51
|
Functional variation at an expressed MHC class IIβ locus associates with Ranavirus infection intensity in larval anuran populations. Immunogenetics 2019; 71:335-346. [PMID: 30761419 DOI: 10.1007/s00251-019-01104-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 01/07/2019] [Indexed: 12/31/2022]
Abstract
Infectious diseases are causing catastrophic losses to global biodiversity. Iridoviruses in the genus Ranavirus are among the leading causes of amphibian disease-related mortality. Polymorphisms in major histocompatibility complex (MHC) genes are significantly associated with variation in amphibian pathogen susceptibility. MHC genes encode two classes of polymorphic cell-surface molecules that can recognize and bind to diverse pathogen peptides. While MHC class I genes are the classic mediators of viral-acquired immunity, larval amphibians do not express them. Consequently, MHC class II gene diversity may be an important predictor of Ranavirus susceptibility in larval amphibians, the life stage most susceptible to Ranavirus. We surveyed natural populations of larval wood frogs (Rana sylvatica), which are highly susceptible to Ranavirus, across 17 ponds and 2 years in Maryland, USA. We sequenced the peptide-binding region of an expressed MHC class IIβ locus and assessed allelic and genetic diversity. We converted alleles to functional supertypes and determined if supertypes or alleles influenced host responses to Ranavirus. Among 381 sampled individuals, 26% were infected with Ranavirus. We recovered 20 unique MHC class IIβ alleles that fell into two deeply diverged clades and seven supertypes. MHC genotypes were associated with Ranavirus infection intensity, but not prevalence. Specifically, MHC heterozygotes and supertype ST1/ST7 had significantly lower Ranavirus infection intensity compared to homozygotes and other supertypes. We conclude that MHC class IIβ functional genetic variation is an important component of Ranavirus susceptibility. Identifying immunogenetic signatures linked to variation in disease susceptibility can inform mitigation strategies for combatting global amphibian declines.
Collapse
|
52
|
Manczinger M, Boross G, Kemény L, Müller V, Lenz TL, Papp B, Pál C. Pathogen diversity drives the evolution of generalist MHC-II alleles in human populations. PLoS Biol 2019; 17:e3000131. [PMID: 30703088 PMCID: PMC6372212 DOI: 10.1371/journal.pbio.3000131] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 02/12/2019] [Accepted: 01/15/2019] [Indexed: 02/03/2023] Open
Abstract
Central players of the adaptive immune system are the groups of proteins encoded in the major histocompatibility complex (MHC), which shape the immune response against pathogens and tolerance to self-peptides. The corresponding genomic region is of particular interest, as it harbors more disease associations than any other region in the human genome, including associations with infectious diseases, autoimmune disorders, cancers, and neuropsychiatric diseases. Certain MHC molecules can bind to a much wider range of epitopes than others, but the functional implication of such an elevated epitope-binding repertoire has remained largely unclear. It has been suggested that by recognizing more peptide segments, such promiscuous MHC molecules promote immune response against a broader range of pathogens. If so, the geographical distribution of MHC promiscuity level should be shaped by pathogen diversity. Three lines of evidence support the hypothesis. First, we found that in pathogen-rich geographical regions, humans are more likely to carry highly promiscuous MHC class II DRB1 alleles. Second, the switch between specialist and generalist antigen presentation has occurred repeatedly and in a rapid manner during human evolution. Third, molecular positions that define promiscuity level of MHC class II molecules are especially diverse and are under positive selection in human populations. Taken together, our work indicates that pathogen load maintains generalist adaptive immune recognition, with implications for medical genetics and epidemiology. Whereas specialist major histocompatibility complex (MHC) molecules initiate immune response against only relatively few pathogens, generalists provide protection against a broad range. Accordingly, this study shows that the geographical distribution of generalist MHC alleles in human populations reflects exposure to diverse infectious diseases. Variation in the human genome influences our susceptibility to infectious diseases, but the causal link between disease and underlying mutation often remains enigmatic. Major histocompatibility complex II (MHC class II) molecules shape both our immune response against pathogens and our tolerance of self-peptides. The genomic region that encodes MHC molecules is of particular interest, as it is home to more genetic disease associations than any other region in the human genome, including associations with infectious diseases, autoimmune disorders, cancers, and neuropsychiatric diseases. Here, we propose that MHC class II molecules can be categorized into two major types; specialists initiate effective immune response against only relatively few pathogens, while generalists provide protection against a broad range of pathogens. As support, we demonstrate that generalist MHC class II variants are more prevalent in human populations residing in pathogen-rich areas.
Collapse
Affiliation(s)
- Máté Manczinger
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
- MTA-SZTE Dermatological Research Group, University of Szeged, Szeged, Hungary
| | - Gábor Boross
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Lajos Kemény
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
- MTA-SZTE Dermatological Research Group, University of Szeged, Szeged, Hungary
| | - Viktor Müller
- Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Tobias L. Lenz
- Research Group for Evolutionary Immunogenomics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Balázs Papp
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
- * E-mail: (CP); (BP)
| | - Csaba Pál
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
- * E-mail: (CP); (BP)
| |
Collapse
|
53
|
Petersdorf EW, O'hUigin C. The MHC in the era of next-generation sequencing: Implications for bridging structure with function. Hum Immunol 2019; 80:67-78. [PMID: 30321633 PMCID: PMC6542361 DOI: 10.1016/j.humimm.2018.10.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/24/2018] [Accepted: 10/01/2018] [Indexed: 12/19/2022]
Abstract
The MHC continues to have the most disease-associations compared to other regions of the human genome, even in the genome-wide association study (GWAS) and single nucleotide polymorphism (SNP) era. Analysis of non-coding variation and their impact on the level of expression of HLA allotypes has shed new light on the potential mechanisms underlying HLA disease associations and alloreactivity in transplantation. Next-generation sequencing (NGS) technology has the capability of delineating the phase of variants in the HLA antigen-recognition site (ARS) with non-coding regulatory polymorphisms. These relationships are critical for understanding the qualitative and quantitative implications of HLA gene diversity. This article summarizes current understanding of non-coding region variation of HLA loci, the consequences of regulatory variation on HLA expression, the role for evolution in shaping lineage-specific expression, and the impact of HLA expression on disease susceptibility and transplantation outcomes. A role for phased sequencing methods for the MHC, and perspectives for future directions in basic and applied immunogenetic studies of the MHC are presented.
Collapse
Affiliation(s)
- Effie W Petersdorf
- University of Washington, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, D4-115, Seattle, WA 98109, United States.
| | - Colm O'hUigin
- Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Microbiome and Genetics Core, Building 37, Room 4140B, Bethesda, MD 20852, United States.
| |
Collapse
|
54
|
Wagner I, Schefzyk D, Pruschke J, Schöfl G, Schöne B, Gruber N, Lang K, Hofmann J, Gnahm C, Heyn B, Marin WM, Dandekar R, Hollenbach JA, Schetelig J, Pingel J, Norman PJ, Sauter J, Schmidt AH, Lange V. Allele-Level KIR Genotyping of More Than a Million Samples: Workflow, Algorithm, and Observations. Front Immunol 2018; 9:2843. [PMID: 30564239 PMCID: PMC6288436 DOI: 10.3389/fimmu.2018.02843] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 11/19/2018] [Indexed: 11/13/2022] Open
Abstract
The killer-cell immunoglobulin-like receptor (KIR) genes regulate natural killer cell activity, influencing predisposition to immune mediated disease, and affecting hematopoietic stem cell transplantation (HSCT) outcome. Owing to the complexity of the KIR locus, with extensive gene copy number variation (CNV) and allelic diversity, high-resolution characterization of KIR has so far been applied only to relatively small cohorts. Here, we present a comprehensive high-throughput KIR genotyping approach based on next generation sequencing. Through PCR amplification of specific exons, our approach delivers both copy numbers of the individual genes and allelic information for every KIR gene. Ten-fold replicate analysis of a set of 190 samples revealed a precision of 99.9%. Genotyping of an independent set of 360 samples resulted in an accuracy of more than 99% taking into account consistent copy number prediction. We applied the workflow to genotype 1.8 million stem cell donor registry samples. We report on the observed KIR allele diversity and relative abundance of alleles based on a subset of more than 300,000 samples. Furthermore, we identified more than 2,000 previously unreported KIR variants repeatedly in independent samples, underscoring the large diversity of the KIR region that awaits discovery. This cost-efficient high-resolution KIR genotyping approach is now applied to samples of volunteers registering as potential donors for HSCT. This will facilitate the utilization of KIR as additional selection criterion to improve unrelated donor stem cell transplantation outcome. In addition, the approach may serve studies requiring high-resolution KIR genotyping, like population genetics and disease association studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Wesley M. Marin
- San Francisco School of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Ravi Dandekar
- San Francisco School of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Jill A. Hollenbach
- San Francisco School of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Johannes Schetelig
- DKMS, Tübingen, Germany
- Department of Internal Medicine I, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | | | - Paul J. Norman
- Division of Biomedical Informatics and Personalized Medicine, and Department of Immunology, University of Colorado Anschutz Medical, Aurora, CO, United States
| | | | | | | |
Collapse
|
55
|
Ballingall KT, Dicks K, Kyriazopoulou P, Herrmann-Hoesing L. Allelic nomenclature for the duplicated MHC class II DQ genes in sheep. Immunogenetics 2018; 71:347-351. [PMID: 30415411 DOI: 10.1007/s00251-018-1096-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 11/06/2018] [Indexed: 10/27/2022]
Abstract
The principal MHC class II molecules involved in the presentation of peptides to the antigen specific receptors on CD4+ T cells genes in sheep are derived from DR and DQ genes. Allelic nomenclature systems for the DRB1 and its partner DRA loci are available for Ovid's; however, no official nomenclature is available for the DQ genes which creates ambiguity within the research community. Ovine MHC haplotypes include at least two pairs of DQA and DQB genes, termed DQA1, DQB1 and DQA2, DQB2 and both sets are polymorphic and both seem to be functional. In a number of haplotypes, the DQA1 locus appears to be absent (DQA1-null) and is replaced by a second locus termed DQA2-like. Here, we identify families of alleles based on sequence similarity and phylogenetic clustering which correspond to each of the DQA and DQB genes identified in previous genomic and transcript analyses of homozygous animals. Using such criteria to cluster sequences, we have named 82 full-length and partial cDNA transcripts derived from domestic sheep (Ovis aries) which correspond to alleles at the Ovar-DQA1, DQA2, DQA2-like, DQB1, DQB2 and DQB2-like genes and provide associated sequence resources available to the research community through the IPD-MHC Database. This sets the basis for naming and annotation of DQ genes within the ovine MHC and may be used as a template for DQ genes in other ruminant species which will ultimately support research in livestock infectious disease.
Collapse
Affiliation(s)
| | - Kara Dicks
- The University of Edinburgh, Edinburgh, UK
| | | | | |
Collapse
|
56
|
Tamouza R, Oliveira J, Etain B, Bengoufa D, Hamdani N, Manier C, Mariaselvam C, Sundaresh A, Bellivier F, Henry C, Kahn JP, Krishnamoorthy R, Charron D, Leboyer M. HLA genetics in bipolar disorder. Acta Psychiatr Scand 2018; 138:464-471. [PMID: 29869414 DOI: 10.1111/acps.12912] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/16/2018] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Bipolar Disorder (BD) is characterized by deregulated adaptive immune processes. Recent genome-wide association studies (GWAS) implicate the major histocompatibility complex (MHC) region in BD. The present study investigates the potential influence of variations in human leukocyte antigen (HLA) on BD risk and/or clinical presentations. This may have relevance to the dysregulated inflammatory processes commonly found in BD. METHOD DNAs from 475 BD patients and 195 healthy controls (HC) were genotyped for classical HLA class I and II loci. RESULTS We found that: (i) the HLA-A*02~B*44~DRB1*07 sub-haplotype is less prevalent in BD, vs. HC (pc = 2.4 × 10-2 ); (ii) the 57.1 and the 8.1-derived ancestral haplotypes i.e. HLA-A*02~B*57~Cw*06~DRB1*07~DQB1*09 and HLA-A*02~B*08~Cw*07 are associated with rapid cycling (pc = 1.9 × 10-3 and 1.05 × 10-2 , respectively); (iii) the 8.1AH-derived HLA class II-DRB*03~HLA-DQB1*02 sub-haplotype is more frequent in BD patients with a history of suicidal behaviors (pc = 2.1 × 10-2 ); and (iv) disease onset by an hypomanic episode or by psychotic symptoms are, respectively, more frequent in BD patients bearing the 7.1 AH-derived A*03~B*07~DRB1*15 sub-haplotype (pc = 8.5 × 10-3 ) and the HLA-A*02~B*07~DRB1*15 sub-haplotype (pc = 4.0 × 10-2 ). CONCLUSION Corroborating the established link between these HLA haplotypes/sub haplotypes and common immune disorders, our findings suggest possible HLA-mediated proinflammatory processes operating in BD.
