51
|
Cancer-mutated ribosome protein L22 (RPL22/eL22) suppresses cancer cell survival by blocking p53-MDM2 circuit. Oncotarget 2017; 8:90651-90661. [PMID: 29207594 PMCID: PMC5710875 DOI: 10.18632/oncotarget.21544] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 09/08/2017] [Indexed: 02/07/2023] Open
Abstract
Several ribosomal proteins (RPs) in response to various ribosomal stressors have been shown to play a critical role in p53-dependent regulation of cell cycle arrest, apoptosis and tumor suppression. Here, we report ribosomal protein L22 (RPL22/eL22) as a novel p53 activator highly mutated (mostly deletion mutation) in various types of human cancers, but not essential for ribosomal biogenesis in normal cells. Ectopic expression of RPL22/eL22 suppressed the colony formation of cancer cells in a p53-dependent manner, whereas knockdown of RPL22/eL22 significantly compromised p53 activation by Actinomycin D, rescuing p53-induced G1/G0 cell cycle arrest. Interestingly, human tumors with RPL22/eL22 deletion appeared to sustain wild type p53. Mechanistically, RPL22/eL22 bound to MDM2 acidic domain and inhibited MDM2-mediated p53 ubiquitination and degradation, hence extending the half-life of p53. Ribosome-profiling analysis revealed that induction of ribosomal stress by Actinomycin D leads to the increase of ribosome-free RPL22/eL22 pool. Also, RPL22/eL22 formed a complex with MDM2/RPL5/uL18/RPL11/uL5 and synergized with RPL11/uL5 to activate p53. Furthermore, the N terminus of RPL22/eL22 bound to MDM2, while the C terminus interacted with RPL5/uL18/RPL11/uL5; both of these two fragments activated p53 by inhibiting MDM2. Our study indicates that RPL22/eL22 highly mutated in human cancers plays an anti-cancer role likely through regulation of the MDM2-p53 feedback loop, and also suggests that targeting the RPL22/eL22-MDM2-p53 pathway could be a potential strategy for future development of anti-cancer therapy.
Collapse
|
52
|
Tan TCJ, Knight J, Sbarrato T, Dudek K, Willis AE, Zamoyska R. Suboptimal T-cell receptor signaling compromises protein translation, ribosome biogenesis, and proliferation of mouse CD8 T cells. Proc Natl Acad Sci U S A 2017; 114:E6117-E6126. [PMID: 28696283 PMCID: PMC5544288 DOI: 10.1073/pnas.1700939114] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Global transcriptomic and proteomic analyses of T cells have been rich sources of unbiased data for understanding T-cell activation. Lack of full concordance of these datasets has illustrated that important facets of T-cell activation are controlled at the level of translation. We undertook translatome analysis of CD8 T-cell activation, combining polysome profiling and microarray analysis. We revealed that altering T-cell receptor stimulation influenced recruitment of mRNAs to heavy polysomes and translation of subsets of genes. A major pathway that was compromised, when TCR signaling was suboptimal, was linked to ribosome biogenesis, a rate-limiting factor in both cell growth and proliferation. Defective TCR signaling affected transcription and processing of ribosomal RNA precursors, as well as the translation of specific ribosomal proteins and translation factors. Mechanistically, IL-2 production was compromised in weakly stimulated T cells, affecting the abundance of Myc protein, a known regulator of ribosome biogenesis. Consequently, weakly activated T cells showed impaired production of ribosomes and a failure to maintain proliferative capacity after stimulation. We demonstrate that primary T cells respond to various environmental cues by regulating ribosome biogenesis and mRNA translation at multiple levels to sustain proliferation and differentiation.
Collapse
Affiliation(s)
- Thomas C J Tan
- Institute of Immunology and Infection Research, Ashworth Laboratories, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - John Knight
- Medical Research Council Toxicology Unit, Leicester LE1 9HN, United Kingdom
| | - Thomas Sbarrato
- Medical Research Council Toxicology Unit, Leicester LE1 9HN, United Kingdom
| | - Kate Dudek
- Medical Research Council Toxicology Unit, Leicester LE1 9HN, United Kingdom
| | - Anne E Willis
- Medical Research Council Toxicology Unit, Leicester LE1 9HN, United Kingdom
| | - Rose Zamoyska
- Institute of Immunology and Infection Research, Ashworth Laboratories, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom;
| |
Collapse
|
53
|
Takafuji T, Kayama K, Sugimoto N, Fujita M. GRWD1, a new player among oncogenesis-related ribosomal/nucleolar proteins. Cell Cycle 2017; 16:1397-1403. [PMID: 28722511 DOI: 10.1080/15384101.2017.1338987] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Increasing attention has been paid to certain ribosomal or ribosome biosynthesis-related proteins involved in oncogenesis. Members of one group are classified as "tumor suppressive factors" represented by RPL5 and RPL11; loss of their functions leads to cancer predisposition. RPL5 and RPL11 prevent tumorigenesis by binding to and inhibiting the MDM2 ubiquitin ligase and thereby up-regulating p53. Many other candidate tumor suppressive ribosomal/nucleolar proteins have been suggested. However, it remains to be experimentally clarified whether many of these factors can actually prevent tumorigenesis and if so, how they do so. Conversely, some ribosomal/nucleolar proteins promote tumorigenesis. For example, PICT1 binds to and anchors RPL11 in nucleoli, down-regulating p53 and promoting tumorigenesis. GRWD1 was recently identified as another such factor. When overexpressed, GRWD1 suppresses p53 and transforms normal human cells, probably by binding to RPL11 and sequestrating it from MDM2. However, other pathways may also be involved.
