51
|
Vidal L, Kampleitner C, Brennan MÁ, Hoornaert A, Layrolle P. Reconstruction of Large Skeletal Defects: Current Clinical Therapeutic Strategies and Future Directions Using 3D Printing. Front Bioeng Biotechnol 2020; 8:61. [PMID: 32117940 PMCID: PMC7029716 DOI: 10.3389/fbioe.2020.00061] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 01/24/2020] [Indexed: 12/25/2022] Open
Abstract
The healing of bone fractures is a well-orchestrated physiological process involving multiple cell types and signaling molecules interacting at the fracture site to replace and repair bone tissue without scar formation. However, when the lesion is too large, normal healing is compromised. These so-called non-union bone fractures, mostly arising due to trauma, tumor resection or disease, represent a major therapeutic challenge for orthopedic and reconstructive surgeons. In this review, we firstly present the current commonly employed surgical strategies comprising auto-, allo-, and xenograft transplantations, as well as synthetic biomaterials. Further to this, we discuss the multiple factors influencing the effectiveness of the reconstructive therapy. One essential parameter is adequate vascularization that ensures the vitality of the bone grafts thereby supporting the regeneration process, however deficient vascularization presents a frequently encountered problem in current management strategies. To address this challenge, vascularized bone grafts, including free or pedicled fibula flaps, or in situ approaches using the Masquelet induced membrane, or the patient’s body as a bioreactor, comprise feasible alternatives. Finally, we highlight future directions and novel strategies such as 3D printing and bioprinting which could overcome some of the current challenges in the field of bone defect reconstruction, with the benefit of fabricating personalized and vascularized scaffolds.
Collapse
Affiliation(s)
- Luciano Vidal
- INSERM, UMR 1238, PHY-OS, Bone Sarcomas and Remodeling of Calcified Tissues, Faculty of Medicine, University of Nantes, Nantes, France
| | - Carina Kampleitner
- Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | - Meadhbh Á Brennan
- INSERM, UMR 1238, PHY-OS, Bone Sarcomas and Remodeling of Calcified Tissues, Faculty of Medicine, University of Nantes, Nantes, France.,Harvard School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States
| | - Alain Hoornaert
- INSERM, UMR 1238, PHY-OS, Bone Sarcomas and Remodeling of Calcified Tissues, Faculty of Medicine, University of Nantes, Nantes, France.,CHU Nantes, Department of Implantology, Faculty of Dental Surgery, University of Nantes, Nantes, France
| | - Pierre Layrolle
- INSERM, UMR 1238, PHY-OS, Bone Sarcomas and Remodeling of Calcified Tissues, Faculty of Medicine, University of Nantes, Nantes, France
| |
Collapse
|
52
|
Sparks DS, Savi FM, Saifzadeh S, Schuetz MA, Wagels M, Hutmacher DW. Convergence of Scaffold-Guided Bone Reconstruction and Surgical Vascularization Strategies-A Quest for Regenerative Matching Axial Vascularization. Front Bioeng Biotechnol 2020; 7:448. [PMID: 31998712 PMCID: PMC6967032 DOI: 10.3389/fbioe.2019.00448] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 12/13/2019] [Indexed: 02/06/2023] Open
Abstract
The prevalent challenge facing tissue engineering today is the lack of adequate vascularization to support the growth, function, and viability of tissue engineered constructs (TECs) that require blood vessel supply. The research and clinical community rely on the increasing knowledge of angiogenic and vasculogenic processes to stimulate a clinically-relevant vascular network formation within TECs. The regenerative matching axial vascularization approach presented in this manuscript incorporates the advantages of flap-based techniques for neo-vascularization yet also harnesses the in vivo bioreactor principle in a more directed "like for like" approach to further assist regeneration of the specific tissue type that is lost, such as a corticoperiosteal flap in critical sized bone defect reconstruction.
Collapse
Affiliation(s)
- David S Sparks
- Centre for Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.,Department of Plastic & Reconstructive Surgery, Princess Alexandra Hospital, Woolloongabba, QLD, Australia.,Southside Clinical Division, School of Medicine, University of Queensland, Woolloongabba, QLD, Australia
| | - Flavia Medeiros Savi
- Centre for Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia
| | - Siamak Saifzadeh
- Centre for Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.,Medical Engineering Research Facility, Queensland University of Technology, Chermside, QLD, Australia
| | - Michael A Schuetz
- Department of Orthopaedic Surgery, Royal Brisbane Hospital, Herston, QLD, Australia.,Jamieson Trauma Institute, Royal Brisbane Hospital, Herston, QLD, Australia
| | - Michael Wagels
- Department of Plastic & Reconstructive Surgery, Princess Alexandra Hospital, Woolloongabba, QLD, Australia.,Southside Clinical Division, School of Medicine, University of Queensland, Woolloongabba, QLD, Australia.,Australian Centre for Complex Integrated Surgical Solutions, Woolloongabba, QLD, Australia
| | - Dietmar W Hutmacher
- Centre for Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.,ARC Centre for Additive Bio-Manufacturing, Queensland University of Technology, Kelvin Grove, QLD, Australia
| |
Collapse
|
53
|
Iyer S. Reconstruction in head and neck cancer surgery: The ways we came through and the path ahead. JOURNAL OF HEAD & NECK PHYSICIANS AND SURGEONS 2020. [DOI: 10.4103/jhnps.jhnps_24_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
54
|
Jeong W, Kim YS, Roh TS, Kang EH, Jung BK, Yun IS. The effect of combination therapy on critical-size bone defects using non-activated platelet-rich plasma and adipose-derived stem cells. Childs Nerv Syst 2020; 36:145-151. [PMID: 30879128 DOI: 10.1007/s00381-019-04109-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 02/27/2019] [Indexed: 02/07/2023]
Abstract
PURPOSE Non-activated platelet-rich plasma (nPRP) slowly releases growth factors that induce bone regeneration. Adipose tissue-derived stem cells (ASCs) are also known to induce osteoblast differentiation. In this study, we investigated the combined effect of nPRP and ASC treatment compared with single therapy on bone regeneration. METHODS Thirty New Zealand white rabbits with 15 × 15 mm2 calvarial defects were randomly divided into four treatment groups: control, nPRP, ASC, or nPRP + ASC groups. For treatment, rabbits received a collagen sponge (Gelfoam®) saturated with 1 ml normal saline (controls), 1 ml non-activated PRP (nPRP group), 2 × 106 ASCs (ASCs group), or 2 × 106 ASCs plus l ml nPRP (nPRP + ASCs group). After 16 weeks, bone volume and new bone surface area were measured, using three-dimensional computed tomography and digital photography. Bone regeneration was also histologically analyzed. RESULTS Bone surface area in the nPRP group was significantly higher than both the control and ASC groups (p < 0.001 and p < 0.01, respectively). The percentage of regenerated bone surface area in the nPRP + ASC group was also significantly higher than the corresponding ratios in the control group (p < 0.001). The volume of new bone in the nPRP group was increased compared to the controls (p < 0.05). CONCLUSION Our results demonstrate that slow-releasing growth factors from nPRP did not influence ASC activation in this model of bone healing. PRP activation is important for the success of combination therapy using nPRP and ASCs.
Collapse
Affiliation(s)
- Woonhyeok Jeong
- Department of Plastic and Reconstructive Surgery, Keimyung University School of Medicine, Dongsan Medical Center, Daegu, South Korea
| | - Young Seok Kim
- Department of Plastic and Reconstructive Surgery, Institute for Human Tissue Restoration, Yonsei University Health System, Gangnam Severance Hospital, 211 Eonjoo-ro, Gangnam-gu, Seoul, 135-720, South Korea
| | - Tai Suk Roh
- Department of Plastic and Reconstructive Surgery, Institute for Human Tissue Restoration, Yonsei University Health System, Gangnam Severance Hospital, 211 Eonjoo-ro, Gangnam-gu, Seoul, 135-720, South Korea
| | - Eun Hye Kang
- Department of Plastic and Reconstructive Surgery, Institute for Human Tissue Restoration, Yonsei University Health System, Severance Hospital, Seoul, South Korea
| | - Bok Ki Jung
- Department of Plastic and Reconstructive Surgery, Institute for Human Tissue Restoration, Yonsei University Health System, Gangnam Severance Hospital, 211 Eonjoo-ro, Gangnam-gu, Seoul, 135-720, South Korea
| | - In Sik Yun
- Department of Plastic and Reconstructive Surgery, Institute for Human Tissue Restoration, Yonsei University Health System, Gangnam Severance Hospital, 211 Eonjoo-ro, Gangnam-gu, Seoul, 135-720, South Korea.
| |
Collapse
|
55
|
Bartold M, Gronthos S, Haynes D, Ivanovski S. Mesenchymal stem cells and biologic factors leading to bone formation. J Clin Periodontol 2019; 46 Suppl 21:12-32. [PMID: 30624807 DOI: 10.1111/jcpe.13053] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 09/23/2018] [Accepted: 10/26/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Physiological bone formation and bone regeneration occurring during bone repair can be considered distinct but similar processes. Mesenchymal stem cells (MSC) and associated biologic factors are crucial to both bone formation and bone regeneration. AIM To perform a narrative review of the current literature regarding the role of MSC and biologic factors in bone formation with the aim of discussing the clinical relevance of in vitro and in vivo animal studies. METHODS The literature was searched for studies on MSC and biologic factors associated with the formation of bone in the mandible and maxilla. The search specifically targeted studies on key aspects of how stem cells and biologic factors are important in bone formation and how this might be relevant to bone regeneration. The results are summarized in a narrative review format. RESULTS Different types of MSC and many biologic factors are associated with bone formation in the maxilla and mandible. CONCLUSION Bone formation and regeneration involve very complex and highly regulated cellular and molecular processes. By studying these processes, new clinical opportunities will arise for therapeutic bone regenerative treatments.
Collapse
Affiliation(s)
- Mark Bartold
- School of Dentistry, University of Adelaide, Adelaide, SA, Australia
| | - Stan Gronthos
- Mesenchymal Stem Cell Laboratory, Faculty of Health and Medical Sciences, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - David Haynes
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Saso Ivanovski
- School of Dentistry, University of Queensland, Brisbane, Qld, Australia
| |
Collapse
|
56
|
Mosquera-Perez R, Fernández-Olavarria A, Diaz-Sanchez RM, Gutierrez-Perez JL, Serrera-Figallo MÁ, Torres-Lagares D. Stem cells and oral surgery: A systematic review. J Clin Exp Dent 2019; 11:e1181-e1189. [PMID: 31824601 PMCID: PMC6894914 DOI: 10.4317/jced.56571] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 11/21/2019] [Indexed: 12/26/2022] Open
Abstract
Background Considering the structural loss that occurs after surgical procedures for cystic and tumoral pathology, in periodontitis, as well as the maxillary atrophy that determines the rehabilitation with dental implants, it is imperative to find satisfactory solutions. The opportunity provided by the findings in stem cells is a recent introduction in the field of oral surgery, based on the regenerative potential that these cells possess in order to restore defects at different levels of the oral cavity. The aim of this systematic review is to discover the real applications that stem cells may have in our treatments in the near future. Material and Methods We made a systematic review of the literature on the subject of stem cells to know the publications relating to them in the field of oral surgery since 2000. PRISMA statement was accomplished, as its official flow chart is used. Results This article draws clinical conclusions from basic research and those conducted in the first clinical cases to apply them in a short period of time to our patients in order to achieve excellence in regenerative therapies. Conclusions To summarize, stem cells may be a turning point in tissue regeneration, though the major challenge is to overcome the remaining obstacles before they become a realistic therapeutic alternative. Key words:Stem cells, oral surgery, cell therapy, regeneration.