Collapse
Affiliation(s)
- R Tamouza
- INSERM, U955, Translational Psychiatry, Paris-East University, School of Medicine, AP-HP, DHU PePSY, Pole of Psychiatry, Henri Mondor University Hospital, Créteil, France.,FondaMental Foundation, Créteil, France.,Cordons de Vie Association, Monaco and LabEx Transplantex, Strasbourg, France
| | - J Oliveira
- INSERM, U955, Translational Psychiatry, Paris-East University, School of Medicine, AP-HP, DHU PePSY, Pole of Psychiatry, Henri Mondor University Hospital, Créteil, France.,FondaMental Foundation, Créteil, France
| | - B Etain
- FondaMental Foundation, Créteil, France.,Department of Psychiatry & Addiction Medicine, INSERM UMR-S1144 - VariaPsy, University Paris Diderot, AP-HP, Fernand Widal Hospital, Paris, France
| | - D Bengoufa
- INSERM, U1160, Saint Louis Hospital, Paris, France
| | - N Hamdani
- INSERM, U955, Translational Psychiatry, Paris-East University, School of Medicine, AP-HP, DHU PePSY, Pole of Psychiatry, Henri Mondor University Hospital, Créteil, France.,FondaMental Foundation, Créteil, France
| | - C Manier
- INSERM, U955, Translational Psychiatry, Paris-East University, School of Medicine, AP-HP, DHU PePSY, Pole of Psychiatry, Henri Mondor University Hospital, Créteil, France.,INSERM, U1160, Saint Louis Hospital, Paris, France
| | - C Mariaselvam
- INSERM, U955, Translational Psychiatry, Paris-East University, School of Medicine, AP-HP, DHU PePSY, Pole of Psychiatry, Henri Mondor University Hospital, Créteil, France.,INSERM, U1160, Saint Louis Hospital, Paris, France
| | - A Sundaresh
- INSERM, U955, Translational Psychiatry, Paris-East University, School of Medicine, AP-HP, DHU PePSY, Pole of Psychiatry, Henri Mondor University Hospital, Créteil, France.,INSERM, U1160, Saint Louis Hospital, Paris, France
| | - F Bellivier
- FondaMental Foundation, Créteil, France.,Department of Psychiatry & Addiction Medicine, INSERM UMR-S1144 - VariaPsy, University Paris Diderot, AP-HP, Fernand Widal Hospital, Paris, France
| | - C Henry
- INSERM, U955, Translational Psychiatry, Paris-East University, School of Medicine, AP-HP, DHU PePSY, Pole of Psychiatry, Henri Mondor University Hospital, Créteil, France.,FondaMental Foundation, Créteil, France
| | - J-P Kahn
- Department of Psychiatry and Clinical Psychology, CHU of Nancy, Brabois Hospitals, Vandoeuvre Les Nancy, France
| | - R Krishnamoorthy
- INSERM, U955, Translational Psychiatry, Paris-East University, School of Medicine, AP-HP, DHU PePSY, Pole of Psychiatry, Henri Mondor University Hospital, Créteil, France.,FondaMental Foundation, Créteil, France
| | - D Charron
- FondaMental Foundation, Créteil, France
| | - M Leboyer
- INSERM, U955, Translational Psychiatry, Paris-East University, School of Medicine, AP-HP, DHU PePSY, Pole of Psychiatry, Henri Mondor University Hospital, Créteil, France.,FondaMental Foundation, Créteil, France
| |
Collapse
|
57
|
Balakrishnan B, Taneja V. Microbial modulation of the gut microbiome for treating autoimmune diseases. Expert Rev Gastroenterol Hepatol 2018; 12:985-996. [PMID: 30146910 DOI: 10.1080/17474124.2018.1517044] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Many studies have shown the relationship between autoimmune diseases and the gut microbiome in humans: those with autoimmune conditions display gut microbiome dysbiosis. The big question that needs to be addressed is if restoring eubiosis of the gut microbiota can help suppress the autoimmune condition by activating various immune regulatory mechanisms. Inducing these self-healing mechanisms should prolong good health in affected individuals. Area covered: Here, we review the available clinical and preclinical studies that have used selective bacteria for modulating gut microbiota for treating autoimmune diseases. The potential bacterial candidates and their mechanism of action in treating autoimmune diseases will be discussed. We searched for genetically modified and potential probiotics for diseases and discuss the most likely candidates. Expert commentary: To achieve eubiosis, manipulation of the gut microbiota must occur in some form. Several approaches for modulating gut microbiota include prebiotic diets, antimicrobial interventions, fecal microbiota transplants, and selective probiotics. One novel approach showing promising results is the use of selective bacterial candidates to modulate microbial composition. Use of single microbe for treatment has an advantage as compared to multi-species as microbes grow at different rates and if needed, a single microbe is easy to target.
Collapse
Affiliation(s)
| | - Veena Taneja
- a Department of Immunology , Mayo Clinic , Rochester , MN , USA
| |
Collapse
|
58
|
Ferreiro-Iglesias A, Lesseur C, McKay J, Hung RJ, Han Y, Zong X, Christiani D, Johansson M, Xiao X, Li Y, Qian DC, Ji X, Liu G, Caporaso N, Scelo G, Zaridze D, Mukeriya A, Kontic M, Ognjanovic S, Lissowska J, Szołkowska M, Swiatkowska B, Janout V, Holcatova I, Bolca C, Savic M, Ognjanovic M, Bojesen SE, Wu X, Albanes D, Aldrich MC, Tardon A, Fernandez-Somoano A, Fernandez-Tardon G, Le Marchand L, Rennert G, Chen C, Doherty J, Goodman G, Bickeböller H, Wichmann HE, Risch A, Rosenberger A, Shen H, Dai J, Field JK, Davies M, Woll P, Teare MD, Kiemeney LA, van der Heijden EHFM, Yuan JM, Hong YC, Haugen A, Zienolddiny S, Lam S, Tsao MS, Johansson M, Grankvist K, Schabath MB, Andrew A, Duell E, Melander O, Brunnström H, Lazarus P, Arnold S, Slone S, Byun J, Kamal A, Zhu D, Landi MT, Amos CI, Brennan P. Fine mapping of MHC region in lung cancer highlights independent susceptibility loci by ethnicity. Nat Commun 2018; 9:3927. [PMID: 30254314 PMCID: PMC6156406 DOI: 10.1038/s41467-018-05890-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 07/30/2018] [Indexed: 12/19/2022] Open
Abstract
The basis for associations between lung cancer and major histocompatibility complex genes is not completely understood. Here the authors further consider genetic variation within the MHC region in lung cancer patients and identify independent associations within HLA genes that explain MHC lung cancer associations in Europeans and Asian populations. Lung cancer has several genetic associations identified within the major histocompatibility complex (MHC); although the basis for these associations remains elusive. Here, we analyze MHC genetic variation among 26,044 lung cancer patients and 20,836 controls densely genotyped across the MHC, using the Illumina Illumina OncoArray or Illumina 660W SNP microarray. We impute sequence variation in classical HLA genes, fine-map MHC associations for lung cancer risk with major histologies and compare results between ethnicities. Independent and novel associations within HLA genes are identified in Europeans including amino acids in the HLA-B*0801 peptide binding groove and an independent HLA-DQB1*06 loci group. In Asians, associations are driven by two independent HLA allele sets that both increase risk in HLA-DQB1*0401 and HLA-DRB1*0701; the latter better represented by the amino acid Ala-104. These results implicate several HLA–tumor peptide interactions as the major MHC factor modulating lung cancer susceptibility.
Collapse
Affiliation(s)
- Aida Ferreiro-Iglesias
- International Agency for Research on Cancer, World Health Organization, Lyon, 69372 cedex 08, France
| | - Corina Lesseur
- International Agency for Research on Cancer, World Health Organization, Lyon, 69372 cedex 08, France
| | - James McKay
- International Agency for Research on Cancer, World Health Organization, Lyon, 69372 cedex 08, France
| | - Rayjean J Hung
- Lunenfeld-Tanenbaum Research Institute of Sinai Health System, University of Toronto, Toronto, M5G 1X5, Canada
| | - Younghun Han
- Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, 03755, NH, USA
| | - Xuchen Zong
- Lunenfeld-Tanenbaum Research Institute of Sinai Health System, University of Toronto, Toronto, M5G 1X5, Canada
| | - David Christiani
- Department of Environmental Health, Harvard TH Chan School of Public Health, Massachusetts General Hospital/ Harvard Medical School, Boston, 02115, MA, USA
| | - Mattias Johansson
- International Agency for Research on Cancer, World Health Organization, Lyon, 69372 cedex 08, France
| | - Xiangjun Xiao
- Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, 03755, NH, USA
| | - Yafang Li
- Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, 03755, NH, USA
| | - David C Qian
- Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, 03755, NH, USA
| | - Xuemei Ji
- Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, 03755, NH, USA
| | - Geoffrey Liu
- Lunenfeld-Tanenbaum Research Institute of Sinai Health System, University of Toronto, Toronto, M5G 1X5, Canada
| | - Neil Caporaso
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, 20892-9768, MD, USA
| | - Ghislaine Scelo
- International Agency for Research on Cancer, World Health Organization, Lyon, 69372 cedex 08, France
| | - David Zaridze
- Russian N.N. Blokhin Cancer Research Centre, Moscow, 115478, Russian Federation
| | - Anush Mukeriya
- Russian N.N. Blokhin Cancer Research Centre, Moscow, 115478, Russian Federation
| | | | - Simona Ognjanovic
- International Organization for Cancer Prevention and Research, Belgrade, 11070, Serbia
| | - Jolanta Lissowska
- M. Sklodowska-Curie Cancer Center, Institute of Oncology, Warsaw, 02-034, Poland
| | - Małgorzata Szołkowska
- Department of Pathology, National Tuberculosis and Lung Diseases Research Institute, Warsaw, 01-138, Poland
| | - Beata Swiatkowska
- Department of Environmental Epidemiology, Nofer Institute of Occupational Medicine, Lodz, 91-348, Poland
| | - Vladimir Janout
- Faculty of Medicine, University of Olomouc, Olomouc, 701 03, Czech Republic
| | - Ivana Holcatova
- 2nd Faculty of Medicine, Institute of Public Health and Preventive Medicine, Charles University, Prague, CZ 128 00, Czech Republic
| | - Ciprian Bolca
- Institute of Pneumology "Marius Nasta", Bucharest, RO-050159, Romania
| | - Milan Savic
- Department of Thoracic Surgery Clinical Center of Serbia Belgrade, Belgrade, 11000, Serbia
| | - Miodrag Ognjanovic
- International Organization for Cancer Prevention and Research, Belgrade, 11070, Serbia
| | - Stig Egil Bojesen
- Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen, 2730, Denmark.,Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, 2730, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2730, Denmark
| | - Xifeng Wu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, 77030, TX, USA
| | - Demetrios Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, 20892-9768, MD, USA
| | - Melinda C Aldrich
- Department of Thoracic Surgery, Division of Epidemiology, Vanderbilt University Medical Center, Nashville, 37232-4682, TA, USA
| | - Adonina Tardon
- University of Oviedo and CIBERESP, Faculty of Medicine, Oviedo, 33006, Spain
| | | | | | - Loic Le Marchand
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, 96813, HI, USA
| | - Gadi Rennert
- Clalit National Cancer Control Center at Carmel Medical Center and Technion Faculty of Medicine, Haifa, 3525433, Israel
| | - Chu Chen
- Department of Epidemiology, University of Washington School of Public Health and Community Medicine, Seattle, 98195, WA, USA
| | - Jennifer Doherty
- Department of Epidemiology, University of Washington School of Public Health and Community Medicine, Seattle, 98195, WA, USA.,Fred Hutchinson Cancer Research Center, Seattle, 98109, WA, USA
| | | | - Heike Bickeböller
- Department of Genetic Epidemiology, University Medical Center, Georg-August-University Göttingen, Göttingen, 37073, Germany
| | - H-Erich Wichmann
- Institute of Medical Informatics, Biometry and Epidemiology, Chair of Epidemiology, Ludwig Maximilians University, Munich, D-85764, Germany.,Helmholtz Center Munich, Institute of Epidemiology 2, Munich, D-85764, Germany.,Institute of Medical Statistics and Epidemiology, Technical University Munich, Munich, D-80333, Germany
| | - Angela Risch
- University of Salzburg and Cancer Cluster Salzburg, Salzburg, 5020, Austria.,Translational Lung Research Center Heidelberg (TLRC-H), Heidelberg, 69120, Germany.,German Center for Lung Research (DZL), Heidelberg, 69121, Germany
| | - Albert Rosenberger
- Department of Genetic Epidemiology, University Medical Center, Georg-August-University Göttingen, Göttingen, 37073, Germany
| | - Hongbing Shen
- Department of Epidemiology and Biostatistics, Jiangsu Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Juncheng Dai
- Department of Epidemiology and Biostatistics, Jiangsu Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - John K Field
- Institute of Translational Medicine, University of Liverpool, Liverpool, L3 9TA, UK
| | - Michael Davies
- Institute of Translational Medicine, University of Liverpool, Liverpool, L3 9TA, UK
| | - Penella Woll
- Department of Oncology, University of Sheffield, Sheffield, S10 2RX, UK
| | - M Dawn Teare
- School of Health and Related Research, University Of Sheffield, England, S1 4DA, UK
| | | | | | - Jian-Min Yuan
- University of Pittsburgh Cancer Institute, Pittsburgh, 15232, PA, USA
| | - Yun-Chul Hong
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, 110-799, Republic of Korea
| | - Aage Haugen
- National Institute of Occupational Health, Oslo, N-0033, Norway
| | | | - Stephen Lam
- British Columbia Cancer Agency, Vancouver, V5Z 1M9, Canada
| | - Ming-Sound Tsao
- Princess Margaret Cancer Centre, Toronto, ON M5G 1L7, Canada
| | - Mikael Johansson
- Department of Radiation Sciences, Umeå University, Umeå, 901 85, Sweden
| | - Kjell Grankvist
- Department of Medical Biosciences, Umeå University, Umeå, 901 85, Sweden
| | - Matthew B Schabath
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, 33612, FL, USA
| | - Angeline Andrew
- Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, 03755, NH, USA
| | - Eric Duell
- Unit of Nutrition and Cancer, Catalan Institute of Oncology (ICO-IDIBELL), Barcelona, 08908, Spain
| | - Olle Melander
- Department of Clinical Sciences Malmö, Lund University, Malmö, 221 00, Sweden.,Department of Internal Medicine, Skåne University Hospital, Malmö, Sweden
| | - Hans Brunnström
- Laboratory Medicine Region Skåne, Department of Clinical Sciences Lund, Pathology, Lund University, Lund, 221 00, Sweden
| | - Philip Lazarus
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, 99202, WA, USA
| | - Susanne Arnold
- University of Kentucky, Markey Cancer Center, Lexington, 40536-0098, KY, USA
| | - Stacey Slone
- University of Kentucky, Markey Cancer Center, Lexington, 40536-0098, KY, USA
| | - Jinyoung Byun
- Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, 03755, NH, USA
| | - Ahsan Kamal
- Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, 03755, NH, USA
| | - Dakai Zhu
- Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, 03755, NH, USA
| | - Maria Teresa Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, 20892-9768, MD, USA
| | - Christopher I Amos
- Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, 03755, NH, USA
| | - Paul Brennan
- International Agency for Research on Cancer, World Health Organization, Lyon, 69372 cedex 08, France.
| |
Collapse
|
59
|
Architecture of polymorphisms in the human genome reveals functionally important and positively selected variants in immune response and drug transporter genes. Hum Genomics 2018; 12:43. [PMID: 30219098 PMCID: PMC6139121 DOI: 10.1186/s40246-018-0175-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 08/29/2018] [Indexed: 02/07/2023] Open
Abstract
Background Genetic polymorphisms can contribute to phenotypic differences amongst individuals, including disease risk and drug response. Characterization of genetic polymorphisms that modulate gene expression and/or protein function may facilitate the identification of the causal variants. Here, we present the architecture of genetic polymorphisms in the human genome focusing on those predicted to be potentially functional/under natural selection and the pathways that they reside. Results In the human genome, polymorphisms that directly affect protein sequences and potentially affect function are the most constrained variants with the lowest single-nucleotide variant (SNV) density, least population differentiation and most significant enrichment of rare alleles. SNVs which potentially alter various regulatory sites, e.g. splicing regulatory elements, are also generally under negative selection. Interestingly, genes that regulate the expression of transcription/splicing factors and histones are conserved as a higher proportion of these genes is non-polymorphic, contain ultra-conserved elements (UCEs) and/or has no non-synonymous SNVs (nsSNVs)/coding INDELs. On the other hand, major histocompatibility complex (MHC) genes are the most polymorphic with SNVs potentially affecting the binding of transcription/splicing factors and microRNAs (miRNA) exhibiting recent positive selection (RPS). The drug transporter genes carry the most number of potentially deleterious nsSNVs and exhibit signatures of RPS and/or population differentiation. These observations suggest that genes that interact with the environment are highly polymorphic and targeted by RPS. Conclusions In conclusion, selective constraints are observed in coding regions, master regulator genes, and potentially functional SNVs. In contrast, genes that modulate response to the environment are highly polymorphic and under positive selection. Electronic supplementary material The online version of this article (10.1186/s40246-018-0175-1) contains supplementary material, which is available to authorized users.