Collapse
Affiliation(s)
- Takuya Takafuji
- a Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences , Kyushu University , Higashi-ku, Fukuoka , Japan
| | - Kota Kayama
- a Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences , Kyushu University , Higashi-ku, Fukuoka , Japan
| | - Nozomi Sugimoto
- a Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences , Kyushu University , Higashi-ku, Fukuoka , Japan
| | - Masatoshi Fujita
- a Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences , Kyushu University , Higashi-ku, Fukuoka , Japan
| |
Collapse
|
54
|
Probing the mechanisms underlying human diseases in making ribosomes. Biochem Soc Trans 2017; 44:1035-44. [PMID: 27528749 DOI: 10.1042/bst20160064] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Indexed: 12/26/2022]
Abstract
Ribosomes are essential, highly complex machines responsible for protein synthesis in all growing cells. Because of their importance, the process of building these machines is intricately regulated. Although the proteins involved in regulating ribosome biogenesis are just beginning to be understood, especially in human cells, the consequences for dysregulating this process have been even less studied. Such interruptions in ribosome synthesis result in a collection of human disorders known as ribosomopathies. Ribosomopathies, which occur due to mutations in proteins involved in the global process of ribosome biogenesis, result in tissue-specific defects. The questions posed by this dichotomy and the steps taken to address these questions are therefore the focus of this review: How can tissue-specific disorders result from alterations in global processes? Could ribosome specialization account for this difference?
Collapse
|
55
|
Jacobsen JA, Woodard J, Mandal M, Clark MR, Bartom ET, Sigvardsson M, Kee BL. EZH2 Regulates the Developmental Timing of Effectors of the Pre-Antigen Receptor Checkpoints. THE JOURNAL OF IMMUNOLOGY 2017; 198:4682-4691. [PMID: 28490575 DOI: 10.4049/jimmunol.1700319] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 04/17/2017] [Indexed: 12/11/2022]
Abstract
The histone methyltransferase EZH2 is required for B and T cell development; however, the molecular mechanisms underlying this requirement remain elusive. In a murine model of lymphoid-specific EZH2 deficiency we found that EZH2 was required for proper development of adaptive, but not innate, lymphoid cells. In adaptive lymphoid cells EZH2 prevented the premature expression of Cdkn2a and the consequent stabilization of p53, an effector of the pre-Ag receptor checkpoints. Deletion of Cdkn2a in EZH2-deficient lymphocytes prevented p53 stabilization, extended lymphocyte survival, and restored differentiation resulting in the generation of mature B and T lymphocytes. Our results uncover a crucial role for EZH2 in adaptive lymphocytes to control the developmental timing of effectors of the pre-Ag receptor checkpoints.
Collapse
Affiliation(s)
| | - Jennifer Woodard
- Committee on Immunology, The University of Chicago, Chicago, IL 60637
| | - Malay Mandal
- Division of Rheumatology, Department of Medicine, The University of Chicago, Chicago, IL 60637
| | - Marcus R Clark
- Committee on Immunology, The University of Chicago, Chicago, IL 60637.,Division of Rheumatology, Department of Medicine, The University of Chicago, Chicago, IL 60637
| | | | - Mikael Sigvardsson
- Department of Molecular Hematology, Lund University, 22184 Lund, Sweden; and
| | - Barbara L Kee
- Committee on Immunology, The University of Chicago, Chicago, IL 60637; .,Department of Pathology, The University of Chicago, Chicago, IL 60637
| |
Collapse
|
56
|
Deisenroth C, Franklin DA, Zhang Y. The Evolution of the Ribosomal Protein-MDM2-p53 Pathway. Cold Spring Harb Perspect Med 2016; 6:cshperspect.a026138. [PMID: 27908926 DOI: 10.1101/cshperspect.a026138] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The progression of our understanding of ribosomal proteins as static building blocks of the ribosome to highly integrated sensors of p53 surveillance and function has achieved a tremendous rate of growth over the past several decades. As the workhorse of the cell, ribosomes are responsible for translating the genetic code into the functional units that drive cell growth and proliferation. The seminal identification of ribosomal protein binding to MDM2, the negative regulator of p53, has evolved into a paradigm for ribosomal protein-MDM2-p53 signaling that extends into processes as diverse as energy metabolism to proliferation. The central core of signaling occurs when perturbations to rRNA synthesis, processing, and assembly modulate the rate of ribosome biogenesis, signaling a nucleolar stress response to p53. This has led to identification of a number of disease pathologies related to ribosomal protein dysfunction that are manifested as developmental disorders or cancer. Advancing research into the basic mechanics of ribosomal protein-MDM2-p53 signaling is paving the way for novel translational research into biomarker identification and therapeutic strategies for ribosome-related diseases.