Collapse
Affiliation(s)
- Regina Mosquera-Perez
- DDS. Department of Stomatology, Faculty of Dentistry, University of Seville (US), Seville, Spain
| | - Ana Fernández-Olavarria
- DDS. Department of Stomatology, Faculty of Dentistry, University of Seville (US), Seville, Spain
| | - Rosa-Maria Diaz-Sanchez
- DDS. Department of Stomatology, Faculty of Dentistry, University of Seville (US), Seville, Spain
| | - José-Luis Gutierrez-Perez
- MD, PhD. Department of Stomatology, Faculty of Dentistry, University of Seville (US), Seville, Spain
| | | | - Daniel Torres-Lagares
- DDS, PhD. Department of Stomatology, Faculty of Dentistry, University of Seville (US), Seville, Spain
| |
Collapse
|
57
|
Adipose-Derived Stem Cells in Bone Tissue Engineering: Useful Tools with New Applications. Stem Cells Int 2019; 2019:3673857. [PMID: 31781238 PMCID: PMC6875209 DOI: 10.1155/2019/3673857] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/09/2019] [Indexed: 12/13/2022] Open
Abstract
Adipose stem cells (ASCs) are a crucial element in bone tissue engineering (BTE). They are easy to harvest and isolate, and they are available in significative quantities, thus offering a feasible and valid alternative to other sources of mesenchymal stem cells (MSCs), like bone marrow. Together with an advantageous proliferative and differentiative profile, they also offer a high paracrine activity through the secretion of several bioactive molecules (such as growth factors and miRNAs) via a sustained exosomal release which can exert efficient conditioning on the surrounding microenvironment. BTE relies on three key elements: (1) scaffold, (2) osteoprogenitor cells, and (3) bioactive factors. These elements have been thoroughly investigated over the years. The use of ASCs has offered significative new advancements in the efficacy of each of these elements. Notably, the phenotypic study of ASCs allowed discovering cell subpopulations, which have enhanced osteogenic and vasculogenic capacity. ASCs favored a better vascularization and integration of the scaffolds, while improvements in scaffolds' materials and design tried to exploit the osteogenic features of ASCs, thus reducing the need for external bioactive factors. At the same time, ASCs proved to be an incredible source of bioactive, proosteogenic factors that are released through their abundant exosome secretion. ASC exosomes can exert significant paracrine effects in the surroundings, even in the absence of the primary cells. These paracrine signals recruit progenitor cells from the host tissues and enhance regeneration. In this review, we will focus on the recent discoveries which have involved the use of ASCs in BTE. In particular, we are going to analyze the different ASCs' subpopulations, the interaction between ASCs and scaffolds, and the bioactive factors which are secreted by ASCs or can induce their osteogenic commitment. All these advancements are ultimately intended for a faster translational and clinical application of BTE.
Collapse
|
58
|
Dienel KEG, van Bochove B, Seppälä JV. Additive Manufacturing of Bioactive Poly(trimethylene carbonate)/β-Tricalcium Phosphate Composites for Bone Regeneration. Biomacromolecules 2019; 21:366-375. [DOI: 10.1021/acs.biomac.9b01272] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Kasper E. G. Dienel
- Department of Chemical and Metallurgical Engineering, Aalto University, Espoo, Finland
| | - Bas van Bochove
- Department of Chemical and Metallurgical Engineering, Aalto University, Espoo, Finland
| | - Jukka V. Seppälä
- Department of Chemical and Metallurgical Engineering, Aalto University, Espoo, Finland
| |
Collapse
|
59
|
Nyberg E, Farris A, O'Sullivan A, Rodriguez R, Grayson W. Comparison of Stromal Vascular Fraction and Passaged Adipose-Derived Stromal/Stem Cells as Point-of-Care Agents for Bone Regeneration. Tissue Eng Part A 2019; 25:1459-1469. [DOI: 10.1089/ten.tea.2018.0341] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Ethan Nyberg
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ashley Farris
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Aine O'Sullivan
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Warren Grayson
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
60
|
Yanai R, Tetsuo F, Ito S, Itsumi M, Yoshizumi J, Maki T, Mori Y, Kubota Y, Kajioka S. Extracellular calcium stimulates osteogenic differentiation of human adipose-derived stem cells by enhancing bone morphogenetic protein-2 expression. Cell Calcium 2019; 83:102058. [DOI: 10.1016/j.ceca.2019.102058] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 06/19/2019] [Accepted: 07/16/2019] [Indexed: 12/17/2022]
|
61
|
Dinescu S, Ionita M, Ignat SR, Costache M, Hermenean A. Graphene Oxide Enhances Chitosan-Based 3D Scaffold Properties for Bone Tissue Engineering. Int J Mol Sci 2019; 20:E5077. [PMID: 31614903 PMCID: PMC6834324 DOI: 10.3390/ijms20205077] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 10/10/2019] [Accepted: 10/10/2019] [Indexed: 12/11/2022] Open
Abstract
The main goal of bone tissue engineering (BTE) is to refine and repair major bone defects based on bioactive biomaterials with distinct properties that can induce and support bone tissue formation. Graphene and its derivatives, such as graphene oxide (GO), display optimal properties for BTE, being able to support cell growth and proliferation, cell attachment, and cytoskeleton development as well as the activation of osteogenesis and bone development pathways. Conversely, the presence of GO within a polymer matrix produces favorable changes to scaffold morphologies that facilitate cell attachment and migration i.e., more ordered morphologies, greater surface area, and higher total porosity. Therefore, there is a need to explore the potential of GO for tissue engineering applications and regenerative medicine. Here, we aim to promote one novel scaffold based on a natural compound of chitosan, improved with 3 wt.% GO, for BTE approaches, considering its good biocompatibility, remarkable 3D characteristics, and ability to support stem cell differentiation processes towards the bone lineage.
Collapse
Affiliation(s)
- Sorina Dinescu
- Department of Biochemistry and Molecular Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania.
| | - Mariana Ionita
- Advanced Polymer Materials Group, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania.
| | - Simona-Rebeca Ignat
- Department of Biochemistry and Molecular Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania.
| | - Marieta Costache
- Department of Biochemistry and Molecular Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania.
| | - Anca Hermenean
- Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Rebreanu, 310414 Arad, Romania.
| |
Collapse
|
62
|
Chapelin F, Khurana A, Moneeb M, Gray Hazard FK, Chan CFR, Nejadnik H, Gratzinger D, Messing S, Erdmann J, Gaur A, Daldrup-Link HE. Tumor Formation of Adult Stem Cell Transplants in Rodent Arthritic Joints. Mol Imaging Biol 2019; 21:95-104. [PMID: 29869062 DOI: 10.1007/s11307-018-1218-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE While imaging matrix-associated stem cell transplants aimed for cartilage repair in a rodent arthritis model, we noticed that some transplants formed locally destructive tumors. The purpose of this study was to determine the cause for this tumor formation in order to avoid this complication for future transplants. PROCEDURES Adipose-derived stem cells (ADSC) isolated from subcutaneous adipose tissue were implanted into 24 osteochondral defects of the distal femur in ten athymic rats and two immunocompetent control rats. All transplants underwent serial magnetic resonance imaging (MRI) up to 6 weeks post-transplantation to monitor joint defect repair. Nine transplants showed an increasing size over time that caused local bone destruction (group 1), while 11 transplants in athymic rats (group 2) and 4 transplants in immunocompetent rats did not. We compared the ADSC implant size and growth rate on MR images, macroscopic features, histopathologic features, surface markers, and karyotypes of these presumed neoplastic transplants with non-neoplastic ADSC transplants. RESULTS Implants in group 1 showed a significantly increased two-dimensional area at week 2 (p = 0.0092), 4 (p = 0.003), and 6 (p = 0.0205) compared to week 0, as determined by MRI. Histopathological correlations confirmed neoplastic features in group 1 with significantly increased size, cellularity, mitoses, and cytological atypia compared to group 2. Six transplants in group 1 were identified as malignant chondrosarcomas and three transplants as fibromyxoid sarcomas. Transplants in group 2 and immunocompetent controls exhibited normal cartilage features. Both groups showed a normal ADSC phenotype; however, neoplastic ADSC demonstrated a mixed population of diploid and tetraploid cells without genetic imbalance. CONCLUSIONS ADSC transplants can form tumors in vivo. Preventive actions to avoid in vivo tumor formations may include karyotyping of culture-expanded ADSC before transplantation. In addition, serial imaging of ADSC transplants in vivo may enable early detection of abnormally proliferating cell transplants.
Collapse
Affiliation(s)
- Fanny Chapelin
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, 725 Welch Rd, Rm 1665, Stanford, CA, 94305-5654, USA
| | - Aman Khurana
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, 725 Welch Rd, Rm 1665, Stanford, CA, 94305-5654, USA
| | - Mohammad Moneeb
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, 725 Welch Rd, Rm 1665, Stanford, CA, 94305-5654, USA
| | | | | | - Hossein Nejadnik
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, 725 Welch Rd, Rm 1665, Stanford, CA, 94305-5654, USA
| | - Dita Gratzinger
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Solomon Messing
- Department of Communication and Statistics, Stanford, CA, USA
| | - Jason Erdmann
- Department of Cytogenetics, Stanford University, Stanford, CA, USA
| | - Amitabh Gaur
- BD biosciences, Custom Technology Team, La Jolla, CA, USA.,Innovative Assay Solutions, San Diego, CA, 92129, USA
| | - Heike E Daldrup-Link
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, 725 Welch Rd, Rm 1665, Stanford, CA, 94305-5654, USA.
| |
Collapse
|
63
|
Abstract
Fat grafting was first described in the early 20th century but for many years remained a relatively underused technique due to the unreliability of long-term volume expansion. Significant improvements in reliability have been made in the last 2 decades and there is a large body of literature pertaining to extraction, processing and injection methods to obtain more lasting effects. However, volume loss and graft resorption remain a major challenge in the long term and lead to unpredictability in results. Enriching adipose graft with stromal vascular fraction, ex vivo cultured adipose stem cells and platelet-derived growth factor among others is one method under active investigation which may assist graft survival through a range of mechanisms including increased angiogenesis. Breaking adipose graft into smaller fragments such that engrafted cells have greater access to donor-site oxygenation and nutrition is another method which in theory may promote survival. Presently, adipose grafting in the face is usually for the addition of volume to fill defects. However, the stem-cell containing fraction of adipose grafting (stromal vascular fraction) appears to exert a rejuvenating effect on overlying skin and soft tissue when administered alone. The application of these low-volume injections represents a significant shift in thinking away from mere volume expansion. These techniques have been tested in a range of animal models and some human studies. In this review, the authors provide a broad overview of present research and highlight both limitations in previous research and current areas of investigation.