Collapse
|
60
|
Ramarathinam SH, Croft NP, Illing PT, Faridi P, Purcell AW. Employing proteomics in the study of antigen presentation: an update. Expert Rev Proteomics 2018; 15:637-645. [PMID: 30080115 DOI: 10.1080/14789450.2018.1509000] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Our immune system discriminates self from non-self by examining the peptide cargo of human leukocyte antigen (HLA) molecules displayed on the cell surface. Successful recognition of HLA-bound non-self peptides can induce T cell responses leading to, for example, the destruction of infected cells. Today, largely due to advances in technology, we have an unprecedented capability to identify the nature of these presented peptides and unravel the true complexity of antigen presentation. Areas covered: In addition to conventional linear peptides, HLA molecules also present post-translationally modified sequences comprising a wealth of chemical and structural modifications, including a novel class of noncontiguous spliced peptides. This review focuses on these emerging themes in antigen presentation and how mass spectrometry in particular has contributed to a new view of the antigenic landscape that is presented to the immune system. Expert Commentary: Advances in the sensitivity of mass spectrometers and use of hybrid fragmentation technologies will provide more information-rich spectra of HLA bound peptides leading to more definitive identification of T cell epitopes. Coupled with improvements in sample preparation and new informatics workflows, studies will access novel classes of peptide antigen and allow interrogation of rare and clinically relevant samples.
Collapse
Affiliation(s)
- Sri H Ramarathinam
- a Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute , Monash University , Clayton , VIC , Australia
| | - Nathan P Croft
- a Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute , Monash University , Clayton , VIC , Australia
| | - Patricia T Illing
- a Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute , Monash University , Clayton , VIC , Australia
| | - Pouya Faridi
- a Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute , Monash University , Clayton , VIC , Australia
| | - Anthony W Purcell
- a Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute , Monash University , Clayton , VIC , Australia
| |
Collapse
|
61
|
Chen DP, Chang SW, Jaing TH, Wang WT, Hus FP, Tseng CP. Single nucleotide polymorphisms within HLA region are associated with disease relapse for patients with unrelated cord blood transplantation. PeerJ 2018; 6:e5228. [PMID: 30083439 PMCID: PMC6076982 DOI: 10.7717/peerj.5228] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 06/21/2018] [Indexed: 12/13/2022] Open
Abstract
Disease relapse occurs in unrelated cord blood transplantation (CBT) even when the alleles of human leukocyte antigen (HLA) are fully matched between donor and recipient. This is similar to that observed in other types of hematopoietic stem cell transplantation. Fourteen single nucleotide polymorphisms (SNPs) within the HLA region have been reported previously by Petersdorf et al. and Piras et al. as transplantation determinants in unrelated hematopoietic cell transplantation. In this study, the genomic sequences within 500 base pairs upstream and downstream of the fourteen transplantation-related SNPs from 53 patients and their HLA-matched unrelated donors were analyzed for determining whether or not genetic variants, conferred by either recipient or donor SNP genotype or by recipient-donor SNP mismatching, were associated with the risk of relapse. Seven SNPs were associated with the risk of relapse in unrelated CBT. These included the donor genotype with the SNPs of rs2523675 and rs2518028 at the telomeric end of HCP5 gene, rs2071479 in the intron of the HLA-DOB gene, and rs2523958 in the MICD gene; and the recipient genotype with SNPs of rs9276982 in the HLA-DOA gene, and rs435766 and rs380924 in the MICD gene. As measured by pair-wise linkage disequilibrium (LD) with D′ as the parameter for normalized standard measurement of LD which compares the observed and expected frequencies of one haplotype comprised by alleles at different loci, rs2523675 had high LD with rs4713466 (D′ = 0.86) and rs2523676 (D′ = 0.91) in the HCP5 gene. The rs2518028 had no LD with all other SNPs except rs2523675 (D′ = 0.76). This study provides the basis for developing a method or algorithm for selecting better unrelated CBT candidate donors.
Collapse
Affiliation(s)
- Ding-Ping Chen
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Su-Wei Chang
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Clinical Informatics and Medical Statistics Research Center, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tang-Her Jaing
- Division of Hematology and Oncology, Department of Pediatrics, Chang Gung Children's Hospital, Taoyuan, Taiwan
| | - Wei-Ting Wang
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Fang-Ping Hus
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Ching-Ping Tseng
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
62
|
Manczinger M, Kemény L. Peptide presentation by HLA-DQ molecules is associated with the development of immune tolerance. PeerJ 2018; 6:e5118. [PMID: 30002966 PMCID: PMC6034589 DOI: 10.7717/peerj.5118] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/07/2018] [Indexed: 11/20/2022] Open
Abstract
HLA class II proteins are important elements of human adaptive immune recognition and are associated with numerous infectious and immune-mediated diseases. These highly variable molecules can be classified into DP, DQ and DR groups. It has been proposed that in contrast with DP and DR, epitope binding by DQ variants rather results in immune tolerance. However, the pieces of evidence are limited and controversial. We found that DQ molecules bind more human epitopes than DR. Pathogen-associated epitopes bound by DQ molecules are more similar to human proteins than the ones bound by DR. Accordingly, DQ molecules bind epitopes of significantly different pathogen species. Moreover, the binding of autoimmunity-associated epitopes by DQ confers protection from autoimmune diseases. Our results suggest a special role of HLA-DQ in immune homeostasis and help to better understand the association of HLA molecules with infectious and autoimmune diseases.
Collapse
Affiliation(s)
- Máté Manczinger
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary.,MTA-SZTE Dermatological Research Group, University of Szeged, Szeged, Hungary.,Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Lajos Kemény
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary.,MTA-SZTE Dermatological Research Group, University of Szeged, Szeged, Hungary
| |
Collapse
|
63
|
Bennabi M, Gaman A, Delorme R, Boukouaci W, Manier C, Scheid I, Si Mohammed N, Bengoufa D, Charron D, Krishnamoorthy R, Leboyer M, Tamouza R. HLA-class II haplotypes and Autism Spectrum Disorders. Sci Rep 2018; 8:7639. [PMID: 29769579 PMCID: PMC5955937 DOI: 10.1038/s41598-018-25974-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 04/26/2018] [Indexed: 02/06/2023] Open
Abstract
Infections and autoimmunity are associated with autism spectrum disorders (ASD), with both strongly influenced by the genetic regulation of the human leukocyte antigen (HLA) system. The relationship between ASD and the HLA genetic diversity requires further investigation. Using a case control design, the distribution of HLA class II-DRB1 and DQB1 alleles, genotypes and haplotypes were investigated in ASD patients, versus healthy controls (HC). ASD patients meeting DSM-IV TR criteria and HC (474 and 350 respectively) were genotyped at medium resolution using a Luminex-based SSO technology. Comparisons of genotypes, allele frequencies associated with a haplotype analysis were performed. Results indicate: (i) the HLA-DRB1 *11-DQB1*07 haplotype was more prevalent in ASD patients, versus HC (Pc = 0.001), partially replicating previous data and possibly linking to gastro-intestinal (GI)-related pro-inflammatory processes, given that this haplotype associates with pediatric celiac disorders; (ii) the HLA-DRB1 *17-DQB1*02 haplotype was higher in HC, versus ASD patients (Pc = 0.002), indicating that this is a protective haplotype. Using the Autism Diagnostic Interview to assess clinical dimensions, higher scores on social (Pc = 0.006) and non-verbal functioning (Pc = 0.004) associated with the DRB1 *11 DQB1*07 haplotype. Our results support HLA involvement in ASD, with possible relevance to GI and gut-brain axis dysregulation.
Collapse
Affiliation(s)
- Meriem Bennabi
- INSERM, U1160, Hôpital Saint Louis, Paris, France.,INSERM, U955, Psychiatrie Translationnelle, Créteil, France.,Fondation FondaMental, Créteil, France
| | - Alexandru Gaman
- INSERM, U955, Psychiatrie Translationnelle, Créteil, France.,Fondation FondaMental, Créteil, France
| | - Richard Delorme
- Fondation FondaMental, Créteil, France.,DHU Protect, AP-HP, Service de psychiatrie de l'enfant et de l'adolescent, Hôpital Robert Debré, Paris, France.,Département de génétique humaine et fonctions cognitives, Institut Pasteur, Paris, France.,Université Paris Diderot, Sorbonne Paris-Cité, Paris, France
| | | | | | - Isabelle Scheid
- INSERM, U955, Psychiatrie Translationnelle, Créteil, France.,Fondation FondaMental, Créteil, France
| | | | - Djaouida Bengoufa
- Laboratoire Jean Dausset and LabEx Transplantex, Hôpital Saint Louis, Paris, France
| | - Dominique Charron
- INSERM, U1160, Hôpital Saint Louis, Paris, France.,Université Paris Diderot, Sorbonne Paris-Cité, Paris, France.,Laboratoire Jean Dausset and LabEx Transplantex, Hôpital Saint Louis, Paris, France
| | - Rajagopal Krishnamoorthy
- INSERM, U955, Psychiatrie Translationnelle, Créteil, France.,Fondation FondaMental, Créteil, France
| | - Marion Leboyer
- INSERM, U955, Psychiatrie Translationnelle, Créteil, France.,Fondation FondaMental, Créteil, France.,DHU PePSY, AP-HP, Pôle de Psychiatrie, Hôpitaux Universitaires Henri Mondor, Créteil, France.,Université Paris-Est-Créteil, Faculté de médecine, Créteil, France
| | - Ryad Tamouza
- INSERM, U1160, Hôpital Saint Louis, Paris, France. .,INSERM, U955, Psychiatrie Translationnelle, Créteil, France. .,Fondation FondaMental, Créteil, France. .,Université Paris Diderot, Sorbonne Paris-Cité, Paris, France. .,Laboratoire Jean Dausset and LabEx Transplantex, Hôpital Saint Louis, Paris, France. .,DHU PePSY, AP-HP, Pôle de Psychiatrie, Hôpitaux Universitaires Henri Mondor, Créteil, France.
| |
Collapse
|
64
|
Evolution of DNAase I Hypersensitive Sites in MHC Regulatory Regions of Primates. Genetics 2018; 209:579-589. [PMID: 29669733 DOI: 10.1534/genetics.118.301028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 04/16/2018] [Indexed: 01/08/2023] Open
Abstract
It has been challenging to determine the disease-causing variant(s) for most major histocompatibility complex (MHC)-associated diseases. However, it is becoming increasingly clear that regulatory variation is pervasive and a fundamentally important mechanism governing phenotypic diversity and disease susceptibility. We gathered DNase I data from 136 human cells to characterize the regulatory landscape of the MHC region, including 4867 DNase I hypersensitive sites (DHSs). We identified thousands of regulatory elements that have been gained or lost in the human or chimpanzee genomes since their evolutionary divergence. We compared alignments of the DHS across six primates and found 149 DHSs with convincing evidence of positive and/or purifying selection. Of these DHSs, compared to neutral sequences, 24 evolved rapidly in the human lineage. We identified 15 instances of transcription-factor-binding motif gains, such as USF, MYC, MAX, MAFK, STAT1, PBX3, etc, and observed 16 GWAS (genome-wide association study) SNPs associated with diseases within these 24 DHSs using FIMO (Find Individual Motif Occurrences) and UCSC (University of California, Santa Cruz) ChIP-seq data. Combining eQTL and Hi-C data, our results indicated that there were five SNPs located in human gains motifs affecting the corresponding gene's expression, two of which closely matched DHS target genes. In addition, a significant SNP, rs7756521, at genome-wide significant level likely affects DDR expression and represents a causal genetic variant for HIV-1 control. These results indicated that species-specific motif gains or losses of rapidly evolving DHSs in the primate genomes might play a role during adaptation evolution and provided some new evidence for a potentially causal role for these GWAS SNPs.
Collapse
|
65
|
Meister D, Taimoory SM, Trant JF. Unnatural amino acids improve affinity and modulate immunogenicity: Developing peptides to treat MHC type II autoimmune disorders. Pept Sci (Hoboken) 2018. [DOI: 10.1002/pep2.24058] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Daniel Meister
- Department of Chemistry and Biochemistry; University of Windsor, 401 Sunset Ave; Windsor Ontario N9B 3P4 Canada
| | - S. Maryamdokht Taimoory
- Department of Chemistry and Biochemistry; University of Windsor, 401 Sunset Ave; Windsor Ontario N9B 3P4 Canada
| | - John F. Trant
- Department of Chemistry and Biochemistry; University of Windsor, 401 Sunset Ave; Windsor Ontario N9B 3P4 Canada
| |
Collapse
|
66
|
Alelign T, Ahmed MM, Bobosha K, Tadesse Y, Howe R, Petros B. Kidney Transplantation: The Challenge of Human Leukocyte Antigen and Its Therapeutic Strategies. J Immunol Res 2018; 2018:5986740. [PMID: 29693023 PMCID: PMC5859822 DOI: 10.1155/2018/5986740] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/30/2017] [Accepted: 12/03/2017] [Indexed: 12/16/2022] Open
Abstract
Kidney transplantation remains the treatment of choice for end-stage renal failure. When the immune system of the recipient recognizes the transplanted kidney as a foreign object, graft rejection occurs. As part of the host immune defense mechanism, human leukocyte antigen (HLA) is a major challenge for graft rejection in transplantation therapy. The impact of HLA mismatches between the donor and the potential recipient prolongs the time for renal transplantation therapy, tethered to dialysis, latter reduces graft survival, and increases mortality. The formation of pretransplant alloantibodies against HLA class I and II molecules can be sensitized through exposures to blood transfusions, prior transplants, and pregnancy. These preformed HLA antibodies are associated with rejection in kidney transplantation. On the other hand, the development of de novo antibodies may increase the risk for acute and chronic rejections. Allograft rejection results from a complex interplay involving both the innate and the adaptive immune systems. Thus, further insights into the mechanisms of tissue rejection and the risk of HLA sensitization is crucial in developing new therapies that may blunt the immune system against transplanted organs. Therefore, the purpose of this review is to highlight facts about HLA and its sensitization, various mechanisms of allograft rejection, the current immunosuppressive approaches, and the directions for future therapy.
