51
|
Cervero-Aragó S, Sommer R, Araujo RM. Effect of UV irradiation (253.7 nm) on free Legionella and Legionella associated with its amoebae hosts. WATER RESEARCH 2014; 67:299-309. [PMID: 25306486 DOI: 10.1016/j.watres.2014.09.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 09/15/2014] [Accepted: 09/22/2014] [Indexed: 06/04/2023]
Abstract
Water systems are the primary reservoir for Legionella spp., where the bacteria live in association with other microorganisms, such as free-living amoebae. A wide range of disinfection treatments have been studied to control and prevent Legionella colonization but few of them were performed considering its relation with protozoa. In this study, the effectiveness of UV irradiation (253.7 nm) using low-pressure lamps was investigated as a disinfection method for Legionella and amoebae under controlled laboratory conditions. UV treatments were applied to 5 strains of Legionella spp., 4 strains of free-living amoeba of the genera Acanthamoeba and Vermamoeba, treating separately trophozoites and cysts, and to two different co-cultures of Legionella pneumophila with the Acanthamoeba strains. No significant differences in the UV inactivation behavior were observed among Legionella strains tested which were 3 logs reduced for fluences around 45 J/m(2). UV irradiation was less effective against free-living amoebae; which in some cases required up to 990 J/m(2) to obtain the same population reduction. UV treatment was more effective against trophozoites compared to cysts; moreover, inactivation patterns were clearly different between the genus Acanthamoeba and Vermamoeba. For the first time data about Vermamoeba vermiformis UV inactivation has been reported in a study. Finally, the results showed that the association of L. pneumophila with free-living amoebae decreases the effectiveness of UV irradiation against the bacteria in a range of 1.5-2 fold. That fact demonstrates that the relations established between different microorganisms in the water systems can modify the effectiveness of the UV treatments applied.
Collapse
Affiliation(s)
- Sílvia Cervero-Aragó
- Departament de Microbiologia, Facultat de Biologia, Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain; Medical University Vienna, Institute for Hygiene and Applied Immunology, Water Hygiene, Kinderspitalgasse 15, A-1090 Vienna, Austria
| | - Regina Sommer
- Medical University Vienna, Institute for Hygiene and Applied Immunology, Water Hygiene, Kinderspitalgasse 15, A-1090 Vienna, Austria
| | - Rosa M Araujo
- Departament de Microbiologia, Facultat de Biologia, Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain.
| |
Collapse
|
52
|
Detection of free-living amoebae using amoebal enrichment in a wastewater treatment plant of Gauteng Province, South Africa. BIOMED RESEARCH INTERNATIONAL 2014; 2014:575297. [PMID: 25530964 PMCID: PMC4235756 DOI: 10.1155/2014/575297] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 09/02/2014] [Accepted: 09/03/2014] [Indexed: 12/02/2022]
Abstract
Free-living amoebae pose a potential health risk in water systems as they may be pathogenic and harbor potential pathogenic bacteria known as amoebae resistant bacteria. Free-living amoebae were observed in 150 (87.2%) of the environmental water samples. In particular, Acanthamoeba sp. was identified in 22 (12.8%) using amoebal enrichment and confirmed by molecular analysis. FLA were isolated in all 8 stages of the wastewater treatment plant using the amoebal enrichment technique. A total of 16 (9.3%) samples were positive for FLA from influent, 20 (11.6%) from bioreactor feed, 16 (9.3%) from anaerobic zone, 16 (9.3%) from anoxic zone, 32 (18.6%) from aerators, 16 (9.3%) from bioreactor effluent, 11 (6.4%) from bioreactor final effluent, and 45 (26.2%) from maturation pond. This study provides baseline information on the occurrence of amoebae in wastewater treatment plant. This has health implications on receiving water bodies as some FLA are pathogenic and are also involved in the transmission and dissemination of pathogenic bacteria.