Collapse
|
64
|
Human Platelet Lysate as a Functional Substitute for Fetal Bovine Serum in the Culture of Human Adipose Derived Stromal/Stem Cells. Cells 2019; 8:cells8070724. [PMID: 31311198 PMCID: PMC6679214 DOI: 10.3390/cells8070724] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION Adipose derived stromal/stem cells (ASCs) hold potential as cell therapeutics for a wide range of disease states; however, many expansion protocols rely on the use of fetal bovine serum (FBS) as a cell culture nutrient supplement. The current study explores the substitution of lysates from expired human platelets (HPLs) as an FBS substitute. METHODS Expired human platelets from an authorized blood center were lysed by freeze/thawing and used to examine human ASCs with respect to proliferation using hematocytometer cell counts, colony forming unit-fibroblast (CFU-F) frequency, surface immunophenotype by flow cytometry, and tri-lineage (adipocyte, chondrocyte, osteoblast) differentiation potential by histochemical staining. RESULTS The proliferation assays demonstrated that HPLs supported ASC proliferation in a concentration dependent manner, reaching levels that exceeded that observed in the presence of 10% FBS. The concentration of 0.75% HPLs was equivalent to 10% FBS when utilized in cell culture media with respect to proliferation, immunophenotype, and CFU-F frequency. When added to osteogenic, adipogenic, and chondrogenic differentiation media, both supplements showed appropriate differentiation by staining. CONCLUSION HPLs is an effective substitute for FBS in the culture, expansion and differentiation of human ASCs suitable for pre-clinical studies; however, additional assays and analyses will be necessary to validate HPLs for clinical applications and regulatory approval.
Collapse
|
65
|
Malhotra N. Bioreactors Design, Types, Influencing Factors and Potential Application in Dentistry. A Literature Review. Curr Stem Cell Res Ther 2019; 14:351-366. [DOI: 10.2174/1574888x14666190111105504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 11/26/2018] [Accepted: 12/27/2018] [Indexed: 11/22/2022]
Abstract
Objectives:A variety of bioreactors and related approaches have been applied to dental tissues as their use has become more essential in the field of regenerative dentistry and dental tissue engineering. The review discusses the various types of bioreactors and their potential application in dentistry.Methods:Review of the literature was conducted using keywords (and MeSH) like Bioreactor, Regenerative Dentistry, Fourth Factor, Stem Cells, etc., from the journals published in English. All the searched abstracts, published in indexed journals were read and reviewed to further refine the list of included articles. Based on the relevance of abstracts pertaining to the manuscript, full-text articles were assessed.Results:Bioreactors provide a prerequisite platform to create, test, and validate the biomaterials and techniques proposed for dental tissue regeneration. Flow perfusion, rotational, spinner-flask, strain and customize-combined bioreactors have been applied for the regeneration of bone, periodontal ligament, gingiva, cementum, oral mucosa, temporomandibular joint and vascular tissues. Customized bioreactors can support cellular/biofilm growth as well as apply cyclic loading. Center of disease control & dip-flow biofilm-reactors and micro-bioreactor have been used to evaluate the biological properties of dental biomaterials, their performance assessment and interaction with biofilms. Few case reports have also applied the concept of in vivo bioreactor for the repair of musculoskeletal defects and used customdesigned bioreactor (Aastrom) to repair the defects of cleft-palate.Conclusions:Bioreactors provide a sterile simulated environment to support cellular differentiation for oro-dental regenerative applications. Also, bioreactors like, customized bioreactors for cyclic loading, biofilm reactors (CDC & drip-flow), and micro-bioreactor, can assess biological responses of dental biomaterials by simultaneously supporting cellular or biofilm growth and application of cyclic stresses.
Collapse
|
66
|
Mazini L, Rochette L, Amine M, Malka G. Regenerative Capacity of Adipose Derived Stem Cells (ADSCs), Comparison with Mesenchymal Stem Cells (MSCs). Int J Mol Sci 2019; 20:ijms20102523. [PMID: 31121953 PMCID: PMC6566837 DOI: 10.3390/ijms20102523] [Citation(s) in RCA: 227] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 12/13/2022] Open
Abstract
Adipose tissue is now on the top one of stem cell sources regarding its accessibility, abundance, and less painful collection procedure when compared to other sources. The adipose derived stem cells (ADSCs) that it contains can be maintained and expanded in culture for long periods of time without losing their differentiation capacity, leading to large cell quantities being increasingly used in cell therapy purposes. Many reports showed that ADSCs-based cell therapy products demonstrated optimal efficacy and efficiency in some clinical indications for both autologous and allogeneic purposes, hence becoming considered as potential tools for replacing, repairing, and regenerating dead or damaged cells. In this review, we analyzed the therapeutic advancement of ADSCs in comparison to bone marrow (BM) and umbilical cord (UC)-mesenchymal stem cells (MSCs) and designed the specific requirements to their best clinical practices and safety. Our analysis was focused on the ADSCs, rather than the whole stromal vascular fraction (SVF) cell populations, to facilitate characterization that is related to their source of origins. Clinical outcomes improvement suggested that these cells hold great promise in stem cell-based therapies in neurodegenerative, cardiovascular, and auto-immunes diseases.
Collapse
Affiliation(s)
- Loubna Mazini
- Laboratoire Cellules Souches et Ingénierie Tissulaire, Centre Interface Applications Médicales CIAM, Université Mohammed VI polytechnique, Ben Guérir 43150, Morocco.
| | - Luc Rochette
- Equipe d'Accueil (EA 7460), Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Université de Bourgogne Franche Comté, Faculté des Sciences de Santé, 7 Bd Jeanne d'Arc, 21000 Dijon, France.
| | - Mohamed Amine
- Laboratoire d'Epidémiologie et de Biostatique, Centre Interface Applications Médicales CIAM, Université Mohammed VI polytechnique, Ben Guérir 43150, Morocco.
- Département de Santé Publique et de Médecine Communautaire, Faculté de Médecine et de Pharmacie, Université Cadi Ayyad, Marrakech 40000, Morocco.
| | - Gabriel Malka
- Laboratoire Cellules Souches et Ingénierie Tissulaire, Centre Interface Applications Médicales CIAM, Université Mohammed VI polytechnique, Ben Guérir 43150, Morocco.
- Laboratoire d'Epidémiologie et de Biostatique, Centre Interface Applications Médicales CIAM, Université Mohammed VI polytechnique, Ben Guérir 43150, Morocco.
| |
Collapse
|
67
|
Mazini L, Rochette L, Amine M, Malka G. Regenerative Capacity of Adipose Derived Stem Cells (ADSCs), Comparison with Mesenchymal Stem Cells (MSCs). Int J Mol Sci 2019. [PMID: 31121953 DOI: 10.3390/ijms20102523.pmid:31121953;pmcid:pmc6566837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
Abstract
Adipose tissue is now on the top one of stem cell sources regarding its accessibility, abundance, and less painful collection procedure when compared to other sources. The adipose derived stem cells (ADSCs) that it contains can be maintained and expanded in culture for long periods of time without losing their differentiation capacity, leading to large cell quantities being increasingly used in cell therapy purposes. Many reports showed that ADSCs-based cell therapy products demonstrated optimal efficacy and efficiency in some clinical indications for both autologous and allogeneic purposes, hence becoming considered as potential tools for replacing, repairing, and regenerating dead or damaged cells. In this review, we analyzed the therapeutic advancement of ADSCs in comparison to bone marrow (BM) and umbilical cord (UC)-mesenchymal stem cells (MSCs) and designed the specific requirements to their best clinical practices and safety. Our analysis was focused on the ADSCs, rather than the whole stromal vascular fraction (SVF) cell populations, to facilitate characterization that is related to their source of origins. Clinical outcomes improvement suggested that these cells hold great promise in stem cell-based therapies in neurodegenerative, cardiovascular, and auto-immunes diseases.
Collapse
Affiliation(s)
- Loubna Mazini
- Laboratoire Cellules Souches et Ingénierie Tissulaire, Centre Interface Applications Médicales CIAM, Université Mohammed VI polytechnique, Ben Guérir 43150, Morocco.
| | - Luc Rochette
- Equipe d'Accueil (EA 7460), Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Université de Bourgogne Franche Comté, Faculté des Sciences de Santé, 7 Bd Jeanne d'Arc, 21000 Dijon, France.
| | - Mohamed Amine
- Laboratoire d'Epidémiologie et de Biostatique, Centre Interface Applications Médicales CIAM, Université Mohammed VI polytechnique, Ben Guérir 43150, Morocco.
- Département de Santé Publique et de Médecine Communautaire, Faculté de Médecine et de Pharmacie, Université Cadi Ayyad, Marrakech 40000, Morocco.
| | - Gabriel Malka
- Laboratoire Cellules Souches et Ingénierie Tissulaire, Centre Interface Applications Médicales CIAM, Université Mohammed VI polytechnique, Ben Guérir 43150, Morocco.
- Laboratoire d'Epidémiologie et de Biostatique, Centre Interface Applications Médicales CIAM, Université Mohammed VI polytechnique, Ben Guérir 43150, Morocco.
| |
Collapse
|
68
|
Long Noncoding RNA H19 Participates in the Regulation of Adipose-Derived Stem Cells Cartilage Differentiation. Stem Cells Int 2019; 2019:2139814. [PMID: 31191668 PMCID: PMC6525810 DOI: 10.1155/2019/2139814] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/28/2019] [Accepted: 02/13/2019] [Indexed: 12/22/2022] Open
Abstract
Adipose-derived stem cells (ADSCs) are multipotent and have received increasing attention for their applications in medicine. Cell-based therapies are optimal for diseases with loss or damage to tissues or organs. ADSCs and bone marrow mesenchymal stem cells (BMSCs) can differentiate into many cell lineages. Because of their advantages in accessibility and volume, ADSCs are regarded as a desirable alternative to BMSCs. In this study, we focused on the chondrocytic differentiation potential of ADSCs and the underlying mechanism. We found that the long noncoding RNA H19 plays an important role in this process. Overexpression of H19 in ADSCs induced differentiation towards chondrocytes. H19 is abundantly expressed during embryonic development and downregulated after birth, implying its regulatory role in determining cell fate. However, in our experiments, H19 exerted its regulatory function during cartilage differentiation of ADSCs through competing miRNA regulation of STAT2.
Collapse
|
69
|
Adipose-Derived Mesenchymal Stem Cells: Current and Future Applications in Craniofacial Surgery. J Craniofac Surg 2019; 30:636-638. [PMID: 30896508 DOI: 10.1097/scs.0000000000005336] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
70
|
Si Z, Wang X, Sun C, Kang Y, Xu J, Wang X, Hui Y. Adipose-derived stem cells: Sources, potency, and implications for regenerative therapies. Biomed Pharmacother 2019; 114:108765. [PMID: 30921703 DOI: 10.1016/j.biopha.2019.108765] [Citation(s) in RCA: 207] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 02/28/2019] [Accepted: 03/06/2019] [Indexed: 02/06/2023] Open
Abstract
Adipose-derived stem cells (ASCs) are a subset of mesenchymal stem cells (MSCs) that can be obtained easily from adipose tissues and possess many of the same regenerative properties as other MSCs. ASCs easily adhere to plastic culture flasks, expand in vitro, and have the capacity to differentiate into multiple cell lineages, offering the potential to repair, maintain, or enhance various tissues. Since human adipose tissue is ubiquitous and easily obtained in large quantities using a minimally invasive procedure, the use of autologous ASCs is promising for both regenerative medicine and organs damaged by injury and disease, leading to a rapidly increasing field of research. ASCs are effective for the treatment of severe symptoms such as atrophy, fibrosis, retraction, and ulcers induced by radiation therapy. Moreover, ASCs have been shown to be effective for pathological wound healing such as aberrant scar formation. Additionally, ASCs have been shown to be effective in treating severe refractory acute graft-versus-host disease and hematological and immunological disorders such as idiopathic thrombocytopenic purpura and refractory pure red cell aplasia, indicating that ASCs may have immunomodulatory function. Although many experimental procedures have been proposed, standardized harvesting protocols and processing techniques do not yet exist. Therefore, in this review we focus on the current landscape of ASC isolation, identification, location, and differentiation ability, and summarize the recent progress in ASC applications, the latest preclinical and clinical research, and future approaches for the use of ASCs.