Collapse
Affiliation(s)
- Tilahun Alelign
- College of Natural Sciences, Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
- Department of Biology, Debre Berhan University, P.O. Box 445, Debre Berhan, Ethiopia
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Momina M. Ahmed
- St. Paul's Hospital Millennium Medical College and Addis Ababa University, Addis Ababa, Ethiopia
| | - Kidist Bobosha
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Yewondwossen Tadesse
- School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Rawleigh Howe
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Beyene Petros
- College of Natural Sciences, Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
| |
Collapse
|
67
|
Hilton HG, McMurtrey CP, Han AS, Djaoud Z, Guethlein LA, Blokhuis JH, Pugh JL, Goyos A, Horowitz A, Buchli R, Jackson KW, Bardet W, Bushnell DA, Robinson PJ, Mendoza JL, Birnbaum ME, Nielsen M, Garcia KC, Hildebrand WH, Parham P. The Intergenic Recombinant HLA-B∗46:01 Has a Distinctive Peptidome that Includes KIR2DL3 Ligands. Cell Rep 2018; 19:1394-1405. [PMID: 28514659 PMCID: PMC5510751 DOI: 10.1016/j.celrep.2017.04.059] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 03/07/2017] [Accepted: 04/20/2017] [Indexed: 01/26/2023] Open
Abstract
HLA-B∗46:01 was formed by an intergenic mini-conversion, between HLA-B∗15:01 and HLA-C∗01:02, in Southeast Asia during the last 50,000 years, and it has since become the most common HLA-B allele in the region. A functional effect of the mini-conversion was introduction of the C1 epitope into HLA-B∗46:01, making it an exceptional HLA-B allotype that is recognized by the C1-specific natural killer (NK) cell receptor KIR2DL3. High-resolution mass spectrometry showed that HLA-B∗46:01 has a low-diversity peptidome that is distinct from those of its parents. A minority (21%) of HLA-B∗46:01 peptides, with common C-terminal characteristics, form ligands for KIR2DL3. The HLA-B∗46:01 peptidome is predicted to be enriched for peptide antigens derived from Mycobacterium leprae. Overall, the results indicate that the distinctive peptidome and functions of HLA-B∗46:01 provide carriers with resistance to leprosy, which drove its rapid rise in frequency in Southeast Asia. The interlocus recombinant HLA-B∗46:01 is found at high frequency in Southeast Asia HLA-B∗46:01 has a low-diversity peptidome that is distinct from both its parents A subset of HLA-B∗46:01 peptides provides ligands for the NK cell receptor KIR2DL3 The unique features of HLA-B∗46:01 correlate with protection against leprosy
Collapse
Affiliation(s)
- Hugo G Hilton
- Department of Structural Biology, School of Medicine, Stanford University, Stanford, CA 94305, USA; Department of Microbiology & Immunology, School of Medicine, Stanford University, Stanford, CA 94305, USA.
| | - Curtis P McMurtrey
- Department of Microbiology & Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Alex S Han
- Department of Structural Biology, School of Medicine, Stanford University, Stanford, CA 94305, USA; Department of Microbiology & Immunology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Zakia Djaoud
- Department of Structural Biology, School of Medicine, Stanford University, Stanford, CA 94305, USA; Department of Microbiology & Immunology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Lisbeth A Guethlein
- Department of Structural Biology, School of Medicine, Stanford University, Stanford, CA 94305, USA; Department of Microbiology & Immunology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Jeroen H Blokhuis
- Department of Structural Biology, School of Medicine, Stanford University, Stanford, CA 94305, USA; Department of Microbiology & Immunology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Jason L Pugh
- Department of Structural Biology, School of Medicine, Stanford University, Stanford, CA 94305, USA; Department of Microbiology & Immunology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Ana Goyos
- Department of Structural Biology, School of Medicine, Stanford University, Stanford, CA 94305, USA; Department of Microbiology & Immunology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Amir Horowitz
- Department of Structural Biology, School of Medicine, Stanford University, Stanford, CA 94305, USA; Department of Microbiology & Immunology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Rico Buchli
- Pure Protein LLC, Oklahoma City, OK 73104, USA
| | - Ken W Jackson
- Department of Microbiology & Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Wilfred Bardet
- Department of Microbiology & Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - David A Bushnell
- Department of Structural Biology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Philip J Robinson
- Department of Structural Biology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Juan L Mendoza
- Department of Structural Biology, School of Medicine, Stanford University, Stanford, CA 94305, USA; Department of Molecular & Cellular Physiology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Michael E Birnbaum
- Department of Structural Biology, School of Medicine, Stanford University, Stanford, CA 94305, USA; Department of Molecular & Cellular Physiology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Morten Nielsen
- Department of Bio and Health Informatics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark; Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - K Christopher Garcia
- Department of Structural Biology, School of Medicine, Stanford University, Stanford, CA 94305, USA; Department of Molecular & Cellular Physiology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - William H Hildebrand
- Department of Microbiology & Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Peter Parham
- Department of Structural Biology, School of Medicine, Stanford University, Stanford, CA 94305, USA; Department of Microbiology & Immunology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
68
|
Horecky C, Horecka E, Futas J, Janova E, Horin P, Knoll A. Microsatellite markers for evaluating the diversity of the natural killer complex and major histocompatibility complex genomic regions in domestic horses. HLA 2018; 91:271-279. [PMID: 29341455 DOI: 10.1111/tan.13211] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 12/05/2017] [Accepted: 01/14/2018] [Indexed: 01/06/2023]
Abstract
Genotyping microsatellite markers represents a standard, relatively easy, and inexpensive method of assessing genetic diversity of complex genomic regions in various animal species, such as the major histocompatibility complex (MHC) and/or natural killer cell receptor (NKR) genes. MHC-linked microsatellite markers have been identified and some of them were used for characterizing MHC polymorphism in various species, including horses. However, most of those were MHC class II markers, while MHC class I and III sub-regions were less well covered. No tools for studying genetic diversity of NKR complex genomic regions are available in horses. Therefore, the aims of this work were to establish a panel of markers suitable for analyzing genetic diversity of the natural killer complex (NKC), and to develop additional microsatellite markers of the MHC class I and class III genomic sub-regions in horses. Nine polymorphic microsatellite loci were newly identified in the equine NKC. Along with two previously reported microsatellites flanking this region, they constituted a panel of 11 loci allowing to characterize genetic variation in this functionally important part of the horse genome. Four newly described MHC class I/III-linked markers were added to 11 known microsatellites to establish a panel of 15 MHC markers with a better coverage of the class I and class III sub-regions. Major characteristics of the two panels produced on a group of 65 horses of 13 breeds and on five Przewalski's horses showed that they do reflect genetic variation within the horse species.
Collapse
Affiliation(s)
- C Horecky
- Department of Animal Morphology, Physiology and Genetics, Faculty of Agronomy, Mendel University in Brno, Brno, Czech Republic.,CEITEC-MENDELU, Mendel University in Brno, Brno, Czech Republic
| | - E Horecka
- Department of Animal Morphology, Physiology and Genetics, Faculty of Agronomy, Mendel University in Brno, Brno, Czech Republic.,CEITEC-MENDELU, Mendel University in Brno, Brno, Czech Republic
| | - J Futas
- Department of Animal Genetics, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic.,CEITEC-VFU, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - E Janova
- Department of Animal Genetics, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic.,CEITEC-VFU, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - P Horin
- Department of Animal Genetics, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic.,CEITEC-VFU, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - A Knoll
- Department of Animal Morphology, Physiology and Genetics, Faculty of Agronomy, Mendel University in Brno, Brno, Czech Republic.,CEITEC-MENDELU, Mendel University in Brno, Brno, Czech Republic
| |
Collapse
|
69
|
Kalyanaraman N. In silico prediction of potential vaccine candidates on capsid protein of human bocavirus 1. Mol Immunol 2017; 93:193-205. [PMID: 29207326 DOI: 10.1016/j.molimm.2017.11.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/18/2017] [Accepted: 11/26/2017] [Indexed: 02/07/2023]
Abstract
Human bocavirus 1 (HBoV1) is a newly identified parvovirus that causes serious respiratory infection among children across the globe. Aim of the present study was to predict immunogenic residues located on the VP2 protein of HBoV1 towards development of epitope based vaccines. Several computational tools were employed to predict epitopes (bothT and B cell restricted) with stringent regulation for the improvement of confidence. After meticulous analysis, the peptide "TTPWTYFNFNQY" was identified as potential candidate for development of preventive vaccine. Of note, the epitope "TTPWTYFNFNQY" was found to be recognized by fifteen different alleles belonging to seven HLA supertypes (A1, A3, A24, A26, B7, B58 and B62). Further, mutational variability analysis pointed that most of the amino acids were well conserved. Docking scores obtained from ClusPro and Autodock Vina for selected epitopes displayed energetically favorable and stable interaction of peptide-HLA-I complexes. The core peptide "LLYQMPFFL" was found to recognize by wide range of HLA class II allele recognition thereby qualified as candidate for therapeutic vaccine. Five distinct linear peptides (withT cell epitope superimposition) belonging to B cells were identified in the VP2 protein. Further attention on the enlisted epitopes may shed light on the path for development of diagnostic, therapeutic and preventive tools against HBoV1 infection. Additionally, the predicted epitopes may help us to address the original antigenic sin phenomena observed during consecutive HBoV2-4 infection.
Collapse
Affiliation(s)
- Narayanan Kalyanaraman
- Viral Research Diagnostic Laboratory (VRDL), Department of Microbiology, Govt Theni Medical College, Theni, Tamil Nadu, India.
| |
Collapse
|
70
|
Ye L, Yang C, Dou JF, Wen LL, Wang WJ, Zheng XD, Zuo XB, Zhou FS, Fan X, Zhang XJ. Genetic factors are stressed variably by onset age-based sample selection in psoriasis: A hint from major histocompatibility complex region-based analysis. J Gene Med 2017; 19. [PMID: 29076194 DOI: 10.1002/jgm.2997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 09/02/2017] [Accepted: 10/13/2017] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Large cohort-based genetic association studies have been established over a decade. However, for certain diseases, different results with respect to the genome-wide association study level have been obtained among studies, even for those conducted within the same ethnic groups. We hypothesized that onset age-based sample variables might have a great impact on the results. METHODS In the present study, we divided psoriasis patients into several subgroups according to the onset age bracket. We conducted genetic association analysis in the major histocompatibility complex (MHC) region of each patient subgroup with shared control subjects. RESULTS We found decreases in the numbers of susceptible variants in each subgroup analysis as the onset age increased in the longitudinal analysis. Meanwhile, the pairwise analysis showed that younger patients exhibited greater numbers of genetic risks in the MHC region compared to elder patients, regardless of whether the cut-off values were defined as 20 or 30 years old. Similar results were also found among 11-20-, 21-30- and 31-40-year-old groups. Furthermore, when combining the results of both the stepwise regression analysis and the HLA-C*06:02 conditioning analysis, different variants were found to be independently associated with each psoriasis subgroup. CONCLUSIONS Onset age-based sample variables influence the results of genetic association studies, at least in MHC region-based genetic analysis. We suggest that caution is required when selecting samples for genetic association studies to prevent confounders that might be a result of onset age.
Collapse
Affiliation(s)
- Lei Ye
- Institute of Dermatology and Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, PR China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, PR China
| | - Chao Yang
- Institute of Dermatology and Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, PR China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, PR China
| | - Jin-Fa Dou
- Institute of Dermatology and Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, PR China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, PR China
| | - Lei-Lei Wen
- Institute of Dermatology and Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, PR China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, PR China
| | - Wen-Jun Wang
- Institute of Dermatology and Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, PR China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, PR China
| | - Xiao-Dong Zheng
- Institute of Dermatology and Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, PR China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, PR China
| | - Xian-Bo Zuo
- Institute of Dermatology and Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, PR China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, PR China
| | - Fu-Sheng Zhou
- Institute of Dermatology and Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, PR China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, PR China
| | - Xing Fan
- Institute of Dermatology and Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, PR China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, PR China
| | - Xue-Jun Zhang
- Institute of Dermatology and Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, PR China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, PR China
| |
Collapse
|
71
|
Lopez-Santillan M, Iparraguirre L, Martin-Guerrero I, Gutierrez-Camino A, Garcia-Orad A. Review of pharmacogenetics studies of L-asparaginase hypersensitivity in acute lymphoblastic leukemia points to variants in the GRIA1 gene. Drug Metab Pers Ther 2017; 32:1-9. [PMID: 28259867 DOI: 10.1515/dmpt-2016-0033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 02/07/2017] [Indexed: 12/17/2022]
Abstract
Acute lymphoblastic leukemia (ALL) is a major pediatric cancer in developed countries. Although treatment outcome has improved owing to advances in chemotherapy, there is still a group of patients who experience severe adverse events. L-Asparaginase is an effective antineoplastic agent used in chemotherapy of ALL. Despite its indisputable indication, hypersensitivity reactions are common. In those cases, discontinuation of treatment is usually needed and anti-asparaginase antibody production may also attenuate asparaginase activity, compromising its antileukemic effect. Till now, six pharmacogenetic studies have been performed in order to elucidate possible genetic predisposition for inter-individual differences in asparaginase hypersensitivity. In this review we have summarized the results of those studies which describe the involvement of four different genes, being polymorphisms in the glutamate receptor, ionotropic, AMPA 1 (GRIA1) the most frequently associated with asparaginase hypersensitivity. We also point to new approaches focusing on epigenetics that could be interesting for consideration in the near future.
Collapse
|
72
|
Mulder KP, Cortazar-Chinarro M, Harris DJ, Crottini A, Campbell Grant EH, Fleischer RC, Savage AE. Evolutionary dynamics of an expressed MHC class IIβ locus in the Ranidae (Anura) uncovered by genome walking and high-throughput amplicon sequencing. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 76:177-188. [PMID: 28587861 DOI: 10.1016/j.dci.2017.05.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 05/30/2017] [Accepted: 05/30/2017] [Indexed: 06/07/2023]
Abstract
The Major Histocompatibility Complex (MHC) is a genomic region encoding immune loci that are important and frequently used markers in studies of adaptive genetic variation and disease resistance. Given the primary role of infectious diseases in contributing to global amphibian declines, we characterized the hypervariable exon 2 and flanking introns of the MHC Class IIβ chain for 17 species of frogs in the Ranidae, a speciose and cosmopolitan family facing widespread pathogen infections and declines. We find high levels of genetic variation concentrated in the Peptide Binding Region (PBR) of the exon. Ten codons are under positive selection, nine of which are located in the mammal-defined PBR. We hypothesize that the tenth codon (residue 21) is an amphibian-specific PBR site that may be important in disease resistance. Trans-species and trans-generic polymorphisms are evident from exon-based genealogies, and co-phylogenetic analyses between intron, exon and mitochondrial based reconstructions reveal incongruent topologies, likely due to different locus histories. We developed two sets of barcoded adapters that reliably amplify a single and likely functional locus in all screened species using both 454 and Illumina based sequencing methods. These primers provide a resource for multiplexing and directly sequencing hundreds of samples in a single sequencing run, avoiding the labour and chimeric sequences associated with cloning, and enabling MHC population genetic analyses. Although the primers are currently limited to the 17 species we tested, these sequences and protocols provide a useful genetic resource and can serve as a starting point for future disease, adaptation and conservation studies across a range of anuran taxa.