Collapse
|
53
|
Bartrand TA, Causey JJ, Clancy JL. Naegleria fowleri:An emerging drinking water pathogen. ACTA ACUST UNITED AC 2014. [DOI: 10.5942/jawwa.2014.106.0140] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
| | - Jonathan Jake Causey
- DHH-OPH Engineering Services, Louisiana Department of Health and Hospitals, Office of Public Health
| | | |
Collapse
|
54
|
Thomas JM, Thomas T, Stuetz RM, Ashbolt NJ. Your garden hose: a potential health risk due to Legionella spp. growth facilitated by free-living amoebae. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:10456-10464. [PMID: 25075763 DOI: 10.1021/es502652n] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Common garden hoses may generate aerosols of inhalable size (≤10 μm) during use. If humans inhale aerosols containing Legionella bacteria, Legionnaires' disease or Pontiac fever may result. Clinical cases of these illnesses have been linked to garden hose use. The hose environment is ideal for the growth and interaction of Legionella and free-living amoebae (FLA) due to biofilm formation, elevated temperatures, and stagnation of water. However, the microbial densities and hose conditions necessary to quantify the human health risks have not been reported. Here we present data on FLA and Legionella spp. detected in water and biofilm from two types of garden hoses over 18 months. By culturing and qPCR, two genera of FLA were introduced via the drinking water supply and reached mean densities of 2.5 log10 amoebae·mL(-1) in garden hose water. Legionella spp. densities (likely including pathogenic L. pneumophila) were significantly higher in one type of hose (3.8 log10 cells·mL(-1), p < 0.0001). A positive correlation existed between Vermamoebae vermiformis densities and Legionella spp. densities (r = 0.83, p < 0.028). The densities of Legionella spp. identified in the hoses were similar to those reported during legionellosis outbreaks in other situations. Therefore, we conclude that there is a health risk to susceptible users from the inhalation of garden hose aerosols.
Collapse
Affiliation(s)
- Jacqueline M Thomas
- School of Civil and Environmental Engineering, The University of New South Wales , Sydney, NSW 2052, Australia
| | | | | | | |
Collapse
|
55
|
Vaerewijck MJ, Baré J, Lambrecht E, Sabbe K, Houf K. Interactions of Foodborne Pathogens with Free-living Protozoa: Potential Consequences for Food Safety. Compr Rev Food Sci Food Saf 2014. [DOI: 10.1111/1541-4337.12100] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
| | - Julie Baré
- Dept. of Veterinary Public Health and Food Safety, Ghent Univ; Belgium
| | - Ellen Lambrecht
- Dept. of Veterinary Public Health and Food Safety, Ghent Univ; Belgium
| | - Koen Sabbe
- Laboratory of Protistology and Aquatic Ecology; Dept. of Biology, Ghent Univ; Belgium
| | - Kurt Houf
- Dept. of Veterinary Public Health and Food Safety, Ghent Univ; Belgium
| |
Collapse
|
56
|
Kebbi-Beghdadi C, Greub G. Importance of amoebae as a tool to isolate amoeba-resisting microorganisms and for their ecology and evolution: the Chlamydia paradigm. ENVIRONMENTAL MICROBIOLOGY REPORTS 2014; 6:309-24. [PMID: 24992529 DOI: 10.1111/1758-2229.12155] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 02/14/2014] [Accepted: 02/16/2014] [Indexed: 05/23/2023]
Abstract
Free-living amoebae are distributed worldwide and are frequently in contact with humans and animals. As cysts, they can survive in very harsh conditions and resist biocides and most disinfection procedures. Several microorganisms, called amoeba-resisting microorganisms (ARMs), have evolved to survive and multiply within these protozoa. Among them are many important pathogens, such as Legionella and Mycobacteria, and also several newly discovered Chlamydia-related bacteria, such as Parachlamydia acanthamoebae, Estrella lausannensis, Simkania negevensis or Waddlia chondrophila whose pathogenic role towards human or animal is strongly suspected. Amoebae represent an evolutionary crib for their resistant microorganisms since they can exchange genetic material with other ARMs and develop virulence traits that will be further used to infect other professional phagocytes. Moreover, amoebae constitute an ideal tool to isolate strict intracellular microorganisms from complex microbiota, since they will feed on other fast-growing bacteria, such as coliforms potentially present in the investigated samples. The paradigm that ARMs are likely resistant to macrophages, another phagocytic cell, and that they are likely virulent towards humans and animals is only partially true. Indeed, we provide examples of the Chlamydiales order that challenge this assumption and suggest that the ability to multiply in protozoa does not strictly correlate with pathogenicity and that we should rather use the ability to replicate in multiple and diverse eukaryotic cells as an indirect marker of virulence towards mammals. Thus, cell-culture-based microbial culturomics should be used in the future to try to discover new pathogenic bacterial species.