Collapse
Affiliation(s)
- Zizhen Si
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China
| | - Xue Wang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China
| | - Changhui Sun
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China
| | - Yuchun Kang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China
| | - Jiakun Xu
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China
| | - Xidi Wang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China; Basic Medical Institute of Heilongjiang Medical Science Academy, PR China; Translational Medicine Center of Northern China, PR China
| | - Yang Hui
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China; Basic Medical Institute of Heilongjiang Medical Science Academy, PR China; Translational Medicine Center of Northern China, PR China.
| |
Collapse
|
71
|
Abstract
Adipose-derived stem cells (ADSC) have come to be viewed as a ubiquitous solution for aesthetic and reconstructive problems involving loss of tissue volume and age or radiation-induced loss of tissue pliability and vascularity. As the theoretical potential of "stem cell therapy" has captured the public imagination, so the commercial potential of novel therapies is being exploited beyond scientifically sound, hypothesis-driven paradigms and in the absence of evidence establishing clinical efficacy and safety. Moreover, with variations in methods of isolation, manipulation, and reintroduction described, it is unclear how the practitioner with an interest in ADSC can harness the clinical potential in reproducible and scientifically measurable ways. This Continuing Medical Education (CME) article presents a summary of our understanding of what ADSC are, their utility within the field of aesthetic surgery, and the current and future directions for adipose stem cell research.
Collapse
Affiliation(s)
- Graeme Ewan Glass
- Attending Plastic and Craniofacial Surgeon, Department of Surgery, Sidra Medicine, Doha, Qatar; and Weill Cornell Medical College, Ar-Rayyan, Qatar
| | - Patrizia Ferretti
- Professor of Regenerative Biology, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| |
Collapse
|
72
|
Khojasteh A, Hosseinpour S, Rezai Rad M, Alikhasi M, Zadeh HH. Buccal fat pad-derived stem cells with anorganic bovine bone mineral scaffold for augmentation of atrophic posterior mandible: An exploratory prospective clinical study. Clin Implant Dent Relat Res 2019; 21:292-300. [PMID: 30821120 DOI: 10.1111/cid.12729] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/19/2018] [Accepted: 12/18/2018] [Indexed: 12/23/2022]
Abstract
BACKGROUND Application of adipose-derived stem cells originated from buccal fat pad (BFP) can simplify surgical procedures and diminish clinical risks compared to large autograft harvesting. PURPOSE This study sought to evaluate and compare the efficacy of buccal fat pad-derived stem cells (BFPSCs) in combination with anorganic bovine bone mineral (ABBM) for vertical and horizontal augmentation of atrophic posterior mandibles. MATERIALS AND METHODS Fourteen patients with atrophic posterior mandible were elected for this prospective exploratory study. BFP (3-5 mL) was harvested and BFPSCs were isolated and combined with ABBM at 50% ratio. The vertical and horizontal alveolar deficiencies were augmented by 50% mixture of ABBM with either BFPSCs (group 1) or particulated autologous bone (group 2). Titanium mesh was contoured to the desired 3D shape of the alveolar ridge and fixated to the host sites over the graft material of the two groups. At first, the amount of new bone areas was calculated by quantitative analysis of cone beam computed tomography (CBCT) images that were taken 6 months postoperatively according to regenerative techniques (group 1 vs group 2 without considering the type of bone defects). Second, these amounts were calculated in each group based on the type of defects. RESULTS Quantitative analysis of CBCT images revealed the areas of new bone formation were 169.5 ± 5.90 mm2 and 166.75 ± 10.05 mm2 in groups 1 and 2, respectively. The area of new bone formation for vertical defects were 164.91 ± 3.74 mm2 and 169.36 ± 12.09 mm2 in groups 1 and 2, respectively. The area of new bone formation for horizontal deficiencies were 170.51 ± 4.54 mm2 and 166.98 ± 9.36 mm2 in groups 1 and 2, respectively. There were no statistically significant differences between the two groups in any of the pair-wise comparisons (P > 0.05). CONCLUSIONS The findings of the present study demonstrated lack of difference in bone volume formation between BFPSCs and autologous particulate bone in combination with ABBM. If confirmed by future large-scale clinical trial, BFPSCs may provide an alternative to autogenous bone for reconstruction of alveolar ridge defects.
Collapse
Affiliation(s)
- Arash Khojasteh
- Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sepanta Hosseinpour
- School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Rezai Rad
- Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marzieh Alikhasi
- Dental Research Center, Dentistry Research Institute, Department of Prosthodontics, School of dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Homayoun H Zadeh
- Laboratory for Immunoregulation and Tissue Engineering (LITE), Ostrow School of Dentistry of USC, University of Southern California, Los Angeles, California
| |
Collapse
|
73
|
Alfouzan AF. Review of surgical resection and reconstruction in head and neck cancer. Traditional versus current concepts. Saudi Med J 2019; 39:971-980. [PMID: 30284578 PMCID: PMC6201028 DOI: 10.15537/smj.2018.10.22887] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
This review summarizes the development of head and neck cancer resection and reconstruction. The developments in the treatment of cancer patients are reflected in their surgical outcomes, in addition to functional and aesthetic improvements. New technologies, such as surgical simulation and planning, minimally invasive surgery, and microsurgery have been added to the field to improve surgical resection of the tumor and reconstruction. The field is still growing to optimize the management of head and neck cancer.
Collapse
Affiliation(s)
- Afnan F Alfouzan
- Department of Prosthodontics, College of Dentistry, King Saud University, Riyadh, Kingdom of Saudi Arabia. E-mail.
| |
Collapse
|
74
|
Hassanshahi A, Hassanshahi M, Khabbazi S, Hosseini‐Khah Z, Peymanfar Y, Ghalamkari S, Su Y, Xian CJ. Adipose‐derived stem cells for wound healing. J Cell Physiol 2018; 234:7903-7914. [DOI: 10.1002/jcp.27922] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 10/24/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Alireza Hassanshahi
- Department of Genetics Faculty of Basic Sciences, Islamic Azad University Shahrekord Iran
| | - Mohammadhossein Hassanshahi
- School of Pharmacy and Medical Sciences, University of South Australia Cancer Research Institute, University of South Australia Adelaide South Australia Australia
| | - Samira Khabbazi
- School of Pharmacy and Medical Sciences, University of South Australia Cancer Research Institute, University of South Australia Adelaide South Australia Australia
| | - Zahra Hosseini‐Khah
- Department of Immunology School of Medicine, Mazandaran University of Medical Sciences Sari Iran
| | - Yaser Peymanfar
- School of Pharmacy and Medical Sciences, University of South Australia Cancer Research Institute, University of South Australia Adelaide South Australia Australia
| | | | - Yu‐Wen Su
- School of Pharmacy and Medical Sciences, University of South Australia Cancer Research Institute, University of South Australia Adelaide South Australia Australia
| | - Cory J. Xian
- School of Pharmacy and Medical Sciences, University of South Australia Cancer Research Institute, University of South Australia Adelaide South Australia Australia
| |
Collapse
|
75
|
Argentati C, Morena F, Bazzucchi M, Armentano I, Emiliani C, Martino S. Adipose Stem Cell Translational Applications: From Bench-to-Bedside. Int J Mol Sci 2018; 19:E3475. [PMID: 30400641 PMCID: PMC6275042 DOI: 10.3390/ijms19113475] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/22/2018] [Accepted: 11/01/2018] [Indexed: 02/08/2023] Open
Abstract
During the last five years, there has been a significantly increasing interest in adult adipose stem cells (ASCs) as a suitable tool for translational medicine applications. The abundant and renewable source of ASCs and the relatively simple procedure for cell isolation are only some of the reasons for this success. Here, we document the advances in the biology and in the innovative biotechnological applications of ASCs. We discuss how the multipotential property boosts ASCs toward mesenchymal and non-mesenchymal differentiation cell lineages and how their character is maintained even if they are combined with gene delivery systems and/or biomaterials, both in vitro and in vivo.
Collapse
Affiliation(s)
- Chiara Argentati
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via del Giochetto, 06126 Perugia, Italy.
| | - Francesco Morena
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via del Giochetto, 06126 Perugia, Italy.
| | - Martina Bazzucchi
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via del Giochetto, 06126 Perugia, Italy.
| | - Ilaria Armentano
- Department of Ecological and Biological Sciences, Tuscia University Largo dell'Università, snc, 01100 Viterbo, Italy.
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via del Giochetto, 06126 Perugia, Italy.
- CEMIN, Center of Excellence on Nanostructured Innovative Materials, Via del Giochetto, 06126 Perugia, Italy.
| | - Sabata Martino
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via del Giochetto, 06126 Perugia, Italy.
- CEMIN, Center of Excellence on Nanostructured Innovative Materials, Via del Giochetto, 06126 Perugia, Italy.
| |
Collapse
|
76
|
Abstract
In the last few decades, several techniques have been used to optimize tendon, ligament, and musculoskeletal healing. The evidence in favor of these techniques is still not proven, and level I studies are lacking. We performed an analysis of the therapeutic strategies and tissue engineering projects recently published in this field. Here, we try to give an insight into the current status of cell therapies and the latest techniques of bioengineering applied to the field of orthopedic surgery. The future areas for research in the management of musculoskeletal injuries are outlined. There are emerging technologies developing into substantial clinical treatment options that need to be critically evaluated. Mechanical stimulation of the constructs reproduces a more propitious environment for effective healing.
Collapse
|
77
|
Khojasteh A, Hosseinpour S, Rad MR, Alikhasi M. Buccal Fat Pad-Derived Stem Cells in Three-Dimensional Rehabilitation of Large Alveolar Defects: A Report of Two Cases. J ORAL IMPLANTOL 2018; 45:45-54. [PMID: 30280966 DOI: 10.1563/aaid-joi-d-17-00215] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This case report seeks to describe efficient clinical application of adipose-derived stem cells (AdSCs) originated from buccal fat pad (BFP) in combination with conventional guided bone regeneration as protected healing space for reconstruction of large alveolar defects after extraction of multiple impacted teeth. The first case was a 19-year-old woman with several impacted teeth in the maxillary and mandibular regions, which could not be forced to erupt and were recommended for surgical extraction by the orthodontist. After this procedure, a large bone defect was created, and this space was filled by AdSC loaded natural bovine bone mineral (NBBM), which was protected with lateral ramus cortical plates, microscrews, and collagen membrane. After 6 months of post-guided bone regeneration, the patient received 6 and 7 implant placements, respectively, in the maxilla and mandible. At 10 months postoperatively, radiographic evaluation revealed thorough survival of implants. The second case was a 22-year-old man with the same complaint and large bony defects created after his teeth were extracted. After 6 months of post-guided bone regeneration, he received 4 dental implants in his maxilla and 7 implants in the mandible. At 48 months postoperatively, radiographs showed complete survival of implants. This approach represented a considerable amount of 3-dimensional bone formation in both cases, which enabled us to use dental implant therapy for rehabilitation of the whole dentition. The application of AdSCs isolated from BFP in combination with NBBM can be considered an efficient treatment for bone regeneration in large alveolar bone defects.