Collapse
Affiliation(s)
- Kevin P Mulder
- Center for Conservation Genomics, Smithsonian Conservation Biology Institute, National Zoological Park, 3001 Connecticut Avenue NW, Washington, DC 20008, USA; CIBIO/InBIO, Research Centre in Biodiversity and Genetic Resources, Rua Padre Armando Quintas 7, Campus Agrário de Vairão, 4485-661 Vairão, Portugal
| | - Maria Cortazar-Chinarro
- Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, SE-75236, Uppsala, Sweden
| | - D James Harris
- CIBIO/InBIO, Research Centre in Biodiversity and Genetic Resources, Rua Padre Armando Quintas 7, Campus Agrário de Vairão, 4485-661 Vairão, Portugal
| | - Angelica Crottini
- CIBIO/InBIO, Research Centre in Biodiversity and Genetic Resources, Rua Padre Armando Quintas 7, Campus Agrário de Vairão, 4485-661 Vairão, Portugal
| | - Evan H Campbell Grant
- United States Geological Survey, Patuxent Wildlife Research Center, SO Conte Anadromous Fish Research Lab, 1 Migratory Way, Turner Falls, MA 01376, USA
| | - Robert C Fleischer
- Center for Conservation Genomics, Smithsonian Conservation Biology Institute, National Zoological Park, 3001 Connecticut Avenue NW, Washington, DC 20008, USA
| | - Anna E Savage
- Center for Conservation Genomics, Smithsonian Conservation Biology Institute, National Zoological Park, 3001 Connecticut Avenue NW, Washington, DC 20008, USA; Department of Biology, University of Central Florida, 4110 Libra Drive, Orlando, FL 32816, USA.
| |
Collapse
|
73
|
Ballingall KT, Lantier I, Todd H, Lantier F, Rocchi M. Structural and functional diversity arising from intra- and inter-haplotype combinations of duplicated DQA and B loci within the ovine MHC. Immunogenetics 2017; 70:257-269. [PMID: 28889256 DOI: 10.1007/s00251-017-1029-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 09/03/2017] [Indexed: 11/27/2022]
Abstract
In sheep, the A and B loci encoding the α and β chains of the classical class II MHC molecules are DRA and DRB and DQA and DQB. Previous analyses described the duplication of the DQA and DQB genes. The majority of haplotypes include DQA1 and DQA2 loci, however, in a number of haplotypes, DQA1 appears absent and these haplotypes have been described as DQA1 null. In these haplotypes, the DQA2 locus is found in combination with a second locus which appeared more closely related to DQA2 than DQA1, hence the description of this locus as DQA2-like. Here we combine our previous analysis of the DQA transcripts with an analysis of the associated DQB transcripts in ten haplotypes from MHC homozygous animals. This allows the potential for surface expression of different haplotype combinations of DQA and B genes and the functional significance of DQA2-like and its predicted DQB partner to be determined. Atypical DQB transcripts (DQB2-like) were identified in haplotypes classified as DQA1-null and conserved DQB2-like orthologues were identified in other Bovidae indicating trans-species conservation of the allelic lineage. Functional combinations detected by co-transfection of DQ1, DQ2 and DQ2-like genes demonstrates the potential for a wide range of DQ molecules derived from both intra- and inter-haplotype as well as inter-locus combinations. We provide evidence that DQA2-like and B2-like genes form an evolutionary conserved pair which generates structurally distinct class II molecules that are likely to present a distinct range of peptides to CD4+ T cells.
Collapse
Affiliation(s)
- Keith T Ballingall
- Moredun Research Institute, Pentland Science Park, Bush Loan, Penicuik, EH26 OPZ, Midlothian, UK.
| | - Isabelle Lantier
- INRA-Centre Val de Loire, UMR 1282, Infectiologie et Santé Publique, 37380, Nouzilly, France
| | - Helen Todd
- Moredun Research Institute, Pentland Science Park, Bush Loan, Penicuik, EH26 OPZ, Midlothian, UK
| | - Frederic Lantier
- INRA-Centre Val de Loire, UMR 1282, Infectiologie et Santé Publique, 37380, Nouzilly, France
| | - Mara Rocchi
- Moredun Research Institute, Pentland Science Park, Bush Loan, Penicuik, EH26 OPZ, Midlothian, UK
| |
Collapse
|
74
|
Blanchfield L, Sabatino JJ, Lawrence L, Evavold BD. NFM Cross-Reactivity to MOG Does Not Expand a Critical Threshold Level of High-Affinity T Cells Necessary for Onset of Demyelinating Disease. THE JOURNAL OF IMMUNOLOGY 2017; 199:2680-2691. [PMID: 28887429 DOI: 10.4049/jimmunol.1700792] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/09/2017] [Indexed: 11/19/2022]
Abstract
Of interest to the etiology of demyelinating autoimmune disease is the potential to aberrantly activate CD4+ T cells due to cross-recognition of multiple self-epitopes such as has been suggested for myelin oligodendrocyte glycoprotein epitope 35-55 (MOG35-55) and neurofilament medium protein epitope 15-35 (NFM15-35). NFM15-35 is immunogenic in C57BL/6 mice but fails to induce demyelinating disease by polyclonal T cells despite having the same TCR contact residues as MOG35-55, a known encephalitogenic Ag. Despite reported cross-reactivity with MOG-specific T cells, the polyclonal response to NFM15-35 did not expand threshold numbers of MOG38-49 tetramer-positive T cells. Furthermore, NFM lacked functional synergy with MOG to promote experimental autoimmune encephalomyelitis because NFM-deficient synonymous with knockout mice developed an identical disease course to wild-type mice after challenge with MOG35-55 Single-cell analysis of encephalitogenic T cells using the peptide:MHC monomer-based two-dimensional micropipette adhesion frequency assay confirmed that NFM was not a critical Ag driving demyelinating disease because NFM18-30-specific T cells in the CNS were predominantly reactive to MOG38-49 The absence of NFM contribution to disease allowed mapping of the amino acids required for encephalitogenicity and expansion of high-affinity, MOG-specific T cells that defined the polyclonal response. Alterations of N-terminal residues outside of the NFM15-35 core nonamer promoted expansion of high-affinity, MOG38-49 tetramer-positive T cells and promoted consistent experimental autoimmune encephalomyelitis induction, unlike mice challenged with NFM15-35 Although NFM15-35 is immunogenic and cross-reactive with MOG at the polyclonal level, it fails to expand a threshold level of encephalitogenic, high-affinity MOG-specific T cells.
Collapse
Affiliation(s)
- Lori Blanchfield
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322
| | - Joseph J Sabatino
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158; and
| | - Laurel Lawrence
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322
| | - Brian D Evavold
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT 84112
| |
Collapse
|
75
|
Savage AE, Mulder KP, Torres T, Wells S. Lost but not forgotten: MHC genotypes predict overwinter survival despite depauperate MHC diversity in a declining frog. CONSERV GENET 2017. [DOI: 10.1007/s10592-017-1001-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
76
|
Heinrich SK, Hofer H, Courtiol A, Melzheimer J, Dehnhard M, Czirják GÁ, Wachter B. Cheetahs have a stronger constitutive innate immunity than leopards. Sci Rep 2017; 7:44837. [PMID: 28333126 PMCID: PMC5363065 DOI: 10.1038/srep44837] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 02/14/2017] [Indexed: 11/21/2022] Open
Abstract
As a textbook case for the importance of genetics in conservation, absence of genetic variability at the major histocompatibility complex (MHC) is thought to endanger species viability, since it is considered crucial for pathogen resistance. An alternative view of the immune system inspired by life history theory posits that a strong response should evolve in other components of the immune system if there is little variation in the MHC. In contrast to the leopard (Panthera pardus), the cheetah (Acinonyx jubatus) has a relatively low genetic variability at the MHC, yet free-ranging cheetahs are healthy. By comparing the functional competence of the humoral immune system of both species in sympatric populations in Namibia, we demonstrate that cheetahs have a higher constitutive innate but lower induced innate and adaptive immunity than leopards. We conclude (1) immunocompetence of cheetahs is higher than previously thought; (2) studying both innate and adaptive components of immune systems will enrich conservation science.
Collapse
Affiliation(s)
- Sonja K. Heinrich
- Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, 10315 Berlin, Germany
| | - Heribert Hofer
- Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, 10315 Berlin, Germany
| | - Alexandre Courtiol
- Department of Evolutionary Genetics, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, 10315 Berlin, Germany
| | - Jörg Melzheimer
- Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, 10315 Berlin, Germany
| | - Martin Dehnhard
- Department of Reproduction Biology, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, 10315 Berlin, Germany
| | - Gábor Á. Czirják
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, 10315 Berlin, Germany
| | - Bettina Wachter
- Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, 10315 Berlin, Germany
| |
Collapse
|
77
|
Gandhi MJ, Ferriola D, Huang Y, Duke JL, Monos D. Targeted Next-Generation Sequencing for Human Leukocyte Antigen Typing in a Clinical Laboratory: Metrics of Relevance and Considerations for Its Successful Implementation. Arch Pathol Lab Med 2017; 141:806-812. [PMID: 28234015 DOI: 10.5858/arpa.2016-0537-ra] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CONTEXT - Numerous feasibility studies to type human leukocyte antigens (HLAs) by next-generation sequencing (NGS) have led to the development of vendor-supported kits for HLA typing by NGS. Some clinical laboratories have introduced HLA-NGS, and many are investigating the introduction. Standards from accrediting agencies form the regulatory framework for introducing this test into clinical laboratories. OBJECTIVES - To provide an assessment of metrics and considerations relevant to the successful implementation of clinical HLA-NGS typing, and to provide as a reference a validated HLA-NGS protocol used clinically since December 2013 at the Children's Hospital of Philadelphia (Philadelphia, Pennsylvania). DATA SOURCES - The HLA-NGS has been performed on 2532 samples. The initial 1046 and all homozygous samples were also typed by an alternate method. The HLA-NGS demonstrated 99.7% concordance with the alternate method. Ambiguous results were most common at the DPB1 locus because of a lack of phasing between exons 2 and 3 or the unsequenced exon 1 (533 of 2954 alleles; 18.04%) and the DRB1 locus because of not sequencing exon 1 (75 of 3972 alleles; 1.89%). No ambiguities were detected among the other loci. Except for 2 false homozygous samples, all homozygous samples (1891) demonstrated concordance with the alternate method. The article is organized to address the critical elements in the preanalytic, analytic, and postanalytic phases of introducing this assay into the clinical laboratory. CONCLUSIONS - The results demonstrate that HLA typing by NGS is a highly accurate, reproducible, efficient method that provides more-complete sequencing information for the length of the HLA gene and can be the single methodology for HLA typing in clinical immunogenetics laboratories.
Collapse
Affiliation(s)
| | | | | | | | - Dimitri Monos
- From the Division of Transfusion Medicine, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota (Dr Gandhi); the Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania (Ms Ferriola and Drs Huang, Duke, and Monos); and the Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia (Dr Monos)
| |
Collapse
|
78
|
Li Q, Bu W, Gabriel E, Aguilar F, Hoshino Y, Miyadera H, Hess C, Hornung RL, Roy A, Cohen JI. HLA-DQ β1 alleles associated with Epstein-Barr virus (EBV) infectivity and EBV gp42 binding to cells. JCI Insight 2017; 2:e85687. [PMID: 28239644 PMCID: PMC5313076 DOI: 10.1172/jci.insight.85687] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 01/05/2017] [Indexed: 11/17/2022] Open
Abstract
Epstein-Barr virus (EBV) infects B cells and ~95% of adults are infected. EBV glycoprotein gp42 is essential for entry of virus into B cells. EBV gp42 binds to the β1 chain of HLA-DQ, -DR, and -DP on B cells, and uses these molecules for infection. To investigate if certain HLA-DQ alleles are associated with EBV seronegativity, we recruited ~3,300 healthy adult blood donors, identified 106 EBV-seronegative individuals, and randomly selected a control group of EBV-seropositive donors from the donor pool. A larger than expected proportion of EBV-seronegative subjects were HLA-DQ β1 *04/*05 and *06/*06, and to a lesser extent, *02/*03, compared with the control group, while a larger than expected portion of EBV-seropositive persons were HLA-DQ β1 *02/*02. We examined the ability of EBV gp42 to bind to different HLA-DQ molecules using human and mouse cells stably expressing these alleles. EBV gp42 bound less effectively to cells expressing HLA-DQ β1 *04/*05, *06/*06, or *03/*03 than to cells expressing HLA-DQ β1 *02/*02. These data are consistent with our observations of increased EBV seronegativity with DQ β1 *04/*05 or *06/*06 alleles. These findings emphasize the importance of a single genetic locus (HLA-DQ β1) to influence infectivity with EBV.
Collapse
Affiliation(s)
- Qingxue Li
- Medical Virology Section, Laboratory of Infectious Diseases
| | - Wei Bu
- Medical Virology Section, Laboratory of Infectious Diseases
| | - Erin Gabriel
- Division of Clinical Research, Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Fiona Aguilar
- Medical Virology Section, Laboratory of Infectious Diseases
| | - Yo Hoshino
- Medical Virology Section, Laboratory of Infectious Diseases
| | - Hiroko Miyadera
- Department of Human Genetics, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
- Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba, Japan
| | - Christoph Hess
- Immunobiology Laboratory, Department of Biomedicine, and Medical Outpatient Division, University Hospital Basel, Basel, Switzerland
| | - Ronald L. Hornung
- Clinical Services Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Amitava Roy
- Bioinformatics and Computational Biosciences Branch, Rocky Mountain Laboratories, NIH, Hamilton, Montana, USA
| | | |
Collapse
|
79
|
Hofmann MJ, Bracamonte SE, Eizaguirre C, Barluenga M. Molecular characterization of MHC class IIB genes of sympatric Neotropical cichlids. BMC Genet 2017; 18:15. [PMID: 28201988 PMCID: PMC5310070 DOI: 10.1186/s12863-017-0474-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 01/13/2017] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The Major Histocompatibility Complex (MHC) is a key component of the adaptive immune system of all vertebrates and consists of the most polymorphic genes known to date. Due to this complexity, however, MHC remains to be characterized in many species including any Neotropical cichlid fish. Neotropical crater lake cichlids are ideal models to study evolutionary processes as they display one of the most convincing examples of sympatric and repeated parallel radiation events within and among isolated crater lakes. RESULTS Here, we characterized the genes of MHC class IIB chain of the Midas cichlid species complex (Amphilophus cf. citrinellus) including fish from five lakes in Nicaragua. We designed 19 new specific primers anchored in a stepwise fashion in order to detect all alleles present. We obtained 866 genomic DNA (gDNA) sequences from thirteen individuals and 756 additional sequences from complementary DNA (cDNA) of seven of those individuals. We identified 69 distinct alleles with up to 25 alleles per individual. We also found considerable intron length variation and mismatches of alleles detected in cDNA and gDNA suggesting that some loci have undergone pseudogenization. Lastly, we created a model of protein structure homology for each allele and identified their key structural components. CONCLUSIONS Overall, the Midas cichlid has one of the most diverse repertoires of MHC class IIB genes known, which could serve as a powerful tool to elucidate the process of divergent radiations, colonization and speciation in sympatry.
