56:106128. [PMID: 32758648 DOI: 10.1016/j.ijantimicag.2020.106128] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/20/2020] [Accepted: 07/29/2020] [Indexed: 01/12/2023]
Abstract
OBJECTIVES Cefiderocol (CID), also known as S-649266, a novel siderophore cephalosporin, possesses potent activity against multidrug-resistant aerobic Gram-negative bacteria (GNB). This study aimed to determine the in vitro activity of CID against two different sets of GNB: i) a random sample of 213 clinical isolates, including 17 extended-spectrum beta-lactamase (ESBL) producers, obtained from intensive care unit patients with nosocomial infections collected during a multicentre surveillance study (set I); and ii) a group of 59 challenge GNB producing various types of carbapenemases (CP; set II). METHODS Minimum inhibitory concentrations (MICs) were determined using the microdilution method according to the standard ISO 20776-1. Iron-depleted medium was used for testing CID. RESULTS CID inhibited 97.2% of set I isolates at the EUCAST susceptibility breakpoint of ≤ 2 mg/L. The concentrations of CID inhibiting 50% and 90% (MIC50/90) of the Enterobacterales isolates (n = 146) were 0.12/1.0 mg/L, with ESBL-positive isolates tending to exhibit higher MICs than ESBL-negative isolates to CID. MIC50/90 values of CID for isolates of the Acinetobacter baumannii group (n = 13) and Pseudomonas aeruginosa (n = 54) were 0.06/0.12 mg/L and 0.12/0.5 mg/L, respectively. Further, CID inhibited 88.1% of set II CP-producing isolates at ≤ 2 mg/L. All seven class D CP-producing Acinetobacter baumannii were inhibited at ≤ 0.25 mg/L. MIC50/90 values for CP-producing Enterobacterales (n = 30) and Pseudomonas aeruginosa (n = 22) were 1/4 mg/L and 0.5/2 mg/L, respectively. CONCLUSION CID showed potent activity against Acinetobacter baumannii, Enterobacterales and Pseudomonas aeruginosa, including CP-producing isolates. Overall, CID inhibited 259 of 272 (95.2%) GNB at ≤ 2 mg/L.
Collapse
Affiliation(s)
- Michael Kresken
- Antiinfectives Intelligence GmbH, Rheinbach, Germany; Rheinische Fachhochschule Köln gGmbH, Cologne, Germany.
| | - Miriam Korte-Berwanger
- German National Reference Centre for Multidrug-Resistant Gram-negative Bacteria, Bochum, Germany
| | - Sören G Gatermann
- German National Reference Centre for Multidrug-Resistant Gram-negative Bacteria, Bochum, Germany
| | - Yvonne Pfeifer
- Robert Koch Institute, Department of Infectious Diseases, FG13 Nosocomial Pathogens and Antibiotic Resistances, Wernigerode, Germany
| | - Niels Pfennigwerth
- German National Reference Centre for Multidrug-Resistant Gram-negative Bacteria, Bochum, Germany
| | - Harald Seifert
- Institute for Medical Microbiology, Immunology and Hygiene, University Hospital Cologne, Cologne, Germany; German Center for Infection Research (DZIF), partner site Cologne-Bonn, Cologne, Germany
| | - Guido Werner
- Robert Koch Institute, Department of Infectious Diseases, FG13 Nosocomial Pathogens and Antibiotic Resistances, Wernigerode, Germany
| |
Collapse
|
97
|
Treatment of Bloodstream Infections Due to Gram-Negative Bacteria with Difficult-to-Treat Resistance. Antibiotics (Basel) 2020; 9:antibiotics9090632. [PMID: 32971809 PMCID: PMC7558339 DOI: 10.3390/antibiotics9090632] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/31/2020] [Accepted: 09/13/2020] [Indexed: 12/19/2022] Open
Abstract
The rising incidence of bloodstream infections (BSI) due to Gram-negative bacteria (GNB) with difficult-to-treat resistance (DTR) has been recognized as a global emergency. The aim of this review is to provide a comprehensive assessment of the mechanisms of antibiotic resistance, epidemiology and treatment options for BSI caused by GNB with DTR, namely extended-spectrum Beta-lactamase-producing Enterobacteriales; carbapenem-resistant Enterobacteriales; DTR Pseudomonas aeruginosa; and DTR Acinetobacter baumannii.