Collapse
Affiliation(s)
- Arash Khojasteh
- 1 Department of Tissue Engineering and Cell Therapy, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,2 Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Maryam Rezai Rad
- 2 Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marzieh Alikhasi
- 4 Dental Research Center, Dentistry Research Institute, Department of Prosthodontics, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
78
|
Ho-Shui-Ling A, Bolander J, Rustom LE, Johnson AW, Luyten FP, Picart C. Bone regeneration strategies: Engineered scaffolds, bioactive molecules and stem cells current stage and future perspectives. Biomaterials 2018; 180:143-162. [PMID: 30036727 PMCID: PMC6710094 DOI: 10.1016/j.biomaterials.2018.07.017] [Citation(s) in RCA: 505] [Impact Index Per Article: 84.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 07/06/2018] [Accepted: 07/10/2018] [Indexed: 12/25/2022]
Abstract
Bone fractures are the most common traumatic injuries in humans. The repair of bone fractures is a regenerative process that recapitulates many of the biological events of embryonic skeletal development. Most of the time it leads to successful healing and the recovery of the damaged bone. Unfortunately, about 5-10% of fractures will lead to delayed healing or non-union, more so in the case of co-morbidities such as diabetes. In this article, we review the different strategies to heal bone defects using synthetic bone graft substitutes, biologically active substances and stem cells. The majority of currently available reviews focus on strategies that are still at the early stages of development and use mostly in vitro experiments with cell lines or stem cells. Here, we focus on what is already implemented in the clinics, what is currently in clinical trials, and what has been tested in animal models. Treatment approaches can be classified in three major categories: i) synthetic bone graft substitutes (BGS) whose architecture and surface can be optimized; ii) BGS combined with bioactive molecules such as growth factors, peptides or small molecules targeting bone precursor cells, bone formation and metabolism; iii) cell-based strategies with progenitor cells combined or not with active molecules that can be injected or seeded on BGS for improved delivery. We review the major types of adult stromal cells (bone marrow, adipose and periosteum derived) that have been used and compare their properties. Finally, we discuss the remaining challenges that need to be addressed to significantly improve the healing of bone defects.
Collapse
Affiliation(s)
- Antalya Ho-Shui-Ling
- Grenoble Institute of Technology, Univ. Grenoble Alpes, 38000 Grenoble, France; CNRS, LMGP, 3 Parvis Louis Néel, 38031 Grenoble Cedex 01, France
| | - Johanna Bolander
- Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Center, KU Leuven, Belgium; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Belgium
| | - Laurence E Rustom
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 1304 West Springfield Avenue, Urbana, IL 61801, USA
| | - Amy Wagoner Johnson
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 1206 West Green Street, Urbana, IL 61081, USA; Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL 61801, USA
| | - Frank P Luyten
- Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Center, KU Leuven, Belgium; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Belgium.
| | - Catherine Picart
- Grenoble Institute of Technology, Univ. Grenoble Alpes, 38000 Grenoble, France; CNRS, LMGP, 3 Parvis Louis Néel, 38031 Grenoble Cedex 01, France.
| |
Collapse
|
79
|
Optimizing Osteogenic Differentiation of Ovine Adipose-Derived Stem Cells by Osteogenic Induction Medium and FGFb, BMP2, or NELL1 In Vitro. Stem Cells Int 2018; 2018:9781393. [PMID: 30356449 PMCID: PMC6178511 DOI: 10.1155/2018/9781393] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/25/2018] [Accepted: 08/12/2018] [Indexed: 01/27/2023] Open
Abstract
Although adipose-derived stromal cells (ADSCs) have been a major focus as an alternative to autologous bone graft in orthopedic surgery, bone formation potential of ADSCs is not well known and cytokines as osteogenic inducers on ADSCs are being investigated. This study aimed at isolating ADSCs from ovine adipose tissue (AT) and optimizing osteogenic differentiation of ovine ADSCs (oADSC) by culture medium and growth factors. Four AT samples were harvested from two female ovine (Texel/Gotland breed), and oADSCs were isolated and analyzed by flow cytometry for surface markers CD29, CD44, CD31, and CD45. Osteogenic differentiation was made in vitro by seeding oADSCs in osteogenic induction medium (OIM) containing fibroblast growth factor basic (FGFb), bone morphogenetic protein 2 (BMP2), or NEL-like molecule 1 (NELL1) in 4 different dosages (1, 10, 50, and 100 ng/ml, respectively). Basic medium (DMEM) was used as control. Analysis was made after 14 days by Alizarin red staining (ARS) and quantification. This study successfully harvested AT from ovine and verified isolated cells for minimal criteria for adipose stromal cells which suggests a feasible method for isolation of oADSCs. OIM showed significantly higher ARS to basic medium, and FGFb 10 ng/ml revealed significantly higher ARS to OIM alone after 14 days.
Collapse
|
80
|
Srzentić Dražilov S, Mrkovački J, Spasovski V, Fazlagić A, Pavlović S, Nikčević G. The use of canine mesenchymal stem cells for the autologous treatment of osteoarthritis. Acta Vet Hung 2018; 66:376-389. [PMID: 30264620 DOI: 10.1556/004.2018.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mesenchymal stem cells (MSCs) hold enormous potential for cell-based therapy in the treatment of various diseases, particularly those which currently cannot be cured and result in poor outcomes or invasive surgery. Here we present results of the application of autologous, culture-expanded, adipose tissue (AT)-derived MSCs for the osteoarthritis (OA) treatment of 10 canine patients. The stemness of isolated cells has been confirmed by their ability to differentiate into osteo- and chondrocytic lineages. The clinical effect of a single injection of ATMSCs into the symptomatic joints was evaluated by a veterinarian for five disabilities characteristic of OA at 30, 60 and 90 days after treatment, which has been designated as the initial evaluation period. Functional outcomes for all analysed characteristics improved significantly at the end of this evaluation compared with the baseline. In addition, for 5 of these 10 patients, an extended follow-up study was performed from 1 to 4 years after the initial evaluation period. We detected long-lasting positive effects on two out of five analysed characteristics. The results demonstrate that the use of autologous AT-MSCs is a successful approach to canine OA therapy.
Collapse
Affiliation(s)
- Sanja Srzentić Dražilov
- 1 Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, P.O. Box 23, 11010 Belgrade, Serbia
| | | | - Vesna Spasovski
- 1 Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, P.O. Box 23, 11010 Belgrade, Serbia
| | - Amira Fazlagić
- 3 National Association for the Improvement and Development of Regenerative Medicine, Belgrade, Serbia
| | - Sonja Pavlović
- 1 Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, P.O. Box 23, 11010 Belgrade, Serbia
| | - Gordana Nikčević
- 1 Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, P.O. Box 23, 11010 Belgrade, Serbia
| |
Collapse
|
81
|
Abstract
Limb salvage is widely practiced as standard of care in most cases of extremity bone sarcoma. Allograft and endoprosthesis reconstructions are the most widely utilized modalities for the reconstruction of large segment defects, however complication rates remain high. Aseptic loosening and infection remain the most common modes of failure. Implant integration, soft-tissue function, and infection prevention are crucial for implant longevity and function. Macro and micro alterations in implant design are reviewed in this manuscript. Tissue engineering principles using nanoparticles, cell-based, and biological augments have been utilized to develop implant coatings that improve osseointegration and decrease infection. Similar techniques have been used to improve the interaction between soft tissues and implants. Tissue engineered constructs (TEC) used in combination with, or in place of, traditional reconstructive techniques may represent the next major advancement in orthopaedic oncology reconstructive science, although preclinical results have yet to achieve durable translation to the bedside.
Collapse
|
82
|
Gjerde C, Mustafa K, Hellem S, Rojewski M, Gjengedal H, Yassin MA, Feng X, Skaale S, Berge T, Rosen A, Shi XQ, Ahmed AB, Gjertsen BT, Schrezenmeier H, Layrolle P. Cell therapy induced regeneration of severely atrophied mandibular bone in a clinical trial. Stem Cell Res Ther 2018; 9:213. [PMID: 30092840 PMCID: PMC6085689 DOI: 10.1186/s13287-018-0951-9] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 07/01/2018] [Accepted: 07/06/2018] [Indexed: 02/07/2023] Open
Abstract
Background Autologous grafting, despite some disadvantages, is still considered the gold standard for reconstruction of maxillofacial bone defects. The aim of this study was to evaluate bone regeneration using bone marrow-derived mesenchymal stromal cells (MSCs) in a clinical trial, a less invasive approach than autologous bone grafting. This comprehensive clinical trial included subjects with severe mandibular ridge resorption. Methods The study included 11 subjects aged 52–79 years with severe mandibular ridge resorption. Bone marrow cells were aspirated from the posterior iliac crest and plastic adherent cells were expanded in culture medium containing human platelet lysate. The MSCs and biphasic calcium phosphate granules as scaffolds were inserted subperiosteally onto the resorbed alveolar ridge. After 4–6 months of healing, new bone formation was assessed clinically and radiographically, as were safety and feasibility. Bone at the implant site was biopsied for micro-computed topography and histological analyses and dental implants were placed in the newly regenerated bone. Functional outcomes and patient satisfaction were assessed after 12 months. Results The bone marrow cells, expanded in vitro and inserted into the defect together with biphasic calcium phosphate granules, induced significant new bone formation. The regenerated bone volume was adequate for dental implant installation. Healing was uneventful, without adverse events. The patients were satisfied with the esthetic and functional outcomes. No side effects were observed. Conclusions The results of this comprehensive clinical trial in human subjects confirm that MSCs can successfully induce significant formation of new bone, with no untoward sequelae. Hence, this novel augmentation procedure warrants further investigation and may form the basis of a valid treatment protocol, challenging the current gold standard. Trial registration EudraCT, 2012-003139-50. Registered on 21 August 2013. ClinicalTrials.gov, NCT 02751125. Registered on 26 April 2016.
Collapse
Affiliation(s)
- Cecilie Gjerde
- Institute of Clinical Dentistry, University of Bergen, Bergen, Norway.
| | - Kamal Mustafa
- Institute of Clinical Dentistry, University of Bergen, Bergen, Norway.