Collapse
Affiliation(s)
- Chad Deisenroth
- The Hamner Institutes for Health Sciences, Institute for Chemical Safety Sciences, Research Triangle Park, North Carolina 27709
| | - Derek A Franklin
- Department of Radiation Oncology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599.,Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Yanping Zhang
- Department of Radiation Oncology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599.,Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| |
Collapse
|
57
|
Fahl SP, Wang M, Zhang Y, Duc ACE, Wiest DL. Regulatory Roles of Rpl22 in Hematopoiesis: An Old Dog with New Tricks. Crit Rev Immunol 2016; 35:379-400. [PMID: 26853850 DOI: 10.1615/critrevimmunol.v35.i5.30] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Ribosomal proteins have long been known to serve critical roles in facilitating the biogenesis of the ribosome and its ability to synthesize proteins. However, evidence is emerging that suggests ribosomal proteins are also capable of performing tissue-restricted, regulatory functions that impact normal development and pathological conditions, including cancer. The challenge in studying such regulatory functions is that elimination of many ribosomal proteins also disrupts ribosome biogenesis and/or function. Thus, it is difficult to determine whether developmental abnormalities resulting from ablation of a ribosomal protein result from loss of core ribosome functions or from loss of the regulatory function of the ribosomal protein. Rpl22, a ribosomal protein component of the large 60S subunit, provides insight into this conundrum; Rpl22 is dispensable for both ribosome biogenesis and protein synthesis yet its ablation causes tissue-restricted disruptions in development. Here we review evidence supporting the regulatory functions of Rpl22 and other ribosomal proteins.
Collapse
Affiliation(s)
- Shawn P Fahl
- Blood Cell Development and Function Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111
| | - Minshi Wang
- Blood Cell Development and Function Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111
| | - Yong Zhang
- Blood Cell Development and Function Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111
| | - Anne-Cecile E Duc
- Blood Cell Development and Function Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111
| | - David L Wiest
- Blood Cell Development and Function Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111
| |
Collapse
|
58
|
Abstract
Based on the histological features and outcome, the current WHO classification separates thymomas into A, AB, B1, B2 and B3 subtypes. It is hypothesized that the type A thymomas are derived from the thymic medulla while the type B thymomas are derived from the cortex. Due to occasional histological overlap between the tumor subtypes creating difficulties in their separation, the aim of this study was to provide their proteomic characterization and identify potential immunohistochemical markers aiding in tissue diagnosis. Pair-wise comparison of neoplastic and normal thymus by liquid chromatography tandem mass spectrometry (LC-MS/MS) of formalin fixed paraffin embedded tissue revealed 61 proteins differentially expressed in thymomas compared to normal tissue. Hierarchical clustering showed distinct segregation of subtypes AB, B1 and B2 from that of A and B3. Most notably, desmoyokin, a protein that is encoded by the AHNAK gene, was associated with type A thymomas and medulla of normal thymus, by LC-MS/MS and immunohistochemistry. In this global proteomic characterization of the thymoma, several proteins unique to different thymic compartments and thymoma subtypes were identified. Among differentially expressed proteins, desmoyokin is a marker specific for thymic medulla and is potentially promising immunohistochemical marker in separation of type A and B3 thymomas.
Collapse
|
59
|
Solanki NR, Stadanlick JE, Zhang Y, Duc AC, Lee SY, Lauritsen JPH, Zhang Z, Wiest DL. Rpl22 Loss Selectively Impairs αβ T Cell Development by Dysregulating Endoplasmic Reticulum Stress Signaling. THE JOURNAL OF IMMUNOLOGY 2016; 197:2280-9. [PMID: 27489283 DOI: 10.4049/jimmunol.1600815] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 07/12/2016] [Indexed: 11/19/2022]
Abstract
Although ribosomal proteins (RP) are thought to primarily facilitate biogenesis of the ribosome and its ability to synthesize protein, emerging evidence suggests that individual RP can perform critical regulatory functions that control developmental processes. We showed previously that despite the ubiquitous expression of the RP ribosomal protein L22 (Rpl22), germline ablation of Rpl22 in mice causes a selective, p53-dependent block in the development of αβ, but not γδ, T cell progenitors. Nevertheless, the basis by which Rpl22 loss selectively induces p53 in αβ T cell progenitors remained unclear. We show in this study that Rpl22 regulates the development of αβ T cells by restraining endoplasmic reticulum (ER) stress responses. In the absence of Rpl22, ER stress is exacerbated in αβ, but not γδ, T cell progenitors. The exacerbated ER stress in Rpl22-deficient αβ T lineage progenitors is responsible for selective induction of p53 and their arrest, as pharmacological induction of stress is sufficient to induce p53 and replicate the selective block of αβ T cells, and attenuation of ER stress signaling by knockdown of protein kinase R-like ER kinase, an ER stress sensor, blunts p53 induction and rescues development of Rpl22-deficient αβ T cell progenitors. Rpl22 deficiency appears to exacerbate ER stress by interfering with the ability of ER stress signals to block new protein synthesis. Our finding that Rpl22 deficiency exacerbates ER stress responses and induces p53 in αβ T cell progenitors provides insight into how a ubiquitously expressed RP can perform regulatory functions that are selectively required by some cell lineages but not others.
