Lu T, Galijasevic S, Abdulhamid I, Abu-Soud HM. Analysis of the mechanism by which melatonin inhibits human eosinophil peroxidase.
Br J Pharmacol 2008;
154:1308-17. [PMID:
18516076 PMCID:
PMC2483384 DOI:
10.1038/bjp.2008.173]
[Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Revised: 02/20/2008] [Accepted: 03/19/2008] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND AND PURPOSE
Eosinophil peroxidase (EPO) catalyses the formation of oxidants implicated in the pathogenesis of various respiratory diseases including allergy and asthma. Mechanisms for inhibiting EPO, once released, are poorly understood. The aim of this work is to determine the mechanisms by which melatonin, a hormone produced in the brain by the pineal gland, inhibits the catalytic activity of EPO.
EXPERIMENTAL APPROACH
We utilized H2O2-selective electrode and direct rapid kinetic measurements to determine the pathways by which melatonin inhibits human EPO.
KEY RESULTS
In the presence of plasma levels of bromide (Br-), melatonin inactivates EPO at two different points in the classic peroxidase cycle. First, it binds to EPO and forms an inactive complex, melatonin-EPO-Br, which restricts access of H2O2 to the catalytic site of the oxidation enzyme. Second, melatonin competes with Br- and switches the reaction from a two electron (2e-) to a one electron (1e-) pathway allowing the enzyme to function with catalase-like activity. Melatonin is a bulky molecule and binds to the entrance of the EPO haem pocket (regulatory sites). Furthermore, Br- seems to enhance the affinity of this binding. In the absence of Br-, melatonin accelerated formation of EPO Compound II and its decay by serving as a 1e- substrate for EPO Compounds I and II.
CONCLUSIONS AND IMPLICATIONS
The interplay between EPO and melatonin may have a broader implication in the function of several biological systems. This dual regulation by melatonin is unique and represents a new mechanism for melatonin to control EPO and its downstream inflammatory pathways.
Collapse