| | - Sølve Hellem
- Institute of Clinical Dentistry, University of Bergen, Bergen, Norway
| | - Markus Rojewski
- Institute of Transfusion Medicine, Ulm University, Ulm, Germany.,Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, Red Cross Blood Service Baden-Württemberg-Hessen and Institute for Transfusion Medicine, University Hospital Ulm, Ulm, Germany
| | - Harald Gjengedal
- Institute of Clinical Dentistry, University of Bergen, Bergen, Norway
| | - Mohammed Ahmed Yassin
- Institute of Clinical Dentistry, University of Bergen, Bergen, Norway.,Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, 10044, Stockholm, Sweden
| | - Xin Feng
- Institute of Clinical Dentistry, University of Bergen, Bergen, Norway
| | - Siren Skaale
- Institute of Clinical Dentistry, University of Bergen, Bergen, Norway
| | - Trond Berge
- Institute of Clinical Dentistry, University of Bergen, Bergen, Norway
| | - Annika Rosen
- Institute of Clinical Dentistry, University of Bergen, Bergen, Norway
| | - Xie-Qi Shi
- Institute of Clinical Dentistry, University of Bergen, Bergen, Norway
| | - Aymen B Ahmed
- Department of Internal Medicine, Hematology Section, Haukeland University Hospital, Bergen, Norway.,Centre for Cancer Biomakers CCBIO, Bergen, Norway.,Department of Clinical Science, Precision Oncology Research Group, University of Bergen, Bergen, Norway
| | - Bjørn Tore Gjertsen
- Department of Internal Medicine, Hematology Section, Haukeland University Hospital, Bergen, Norway.,Centre for Cancer Biomakers CCBIO, Bergen, Norway.,Department of Clinical Science, Precision Oncology Research Group, University of Bergen, Bergen, Norway
| | - Hubert Schrezenmeier
- Institute of Transfusion Medicine, Ulm University, Ulm, Germany.,Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, Red Cross Blood Service Baden-Württemberg-Hessen and Institute for Transfusion Medicine, University Hospital Ulm, Ulm, Germany
| | - Pierre Layrolle
- INSERM, UMR 1238, PHY-OS, Laboratory of Bone Sarcomas and Remodeling of Calcified Tissues, Faculty of Medicine, University of Nantes, Nantes, France
| |
Collapse
|
83
|
Perez JR, Kouroupis D, Li DJ, Best TM, Kaplan L, Correa D. Tissue Engineering and Cell-Based Therapies for Fractures and Bone Defects. Front Bioeng Biotechnol 2018; 6:105. [PMID: 30109228 PMCID: PMC6079270 DOI: 10.3389/fbioe.2018.00105] [Citation(s) in RCA: 207] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 07/09/2018] [Indexed: 12/25/2022] Open
Abstract
Bone fractures and segmental bone defects are a significant source of patient morbidity and place a staggering economic burden on the healthcare system. The annual cost of treating bone defects in the US has been estimated to be $5 billion, while enormous costs are spent on bone grafts for bone injuries, tumors, and other pathologies associated with defective fracture healing. Autologous bone grafts represent the gold standard for the treatment of bone defects. However, they are associated with variable clinical outcomes, postsurgical morbidity, especially at the donor site, and increased surgical costs. In an effort to circumvent these limitations, tissue engineering and cell-based therapies have been proposed as alternatives to induce and promote bone repair. This review focuses on the recent advances in bone tissue engineering (BTE), specifically looking at its role in treating delayed fracture healing (non-unions) and the resulting segmental bone defects. Herein we discuss: (1) the processes of endochondral and intramembranous bone formation; (2) the role of stem cells, looking specifically at mesenchymal (MSC), embryonic (ESC), and induced pluripotent (iPSC) stem cells as viable building blocks to engineer bone implants; (3) the biomaterials used to direct tissue growth, with a focus on ceramic, biodegradable polymers, and composite materials; (4) the growth factors and molecular signals used to induce differentiation of stem cells into the osteoblastic lineage, which ultimately leads to active bone formation; and (5) the mechanical stimulation protocols used to maintain the integrity of the bone repair and their role in successful cell engraftment. Finally, a couple clinical scenarios are presented (non-unions and avascular necrosis—AVN), to illustrate how novel cell-based therapy approaches can be used. A thorough understanding of tissue engineering and cell-based therapies may allow for better incorporation of these potential therapeutic approaches in bone defects allowing for proper bone repair and regeneration.
Collapse
Affiliation(s)
- Jose R Perez
- Department of Orthopedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Dimitrios Kouroupis
- Department of Orthopedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL, United States.,Diabetes Research Institute & Cell Transplant Center, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Deborah J Li
- Department of Orthopedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Thomas M Best
- Department of Orthopedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Lee Kaplan
- Department of Orthopedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Diego Correa
- Department of Orthopedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL, United States.,Diabetes Research Institute & Cell Transplant Center, Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
84
|
Luo Y, Mohsin A, Xu C, Wang Q, Hang H, Zhuang Y, Chu J, Guo M. Co-culture with TM4 cells enhances the proliferation and migration of rat adipose-derived mesenchymal stem cells with high stemness. Cytotechnology 2018; 70:1409-1422. [PMID: 30032334 DOI: 10.1007/s10616-018-0235-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 07/07/2018] [Indexed: 01/16/2023] Open
Abstract
The proliferation and migration of mesenchymal stem cells (MSCs) are the efficiency determinants in MSCs transplant therapy. Sertoli cells considered as "nurse cell" possesses the ability to enhance the proliferation and migration of umbilical cord mesenchymal stem cells (UCMSCs). However, no reports about TM4 cells' effect on the proliferation and migration of adipose tissue-derived mesenchymal stem cells (ADSCs) have been found until at present research work. Therefore, this study investigates the effect of TM4 cells on the proliferation and migration of ADSCs. We found that the performance of proliferation and migration of ADSCs were improved significantly while maintaining their stemness and reducing their apoptosis rate. After co-culturing with TM4 cells, the co-cultured ADSCs demonstrated higher proportion of synthetic phase (S) cells and colony-forming units-fibroblastic (CFU-F) number, lower proportion of sub-G1 phase cells and enhanced osteogenic and adipogenic differentiation ability. Moreover, results confirmed the higher multiple proteins involved in cell proliferation and migration including expression of the phospho-Akt, mdm2, pho-CDC2, cyclin D1 CXCR4, MMP-2, as well as phospho-p44 MAPK and phospho-p38 MAPK in co-cultured ADSCs. Furthermore, the process of TM4 cells promoting the proliferation of ADSCs was significantly inhibited by the administration of the PI3K/AKT inhibitor LY294002. Obtained results indicated that TM4 cells through MAPK/ERK1/2, MAPK/p-38 and PI3K/Akt pathways influence the proliferation and migration of ADSCs. These findings indicated that TM4 cells were found effective in promoting stemness and migration of ADSCs, that proves adopted co-culturing technique as an efficient approach to obtain ADSCs in transplantation therapy.
Collapse
Affiliation(s)
- Yanxia Luo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, China
| | - Ali Mohsin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, China
| | - Chenze Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, China
| | - Qizheng Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, China
| | - Haifeng Hang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, China. .,Engineering Research Centre of Processes System, Ministry of Education, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, China.
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, China.,Engineering Research Centre of Processes System, Ministry of Education, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, China
| | - Ju Chu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, China
| | - Meijin Guo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, China. .,Engineering Research Centre of Processes System, Ministry of Education, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, China.
| |
Collapse
|
85
|
Stem Cells in Dentistry: Types of Intra- and Extraoral Tissue-Derived Stem Cells and Clinical Applications. Stem Cells Int 2018; 2018:4313610. [PMID: 30057624 PMCID: PMC6051054 DOI: 10.1155/2018/4313610] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/05/2018] [Accepted: 06/07/2018] [Indexed: 12/13/2022] Open
Abstract
Stem cells are undifferentiated cells, capable of renewing themselves, with the capacity to produce different cell types to regenerate missing tissues and treat diseases. Oral facial tissues have been identified as a source and therapeutic target for stem cells with clinical interest in dentistry. This narrative review report targets on the several extraoral- and intraoral-derived stem cells that can be applied in dentistry. In addition, stem cell origins are suggested in what concerns their ability to differentiate as well as their particular distinguishing quality of convenience and immunomodulatory for regenerative dentistry. The development of bioengineered teeth to replace the patient's missing teeth was also possible because of stem cell technologies. This review will also focus our attention on the clinical application of stem cells in dentistry. In recent years, a variety of articles reported the advantages of stem cell-based procedures in regenerative treatments. The regeneration of lost oral tissue is the target of stem cell research. Owing to the fact that bone imperfections that ensue after tooth loss can result in further bone loss which limit the success of dental implants and prosthodontic therapies, the rehabilitation of alveolar ridge height is prosthodontists' principal interest. The development of bioengineered teeth to replace the patient's missing teeth was also possible because of stem cell technologies. In addition, a “dental stem cell banking” is available for regenerative treatments in the future. The main features of stem cells in the future of dentistry should be understood by clinicians.
Collapse
|
86
|
Shaik S, Wu X, Gimble J, Devireddy R. Effects of Decade Long Freezing Storage on Adipose Derived Stem Cells Functionality. Sci Rep 2018; 8:8162. [PMID: 29802353 PMCID: PMC5970158 DOI: 10.1038/s41598-018-26546-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 05/10/2018] [Indexed: 12/21/2022] Open
Abstract
Over the last decade and half, the optimization of cryopreservation for adipose tissue derived stromal/stem cells (ASCs) especially in determining the optimal combination of cryoprotectant type, cooling rate, and thawing rate have been extensively studied. In this study, we examined the functionality of ASCs that have been frozen-stored for more than 10 years denoted as long-term freezing, frozen within the last 3 to 7 years denoted as short-term freezing and compared their response with fresh ASCs. The mean post-thaw viability for long-term frozen group was 78% whereas for short-term frozen group 79% with no significant differences between the two groups. The flow cytometry evaluation of stromal surface markers, CD29, CD90, CD105, CD44, and CD73 indicated the expression (above 95%) in passages P1-P4 in all of the frozen-thawed ASC groups and fresh ASCs whereas the hematopoietic markers CD31, CD34, CD45, and CD146 were expressed extremely low (below 2%) within both the frozen-thawed and fresh cell groups. Quantitative real time polymerase chain reaction (qPCR) analysis revealed some differences between the osteogenic gene expression of long-term frozen group in comparison to fresh ASCs. Intriguingly, one group of cells from the short-term frozen group exhibited remarkably higher expression of osteogenic genes in comparison to fresh ASCs. The adipogenic differentiation potential remained virtually unchanged between all of the frozen-thawed groups and the fresh ASCs. Long-term cryopreservation of ASCs, in general, has a somewhat negative impact on the osteogenic potential of ASCs, especially as it relates to the decrease in osteopontin gene expression but not significantly so with respect to RUNX2 and osteonectin gene expressions. However, the adipogenic potential, post thaw viability, and immunophenotype characteristics remain relatively intact between all the groups.
Collapse
Affiliation(s)
- Shahensha Shaik
- Bioengineering Laboratory, Department of Mechanical Engineering, Louisiana State University, Baton Rouge, LA, USA
| | - Xiying Wu
- La Cell LLC, Tulane University School of Medicine, New Orleans, LA, USA
| | - Jeffrey Gimble
- La Cell LLC, Tulane University School of Medicine, New Orleans, LA, USA
- Center for Stem Cell Research & Regenerative Medicine and Departments of Medicine, Structural & Cellular Biology, and Surgery, Tulane University School of Medicine, New Orleans, LA, USA
| | - Ram Devireddy
- Bioengineering Laboratory, Department of Mechanical Engineering, Louisiana State University, Baton Rouge, LA, USA.
| |
Collapse
|
87
|
Gebraad A, Kornilov R, Kaur S, Miettinen S, Haimi S, Peltoniemi H, Mannerström B, Seppänen-Kaijansinkko R. Monocyte-derived extracellular vesicles stimulate cytokine secretion and gene expression of matrix metalloproteinases by mesenchymal stem/stromal cells. FEBS J 2018; 285:2337-2359. [PMID: 29732732 DOI: 10.1111/febs.14485] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 03/30/2018] [Accepted: 04/20/2018] [Indexed: 12/11/2022]
Abstract
Intercellular communication is essential in bone remodelling to ensure that new bone is formed with only temporary bone loss. Monocytes (MCs) and osteoclasts actively take part in controlling bone remodelling by providing signals that promote osteogenic differentiation of mesenchymal stem/stromal cells (MSCs). Extracellular vesicles (EVs) have attracted attention as regulators of bone remodelling. EVs facilitate intercellular communication by transferring a complex cargo of biologically active molecules to target cells. In the present study, we evaluated the potency of EVs from MCs and osteoclasts to induce a lineage-specific response in MSCs. We analysed gene expression and protein secretion by both adipose tissue-derived MSCs and bone marrow-derived MSCs after stimulation with EVs from lipopolysaccharide-activated primary human MCs and (mineral-resorbing) osteoclasts. Isolated EVs were enriched in exosomes (EVs of endosomal origin) and were free of cell debris. MC- and osteoclast-derived EVs were taken up by adipose tissue-derived MSCs. EVs from activated MCs promoted the secretion of cytokines by MSCs, which may represent an immunomodulatory mechanism. MC-derived EVs also upregulated the expression of genes encoding for matrix metalloproteinases. Therefore, we hypothesize that MCs facilitate tissue remodelling through EV-mediated signalling. We did not observe a significant effect of osteoclast-derived EVs on gene expression or protein secretion in MSCs. EV-mediated signalling might represent an additional mode of cell-cell signalling during the transition from injury and inflammation to bone regeneration and play an important role in the coupling between bone resorption and bone formation. DATABASE Gene expression data are available in the GEO database under the accession number GSE102401.