Collapse
Affiliation(s)
- Carole Kebbi-Beghdadi
- Center for Research on Intracellular Bacteria (CRIB), Institute of Microbiology, University Hospital Center, University of Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
57
|
Żbikowska E, Kletkiewicz H, Walczak M, Burkowska A. Coexistence of Legionella pneumophila Bacteria and Free-Living Amoebae in Lakes Serving as a Cooling System of a Power Plant. WATER, AIR, AND SOIL POLLUTION 2014; 225:2066. [PMID: 25132694 PMCID: PMC4127003 DOI: 10.1007/s11270-014-2066-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 07/09/2014] [Indexed: 05/24/2023]
Abstract
The study was aimed at determining whether potentially pathogenic free-living amoebae (FLA) and Legionella pneumophila can be found in lakes serving as a natural cooling system of a power plant. Water samples were collected from five lakes forming the cooling system of the power plants Pątnów and Konin (Poland). The numbers of investigated organisms were determined with the use of a very sensitive molecular method-fluorescence in situ hybridization (FISH). The result of the present study shows that thermally altered aquatic environments provide perfect conditions for the growth of L. pneumophila and amoebae. The bacteria were identified in the biofilm throughout the entire research period and in the subsurface water layer in July and August. Hartmanella sp. and/or Naegleria fowleri were identified in the biofilm throughout the entire research period.
Collapse
Affiliation(s)
- Elżbieta Żbikowska
- Department of Invertebrate Zoology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland
| | - Hanna Kletkiewicz
- Department of Animal Physiology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, Toruń, Poland
| | - Maciej Walczak
- Department of Environmental Microbiology and Biotechnology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, Toruń, Poland
| | - Aleksandra Burkowska
- Department of Environmental Microbiology and Biotechnology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, Toruń, Poland
| |
Collapse
|
58
|
Cateau E, Delafont V, Hechard Y, Rodier M. Free-living amoebae: what part do they play in healthcare-associated infections? J Hosp Infect 2014; 87:131-40. [DOI: 10.1016/j.jhin.2014.05.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 05/01/2014] [Indexed: 12/12/2022]
|
59
|
|
60
|
Goudot S, Herbelin P, Mathieu L, Soreau S, Banas S, Jorand F. Biocidal efficacy of monochloramine against planktonic and biofilm-associated Naegleria fowleri
cells. J Appl Microbiol 2014; 116:1055-65. [DOI: 10.1111/jam.12429] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 12/17/2013] [Accepted: 12/30/2013] [Indexed: 11/30/2022]
Affiliation(s)
- S. Goudot
- EDF Recherche et Développement; Laboratoire National d'Hydraulique et Environnement; Chatou Cedex France
- Université de Lorraine; LCPME; UMR 7564 CNRS - UL; Institut Jean Barriol; Villers-lès-Nancy France
- CNRS; LCPME; UMR 7564 CNRS - UL; Villers-lès-Nancy France
| | - P. Herbelin
- EDF Recherche et Développement; Laboratoire National d'Hydraulique et Environnement; Chatou Cedex France
| | - L. Mathieu
- CNRS; LCPME; UMR 7564 CNRS - UL; Villers-lès-Nancy France
- Ecole Pratique des Hautes Etudes (EPHE); LCPME; UMR 7564 CNRS-UL; Vandoeuvre-lès-Nancy France
| | - S. Soreau
- EDF Recherche et Développement; Laboratoire National d'Hydraulique et Environnement; Chatou Cedex France
| | - S. Banas
- Université de Lorraine; LCPME; UMR 7564 CNRS - UL; Institut Jean Barriol; Villers-lès-Nancy France
- CNRS; LCPME; UMR 7564 CNRS - UL; Villers-lès-Nancy France
| | - F.P.A. Jorand
- Université de Lorraine; LCPME; UMR 7564 CNRS - UL; Institut Jean Barriol; Villers-lès-Nancy France
- CNRS; LCPME; UMR 7564 CNRS - UL; Villers-lès-Nancy France
| |
Collapse
|
61
|
Walczak M, Kletkiewicz H, Burkowska A. Occurrence of Legionella pneumophila in lakes serving as a cooling system of a power plant. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2013; 15:2273-2278. [PMID: 24141270 DOI: 10.1039/c3em00452j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
This study was aimed at determining whether Legionella pneumophila can be found in lakes serving as a natural cooling system of a power plant. Water samples were collected from five lakes forming the cooling system of the power plants Pątnów and Konin (Poland). The numbers of bacteria belonging to different phylogenetic groups (bacteria, Legionella sp. and L. pneumophila) were determined with the use of a molecular FISH method. The results of the present study show that thermally altered aquatic environments provide perfect conditions for the growth of L. pneumophila. These microorganisms were identified in the biofilm throughout the entire research period, and in the subsurface water layer in July and August. The percentage of L. pneumophila species in the Legionella genus was 11.55-12.42%.