Collapse
Affiliation(s)
- Nehal R Solanki
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111; and Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19111
| | - Jason E Stadanlick
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111; and
| | - Yong Zhang
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111; and
| | - Ann-Cecile Duc
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111; and
| | - Sang-Yun Lee
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111; and
| | | | - Zhiqiang Zhang
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111; and
| | - David L Wiest
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111; and
| |
Collapse
|
60
|
Kim SJ, Strich R. Rpl22 is required for IME1 mRNA translation and meiotic induction in S. cerevisiae. Cell Div 2016; 11:10. [PMID: 27478489 PMCID: PMC4966820 DOI: 10.1186/s13008-016-0024-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 07/08/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The transition from mitotic cell division to meiotic development in S. cerevisiae requires induction of a transient transcription program that is initiated by Ime1-dependent destruction of the repressor Ume6. Although IME1 mRNA is observed in vegetative cultures, Ime1 protein is not suggesting the presence of a regulatory system restricting translation to meiotic cells. RESULTS This study demonstrates that IME1 mRNA translation requires Rpl22A and Rpl22B, eukaryotic-specific ribosomal protein paralogs of the 60S large subunit. In the absence of Rpl22 function, IME1 mRNA synthesis is normal in cultures induced to enter meiosis. However, Ime1 protein production is reduced and the Ume6 repressor is not destroyed in rpl22 mutant cells preventing early meiotic gene induction resulting in a pre-meiosis I arrest. This role for Rpl22 is not a general consequence of mutating non-essential large ribosomal proteins as strains lacking Rpl29 or Rpl39 execute meiosis with nearly wild-type efficiencies. Several results indicate that Rpl22 functions by enhancing IME1 mRNA translation. First, the Ime1 protein synthesized in rpl22 mutant cells demonstrates the same turnover rate as in wild-type cultures. In addition, IME1 transcript is found in polysome fractions isolated from rpl22 mutant cells indicating that mRNA nuclear export and ribosome association occurs. Finally, deleting the unusually long 5'UTR restores Ime1 levels and early meiotic gene transcription in rpl22 mutants suggesting that Rpl22 enhances translation through this element. Polysome profiles revealed that under conditions of high translational output, Rpl22 maintains high free 60S subunit levels thus preventing halfmer formation, a translation species indicative of mRNAs bound by an unpaired 40S subunit. In addition to meiosis, Rpl22 is also required for invasive and pseudohyphal growth. CONCLUSIONS These findings indicate that Rpl22A and Rpl22B are required to selectively translate IME1 mRNA that is required for meiotic induction and subsequent gametogenesis. In addition, our results imply a more general role for Rpl22 in cell fate switches responding to environmental nitrogen signals.
Collapse
Affiliation(s)
- Stephen J Kim
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Two Medical Center Dr., Stratford, NJ 08055 USA
| | - Randy Strich
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Two Medical Center Dr., Stratford, NJ 08055 USA
| |
Collapse
|
61
|
Xu X, Xiong X, Sun Y. The role of ribosomal proteins in the regulation of cell proliferation, tumorigenesis, and genomic integrity. SCIENCE CHINA-LIFE SCIENCES 2016; 59:656-72. [DOI: 10.1007/s11427-016-0018-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 04/06/2016] [Indexed: 01/29/2023]
|
62
|
Dodds SG, Livi CB, Parihar M, Hsu HK, Benavides AD, Morris J, Javors M, Strong R, Christy B, Hasty P, Sharp ZD. Adaptations to chronic rapamycin in mice. PATHOBIOLOGY OF AGING & AGE RELATED DISEASES 2016; 6:31688. [PMID: 27237224 PMCID: PMC4884683 DOI: 10.3402/pba.v6.31688] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 04/21/2016] [Indexed: 11/24/2022]
Abstract
Rapamycin inhibits mechanistic (or mammalian) target of rapamycin (mTOR) that promotes protein production in cells by facilitating ribosome biogenesis (RiBi) and eIF4E-mediated 5'cap mRNA translation. Chronic treatment with encapsulated rapamycin (eRapa) extended health and life span for wild-type and cancer-prone mice. Yet, the long-term consequences of chronic eRapa treatment are not known at the organ level. Here, we report our observations of chronic eRapa treatment on mTORC1 signaling and RiBi in mouse colon and visceral adipose. As expected, chronic eRapa treatment decreased detection of phosphorylated mTORC1/S6K substrate, ribosomal protein (rpS6) in colon and fat. However, in colon, contrary to expectations, there was an upregulation of 18S rRNA and some ribosomal protein genes (RPGs) suggesting increased RiBi. Among RPGs, eRapa increases rpl22l1 mRNA but not its paralog rpl22. Furthermore, there was an increase in the cap-binding protein, eIF4E relative to its repressor 4E-BP1 suggesting increased translation. By comparison, in fat, there was a decrease in the level of 18S rRNA (opposite to colon), while overall mRNAs encoding ribosomal protein genes appeared to increase, including rpl22, but not rpl22l1 (opposite to colon). In fat, there was a decrease in eIF4E relative to actin (opposite to colon) but also an increase in the eIF4E/4E-BP1 ratio likely due to reductions in 4E-BP1 at our lower eRapa dose (similar to colon). Thus, in contrast to predictions of decreased protein production seen in cell-based studies, we provide evidence that colon from chronically treated mice exhibited an adaptive 'pseudo-anabolic' state, which is only partially present in fat, which might relate to differing tissue levels of rapamycin, cell-type-specific responses, and/or strain differences.