Collapse
Affiliation(s)
- Arjen Gebraad
- Department of Oral and Maxillofacial Diseases, Helsinki University Hospital, University of Helsinki, Finland
| | - Roman Kornilov
- Department of Oral and Maxillofacial Diseases, Helsinki University Hospital, University of Helsinki, Finland
| | - Sippy Kaur
- Department of Oral and Maxillofacial Diseases, Helsinki University Hospital, University of Helsinki, Finland
| | - Susanna Miettinen
- Adult Stem Cell Group, BioMediTech Institute, Faculty of Medicine and Life Sciences, University of Tampere, Finland.,Science Center, Tampere University Hospital, Finland
| | - Suvi Haimi
- Department of Oral and Maxillofacial Diseases, Helsinki University Hospital, University of Helsinki, Finland
| | | | - Bettina Mannerström
- Department of Oral and Maxillofacial Diseases, Helsinki University Hospital, University of Helsinki, Finland
| | | |
Collapse
|
88
|
Stem Cells for Osteochondral Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1059:219-240. [DOI: 10.1007/978-3-319-76735-2_10] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
89
|
Bougioukli S, Sugiyama O, Pannell W, Ortega B, Tan MH, Tang AH, Yoho R, Oakes DA, Lieberman JR. Gene Therapy for Bone Repair Using Human Cells: Superior Osteogenic Potential of Bone Morphogenetic Protein 2-Transduced Mesenchymal Stem Cells Derived from Adipose Tissue Compared to Bone Marrow. Hum Gene Ther 2018; 29:507-519. [PMID: 29212377 DOI: 10.1089/hum.2017.097] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Ex vivo regional gene therapy strategies using animal mesenchymal stem cells genetically modified to overexpress osteoinductive growth factors have been successfully used in a variety of animal models to induce both heterotopic and orthotopic bone formation. However, in order to adapt regional gene therapy for clinical applications, it is essential to assess the osteogenic capacity of transduced human cells and choose the cell type that demonstrates the best clinical potential. Bone-marrow stem cells (BMSC) and adipose-derived stem cells (ASC) were selected in this study for in vitro evaluation, before and after transduction with a lentiviral two-step transcriptional amplification system (TSTA) overexpressing bone morphogenetic protein 2 (BMP-2; LV-TSTA-BMP-2) or green fluorescent protein (GFP; LV-TSTA-GFP). Cell growth, transduction efficiency, BMP-2 production, and osteogenic capacity were assessed. The study demonstrated that BMSC were characterized by a slower cell growth compared to ASC. Fluorescence-activated cell sorting analysis of GFP-transduced cells confirmed successful transduction with the vector and revealed an overall higher but not statistically significant transduction efficiency in ASC versus BMSC (90.2 ± 4.06% vs. 80.4 ± 8.51%, respectively; p = 0.146). Enzyme-linked immunosorbent assay confirmed abundant BMP-2 production by both cell types transduced with LV-TSTA-BMP-2, with BMP-2 production being significantly higher in ASC versus BMSC (239.5 ± 116.55 ng vs. 70.86 ± 24.7 ng; p = 0.001). Quantitative analysis of extracellular deposition of calcium (Alizarin red) and alkaline phosphatase activity showed that BMP-2-transduced cells had a higher osteogenic differentiation capacity compared to non-transduced cells. When comparing the two cell types, ASC/LV-TSTA-BMP-2 demonstrated a significantly higher mineralization potential compared to BMSC/LV-TSTA-BMP-2 7 days post transduction (p = 0.014). In conclusion, this study demonstrates that transduction with LV-TSTA-BMP-2 can significantly enhance the osteogenic potential of both human BMSC and ASC. BMP-2-treated ASC exhibited higher BMP-2 production and greater osteogenic differentiation capacity compared to BMP-2-treated BMSC. These results, along with the fact that liposuction is an easy procedure with lower donor-site morbidity compared to BM aspiration, indicate that adipose tissue might be a preferable source of MSCs to develop a regional gene therapy approach to treat difficult bone-repair scenarios.
Collapse
Affiliation(s)
- Sofia Bougioukli
- 1 Department of Orthopedic Surgery, Keck School of Medicine, University of Southern California , Los Angeles, California
| | - Osamu Sugiyama
- 1 Department of Orthopedic Surgery, Keck School of Medicine, University of Southern California , Los Angeles, California
| | - William Pannell
- 1 Department of Orthopedic Surgery, Keck School of Medicine, University of Southern California , Los Angeles, California
| | - Brandon Ortega
- 1 Department of Orthopedic Surgery, Keck School of Medicine, University of Southern California , Los Angeles, California
| | - Matthew H Tan
- 1 Department of Orthopedic Surgery, Keck School of Medicine, University of Southern California , Los Angeles, California
| | - Amy H Tang
- 1 Department of Orthopedic Surgery, Keck School of Medicine, University of Southern California , Los Angeles, California
| | - Robert Yoho
- 2 Cosmetic Surgery Practice , Pasadena, California
| | - Daniel A Oakes
- 1 Department of Orthopedic Surgery, Keck School of Medicine, University of Southern California , Los Angeles, California
| | - Jay R Lieberman
- 1 Department of Orthopedic Surgery, Keck School of Medicine, University of Southern California , Los Angeles, California
| |
Collapse
|
90
|
Abstract
Abstract
Wound healing is a complex restorative process of the altered cutaneous tissue, which is impaired by numerous local and systemic factors, leading to chronic non-healing lesions with few efficient therapeutic options. Stem cells possess the capacity to differentiate into various types of cell lines. Furthermore, stem cells are able to secrete cytokines and growth factors, modulating inflammation and ultimately leading to angiogenesis, fibrogenesis, and epithelization. Because of their paracrine activity, these cells are able to attract other cell types to the base of the wound, improving the formation of new skin layers. Mesenchymal stem cells derived from the adipose tissue, bone marrow, and placenta, offer numerous ways of implementation. The process of harvesting, growing, and administrating stem cells depends on the site and type of the cells, but recent trial results showed improvement of wound healing independent of the administration site. Bioengineered skin substitutes are validated for treatment of chronic wounds with direct application on the skin surface. These offer physical scaffolding for the migrating cells and promote secretion of growth factors, thus facilitating rapid wound healing. Obtaining further clinical data is essential, but stem cell therapy may become a first-line therapeutic choice for the treatment of non-healing chronic wounds.
Collapse
|
91
|
Abstract
Craniofacial surgery, since its inauguration, has been the culmination of collaborative efforts to solve complex congenital, dysplastic, oncological, and traumatic cranial bone defects. Now, 50 years on from the first craniofacial meeting, the collaborative efforts between surgeons, scientists, and bioengineers are further advancing craniofacial surgery with new discoveries in tissue regeneration. Recent advances in regenerative medicine and stem cell biology have transformed the authors' understanding of bone healing, the role of stem cells governing bone healing, and the effects of the niche environment and extracellular matrix on stem cell fate. This review aims at summarizing the advances within each of these fields.
Collapse
|
92
|
The Use of Vibrational Energy to Isolate Adipose-Derived Stem Cells. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2018; 6:e1620. [PMID: 29464159 PMCID: PMC5811289 DOI: 10.1097/gox.0000000000001620] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 11/08/2017] [Indexed: 12/22/2022]
Abstract
Background: Adipose-derived stem cell (ADSC)–based treatments have the potential to treat numerous soft-tissue pathologies. It would be beneficial to develop an efficient and reliable intraoperative, nonenzymatic method of isolating ADSCs for clinical use. This study aims to determine the (1) viability and proliferative capacity of ADSCs after exposure to vibrational energies and (2) efficacy of vibrational energy as a method of ADSC isolation from surgically harvested infrapatellar fat pad (IFP). Methods: Cultured ADSCs were exposed to 15 minutes of vibration (60 Hz) with displacements ranging from 0 to 2.5 mm to assess cell viability and proliferation. Then, arthroscopically harvested adipose tissue (IFP; n = 5 patients) was filtered and centrifuged to separate the stromal vascular fraction, which was exposed to 15 minutes of vibration (60 Hz; 1.3 mm or 2.5 mm displacement). A viability analysis was then performed along with proliferation and apoptosis assays. Results: Vibration treatment at all displacements had no effect on the viability or proliferation of the cultured ADSCs compared with controls. There was an increased apoptosis rate between the 2.5 mm displacement group (7.53%) and controls (5.17%; P < 0.05) at day 1, but no difference at days 2, 3, and 14. ADSCs were not isolated from the IFP tissue after vibration treatment. Conclusions: ADSCs maintained viability and proliferative capacity after 15 minutes of vibration at 60 Hz and 2.5 mm displacement. ADSCs were not isolated harvested IFP tissue after the application of vibrational energy.
Collapse
|
93
|
Wolff P, Heimann L, Liebsch G, Meier RJ, Gutbrod M, van Griensven M, Balmayor ER. Oxygen-distribution within 3-D collagen I hydrogels for bone tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 95:422-427. [PMID: 30573266 DOI: 10.1016/j.msec.2018.02.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 01/23/2018] [Accepted: 02/20/2018] [Indexed: 01/20/2023]
Abstract
Tissue engineering (TE) approaches typically envisage the structural and functional reconstitution of previously damaged tissue in situ. An adequate three-dimensional environment is therefore of fundamental importance for the designated cells associated to the scaffold material. The sufficient supply with nutrients and oxygen in vitro and in vivo mark thereby critical challenges of TE. In this study, we intended to analyse the level of locally dissolved oxygen within 3-D cell-loaded collagen I gels in vitro. For the analysis of the oxygen levels in situ, we employed an optical fibre-based micro sensor setup, as well as a camera supported non-invasive optical sensor foil based technique. These complementary analytical tools enable the identification, localization, and temporal follow-up investigation of specified regions of interest within TE constructs. Human adipose-derived mesenchymal stem cells (hAdMSCs) cultured in collagen I gels under normoxic conditions were analysed periodically and kinetically up to 70 days - thereby revealing dynamic changes of the level of dissolved oxygen inside the gel constructs. Dependent on the applied cell concentration, the in vitro oxygen concentration (cO2) within the gels reached physiological ranges (7-9%) after 21 days, or 35 days of culture. The minimal cO2 was measured after 35 days in vitro, featuring an oxygen level of 4.8 ± 1.3%. Upon prolonged culture, a plateau-like status of the cO2 around 8-9% established, indicating a change in the physiological activity of the cells under investigation. The expression patterns of BCL2, CASP3 and MCM5 revealed significant differences among the proliferative and apoptotic stages of the cell-loaded samples at the investigated time points of 7 and 70 days in culture. In summary, these data show the temporary dynamic nature of the oxygen distribution in cell-loaded gel constructs. The applied technique is an ideal tool for the evaluation of multiple parameters affecting the oxygen distribution in vitro. We conclude that it takes 5 weeks for establishing an equilibrium of cO2. Levels reached in a 3-D gel construct are comparable with physiological oxygenation ranges in bone-associated tissues.