Collapse
|
98
|
Kohira N, Hackel MA, Ishioka Y, Kuroiwa M, Sahm DF, Sato T, Maki H, Yamano Y. Reduced susceptibility mechanism to cefiderocol, a siderophore cephalosporin, among clinical isolates from a global surveillance programme (SIDERO-WT-2014). J Glob Antimicrob Resist 2020; 22:738-741. [PMID: 32702396 DOI: 10.1016/j.jgar.2020.07.009] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/11/2020] [Accepted: 07/14/2020] [Indexed: 10/23/2022] Open
Abstract
OBJECTIVE To investigate possible mechanistic factors to explain cefiderocol (CFDC) non-susceptibility, we characterized 38 clinical isolates with a CFDC minimum inhibitory concentration (MIC) of >4μg/mL from a multi-national surveillance study. METHODS The MIC measurement in the presence of β-lactamase inhibitors and whole genome sequencing were performed. RESULTS The MIC decrease of CFDC by β-lactamase inhibitors was observed against all of the test isolates. Among the 38 isolates, NDM and PER genes were observed in 5 and 25 isolates, respectively. No other β-lactamases responsible for high MIC were identified in the other eight isolates. The MIC of CDFC against Escherichia coli isogenic strains introduced with NDM and PER β-lactamase increased by ≥16-fold, suggesting the contribution of NDM and PER to the non-susceptibility to CFDC. Against NDM producers, a ≥8-fold MIC increase was observed only when both serine- and metallo-type β-lactamase inhibitors were added. In addition, many of the PER or NDM producers remained susceptible to CFDC. These results suggested that the presence of only NDM or PER would not lead to non-susceptibility to CFDC and that multiple factors would be related to CFDC resistance. CONCLUSION Multiple factors including NDM and PER could be related to reduced susceptibility to CFDC.
Collapse
Affiliation(s)
- Naoki Kohira
- Laboratory for Drug Discovery and Disease Research, Shionogi & Co., Ltd., Osaka, Japan.
| | - Meredith A Hackel
- International Health Management Associates, Inc., Schaumburg, IL, USA
| | - Yoshino Ishioka
- Laboratory for Drug Discovery and Disease Research, Shionogi & Co., Ltd., Osaka, Japan
| | - Miho Kuroiwa
- Laboratory for Drug Discovery and Disease Research, Shionogi & Co., Ltd., Osaka, Japan
| | - Daniel F Sahm
- International Health Management Associates, Inc., Schaumburg, IL, USA
| | - Takafumi Sato
- Laboratory for Drug Discovery and Disease Research, Shionogi & Co., Ltd., Osaka, Japan
| | - Hideki Maki
- Laboratory for Drug Discovery and Disease Research, Shionogi & Co., Ltd., Osaka, Japan
| | - Yoshinori Yamano
- Laboratory for Drug Discovery and Disease Research, Shionogi & Co., Ltd., Osaka, Japan
| |
Collapse
|
99
|
Biagi M, Vialichka A, Jurkovic M, Wu T, Shajee A, Lee M, Patel S, Mendes RE, Wenzler E. Activity of Cefiderocol Alone and in Combination with Levofloxacin, Minocycline, Polymyxin B, or Trimethoprim-Sulfamethoxazole against Multidrug-Resistant Stenotrophomonas maltophilia. Antimicrob Agents Chemother 2020; 64:e00559-20. [PMID: 32571820 PMCID: PMC7449157 DOI: 10.1128/aac.00559-20] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 06/13/2020] [Indexed: 12/29/2022] Open
Abstract