Collapse
Affiliation(s)
- Maciej Walczak
- Department of Environmental Microbiology and Biotechnology, Nicolaus Copernicus University, Toruń, Poland.
| | | | | |
Collapse
|
62
|
Delafont V, Brouke A, Bouchon D, Moulin L, Héchard Y. Microbiome of free-living amoebae isolated from drinking water. WATER RESEARCH 2013; 47:6958-6965. [PMID: 24200009 DOI: 10.1016/j.watres.2013.07.047] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 07/11/2013] [Accepted: 07/22/2013] [Indexed: 06/02/2023]
Abstract
Free-living amoebae (FLA) are protozoa that can be found in water networks where they prey on bacteria within biofilms. Most bacteria are digested rapidly by phagocytosis, however some are able to survive within amoebae and some are even able to multiply, as it is the case for Legionella pneumophila. These resisting bacteria are a potential health problem as they could also resist to macrophage phagocytosis. Several publications already reported intra-amoebal bacteria but the methods of identification did not allow metagenomic analysis and are partly based on co-culture with one selected amoebal strain. The aim of our study was to conduct a rRNA-targeted metagenomic analysis on amoebae and intra-amoebal bacteria found in drinking water network, to provide the first FLA microbiome in environmental strains. Three sites of a water network were sampled during four months. Culturable FLA were isolated and total DNA was prepared, allowing purification of both amoebal and bacterial DNA. Metagenomic studies were then conducted through 18S or 16S amplicons sequencing. Hartmannella was by far the most represented genus of FLA. Regarding intra-amoebal bacteria, 54 genera were identified, among which 21 were newly described intra-amoebal bacteria, underlying the power of our approach. There were high differences in bacterial diversity between the three sites. Several genera were highly represented and/or found at least in two sites, underlying that these bacteria could be able to multiply within FLA. Our method is therefore useful to identify FLA microbiome and could be applied to other networks to have a more comprehensive view of intra-amoebal diversity.
Collapse
Affiliation(s)
- Vincent Delafont
- Université de Poitiers, UMR CNRS 7267, Ecologie et Biologie des Interactions (EBI), Poitiers, France; EAU DE PARIS, Direction de la Recherche & Développement et de la Qualité des eaux (DRDQE), Paris, France
| | | | | | | | | |
Collapse
|
63
|
Cervero-Aragó S, Rodríguez-Martínez S, Canals O, Salvadó H, Araujo RM. Effect of thermal treatment on free-living amoeba inactivation. J Appl Microbiol 2013; 116:728-36. [PMID: 24251398 DOI: 10.1111/jam.12379] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 10/11/2013] [Accepted: 10/23/2013] [Indexed: 11/29/2022]
Abstract
AIMS To evaluate the effect of temperature on two amoeba strains of the genera Acanthamoeba and two amoeba strains of the genera Hartmannella separately treated depending on their life stage, trophozoite or cyst, when cells are directly exposed under controlled conditions. METHODS AND RESULTS For thermal treatments, three temperatures were selected 50, 60 and 70°C, and a microcosm was designed using dialysis bags. The inactivation of each strain was determined using a method based on the most probable number quantification on agar plates. The results showed that for all amoeba strains, thermal treatment was more effective against trophozoites compared with cyst stages. The inactivation patterns showed statistical differences between the two genera analysed at temperatures above 50°C. The effectiveness of the thermal treatments at 60 and 70°C was higher for both life stages of Hartmannella vermiformis strains compared with Acanthamoeba strains, being the most resistant Acanthamoeba cysts. CONCLUSIONS Free-living amoebae have been isolated in a wide range of environments worldwide due to their capacity to survive under harsh conditions. This capacity is mainly based on the formation of resistant forms, such as double-walled cysts, which confers a high level of resistance as shown here for thermal treatments. SIGNIFICANCE AND IMPACT OF STUDY Free-living amoebae survival can promote a rapid recolonization of drinking water systems and is a likely source of emerging opportunistic pathogens such as Legionella. Because of that a better understanding of the factors that affect micro-organism inactivation in water systems would allow more efficient application of disinfection treatments.