Collapse
Affiliation(s)
- Melinda J Hofmann
- Museo Nacional de Ciencias Naturales, CSIC, José Gutiérrez Abascal, 2, 28006, Madrid, Spain
| | - Seraina E Bracamonte
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Duesternbrooker weg 20, 24105, Kiel, Germany
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587, Berlin, Germany
| | - Christophe Eizaguirre
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Duesternbrooker weg 20, 24105, Kiel, Germany
- Queen Mary University of London, School of Biological and Chemical Sciences, Mile End Road, London, E1 4NS, UK
| | - Marta Barluenga
- Museo Nacional de Ciencias Naturales, CSIC, José Gutiérrez Abascal, 2, 28006, Madrid, Spain.
| |
Collapse
|
80
|
High-Throughput Sequencing of the Major Histocompatibility Complex following Targeted Sequence Capture. Methods Mol Biol 2017. [PMID: 28138842 DOI: 10.1007/978-1-4939-6750-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The Human Major Histocompatibility Complex (MHC) is a highly polymorphic region full of immunoregulatory genes. The MHC codes for the human leukocyte antigens (HLA), proteins that present on the cellular surface and that are involved in self-non-self recognition. For matching donors and recipients for organ and stem-cell transplants it is important to know an individual's HLA haplotype determinable in this region. Now, as next-generation sequencing (NGS) platforms mature and become more and more accepted as a standard method, NGS applications have spread from research laboratories to the clinic, where they provide valid genetic insights. Here, we describe a cost-effective microarray-based sequence capture, enrichment, and NGS sequencing approach to characterize MHC haplotypes. Using this approach, ~4 MB of MHC sequence for four DNA samples (donor, recipient and the parents of the recipient) were sequenced in parallel in one NGS instrument run. We complemented this approach using microarray-based genome-wide SNP analysis. Taken together, the use of recently developed tools and protocols for sequence capture and massively parallel sequencing allows for detailed MHC analysis and donor-recipient matching.
Collapse
|
81
|
Ellul P, Groc L, Tamouza R, Leboyer M. The Clinical Challenge of Autoimmune Psychosis: Learning from Anti-NMDA Receptor Autoantibodies. Front Psychiatry 2017; 8:54. [PMID: 28469581 PMCID: PMC5396186 DOI: 10.3389/fpsyt.2017.00054] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 03/27/2017] [Indexed: 01/07/2023] Open
Affiliation(s)
- Pierre Ellul
- DHU PePSY et Pôle de psychiatrie et d'addictologie des Hôpitaux Universitaires Henri Mondor, AP-HP, Université Paris Est Créteil (UPEC), Créteil, France.,INSERM U 955, Equipe de Psychiatrie Translationnelle, Créteil, France.,Fondation FondaMental, Fondation de coopération scientifique, Créteil, France
| | - Laurent Groc
- Fondation FondaMental, Fondation de coopération scientifique, Créteil, France.,Institut interdisciplinaire de neurosciences, CNRS UMR 5297, Université de Bordeaux, Bordeaux, France
| | - Ryad Tamouza
- DHU PePSY et Pôle de psychiatrie et d'addictologie des Hôpitaux Universitaires Henri Mondor, AP-HP, Université Paris Est Créteil (UPEC), Créteil, France.,INSERM U 955, Equipe de Psychiatrie Translationnelle, Créteil, France.,Fondation FondaMental, Fondation de coopération scientifique, Créteil, France
| | - Marion Leboyer
- DHU PePSY et Pôle de psychiatrie et d'addictologie des Hôpitaux Universitaires Henri Mondor, AP-HP, Université Paris Est Créteil (UPEC), Créteil, France.,INSERM U 955, Equipe de Psychiatrie Translationnelle, Créteil, France.,Fondation FondaMental, Fondation de coopération scientifique, Créteil, France
| |
Collapse
|
82
|
Polymorphism at expressed DQ and DR loci in five common equine MHC haplotypes. Immunogenetics 2016; 69:145-156. [PMID: 27889800 DOI: 10.1007/s00251-016-0964-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 11/19/2016] [Indexed: 12/16/2022]
Abstract
The polymorphism of major histocompatibility complex (MHC) class II DQ and DR genes in five common equine leukocyte antigen (ELA) haplotypes was determined through sequencing of mRNA transcripts isolated from lymphocytes of eight ELA homozygous horses. Ten expressed MHC class II genes were detected in horses of the ELA-A3 haplotype carried by the donor horses of the equine bacterial artificial chromosome (BAC) library and the reference genome sequence: four DR genes and six DQ genes. The other four ELA haplotypes contained at least eight expressed polymorphic MHC class II loci. Next generation sequencing (NGS) of genomic DNA of these four MHC haplotypes revealed stop codons in the DQA3 gene in the ELA-A2, ELA-A5, and ELA-A9 haplotypes. Few NGS reads were obtained for the other MHC class II genes that were not amplified in these horses. The amino acid sequences across haplotypes contained locus-specific residues, and the locus clusters produced by phylogenetic analysis were well supported. The MHC class II alleles within the five tested haplotypes were largely non-overlapping between haplotypes. The complement of equine MHC class II DQ and DR genes appears to be well conserved between haplotypes, in contrast to the recently described variation in class I gene loci between equine MHC haplotypes. The identification of allelic series of equine MHC class II loci will aid comparative studies of mammalian MHC conservation and evolution and may also help to interpret associations between the equine MHC class II region and diseases of the horse.
Collapse
|
83
|
Carapito R, Radosavljevic M, Bahram S. Next-Generation Sequencing of the HLA locus: Methods and impacts on HLA typing, population genetics and disease association studies. Hum Immunol 2016; 77:1016-1023. [DOI: 10.1016/j.humimm.2016.04.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 03/15/2016] [Accepted: 04/04/2016] [Indexed: 12/30/2022]
|
84
|
Neehus AL, Wistuba J, Ladas N, Eiz-Vesper B, Schlatt S, Müller T. Gene conversion of the major histocompatibility complex class I Caja-G in common marmosets (Callithrix jacchus). Immunology 2016; 149:343-352. [PMID: 27450742 PMCID: PMC5046058 DOI: 10.1111/imm.12652] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 06/30/2016] [Accepted: 07/13/2016] [Indexed: 01/13/2023] Open
Abstract
Currently, the amount of sequenced and classified MHC class I genes of the common marmoset is limited, in spite of the wide use of this species as an animal model for biomedical research. In this study, 480 clones of MHC class I G locus (Caja‐G) cDNA sequences were obtained from 21 common marmosets. Up to 10 different alleles were detected in each common marmoset, leading to the assumption that the Caja‐G loci duplicated in the marmoset genome. In the investigated population, four alleles occurred more often, giving evidence for higher immunological advantage of these alleles. In contrast to the human non‐classical MHC class I genes, Caja‐G shows high rates of polymorphism at the relevant peptide‐binding sites, despite its phylogenetic relationship to the non‐classical HLA‐G. Our results provide information for better understanding of the immunological properties of the common marmoset and confirm the theory of a gene conversion of the Caja‐G due to its detected plasticity and the absence of any known HLA‐A equivalent.
Collapse
Affiliation(s)
- Anna-Lena Neehus
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | - Joachim Wistuba
- Institute of Reproductive and Regenerative Biology, Centre of Reproductive Medicine and Andrology, University Münster, Münster, Germany
| | - Nektarios Ladas
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | - Britta Eiz-Vesper
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | - Stefan Schlatt
- Institute of Reproductive and Regenerative Biology, Centre of Reproductive Medicine and Andrology, University Münster, Münster, Germany
| | - Thomas Müller
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany. .,Synlab Medical Care Centre Weiden Ltd, Weiden, Germany.
| |
Collapse
|
85
|
sNebula, a network-based algorithm to predict binding between human leukocyte antigens and peptides. Sci Rep 2016; 6:32115. [PMID: 27558848 PMCID: PMC4997263 DOI: 10.1038/srep32115] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 08/02/2016] [Indexed: 12/19/2022] Open
Abstract
Understanding the binding between human leukocyte antigens (HLAs) and peptides is important to understand the functioning of the immune system. Since it is time-consuming and costly to measure the binding between large numbers of HLAs and peptides, computational methods including machine learning models and network approaches have been developed to predict HLA-peptide binding. However, there are several limitations for the existing methods. We developed a network-based algorithm called sNebula to address these limitations. We curated qualitative Class I HLA-peptide binding data and demonstrated the prediction performance of sNebula on this dataset using leave-one-out cross-validation and five-fold cross-validations. This algorithm can predict not only peptides of different lengths and different types of HLAs, but also the peptides or HLAs that have no existing binding data. We believe sNebula is an effective method to predict HLA-peptide binding and thus improve our understanding of the immune system.
Collapse
|
86
|
Kashyap M, Farooq U, Jaiswal V. Homology modelling of frequent HLA class-II alleles: A perspective to improve prediction of HLA binding peptide and understand the HLA associated disease susceptibility. INFECTION GENETICS AND EVOLUTION 2016; 44:234-244. [PMID: 27421208 DOI: 10.1016/j.meegid.2016.07.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 06/24/2016] [Accepted: 07/05/2016] [Indexed: 11/30/2022]
Abstract
Human leukocyte antigen (HLA) plays significant role via the regulation of immune system and contribute in the progression and protection of many diseases. HLA molecules bind and present peptides to T- cell receptors which generate the immune response. HLA peptide interaction and molecular function of HLA molecule is the key to predict peptide binding and understanding its role in different diseases. The availability of accurate three dimensional (3D) structures is the initial step towards this direction. In the present work, homology modelling of important and frequent HLA-DRB1 alleles (07:01, 11:01 and 09:01) was done and acceptable models were generated. These modelled alleles were further refined and cross validated by using several methods including Ramachandran plot, Z-score, ERRAT analysis and root mean square deviation (RMSD) calculations. It is known that numbers of allelic variants are related to the susceptibility or protection of various infectious diseases. Difference in amino acid sequences and structures of alleles were also studied to understand the association of HLA with disease susceptibility and protection. Susceptible alleles showed more amino acid variations than protective alleles in three selected diseases caused by different pathogens. Amino acid variations at binding site were found to be more than other part of alleles. RMSD values were also higher at variable positions within binding site. Higher RMSD values indicate that mutations occurring at peptide binding site alter protein structure more than rest of the protein. Hence, these findings and modelled structures can be used to design HLA-DRB1 binding peptides to overcome low prediction accuracy of HLA class II binding peptides. Furthermore, it may help to understand the allele specific molecular mechanisms involved in susceptibility/resistance against pathogenic diseases.
Collapse
Affiliation(s)
- Manju Kashyap
- Faculty of Applied sciences and Biotechnology, Shoolini University, Solan, Himachal, Pradesh, India
| | - Umar Farooq
- Faculty of Applied sciences and Biotechnology, Shoolini University, Solan, Himachal, Pradesh, India
| | - Varun Jaiswal
- School of Electrical and Computer Science Engineering, Shoolini University, Solan, Himachal Pradesh, India.
| |
Collapse
|
87
|
Dapprich J, Ferriola D, Mackiewicz K, Clark PM, Rappaport E, D’Arcy M, Sasson A, Gai X, Schug J, Kaestner KH, Monos D. The next generation of target capture technologies - large DNA fragment enrichment and sequencing determines regional genomic variation of high complexity. BMC Genomics 2016; 17:486. [PMID: 27393338 PMCID: PMC4938946 DOI: 10.1186/s12864-016-2836-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 06/15/2016] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND The ability to capture and sequence large contiguous DNA fragments represents a significant advancement towards the comprehensive characterization of complex genomic regions. While emerging sequencing platforms are capable of producing several kilobases-long reads, the fragment sizes generated by current DNA target enrichment technologies remain a limiting factor, producing DNA fragments generally shorter than 1 kbp. The DNA enrichment methodology described herein, Region-Specific Extraction (RSE), produces DNA segments in excess of 20 kbp in length. Coupling this enrichment method to appropriate sequencing platforms will significantly enhance the ability to generate complete and accurate sequence characterization of any genomic region without the need for reference-based assembly. RESULTS RSE is a long-range DNA target capture methodology that relies on the specific hybridization of short (20-25 base) oligonucleotide primers to selected sequence motifs within the DNA target region. These capture primers are then enzymatically extended on the 3'-end, incorporating biotinylated nucleotides into the DNA. Streptavidin-coated beads are subsequently used to pull-down the original, long DNA template molecules via the newly synthesized, biotinylated DNA that is bound to them. We demonstrate the accuracy, simplicity and utility of the RSE method by capturing and sequencing a 4 Mbp stretch of the major histocompatibility complex (MHC). Our results show an average depth of coverage of 164X for the entire MHC. This depth of coverage contributes significantly to a 99.94 % total coverage of the targeted region and to an accuracy that is over 99.99 %. CONCLUSIONS RSE represents a cost-effective target enrichment method capable of producing sequencing templates in excess of 20 kbp in length. The utility of our method has been proven to generate superior coverage across the MHC as compared to other commercially available methodologies, with the added advantage of producing longer sequencing templates amenable to DNA sequencing on recently developed platforms. Although our demonstration of the method does not utilize these DNA sequencing platforms directly, our results indicate that the capture of long DNA fragments produce superior coverage of the targeted region.
Collapse
Affiliation(s)
| | - Deborah Ferriola
- />Generation Biotech, Lawrenceville, NJ 08648 USA
- />Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
| | - Kate Mackiewicz
- />Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
| | - Peter M. Clark
- />Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
| | - Eric Rappaport
- />Nucleic Acids & Protein Core Facility, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
| | - Monica D’Arcy
- />The Center for Biomedical Informatics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
| | - Ariella Sasson
- />The Center for Biomedical Informatics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
| | - Xiaowu Gai
- />The Center for Biomedical Informatics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
| | - Jonathan Schug
- />Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Klaus H. Kaestner
- />Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Dimitri Monos
- />Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
- />The Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| |
Collapse
|
88
|
Setchell JM, Richards SA, Abbott KM, Knapp LA. Mate-guarding by male mandrills ( Mandrillus sphinx) is associated with female MHC genotype. Behav Ecol 2016. [DOI: 10.1093/beheco/arw106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
89
|
Lenz TL, Spirin V, Jordan DM, Sunyaev SR. Excess of Deleterious Mutations around HLA Genes Reveals Evolutionary Cost of Balancing Selection. Mol Biol Evol 2016; 33:2555-64. [PMID: 27436009 PMCID: PMC5026253 DOI: 10.1093/molbev/msw127] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Deleterious mutations are expected to evolve under negative selection and are usually purged from the population. However, deleterious alleles segregate in the human population and some disease-associated variants are maintained at considerable frequencies. Here, we test the hypothesis that balancing selection may counteract purifying selection in neighboring regions and thus maintain deleterious variants at higher frequency than expected from their detrimental fitness effect. We first show in realistic simulations that balancing selection reduces the density of polymorphic sites surrounding a locus under balancing selection, but at the same time markedly increases the population frequency of the remaining variants, including even substantially deleterious alleles. To test the predictions of our simulations empirically, we then use whole-exome sequencing data from 6,500 human individuals and focus on the most established example for balancing selection in the human genome, the major histocompatibility complex (MHC). Our analysis shows an elevated frequency of putatively deleterious coding variants in nonhuman leukocyte antigen (non-HLA) genes localized in the MHC region. The mean frequency of these variants declined with physical distance from the classical HLA genes, indicating dependency on genetic linkage. These results reveal an indirect cost of the genetic diversity maintained by balancing selection, which has hitherto been perceived as mostly advantageous, and have implications both for the evolution of recombination and also for the epidemiology of various MHC-associated diseases.