The production of an L1 metallo-β-lactamase and an L2 serine active-site β-lactamase precludes the use of β-lactams for the treatment of Stenotrophomonas maltophilia infections. Preclinical data suggest that cefiderocol is the first approved β-lactam with reliable activity against S. maltophilia, but data on strains resistant to current first-line agents are limited, and no studies have assessed cefiderocol-based combinations. The objective of this study was to evaluate and compare the in vitro activity of cefiderocol alone and in combination with levofloxacin, minocycline, polymyxin B, or trimethoprim-sulfamethoxazole (TMP-SMZ) against a collection of highly resistant clinical S. maltophilia isolates. For this purpose, the MICs of cefiderocol, ceftazidime, levofloxacin, minocycline, polymyxin B, and TMP-SMZ for 37 S. maltophilia isolates not susceptible to levofloxacin and/or TMP-SMZ were determined. Nine strains with various cefiderocol MICs were then tested in time-kill experiments with cefiderocol alone and in combination with comparators. The only agents for which susceptibility rates exceeded 40% were cefiderocol (100%) and minocycline (97.3%). Cefiderocol displayed the lowest MIC50 and MIC90 values (0.125 and 0.5 mg/liter, respectively). In time-kill experiments, synergy was observed when cefiderocol was combined with levofloxacin, minocycline, polymyxin B, or TMP-SMZ against 4/9 (44.4%), 6/9 (66.7%), 5/9 (55.5%), and 6/9 (66.7%) isolates, respectively. These data suggest that cefiderocol displays potent in vitro activity against S. maltophilia, including strains resistant to currently preferred agents. Future dynamic and in vivo studies of cefiderocol alone and in combination are warranted to further define cefiderocol's synergistic capabilities and its place in therapy for S. maltophilia infections.
Collapse
Affiliation(s)
- M Biagi
- College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, USA
| | - A Vialichka
- College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, USA
| | - M Jurkovic
- College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, USA
| | - T Wu
- College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, USA
| | - A Shajee
- College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, USA
| | - M Lee
- College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, USA
| | - S Patel
- College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, USA
| | - R E Mendes
- JMI Laboratories, North Liberty, Iowa, USA
| | - E Wenzler
- College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
100
|
O'Donnell JN, Bidell MR, Lodise TP. Approach to the Treatment of Patients with Serious Multidrug-Resistant Pseudomonas aeruginosa Infections. Pharmacotherapy 2020; 40:952-969. [PMID: 32696452 DOI: 10.1002/phar.2449] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/30/2020] [Accepted: 06/30/2020] [Indexed: 12/21/2022]
Abstract
Multidrug resistance(MDR) among Pseudomonas aeruginosa (PSA) isolates presents a significant clinical challenge and can substantially complicate the approach to selection of optimal antibiotic therapy. This review addresses major considerations in antibiotic selection for patients with suspected or documented serious MDR-PSA infections. Common mechanisms contributing to MDR among clinical PSA isolates are summarized. Empiric and definitive therapy considerations are addressed including the potential role of combination therapy. Newer agents with in vitro activity against MDR-PSA (e.g., ceftolozane-tazobactam, ceftazidime-avibactam, imipenem-relebactam, and cefiderocol) and their potential roles in clinical settings are discussed. Although these newer agents are promising options for the treatment of MDR-PSA, clinical data remain generally limited. Future studies are needed to determine optimal agents for the empiric and definitive treatment of MDR-PSA.
Collapse
Affiliation(s)
- J Nicholas O'Donnell
- Department of Pharmacy Practice, Albany College of Pharmacy and Health Sciences, Albany, New York, USA
| | - Monique R Bidell
- Department of Pharmacy, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Thomas P Lodise
- Department of Pharmacy Practice, Albany College of Pharmacy and Health Sciences, Albany, New York, USA
| |
Collapse
|