Collapse
Affiliation(s)
- Sherry G Dodds
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
| | - Carolina B Livi
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
- Agilent Technologies, Inc., Santa Clara, CA, USA
| | - Manish Parihar
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
| | - Hang-Kai Hsu
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
- KCRB 2018, City of Hope, Duarte, CA, USA
| | - Adriana D Benavides
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Infectious Disease Research Division, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jay Morris
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
| | - Martin Javors
- Department of Psychiatry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Randy Strong
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, TX, USA
| | - Barbara Christy
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
- Coagulation and Blood Research Group, US Army Institute of Surgical Research, JBSA Fort Sam Houston, TX, USA
| | - Paul Hasty
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Cancer Therapy and Research Center, San Antonio, TX, USA;
| | - Zelton Dave Sharp
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Cancer Therapy and Research Center, San Antonio, TX, USA;
| |
Collapse
|
63
|
Rao S, Cai KQ, Stadanlick JE, Greenberg-Kushnir N, Solanki-Patel N, Lee SY, Fahl SP, Testa JR, Wiest DL. Ribosomal Protein Rpl22 Controls the Dissemination of T-cell Lymphoma. Cancer Res 2016; 76:3387-96. [PMID: 27197189 DOI: 10.1158/0008-5472.can-15-2698] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 03/25/2016] [Indexed: 12/21/2022]
Abstract
Mutations in ribosomal proteins cause bone marrow failure syndromes associated with increased cancer risk, but the basis by which they do so remains unclear. We reported previously that the ribosomal protein Rpl22 is a tumor suppressor in T-cell acute lymphoblastic leukemia/lymphoma (T-ALL), and that loss of just one Rpl22 allele accelerates T-cell lymphomagenesis by activating NF-κB and inducing the stem cell factor Lin28B. Here, we show that, paradoxically, loss of both alleles of Rpl22 restricts lymphoma progression through a distinct effect on migration of malignant cells out of the thymus. Lymphoma-prone AKT2-transgenic or PTEN-deficient mice on an Rpl22(-/-) background developed significantly larger and markedly more vascularized thymic tumors than those observed in Rpl22(+/+) control mice. But, unlike Rpl22(+/+) or Rpl22(+/-) tumors, Rpl22(-/-) lymphomas did not disseminate to the periphery and were retained in the thymus. We traced the defect in the Rpl22(-/-) lymphoma migratory capacity to downregulation of the KLF2 transcription factor and its targets, including the key migratory factor sphingosine 1-phosphate receptor 1 (S1PR1). Indeed, reexpression of S1PR1 in Rpl22-deficient tumor cells restores their migratory capacity in vitro The regulation of KLF2 and S1PR1 by Rpl22 appears to be proximal as Rpl22 reexpression in Rpl22-deficient lymphoma cells restores expression of KLF2 and S1P1R, while Rpl22 knockdown in Rpl22-sufficient lymphomas attenuates their expression. Collectively, these data reveal that, while loss of one copy of Rpl22 promotes lymphomagenesis and disseminated disease, loss of both copies impairs responsiveness to migratory cues and restricts malignant cells to the thymus. Cancer Res; 76(11); 3387-96. ©2016 AACR.
Collapse
Affiliation(s)
- Shuyun Rao
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Kathy Q Cai
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Jason E Stadanlick
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Noa Greenberg-Kushnir
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Nehal Solanki-Patel
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Sang-Yun Lee
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Shawn P Fahl
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Joseph R Testa
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - David L Wiest
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania.
| |
Collapse
|
64
|
Liu Y, Deisenroth C, Zhang Y. RP-MDM2-p53 Pathway: Linking Ribosomal Biogenesis and Tumor Surveillance. Trends Cancer 2016; 2:191-204. [PMID: 28741571 DOI: 10.1016/j.trecan.2016.03.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 03/03/2016] [Accepted: 03/04/2016] [Indexed: 12/18/2022]
Abstract
Ribosomal biogenesis is tightly associated with cellular activities, such as growth, proliferation, and cell cycle progression. Perturbations in ribosomal biogenesis can initiate so-called nucleolar stress. The process through which ribosomal proteins (RPs) transduce nucleolar stress signals via MDM2 to p53 has been described as a crucial tumor-suppression mechanism. In this review we focus on recent progress pertaining to the function and mechanism of RPs in association with the MDM2-p53 tumor-suppression network, and the potential implications this surveillance network has for cancer development.