Collapse
Affiliation(s)
- Tobias L Lenz
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School Evolutionary Immunogenomics, Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Victor Spirin
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School
| | - Daniel M Jordan
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School
| | - Shamil R Sunyaev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School Program in Medical and Population Genetics, The Broad Institute, Cambridge, MA
| |
Collapse
|
90
|
Buhler S, Nunes JM, Sanchez-Mazas A. HLA class I molecular variation and peptide-binding properties suggest a model of joint divergent asymmetric selection. Immunogenetics 2016; 68:401-416. [PMID: 27233953 PMCID: PMC4911380 DOI: 10.1007/s00251-016-0918-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 05/17/2016] [Indexed: 01/20/2023]
Abstract
The main function of HLA class I molecules is to present pathogen-derived peptides to cytotoxic T lymphocytes. This function is assumed to drive the maintenance of an extraordinary amount of polymorphism at each HLA locus, providing an immune advantage to heterozygote individuals capable to present larger repertories of peptides than homozygotes. This seems contradictory, however, with a reduced diversity at individual HLA loci exhibited by some isolated populations. This study shows that the level of functional diversity predicted for the two HLA-A and HLA-B genes considered simultaneously is similar (almost invariant) between 46 human populations, even when a reduced diversity exists at each locus. We thus propose that HLA-A and HLA-B evolved through a model of joint divergent asymmetric selection conferring all populations an equivalent immune potential. The distinct pattern observed for HLA-C is explained by its functional evolution towards killer cell immunoglobulin-like receptor (KIR) activity regulation rather than peptide presentation.
Collapse
Affiliation(s)
- Stéphane Buhler
- Laboratory of Anthropology, Genetics and Peopling History, Department of Genetics and Evolution, Anthropology Unit, University of Geneva, Geneva, Switzerland. .,Transplantation Immunology Unit & National Reference Laboratory for Histocompatibility, Department of Genetic and Laboratory Medicine, Geneva University Hospital, Geneva, Switzerland.
| | - José Manuel Nunes
- Laboratory of Anthropology, Genetics and Peopling History, Department of Genetics and Evolution, Anthropology Unit, University of Geneva, Geneva, Switzerland.,Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Alicia Sanchez-Mazas
- Laboratory of Anthropology, Genetics and Peopling History, Department of Genetics and Evolution, Anthropology Unit, University of Geneva, Geneva, Switzerland.,Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland
| |
Collapse
|
91
|
Zhou F, Cao H, Zuo X, Zhang T, Zhang X, Liu X, Xu R, Chen G, Zhang Y, Zheng X, Jin X, Gao J, Mei J, Sheng Y, Li Q, Liang B, Shen J, Shen C, Jiang H, Zhu C, Fan X, Xu F, Yue M, Yin X, Ye C, Zhang C, Liu X, Yu L, Wu J, Chen M, Zhuang X, Tang L, Shao H, Wu L, Li J, Xu Y, Zhang Y, Zhao S, Wang Y, Li G, Xu H, Zeng L, Wang J, Bai M, Chen Y, Chen W, Kang T, Wu Y, Xu X, Zhu Z, Cui Y, Wang Z, Yang C, Wang P, Xiang L, Chen X, Zhang A, Gao X, Zhang F, Xu J, Zheng M, Zheng J, Zhang J, Yu X, Li Y, Yang S, Yang H, Wang J, Liu J, Hammarström L, Sun L, Wang J, Zhang X. Deep sequencing of the MHC region in the Chinese population contributes to studies of complex disease. Nat Genet 2016; 48:740-6. [PMID: 27213287 DOI: 10.1038/ng.3576] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 04/29/2016] [Indexed: 12/13/2022]
Abstract
The human major histocompatibility complex (MHC) region has been shown to be associated with numerous diseases. However, it remains a challenge to pinpoint the causal variants for these associations because of the extreme complexity of the region. We thus sequenced the entire 5-Mb MHC region in 20,635 individuals of Han Chinese ancestry (10,689 controls and 9,946 patients with psoriasis) and constructed a Han-MHC database that includes both variants and HLA gene typing results of high accuracy. We further identified multiple independent new susceptibility loci in HLA-C, HLA-B, HLA-DPB1 and BTNL2 and an intergenic variant, rs118179173, associated with psoriasis and confirmed the well-established risk allele HLA-C*06:02. We anticipate that our Han-MHC reference panel built by deep sequencing of a large number of samples will serve as a useful tool for investigating the role of the MHC region in a variety of diseases and thus advance understanding of the pathogenesis of these disorders.
Collapse
Affiliation(s)
- Fusheng Zhou
- Department of Dermatology, No. 1 Hospital and Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, China
| | - Hongzhi Cao
- BGI-Shenzhen, Shenzhen, China.,iCarbonX, Shenzhen, China.,Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Xianbo Zuo
- Department of Dermatology, No. 1 Hospital and Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, China
| | | | - Xiaoguang Zhang
- Department of Dermatology, No. 1 Hospital and Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, China
| | | | - Ricong Xu
- Department of Nephrology, First Affiliated Hospital, Sun Yat-sen University, Key Laboratory of Nephrology, Ministry of Health, Guangzhou, China
| | - Gang Chen
- Department of Dermatology, No. 1 Hospital and Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, China
| | - Yuanwei Zhang
- BGI-Shenzhen, Shenzhen, China.,School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Xiaodong Zheng
- Department of Dermatology, No. 1 Hospital and Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, China
| | - Xin Jin
- BGI-Shenzhen, Shenzhen, China
| | - Jinping Gao
- Department of Dermatology, No. 1 Hospital and Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, China
| | | | - Yujun Sheng
- Department of Dermatology, No. 1 Hospital and Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, China
| | | | - Bo Liang
- Department of Dermatology, No. 1 Hospital and Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, China
| | | | - Changbing Shen
- Department of Dermatology, No. 1 Hospital and Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, China
| | - Hui Jiang
- BGI-Shenzhen, Shenzhen, China.,Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Caihong Zhu
- Department of Dermatology, No. 1 Hospital and Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, China
| | - Xing Fan
- Department of Dermatology, No. 1 Hospital and Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, China
| | - Fengping Xu
- BGI-Shenzhen, Shenzhen, China.,Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Min Yue
- Department of Dermatology, No. 1 Hospital and Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, China
| | - Xianyong Yin
- Department of Dermatology, No. 1 Hospital and Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, China
| | - Chen Ye
- BGI-Shenzhen, Shenzhen, China
| | - Cuicui Zhang
- Department of Dermatology, No. 1 Hospital and Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, China
| | - Xiao Liu
- BGI-Shenzhen, Shenzhen, China.,Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Liang Yu
- Department of Dermatology, No. 1 Hospital and Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, China
| | | | - Mengyun Chen
- Department of Dermatology, No. 1 Hospital and Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, China
| | | | - Lili Tang
- Department of Dermatology, No. 1 Hospital and Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, China
| | | | - Longmao Wu
- Department of Dermatology, No. 1 Hospital and Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, China
| | - Jian Li
- BGI-Shenzhen, Shenzhen, China.,Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Yu Xu
- Department of Dermatology, No. 1 Hospital and Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, China
| | | | - Suli Zhao
- Department of Dermatology, No. 1 Hospital and Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, China
| | - Yu Wang
- BGI-Shenzhen, Shenzhen, China
| | - Ge Li
- Department of Dermatology, No. 1 Hospital and Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, China
| | | | - Lei Zeng
- Department of Dermatology, No. 1 Hospital and Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, China
| | | | | | | | | | | | - Yanyan Wu
- Department of Dermatology, No. 1 Hospital and Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, China
| | - Xun Xu
- BGI-Shenzhen, Shenzhen, China
| | - Zhengwei Zhu
- Department of Dermatology, No. 1 Hospital and Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, China
| | - Yong Cui
- Department of Dermatology, China-Japan Friendship Hospital, Beijing, China
| | - Zaixing Wang
- Department of Dermatology, No. 1 Hospital and Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, China
| | - Chunjun Yang
- Department of Dermatology, No. 2 Hospital, Anhui Medical University, Hefei, China
| | - Peiguang Wang
- Department of Dermatology, No. 1 Hospital and Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, China
| | - Leihong Xiang
- Department of Dermatology, No. 1 Hospital and Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Anping Zhang
- Department of Dermatology, No. 1 Hospital and Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, China
| | - Xinghua Gao
- Department of Dermatology, No. 1 Hospital of China Medical University, Shenyang, China
| | - Furen Zhang
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, China
| | - Jinhua Xu
- Department of Dermatology, Huashan Hospital and Collaborative Innovation Center of Complex and Severe Skin Disease, Fudan University, Shanghai, China
| | - Min Zheng
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jie Zheng
- Department of Dermatology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jianzhong Zhang
- Department of Dermatology, Peking University People's Hospital, Beijing, China
| | - Xueqing Yu
- Department of Nephrology, First Affiliated Hospital, Sun Yat-sen University, Key Laboratory of Nephrology, Ministry of Health, Guangzhou, China
| | - Yingrui Li
- BGI-Shenzhen, Shenzhen, China.,iCarbonX, Shenzhen, China.,Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Sen Yang
- Department of Dermatology, No. 1 Hospital and Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, China
| | | | - Jian Wang
- BGI-Shenzhen, Shenzhen, China.,James D. Watson Institute of Genome Sciences, Hangzhou, China
| | - Jianjun Liu
- Department of Dermatology, No. 1 Hospital and Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, China
| | - Lennart Hammarström
- BGI-Shenzhen, Shenzhen, China.,Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Liangdan Sun
- Department of Dermatology, No. 1 Hospital and Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, China
| | - Jun Wang
- BGI-Shenzhen, Shenzhen, China.,iCarbonX, Shenzhen, China.,Department of Biology, University of Copenhagen, Copenhagen, Denmark.,Princess Al-Jawhara Albrahim Center of Excellence in the Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia.,Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China.,Department of Medicine, University of Hong Kong, Hong Kong, China.,State Key Laboratory of Pharmaceutical Biotechnology, University of Hong Kong, Hong Kong, China
| | - Xuejun Zhang
- Department of Dermatology, No. 1 Hospital and Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, China.,Department of Dermatology, China-Japan Friendship Hospital, Beijing, China.,Department of Dermatology, No. 2 Hospital, Anhui Medical University, Hefei, China.,Department of Dermatology, Huashan Hospital and Collaborative Innovation Center of Complex and Severe Skin Disease, Fudan University, Shanghai, China
| |
Collapse
|
92
|
Ballingall KT, McIntyre A, Lin Z, Timmerman N, Matthysen E, Lurz PW, Melville L, Wallace A, Meredith AL, Romeo C, Wauters LA, Sainsbury AW, McInnes CJ. Limited diversity associated with duplicated class II MHC-DRB genes in the red squirrel population in the United Kingdom compared with continental Europe. CONSERV GENET 2016. [DOI: 10.1007/s10592-016-0852-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
93
|
Morishima S, Kashiwase K, Matsuo K, Azuma F, Yabe T, Sato-Otsubo A, Ogawa S, Shiina T, Satake M, Saji H, Kato S, Kodera Y, Sasazuki T, Morishima Y. High-risk HLA alleles for severe acute graft-versus-host disease and mortality in unrelated donor bone marrow transplantation. Haematologica 2016; 101:491-8. [PMID: 26768690 DOI: 10.3324/haematol.2015.136903] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 01/13/2016] [Indexed: 11/09/2022] Open
Abstract
HLA molecules play an important role for immunoreactivity in allogeneic hematopoietic stem cell transplantation. To elucidate the effect of specific HLA alleles on acute graft-versus-host disease, we conducted a retrospective analysis using 6967 Japanese patients transplanted with T-cell-replete marrow from an unrelated donor. Using unbiased searches of patient and donor HLA alleles, patient and/or donor HLA-B*51:01 (patient: HR, 1.37,P<0.001; donor: HR, 1.35,P<0.001) and patient HLA-C*14:02 (HR, 1.35,P<0.001) were significantly associated with an increased risk of severe acute graft-versus-host disease. The finding that donor HLA-C*14:02 was not associated with severe acute graft-versus-host disease prompted us to elucidate the relation of these high-risk HLA alleles with patient and donor HLA-C allele mismatches. In comparison to HLA-C allele match, patient mismatched HLA-C*14:02 showed the highest risk of severe acute graft-versus-host disease (HR, 3.61,P<0.001) and transplant-related mortality (HR, 2.53,P<0.001) among all patient mismatched HLA-C alleles. Although patient HLA-C*14:02 and donor HLA-C*15:02 mismatch was usually KIR2DL-ligand mismatch in the graft-versus-host direction, the risk of patient mismatched HLA-C*14:02 for severe acute graft-versus-host disease was obvious regardless of KIR2DL-ligand matching. The effect of patient and/or donor HLA-B*51:01 on acute graft-versus-host disease was attributed not only to strong linkage disequilibrium of HLA-C*14:02 and -B*51:01, but also to the effect of HLA-B*51:01 itself. With regard to clinical implications, patient mismatched HLA-C*14:02 proved to be a potent risk factor for severe acute graft-versus-host disease and mortality, and should be considered a non-permissive HLA-C mismatch in donor selection for unrelated donor hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Satoko Morishima
- Department of Hematology, Fujita Health University School of Medicine, Toyoake, Aichi, Tokyo, Japan
| | - Koichi Kashiwase
- Japanese Red Cross Kanto-Koshinetsu Block Blood Center, Tokyo, Japan
| | - Keitaro Matsuo
- Divsion of Molecular Medicine, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Fumihiro Azuma
- Japanese Red Cross Kanto-Koshinetsu Block Blood Center, Tokyo, Japan
| | - Toshio Yabe
- Japanese Red Cross Kanto-Koshinetsu Block Blood Center, Tokyo, Japan
| | - Aiko Sato-Otsubo
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Japan
| | - Takashi Shiina
- Division of Basic Medical Science and Molecular Medicine, Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Masahiro Satake
- Japanese Red Cross Kanto-Koshinetsu Block Blood Center, Tokyo, Japan
| | | | - Shunichi Kato
- Department of Cell Transplantation and Regenerative Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Yoshihisa Kodera
- Department of Promotion for Blood and Marrow Transplantation, Aichi Medical University School of Medicine, Nagakute, Japan
| | | | - Yasuo Morishima
- Division of Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, Japan
| | | |
Collapse
|
94
|
Intrahaplotypic Variants Differentiate Complex Linkage Disequilibrium within Human MHC Haplotypes. Sci Rep 2015; 5:16972. [PMID: 26593880 PMCID: PMC4655331 DOI: 10.1038/srep16972] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 10/22/2015] [Indexed: 12/21/2022] Open
Abstract
Distinct regions of long-range genetic fixation in the human MHC region, known as conserved extended haplotypes (CEHs), possess unique genomic characteristics and are strongly associated with numerous diseases. While CEHs appear to be homogeneous by SNP analysis, the nature of fine variations within their genomic structure is unknown. Using multiple, MHC-homozygous cell lines, we demonstrate extensive sequence conservation in two common Asian MHC haplotypes: A33-B58-DR3 and A2-B46-DR9. However, characterization of phase-resolved MHC haplotypes revealed unique intra-CEH patterns of variation and uncovered 127 single nucleotide variants (SNVs) which are missing from public databases. We further show that the strong linkage disequilibrium structure within the human MHC that typically confounds precise identification of genetic features can be resolved using intra-CEH variants, as evidenced by rs3129063 and rs448489, which affect expression of ZFP57, a gene important in methylation and epigenetic regulation. This study demonstrates an improved strategy that can be used towards genetic dissection of diseases.