Collapse
Affiliation(s)
- S Cervero-Aragó
- Departament de Microbiologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | | | | | | | | |
Collapse
|
64
|
Isolation and identification of free-living amoebae from tap water in Sivas, Turkey. BIOMED RESEARCH INTERNATIONAL 2013; 2013:675145. [PMID: 23971043 PMCID: PMC3736494 DOI: 10.1155/2013/675145] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 06/11/2013] [Accepted: 06/27/2013] [Indexed: 02/07/2023]
Abstract
The present work focuses on a local survey of free-living amoebae (FLA) that cause opportunistic and nonopportunistic infections in humans. Determining the prevalence of FLA in water sources can shine a light on the need to prevent FLA related illnesses. A total of 150 samples of tap water were collected from six districts of Sivas province. The samples were filtered and seeded on nonnutrient agar containing Escherichia coli spread. Thirty-three (22%) out of 150 samples were found to be positive for FLA. The FLA were identified by morphology and by PCR using 18S rDNA gene. The morphological analysis and partial sequencing of the 18S rDNA gene revealed the presence of three different species, Acanthamoeba castellanii, Acanthamoeba polyphaga, and Hartmannella vermiformis. Naegleria fowleri, Balamuthia mandrillaris, or Sappinia sp. was not isolated during the study. All A. castellanii and A. polyphaga sequence types were found to be genotype T4 that contains most of the pathogenic Acanthamoeba strains. The results indicated the occurrence and distribution of FLA species in tap water in these localities of Sivas, Turkey. Furthermore, the presence of temperature tolerant Acanthamoeba genotype T4 in tap water in the region must be taken into account for health risks.
Collapse
|
65
|
Dupuy M, Berne F, Herbelin P, Binet M, Berthelot N, Rodier MH, Soreau S, Héchard Y. Sensitivity of free-living amoeba trophozoites and cysts to water disinfectants. Int J Hyg Environ Health 2013; 217:335-9. [PMID: 23932411 DOI: 10.1016/j.ijheh.2013.07.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 07/10/2013] [Accepted: 07/11/2013] [Indexed: 11/26/2022]
Abstract
Free-living amoebae are naturally present in water. These protozoa could be pathogenic and could also shelter pathogenic bacteria. Thus, they are described as a potential hazard for health. Also, free-living amoebae have been described to be resistant to biocides, especially under their cyst resistant form. There are several studies on amoeba treatments but none of them compare sensitivity of trophozoites and cysts from different genus to various water disinfectants. In our study, we tested chlorine, monochloramine and chlorine dioxide on both cysts and trophozoites from three strains, belonging to the three main genera of free-living amoebae. The results show that, comparing cysts to trophozoites inactivation, only the Acanthamoeba cysts were highly more resistant to treatment than trophozoites. Comparison of the disinfectant efficiency led to conclude that chlorine dioxide was the most efficient treatment in our conditions and was particularly efficient against cysts. In conclusion, our results would help to adapt water treatments in order to target free-living amoebae in water networks.
Collapse
Affiliation(s)
- Mathieu Dupuy
- Université de Poitiers, Laboratoire Ecologie et Biologie des Interactions, CNRS UMR 7267, 1 rue Georges Bonnet, 86022 Poitiers Cedex, France
| | - Florence Berne
- Université de Poitiers, IC2MP, CNRS UMR 7285, 1 rue Marcel Doré, 86022 Poitiers Cedex, France
| | - Pascaline Herbelin
- EDF, Division Recherche et Développement, 6 Quai Watier, 78401 Chatou, France
| | - Marie Binet
- EDF, Division Recherche et Développement, 6 Quai Watier, 78401 Chatou, France
| | - Nelsie Berthelot
- VERI, Veolia Environnement, Chemin de la digue BP76, 78603 Maisons Laffitte Cedex, France
| | - Marie-Hélène Rodier
- Université de Poitiers, Laboratoire Ecologie et Biologie des Interactions, CNRS UMR 7267, 1 rue Georges Bonnet, 86022 Poitiers Cedex, France
| | - Sylvie Soreau
- EDF, Division Recherche et Développement, 6 Quai Watier, 78401 Chatou, France
| | - Yann Héchard
- Université de Poitiers, Laboratoire Ecologie et Biologie des Interactions, CNRS UMR 7267, 1 rue Georges Bonnet, 86022 Poitiers Cedex, France.