Collapse
Affiliation(s)
- Yong Liu
- Department of Radiation Oncology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Chad Deisenroth
- The Hamner Institutes for Health Sciences, Institute for Chemical Safety Sciences, 6 Davis Drive, PO Box 12137, Research Triangle Park, NC 27709, USA
| | - Yanping Zhang
- Department of Radiation Oncology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical College, Xuzhou, Jiangsu 221002, China.
| |
Collapse
|
65
|
Fahl SP, Harris B, Coffey F, Wiest DL. Rpl22 Loss Impairs the Development of B Lymphocytes by Activating a p53-Dependent Checkpoint. THE JOURNAL OF IMMUNOLOGY 2016; 194:200-9. [PMID: 25416806 DOI: 10.4049/jimmunol.1402242] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although ribosomal proteins facilitate the ribosome’s core function of translation, emerging evidence suggests that some ribosomal proteins are also capable of performing tissue-restricted functions either from within specialized ribosomes or from outside of the ribosome. In particular, we have previously demonstrated that germline ablation of the gene encoding ribosomal protein Rpl22 causes a selective and p53-dependent arrest of ab T cell progenitors at the b-selection checkpoint. We have now identified a crucial role for Rpl22 during early B cell development. Germline ablation of Rpl22 results in a reduction in the absolute number of B-lineage progenitors in the bone marrow beginning at the pro–B cell stage. Although Rpl22-deficient pro–B cells are hyporesponsive to IL-7, a key cytokine required for early B cell development, the arrest of B cell development does not result from disrupted IL-7 signaling. Instead, p53 induction appears to be responsible for the developmental defects, as Rpl22 deficiency causes increased expression of p53 and activation of downstream p53 target genes, and p53 deficiency rescues the defect in B cell development in Rpl22-deficient mice. Interestingly, the requirement for Rpl22 in the B cell lineage appears to be developmentally restricted, because Rpl22-deficient splenic B cells proliferate normally in response to Ag receptor and Toll receptor stimuli and undergo normal class-switch recombination. These results indicate that Rpl22 performs a critical, developmentally restricted role in supporting early B cell development by preventing p53 induction.
Collapse
Affiliation(s)
- Shawn P Fahl
- Immune Cell Development and Host Defense Program, Fox Chase Cancer Center, Philadelphia, PA 19111
| | - Bryan Harris
- Immune Cell Development and Host Defense Program, Fox Chase Cancer Center, Philadelphia, PA 19111
| | - Francis Coffey
- Immune Cell Development and Host Defense Program, Fox Chase Cancer Center, Philadelphia, PA 19111
| | - David L Wiest
- Immune Cell Development and Host Defense Program, Fox Chase Cancer Center, Philadelphia, PA 19111
| |
Collapse
|
66
|
Goudarzi KM, Lindström MS. Role of ribosomal protein mutations in tumor development (Review). Int J Oncol 2016; 48:1313-24. [PMID: 26892688 PMCID: PMC4777597 DOI: 10.3892/ijo.2016.3387] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 01/07/2016] [Indexed: 12/16/2022] Open
Abstract
Ribosomes are cellular machines essential for protein synthesis. The biogenesis of ribosomes is a highly complex and energy consuming process that initiates in the nucleolus. Recently, a series of studies applying whole-exome or whole-genome sequencing techniques have led to the discovery of ribosomal protein gene mutations in different cancer types. Mutations in ribosomal protein genes have for example been found in endometrial cancer (RPL22), T-cell acute lymphoblastic leukemia (RPL10, RPL5 and RPL11), chronic lymphocytic leukemia (RPS15), colorectal cancer (RPS20), and glioma (RPL5). Moreover, patients suffering from Diamond-Blackfan anemia, a bone marrow failure syndrome caused by mutant ribosomal proteins are also at higher risk for developing leukemia, or solid tumors. Different experimental models indicate potential mechanisms whereby ribosomal proteins may initiate cancer development. In particular, deregulation of the p53 tumor suppressor network and altered mRNA translation are mechanisms likely to be involved. We envisage that changes in expression and the occurrence of ribosomal protein gene mutations play important roles in cancer development. Ribosome biology constitutes a re-emerging vital area of basic and translational cancer research.
Collapse
Affiliation(s)
- Kaveh M Goudarzi
- Department of Oncology-Pathology, Karolinska Institutet, Cancer Center Karolinska, CCK R8:05, Karolinska University Hospital in Solna, Stockholm, Sweden
| | - Mikael S Lindström
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
67
|
Chen L, Foreman DP, Sant'Angelo DB, Krangel MS. Yin Yang 1 Promotes Thymocyte Survival by Downregulating p53. THE JOURNAL OF IMMUNOLOGY 2016; 196:2572-82. [PMID: 26843327 DOI: 10.4049/jimmunol.1501916] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 01/07/2016] [Indexed: 12/13/2022]
Abstract
Yin Yang 1 (YY1) is a zinc finger protein that functions as a transcriptional activator or repressor and participates in multiple biological processes, including development and tumorigenesis. To investigate the role of YY1 in developing T cells, we used mouse models that depleted YY1 at two distinct stages of thymocyte development. When YY1 was depleted in CD4(-)CD8(-) double-negative thymocytes, development to the CD4(+)CD8(+) double-positive stage was impaired, due to increased apoptosis that prevented expansion of post-β-selection thymocytes. When YY1 was depleted in double-positive thymocytes, they underwent increased cell-autonomous apoptosis in vitro and displayed a shorter lifespan in vivo, as judged by their ability to undergo secondary Vα-to-Jα recombination. Mechanistically, we found that the increased apoptosis in YY1-deficient thymocytes was attributed to overexpression of p53, because concurrent loss of p53 completely rescued the developmental defects of YY1-deficient thymocytes. These results indicated that YY1 functions as a critical regulator of thymocyte survival and that it does so by suppressing the expression of p53.