Collapse
|
95
|
Sauer MED, Salomão H, Ramos GB, D'Espindula HRS, Rodrigues RSA, Macedo WC, Sindeaux RHM, Mira MT. Genetics of leprosy: Expected-and unexpected-developments and perspectives. Clin Dermatol 2015; 34:96-104. [PMID: 26773629 DOI: 10.1016/j.clindermatol.2015.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A solid body of evidence produced over decades of intense research supports the hypothesis that leprosy phenotypes are largely dependent on the genetic characteristics of the host. The early evidence of a major gene effect controlling susceptibility to leprosy came from studies of familial aggregation, twins, and complex segregation analysis. Later, linkage and association analysis, first applied to the investigation of candidate genes and chromosomal regions and more recently, to genome-wide scans, have revealed several HLA and non-HLA gene variants as risk factors for leprosy phenotypes such as disease per se, its clinical forms, and leprosy reactions. In addition, powerful, hypothesis-free strategies such as genome-wide association studies have led to an exciting, unexpected development: Leprosy susceptibility genes seem to be shared with Crohn's and Parkinson's disease. Today, a major challenge is to find the exact variants causing the biological effect underlying the genetic associations. New technologies, such as Next Generation Sequencing-that allows, for the first time, the cost- and time-effective sequencing of a complete human genome-hold the promise to reveal such variants; thus, strategies can be developed to study the functional impact of these variants in the context of infection, hopefully leading to the development of new targets for leprosy treatment and prevention.
Collapse
Affiliation(s)
- Monica E D Sauer
- Group for Advanced Molecular Investigation, Graduate Program in Health Sciences, School of Medicine, Pontifical Catholic University of Paraná, Curitiba, Paraná, Brazil
| | - Heloisa Salomão
- Group for Advanced Molecular Investigation, Graduate Program in Health Sciences, School of Medicine, Pontifical Catholic University of Paraná, Curitiba, Paraná, Brazil
| | - Geovana B Ramos
- Group for Advanced Molecular Investigation, Graduate Program in Health Sciences, School of Medicine, Pontifical Catholic University of Paraná, Curitiba, Paraná, Brazil
| | - Helena R S D'Espindula
- Group for Advanced Molecular Investigation, Graduate Program in Health Sciences, School of Medicine, Pontifical Catholic University of Paraná, Curitiba, Paraná, Brazil
| | - Rafael S A Rodrigues
- Group for Advanced Molecular Investigation, Graduate Program in Health Sciences, School of Medicine, Pontifical Catholic University of Paraná, Curitiba, Paraná, Brazil
| | - Wilian C Macedo
- Group for Advanced Molecular Investigation, Graduate Program in Health Sciences, School of Medicine, Pontifical Catholic University of Paraná, Curitiba, Paraná, Brazil
| | - Renata H M Sindeaux
- School of Health and Biological Sciences, Pontifical Catholic University of Paraná, Curitiba, Paraná, Brazil
| | - Marcelo T Mira
- Group for Advanced Molecular Investigation, Graduate Program in Health Sciences, School of Medicine, Pontifical Catholic University of Paraná, Curitiba, Paraná, Brazil; School of Health and Biological Sciences, Pontifical Catholic University of Paraná, Curitiba, Paraná, Brazil.
| |
Collapse
|
96
|
Siva Subramaniam N, Morgan EF, Wetherall JD, Stear MJ, Groth DM. A comprehensive mapping of the structure and gene organisation in the sheep MHC class I region. BMC Genomics 2015; 16:810. [PMID: 26480943 PMCID: PMC4613773 DOI: 10.1186/s12864-015-1992-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 10/06/2015] [Indexed: 11/13/2022] Open
Abstract
Background The major histocompatibility complex (MHC) is a chromosomal region that regulates immune responsiveness in vertebrates. This region is one of the most important for disease resistance because it has been associated with resistance or susceptibility to a wide variety of diseases and because the MHC often accounts for more of the variance than other loci. Selective breeding for disease resistance is becoming increasingly common in livestock industries, and it is important to determine how this will influence MHC polymorphism and resistance to diseases that are not targeted for selection. However, in sheep the order and sequence of the protein coding genes is controversial. Yet this information is needed to determine precisely how the MHC influences resistance and susceptibility to disease. Methods CHORI bacterial artificial chromosomes (BACs) known to contain sequences from the sheep MHC class I region were sub-cloned, and the clones partially sequenced. The resulting sequences were analysed and re-assembled to identify gene content and organisation within each BAC. The low resolution MHC class I physical map was then compared to the cattle reference genome, the Chinese Merino sheep MHC map published by Gao, et al. (2010) and the recently available sheep reference genome. Results Immune related class I genes are clustered into 3 blocks; beta, kappa and a novel block not previously identified in other organisms. The revised map is more similar to Bovidae maps than the previous sheep maps and also includes several genes previously not annotated in the Chinese Merino BAC assembly and others not currently annotated in the sheep reference chromosome 20. In particular, the organisation of nonclassical MHC class I genes is similar to that present in the cattle MHC. Sequence analysis and prediction of amino acid sequences of MHC class I classical and nonclassical genes was performed and it was observed that the map contained one classical and eight nonclassical genes together with three possible pseudogenes. Conclusions The comprehensive physical map of the sheep MHC class I region enhances our understanding of the genetic architecture of the class I MHC region in sheep and will facilitate future studies of MHC function. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1992-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- N Siva Subramaniam
- School of Biomedical Sciences, CHIRI Biosciences Research Precinct, Faculty of Health Sciences, Curtin University, GPO Box U1987, Perth, 6845, WA, Australia.
| | - E F Morgan
- School of Biomedical Sciences, CHIRI Biosciences Research Precinct, Faculty of Health Sciences, Curtin University, GPO Box U1987, Perth, 6845, WA, Australia.
| | - J D Wetherall
- School of Biomedical Sciences, CHIRI Biosciences Research Precinct, Faculty of Health Sciences, Curtin University, GPO Box U1987, Perth, 6845, WA, Australia.
| | - M J Stear
- Department of Animal Production and Public Health, Faculty of Veterinary Medicine, University of Glasgow, Bearsden Road, Glasgow, G61 1QH, UK. .,Institute of Biodiversity, Animal Health and Comparative Medicine, Garscube Estate, University of Glasgow, Bearsden Road, Glasgow, G61 1QH, UK.
| | - D M Groth
- School of Biomedical Sciences, CHIRI Biosciences Research Precinct, Faculty of Health Sciences, Curtin University, GPO Box U1987, Perth, 6845, WA, Australia.
| |
Collapse
|
97
|
Luo H, Ye H, Ng HW, Shi L, Tong W, Mendrick DL, Hong H. Machine Learning Methods for Predicting HLA-Peptide Binding Activity. Bioinform Biol Insights 2015; 9:21-9. [PMID: 26512199 PMCID: PMC4603527 DOI: 10.4137/bbi.s29466] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 07/30/2015] [Accepted: 08/02/2015] [Indexed: 11/23/2022] Open
Abstract
As major histocompatibility complexes in humans, the human leukocyte antigens (HLAs) have important functions to present antigen peptides onto T-cell receptors for immunological recognition and responses. Interpreting and predicting HLA–peptide binding are important to study T-cell epitopes, immune reactions, and the mechanisms of adverse drug reactions. We review different types of machine learning methods and tools that have been used for HLA–peptide binding prediction. We also summarize the descriptors based on which the HLA–peptide binding prediction models have been constructed and discuss the limitation and challenges of the current methods. Lastly, we give a future perspective on the HLA–peptide binding prediction method based on network analysis.
Collapse
Affiliation(s)
- Heng Luo
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA. ; University of Arkansas at Little Rock/University of Arkansas for Medical Sciences Bioinformatics Graduate Program, Little Rock, AR, USA
| | - Hao Ye
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Hui Wen Ng
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Leming Shi
- Center for Pharmacogenomics, School of Pharmacy, Fudan University, Shanghai, China
| | - Weida Tong
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Donna L Mendrick
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Huixiao Hong
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| |
Collapse
|
98
|
Wenzlau JM, Fain PR, Gardner TJ, Frisch LM, Annibale B, Hutton JC. ATPase4A Autoreactivity and Its Association With Autoimmune Phenotypes in the Type 1 Diabetes Genetics Consortium Study. Diabetes Care 2015; 38 Suppl 2:S29-36. [PMID: 26405069 PMCID: PMC4582907 DOI: 10.2337/dcs15-2006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Autoantibodies targeting the H+/K+-ATPase proton pump of the gastric parietal cell (parietal cell antibodies [PCA]) are diagnostic of atrophic body gastritis (ABG) leading to pernicious anemia (PA). PCA, ABG, and PA occur in increased frequency in patients with type 1 diabetes and their relatives and are considered "minor" components of forms of autoimmune polyglandular syndrome (APS). A customized radioimmunoprecipitation assay was applied to 6,749 samples from the Type 1 Diabetes Genetics Consortium to measure ATP4A autoreactivity. Autoantibody prevalence was correlated with variants in HLA class II, PTPN22, and CTLA4 genes. With an ATP4A radioimmunoprecipitation assay, PCA were detected in sera from 20.9% of affected individuals. PCA prevalence increased with age and was greater in females (25.3%) than males (16.5%) and among Hispanics (36.3%) and blacks (26.2%) compared with non-Hispanic whites (20.8%) and Asians (16.7%). PCA and other organ-specific autoantibodies GAD65, IA-2, thyroid peroxidase (TPO), 21-hydroxylase (21-OH), and transglutaminase (TG) clustered within families with heritability estimates from 71 to 95%. PCA clustered with TPO, 21-OH, and persistent GAD65 autoantibodies but not with celiac (TG) or IA-2 autoantibodies. PCA-positive subjects showed an increased frequency of DRB1*0404, DPB1*0201, and PTPN22 R620W (rs2476601-T) and a decreased frequency of DRB1*0101, DPB1*0301, and CTLA4 CT60 (rs3087243-T). Genetic variants accounted for 4-5% of the heritable risk for PCA. The same alleles were associated with other autoantibody phenotypes in a consistent pattern. Whereas most of the heritable risk for PCA and other antibodies reflects genetic effects that are tissue specific, parietal cell autoimmunity is a major pathogenetic contributor in APS2.
Collapse
Affiliation(s)
- Janet M Wenzlau
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, CO
| | - Pamela R Fain
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, CO
| | - Thomas J Gardner
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, CO
| | - Lisa M Frisch
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, CO
| | - Bruno Annibale
- Digestive and Liver Disease Unit, University "La Sapienza," Sant'Andrea Hospital, Rome, Italy
| | - John C Hutton
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, CO
| |
Collapse
|
99
|
Naiken S, Griffiths MA, Edouard L, Padayatchy N. Factors influencing reproduction in captive-bred cynomolgus monkeys (Macaca fascicularis) from Mauritius. Am J Primatol 2015; 77:1290-8. [PMID: 26375598 DOI: 10.1002/ajp.22482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 09/04/2015] [Accepted: 09/05/2015] [Indexed: 11/11/2022]
Abstract
The cynomolgus monkey is widely used in reproductive research. However, the effects on their reproductive parameters of infant and maternal factors such as birth order, sex of infants, twin births, maternal age and lactation status have not been fully examined. The aim of this retrospective study was to determine how such infant and maternal factors impact on infant birth weight, birth viability, neonatal loss and retained placenta in cynomolgus monkeys. The study was based on birth data from a cohort of 789 females over an eight-year period. Consistent with reports made in other macaque species, female offspring had lower birth weight compared with males. Birth weights of firstborn infants were lower compared with birth weights of higher birth order infants. Results from the logistic regression analysis showed that the risk of non-viable births was increased by advancing maternal age and retained placenta. As in other non-human primates, maternal age had predictive value for non-viable births in cynomolgus monkeys. The risk of neonatal loss decreased with advancing maternal age but was not affected by birth order. Firstborn offspring did not have an increased risk for neonatal loss, possibly from the practice of retaining mothers in their natal groups, which improved maternal skills in primiparous females. However, infant low birth weight and non-lactating females increased the risk of neonatal loss, and the delivery of low birth weight infants was associated with retained placenta. The results from this study can be useful for scientists conducting reproductive studies and for colony managers in maximizing fertility and infant survival of cynomolgus monkeys.
Collapse
Affiliation(s)
- Sandiren Naiken
- Bioculture (Mauritius) Ltd, Senneville, Rivière des Anguilles, Mauritius
| | - Mary-Ann Griffiths
- Bioculture (Mauritius) Ltd, Senneville, Rivière des Anguilles, Mauritius
| | - Lindsay Edouard
- Bioculture (Mauritius) Ltd, Senneville, Rivière des Anguilles, Mauritius
| | - Nada Padayatchy
- Bioculture (Mauritius) Ltd, Senneville, Rivière des Anguilles, Mauritius
| |
Collapse
|
100
|
Cammen KM, Schultz TF, Rosel PE, Wells RS, Read AJ. Genomewide investigation of adaptation to harmful algal blooms in common bottlenose dolphins (Tursiops truncatus). Mol Ecol 2015; 24:4697-710. [DOI: 10.1111/mec.13350] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 08/07/2015] [Accepted: 08/17/2015] [Indexed: 01/28/2023]
Affiliation(s)
- Kristina M. Cammen
- Nicholas School of the Environment; Duke University; 135 Duke Marine Lab Road Beaufort NC 28516 USA
| | - Thomas F. Schultz
- Nicholas School of the Environment; Duke University; 135 Duke Marine Lab Road Beaufort NC 28516 USA
| | - Patricia E. Rosel
- National Marine Fisheries Service; Southeast Fisheries Science Center; 646 Cajundome Blvd Lafayette LA 70506 USA
| | - Randall S. Wells
- Chicago Zoological Society; c/o Mote Marine Laboratory; 1600 Ken Thompson Parkway Sarasota FL 34236 USA
| | - Andrew J. Read
- Nicholas School of the Environment; Duke University; 135 Duke Marine Lab Road Beaufort NC 28516 USA
| |
Collapse
|