| |
Collapse
|
66
|
Diversity and antibiotic resistance of Acinetobacter spp. in water from the source to the tap. Appl Microbiol Biotechnol 2012; 97:329-40. [DOI: 10.1007/s00253-012-4190-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 05/16/2012] [Accepted: 05/17/2012] [Indexed: 11/26/2022]
|
67
|
Vaz-Moreira I, Nunes OC, Manaia CM. Diversity and antibiotic resistance in Pseudomonas spp. from drinking water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 426:366-74. [PMID: 22521167 DOI: 10.1016/j.scitotenv.2012.03.046] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 03/19/2012] [Accepted: 03/20/2012] [Indexed: 05/06/2023]
Abstract
Pseudomonas spp. are common inhabitants of aquatic environments, including drinking water. Multi-antibiotic resistance in clinical isolates of P. aeruginosa is widely reported and deeply characterized. However, the information regarding other species and environmental isolates of this genus is scant. This study was designed based on the hypothesis that members of the genus Pseudomonas given their high prevalence, wide distribution in waters and genetic plasticity can be important reservoirs of antibiotic resistance in drinking water. With this aim, the diversity and antibiotic resistance phenotypes of Pseudomonas isolated from different drinking water sources were evaluated. The genotypic diversity analyses were based on six housekeeping genes (16S rRNA, rpoD, rpoB, gyrB, recA and ITS) and on pulsed field gel electrophoresis. Susceptibility to 21 antibiotics of eight classes was tested using the ATB PSE EU (08) and disk diffusion methods. Pseudomonas spp. were isolated from 14 of the 32 sampled sites. A total of 55 non-repetitive isolates were affiliated to twenty species. Although the same species were isolated from different sampling sites, identical genotypes were never observed in distinct types of water (water treatment plant/distribution system, tap water, cup fillers, biofilm, and mineral water). In general, the prevalence of antibiotic resistance was low and often the resistance patterns were related with the species and/or the strain genotype. Resistance to ticarcillin, ticarcillin with clavulanic acid, fosfomycin and cotrimoxazol were the most prevalent (69-84%). No resistance to piperacillin, levofloxacin, ciprofloxacin, tetracycline, gentamicin, tobramycin, amikacin, imipenem or meropenem was observed. This study demonstrates that Pseudomonas spp. are not so widespread in drinking water as commonly assumed. Nevertheless, it suggests that water Pseudomonas can spread acquired antibiotic resistance, preferentially via vertical transmission.
Collapse
Affiliation(s)
- Ivone Vaz-Moreira
- CBQF/Escola Superior de Biotecnologia, Universidade Católica Portuguesa, 4200-072 Porto, Portugal
| | | | | |
Collapse
|
68
|
Cellular, biochemical, and molecular changes during encystment of free-living amoebae. EUKARYOTIC CELL 2012; 11:382-7. [PMID: 22366126 DOI: 10.1128/ec.05301-11] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Free-living amoebae are protozoa found in soil and water. Among them, some are pathogenic and many have been described as potential reservoirs of pathogenic bacteria. Their cell cycle is divided into at least two forms, the trophozoite and the cyst, and the differentiation process is named encystment. As cysts are more resistant to disinfection treatments than trophozoites, many studies focused on encystment, but until recently, little was known about cellular, biochemical, and molecular modifications operating during this process. Important signals and signaling pathways at play during encystment, as well as cell responses at the molecular level, have been described. This review summarizes our knowledge and focuses on new findings.
Collapse
|
69
|
García A, Goñi P, Clavel A, Lobez S, Fernandez MT, Ormad MP. Potentially pathogenic free-living amoebae (FLA) isolated in Spanish wastewater treatment plants. ENVIRONMENTAL MICROBIOLOGY REPORTS 2011; 3:622-626. [PMID: 23761343 DOI: 10.1111/j.1758-2229.2011.00271.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
This work studies the characterization of pathogenic free-living amoebae (FLA) from sewage effluents. Some of them, such as Acanthamoeba, Naegleria, Hartmannella, Sappinia, Balamuthia and Paravahlkampfia have been reported as a cause of diseases in humans. Therefore, the study of their habitats and their pathogenicity has become necessary. The population of potentially pathogenic FLA was analysed in five Spanish wastewater treatment plants. Five of the seven FLA isolated were identified as genus Acanthamoeba genotypes T3, T4, T7 and T9. Hartmannella and Naegleria were also isolated. Acanthamoeba demonstrated great thermotolerance and osmotolerance. It was also observed that treatment with sodium hypochlorite showed no significative reduction in the number of amoeba at concentrations of 0-100 ppm. The high resistance of FLA cysts to disinfection methods is a trojan horse for public health insofar as they colonize water systems and allow the survival of intracellular microorganisms resistant to FLA. The results of this work advance current knowledge of the FLA population.