Collapse
Affiliation(s)
- Liang Chen
- Department of Immunology, Duke University Medical Center, Durham, NC 27710; and
| | - Daniel P Foreman
- Department of Immunology, Duke University Medical Center, Durham, NC 27710; and
| | - Derek B Sant'Angelo
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901
| | - Michael S Krangel
- Department of Immunology, Duke University Medical Center, Durham, NC 27710; and
| |
Collapse
|
68
|
Abstract
While zebrafish have for some time been regarded as a powerful model organism with which to study early events in hematopoiesis, recent evidence suggests that it also ideal for unraveling the molecular requirements for T cell development in the thymus. Like mammals, zebrafish possess an adaptive immune system, comprising B lymphocytes as well as both the γδ and αβ lineages of T cells, which develop in the thymus. Moreover, the molecular processes underlying T cell development in zebrafish appear to be remarkably conserved. Thus, findings in the zebrafish model will be of high relevance to the equivalent processes in mammals. Finally, molecular processes can be interrogated in zebrafish far more rapidly than is possible in mammals because the zebrafish possesses many unique advantages. These unique attributes, and the methods by which they can be exploited to investigate the role of novel genes in T cell development, are described here.
Collapse
Affiliation(s)
- Yong Zhang
- Blood Cell Development and Function Program, Fox Chase Cancer Center, 333 Cottman Avenue, R364, Reimann Building, Philadelphia, PA, 19111, USA,
| | | |
Collapse
|
69
|
Shi Z, Barna M. Translating the genome in time and space: specialized ribosomes, RNA regulons, and RNA-binding proteins. Annu Rev Cell Dev Biol 2015; 31:31-54. [PMID: 26443190 DOI: 10.1146/annurev-cellbio-100814-125346] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A central question in cell and developmental biology is how the information encoded in the genome is differentially interpreted to generate a diverse array of cell types. A growing body of research on posttranscriptional gene regulation is revealing that both global protein synthesis rates and the translation of specific mRNAs are highly specialized in different cell types. How this exquisite translational regulation is achieved is the focus of this review. Two levels of regulation are discussed: the translation machinery and cis-acting elements within mRNAs. Recent evidence shows that the ribosome itself directs how the genome is translated in time and space and reveals surprising functional specificity in individual components of the core translation machinery. We are also just beginning to appreciate the rich regulatory information embedded in the untranslated regions of mRNAs, which direct the selective translation of transcripts. These hidden RNA regulons may interface with a myriad of RNA-binding proteins and specialized translation machinery to provide an additional layer of regulation to how transcripts are spatiotemporally expressed. Understanding this largely unexplored world of translational codes hardwired in the core translation machinery is an exciting new research frontier fundamental to our understanding of gene regulation, organismal development, and evolution.
Collapse
Affiliation(s)
- Zhen Shi
- Department of Developmental Biology and Department of Genetics, Stanford University, Stanford, California 94305;
| | - Maria Barna
- Department of Developmental Biology and Department of Genetics, Stanford University, Stanford, California 94305;
| |
Collapse
|
70
|
Epstein-Barr Viruses (EBVs) Deficient in EBV-Encoded RNAs Have Higher Levels of Latent Membrane Protein 2 RNA Expression in Lymphoblastoid Cell Lines and Efficiently Establish Persistent Infections in Humanized Mice. J Virol 2015; 89:11711-4. [PMID: 26339045 PMCID: PMC4645642 DOI: 10.1128/jvi.01873-15] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 08/25/2015] [Indexed: 01/26/2023] Open
Abstract
Functions of Epstein-Barr virus (EBV)-encoded RNAs (EBERs) were tested in lymphoblastoid cell lines containing EBER mutants of EBV. Binding of EBER1 to ribosomal protein L22 (RPL22) was confirmed. Deletion of EBER1 or EBER2 correlated with increased levels of cytoplasmic EBV LMP2 RNA and with small effects on specific cellular microRNA (miRNA) levels, but protein levels of LMP1 and LMP2A were not affected. Wild-type EBV and EBER deletion EBV had approximately equal abilities to infect immunodeficient mice reconstituted with a human hematopoietic system.
Collapse
|
71
|
Hsieh AL, Walton ZE, Altman BJ, Stine ZE, Dang CV. MYC and metabolism on the path to cancer. Semin Cell Dev Biol 2015; 43:11-21. [PMID: 26277543 DOI: 10.1016/j.semcdb.2015.08.003] [Citation(s) in RCA: 243] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 07/17/2015] [Accepted: 08/09/2015] [Indexed: 12/13/2022]
Abstract
The MYC proto-oncogene is frequently deregulated in human cancers, activating genetic programs that orchestrate biological processes to promote growth and proliferation. Altered metabolism characterized by heightened nutrients uptake, enhanced glycolysis and glutaminolysis and elevated fatty acid and nucleotide synthesis is the hallmark of MYC-driven cancer. Recent evidence strongly suggests that Myc-dependent metabolic reprogramming is critical for tumorigenesis, which could be attenuated by targeting specific metabolic pathways using small drug-like molecules. Understanding the complexity of MYC-mediated metabolic re-wiring in cancers as well as how MYC cooperates with other metabolic drivers such as mammalian target of rapamycin (mTOR) will provide translational opportunities for cancer therapy.