Collapse
Affiliation(s)
- Paul Wolff
- Experimental Trauma Surgery, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany.
| | - Laura Heimann
- Experimental Trauma Surgery, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | | | | | | | - Martijn van Griensven
- Experimental Trauma Surgery, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Elizabeth R Balmayor
- Experimental Trauma Surgery, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| |
Collapse
|
94
|
Abstract
The craniofacial complex is composed of fundamental components such as blood vessels and nerves, and also a variety of specialized tissues such as craniofacial bones, cartilages, muscles, ligaments, and the highly specialized and unique organs, the teeth. Together, these structures provide many functions including speech, mastication, and aesthetics of the craniofacial complex. Craniofacial defects not only influence the structure and function of the jaws and face, but may also result in deleterious psychosocial issues, emphasizing the need for rapid and effective, precise, and aesthetic reconstruction of craniofacial tissues. In a broad sense, craniofacial tissue reconstructions share many of the same issues as noncraniofacial tissue reconstructions. Therefore, many concepts and therapies for general tissue engineering can and have been used for craniofacial tissue regeneration. Still, repair of craniofacial defects presents unique challenges, mainly because of their complex and unique 3D geometry.
Collapse
Affiliation(s)
- Weibo Zhang
- Department of Orthodontics, School of Medicine, School of Engineering, Tufts University, Boston, Massachusetts 02111
| | - Pamela Crotty Yelick
- Department of Orthodontics, School of Medicine, School of Engineering, Tufts University, Boston, Massachusetts 02111
| |
Collapse
|
95
|
Mesenchymal stem cells from human adipose tissue and bone repair: a literature review. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.biori.2017.10.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
96
|
Prefabrication of a functional bone graft with a pedicled periosteal flap as an in vivo bioreactor. Sci Rep 2017; 7:18038. [PMID: 29269864 PMCID: PMC5740121 DOI: 10.1038/s41598-017-17452-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 11/26/2017] [Indexed: 01/07/2023] Open
Abstract
The in vivo bioreactor principle, which focuses on using the body as a living bioreactor to cultivate stem cells, bioscaffolds, and growth factors and leveraging the body’s self-regenerative capacity to regenerate new tissue, has been considered a potential approach for bone defect reconstruction. The histological characteristics of the periosteum allow it to possess a remarkable capacity to induce bone growth and remodeling, making it suitable as an in vivo bioreactor strategy for bone graft prefabrication. The present study was designed to prefabricate vascularized bone grafts using pedicled periosteal flaps and decellularized bone matrix (DBM) scaffolds in a rabbit model. The muscular pouches created in the femoral muscle were acted as a control. Our histological results revealed that both the periosteal flap group and muscular pouch group induced bone tissue formation on the DBM surface at both 8 and 16 weeks postoperatively. However, micro-computed tomography (microCT) scanning, biomechanical, and histomorphometric findings indicated that bone grafts from the periosteal flap group showed larger bone mass, faster bone formation rates, higher vascular density, and stronger biomechanical properties than in the muscular pouch group. We suggest that using the pedicled periosteal flap as an in vivo bioreactor is a promising approach for functional bone graft prefabrication.
Collapse
|
97
|
Brennan MA, Renaud A, Guilloton F, Mebarki M, Trichet V, Sensebé L, Deschaseaux F, Chevallier N, Layrolle P. Inferior In Vivo Osteogenesis and Superior Angiogenesis of Human Adipose‐Derived Stem Cells Compared with Bone Marrow‐Derived Stem Cells Cultured in Xeno‐Free Conditions. Stem Cells Transl Med 2017; 6:2160-2172. [PMID: 29052365 PMCID: PMC5702520 DOI: 10.1002/sctm.17-0133] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/17/2017] [Indexed: 12/24/2022] Open
Abstract
The possibility of using adipose tissue-derived stromal cells (ATSC) as alternatives to bone marrow-derived stromal cells (BMSC) for bone repair has garnered interest due to the accessibility, high cell yield, and rapid in vitro expansion of ATSC. For clinical relevance, their bone forming potential in comparison to BMSC must be proven. Distinct differences between ATSC and BMSC have been observed in vitro and comparison of osteogenic potential in vivo is not clear to date. The aim of the current study was to compare the osteogenesis of human xenofree-expanded ATSC and BMSC in vitro and in an ectopic nude mouse model of bone formation. Human MSC were implanted with biphasic calcium phosphate biomaterials in subcutis pockets for 8 weeks. Implant groups were: BMSC, ATSC, BMSC and ATSC mixed together in different ratios, as well as MSC primed with either osteogenic supplements (250 μM ascorbic acid, 10 mM β-glycerolphosphate, and 10 nM dexamethasone) or 50 ng/ml recombinant bone morphogenetic protein 4 prior to implantation. In vitro results show osteogenic gene expression and differentiation potentials of ATSC. Despite this, ATSC failed to form ectopic bone in vivo, in stark contrast to BMSC, although osteogenic priming did impart minor osteogenesis to ATSC. Neovascularization was enhanced by ATSC compared with BMSC; however, less ATSC engrafted into the implant compared with BMSC. Therefore, in the content of bone regeneration, the advantages of ATSC over BMSC including enhanced angiogenesis, may be negated by their lack of osteogenesis and prerequisite for osteogenic differentiation prior to transplantation. Stem Cells Translational Medicine 2017;6:2160-2172.
Collapse
Affiliation(s)
- Meadhbh A. Brennan
- INSERM, UMR 1238, PHYOS, Laboratory of Bone Sarcomas and Remodelling of Calcified Tissues, Faculty of Medicine, University of NantesNantesFrance
| | - Audrey Renaud
- INSERM, UMR 1238, PHYOS, Laboratory of Bone Sarcomas and Remodelling of Calcified Tissues, Faculty of Medicine, University of NantesNantesFrance
| | - Fabien Guilloton
- STROMA Lab UMR UPS/CNRS 5273, U1031 INSERM, EFS‐Pyrénées‐MéditerranéeToulouseFrance
| | - Miryam Mebarki
- INSERM, IMRB U955‐E10, Engineering and Cellular Therapy Unit, Etablissement Français du Sang, Faculty of Medicine, Paris Est UniversityCréteilFrance
| | - Valerie Trichet
- INSERM, UMR 1238, PHYOS, Laboratory of Bone Sarcomas and Remodelling of Calcified Tissues, Faculty of Medicine, University of NantesNantesFrance
| | - Luc Sensebé
- STROMA Lab UMR UPS/CNRS 5273, U1031 INSERM, EFS‐Pyrénées‐MéditerranéeToulouseFrance
| | - Frederic Deschaseaux
- STROMA Lab UMR UPS/CNRS 5273, U1031 INSERM, EFS‐Pyrénées‐MéditerranéeToulouseFrance
| | - Nathalie Chevallier
- INSERM, IMRB U955‐E10, Engineering and Cellular Therapy Unit, Etablissement Français du Sang, Faculty of Medicine, Paris Est UniversityCréteilFrance
| | - Pierre Layrolle
- INSERM, UMR 1238, PHYOS, Laboratory of Bone Sarcomas and Remodelling of Calcified Tissues, Faculty of Medicine, University of NantesNantesFrance
| |
Collapse
|
98
|
Zarei F, Negahdari B. Recent progresses in plastic surgery using adipose-derived stem cells, biomaterials and growth factors. J Microencapsul 2017; 34:699-706. [DOI: 10.1080/02652048.2017.1370027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Farshad Zarei
- Department of Surgery, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Babak Negahdari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran, Iran
| |
Collapse
|
99
|
Abstract
Adipose-derived stem/stromal cells (ASCs), together with adipocytes, vascular endothelial cells, and vascular smooth muscle cells, are contained in fat tissue. ASCs, like the human bone marrow stromal/stem cells (BMSCs), can differentiate into several lineages (adipose cells, fibroblast, chondrocytes, osteoblasts, neuronal cells, endothelial cells, myocytes, and cardiomyocytes). They have also been shown to be immunoprivileged, and genetically stable in long-term cultures. Nevertheless, unlike the BMSCs, ASCs can be easily harvested in large amounts with minimal invasive procedures. The combination of these properties suggests that these cells may be a useful tool in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Simone Ciuffi
- Department of Surgery and Translational Medicine, University of Florence, Florence, Italy
| | - Roberto Zonefrati
- Department of Surgery and Translational Medicine, University of Florence, Florence, Italy
| | - Maria Luisa Brandi
- Department of Surgery and Translational Medicine, University of Florence, Florence, Italy
| |
Collapse
|
100
|
Simonacci F, Bertozzi N, Raposio E. Off-label use of adipose-derived stem cells. Ann Med Surg (Lond) 2017; 24:44-51. [PMID: 29123656 PMCID: PMC5671395 DOI: 10.1016/j.amsu.2017.10.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 10/20/2017] [Accepted: 10/22/2017] [Indexed: 02/07/2023] Open
Abstract
Background Adipose-derived stem cells (ASCs) have a broad range of clinical applications. The ease of cell harvest and high yield with minimal donor-site morbidity makes adipose tissue an ideal source of stem cells. Further, the multi-lineage potential of these cells present significant opportunities within the field of tissue engineering, with studies successfully demonstrating their ability to produce a range of tissue types. Materials and methods Literature review of publications on the use of ASCs, in the context of current European and US regulations. Results According to European and US regulations, many clinical trials reported in literature to date could be considered off-label. Conclusion In Europe, clinical trials involving cultured ASCs and/or the use of collagenase, which causes changes in the structural and functional properties of stem cells, and/or ASCs application in non-homologous tissue, should be considered off-label. ASCs should be non-cultured, isolated mechanically, and used only in the subcutaneous tissue. Adipose-derived stem cells hold enormous potential in different fields of regenerative medicine and stem cell therapy. According to European and US regulations, many clinical trials reported in literature could be considered off-label. In Europe, ASCs should be non-cultured, isolated mechanically, and used only in the subcutaneous tissue.
Collapse
Affiliation(s)
- Francesco Simonacci
- Department of Medicine and Surgery, Plastic Surgery Division, University of Parma, Parma, Italy
- The Cutaneous, Mininvasive, Regenerative and Plastic Surgery Unit, Parma University Hospital, Parma, Italy
- Corresponding author. Department of Medicine and Surgery, Plastic Surgery Division, Cutaneous, Regenerative, Mininvasive and Plastic Surgery Unit, Parma University and Maggiore Hospital, Via Gramsci 14, 43126 Parma, Italy.Department of Medicine and SurgeryPlastic Surgery DivisionCutaneous, Regenerative, Mininvasive and Plastic Surgery UnitParma University and Maggiore HospitalVia Gramsci 14Parma43126Italy
| | - Nicolò Bertozzi
- Department of Medicine and Surgery, Plastic Surgery Division, University of Parma, Parma, Italy
- The Cutaneous, Mininvasive, Regenerative and Plastic Surgery Unit, Parma University Hospital, Parma, Italy
| | - Edoardo Raposio
- Department of Medicine and Surgery, Plastic Surgery Division, University of Parma, Parma, Italy
- The Cutaneous, Mininvasive, Regenerative and Plastic Surgery Unit, Parma University Hospital, Parma, Italy
| |
Collapse
|