Collapse
Affiliation(s)
- A García
- Area of Parasitology, Department of Microbiology, Preventive Medicine and Public Health, Faculty of Medicine, University of Zaragoza, C/Domingo Miral s/n, 50009 Zaragoza, Spain Aragón Institute of Health (ICS), Zaragoza, Spain Department of Chemical Engineering and Environmental Technologies, University of Zaragoza, C/María de Luna, 3, 50018. Zaragoza, Spain
| | | | | | | | | | | |
Collapse
|
70
|
Niemi S, Greub G, Puolakkainen M. Chlamydia-related bacteria in respiratory samples in Finland. Microbes Infect 2011; 13:824-7. [DOI: 10.1016/j.micinf.2011.04.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 04/15/2011] [Accepted: 04/15/2011] [Indexed: 10/18/2022]
|
71
|
Wingender J. Hygienically Relevant Microorganisms in Biofilms of Man-Made Water Systems. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/978-3-642-19940-0_9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
72
|
Cellular response of the amoeba Acanthamoeba castellanii to chlorine, chlorine dioxide, and monochloramine treatments. Appl Environ Microbiol 2011; 77:4974-80. [PMID: 21602398 DOI: 10.1128/aem.00234-11] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Acanthamoeba castellanii is a free-living amoebae commonly found in water systems. Free-living amoebae might be pathogenic but are also known to bear phagocytosis-resistant bacteria, protecting these bacteria from water treatments. The mode of action of these treatments is poorly understood, particularly on amoebae. It is important to examine the action of these treatments on amoebae in order to improve them. The cellular response to chlorine, chlorine dioxide, and monochloramine was tested on A. castellanii trophozoites. Doses of disinfectants leading to up to a 3-log reduction were compared by flow cytometry and electron microscopy. Chlorine treatment led to size reduction, permeabilization, and retraction of pseudopods. In addition, treatment with chlorine dioxide led to a vacuolization of the cytoplasm. Monochloramine had a dose-dependent effect. At the highest doses monochloramine treatment resulted in almost no changes in cell size and permeability, as shown by flow cytometry, but the cell surface became smooth and dense, as seen by electron microscopy. We show that these disinfectants globally induced size reduction, membrane permeabilization, and morphological modifications but that they have a different mode of action on A. castellanii.
Collapse
|
73
|
Thomas JM, Ashbolt NJ. Do free-living amoebae in treated drinking water systems present an emerging health risk? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:860-9. [PMID: 21194220 DOI: 10.1021/es102876y] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
There is an expanding body of evidence that free-living amoebae (FLA) increase both the numbers and virulence of water-based, human-pathogenic, amoeba-resisting microorganisms (ARM). Legionella spp., Mycobacterium spp., and other opportunistic human pathogens are known to be both ARM and also the etiologic agents of potentially fatal human lung infections. However, comparatively little is known about the FLA that may facilitate ARM growth in drinking water. This review examines the available literature on FLA in treated drinking water systems; in total 26 studies from 18 different countries. FLA were reported to breakthrough the water treatment barrier and enter distribution systems, in addition to the expected post-treatment system ingress. Once in the distribution system there is evidence of FLA colonization and regrowth especially in reservoirs and in-premise plumbing storage tanks. At the point of use the average FLA detection rate was 45% but highly variable (n = 16, σ = 31) due to both differences in both assay methods and the type of water systems examined. This review reveals that FLA are consistently detected in treated drinking water systems around the world and present a yet unquantified emerging health risk. However, more research is urgently required before accurate risks assessments can be undertaken to assess the impacts on human health, in households and institutions, due to exposure to FLA facilitated pathogenic ARM.
Collapse
Affiliation(s)
- Jacqueline M Thomas
- Water Research Centre, School of Civil and Environmental Engineering, The University of New South Wales, NSW 2052 Australia.
| | | |
Collapse
|