Collapse
Affiliation(s)
- Annie L Hsieh
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zandra E Walton
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Brian J Altman
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zachary E Stine
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Chi V Dang
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
72
|
Ferreira AM, Tuominen I, van Dijk-Bos K, Sanjabi B, van der Sluis T, van der Zee AG, Hollema H, Zazula M, Sijmons RH, Aaltonen LA, Westers H, Hofstra RMW. High frequency of RPL22 mutations in microsatellite-unstable colorectal and endometrial tumors. Hum Mutat 2015; 35:1442-5. [PMID: 25196364 DOI: 10.1002/humu.22686] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 08/27/2014] [Indexed: 12/15/2022]
Abstract
Ribosomal Protein L22 (RPL22) encodes a protein that is a component of the 60S subunit of the ribosome. Variants in this gene have recently been linked to cancer development. Mutations in an A8 repeat in exon 2 were found in a recent study in 52% of microsatellite-unstable endometrial tumors. These tumors are particularly prone to mutations in repeats due to mismatch repair deficiency. We screened this coding repeat in our collection of microsatellite-unstable endometrial tumors (EC) and colorectal tumors (CRC). We found 50% mutation frequency for EC and 77% mutation frequency for CRC. These results confirm the previous study on the involvement of RPL22 in EC and, more importantly, reports for the first time such high mutation frequency in this gene in colorectal cancer. Furthermore, considering the high mutation frequency found, our data point toward an important role for RPL22 in microsatellite instability carcinogenesis.
Collapse
Affiliation(s)
- Ana M Ferreira
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, 9700, RB, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
de Las Heras-Rubio A, Perucho L, Paciucci R, Vilardell J, LLeonart ME. Ribosomal proteins as novel players in tumorigenesis. Cancer Metastasis Rev 2015; 33:115-41. [PMID: 24375388 DOI: 10.1007/s10555-013-9460-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Ribosome biogenesis is the most demanding energetic and metabolic expenditure of the cell. The nucleolus, a nuclear compartment, coordinates rRNA transcription, maturation, and assembly into ribosome subunits. The transcription process is highly coordinated with ribosome biogenesis. In this context, ribosomal proteins (RPs) play a crucial role. In the last decade, an increasing number of studies have associated RPs with extraribosomal functions related to proliferation. Importantly, the expression of RPs appears to be deregulated in several human disorders due, at least in part, to genetic mutations. Although the deregulation of RPs in human malignancies is commonly observed, a more complex mechanism is believed to be involved, favoring the tumorigenic process, its progression and metastasis. This review explores the roles of the most frequently mutated oncogenes and tumor suppressor genes in human cancer that modulate ribosome biogenesis, including their interaction with RPs. In this regard, we propose a new focus for novel therapies.
Collapse
Affiliation(s)
- A de Las Heras-Rubio
- Oncology and Pathology Group, Institut de Recerca Hospital Vall d'Hebron, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | | | | | | | | |
Collapse
|
74
|
López-Rodríguez C, Aramburu J, Berga-Bolaños R. Transcription factors and target genes of pre-TCR signaling. Cell Mol Life Sci 2015; 72:2305-21. [PMID: 25702312 PMCID: PMC11113633 DOI: 10.1007/s00018-015-1864-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 01/22/2015] [Accepted: 02/16/2015] [Indexed: 11/27/2022]
Abstract
Almost 30 years ago pioneering work by the laboratories of Harald von Boehmer and Susumo Tonegawa provided the first indications that developing thymocytes could assemble a functional TCRβ chain-containing receptor complex, the pre-TCR, before TCRα expression. The discovery and study of the pre-TCR complex revealed paradigms of signaling pathways in control of cell survival and proliferation, and culminated in the recognition of the multifunctional nature of this receptor. As a receptor integrated in a dynamic developmental process, the pre-TCR must be viewed not only in the light of the biological outcomes it promotes, but also in context with those molecular processes that drive its expression in thymocytes. This review article focuses on transcription factors and target genes activated by the pre-TCR to drive its different outcomes.
Collapse
Affiliation(s)
- Cristina López-Rodríguez
- Immunology Unit, Department of Experimental and Health Sciences and Barcelona Biomedical Research Park, Universitat Pompeu Fabra, C/Doctor Aiguader Nº88, 08003, Barcelona, Barcelona, Spain,
| | | | | |
Collapse
|
75
|
Jeay S, Gaulis S, Ferretti S, Bitter H, Ito M, Valat T, Murakami M, Ruetz S, Guthy DA, Rynn C, Jensen MR, Wiesmann M, Kallen J, Furet P, Gessier F, Holzer P, Masuya K, Würthner J, Halilovic E, Hofmann F, Sellers WR, Graus Porta D. A distinct p53 target gene set predicts for response to the selective p53-HDM2 inhibitor NVP-CGM097. eLife 2015; 4. [PMID: 25965177 PMCID: PMC4468608 DOI: 10.7554/elife.06498] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 05/11/2015] [Indexed: 11/13/2022] Open
Abstract
Biomarkers for patient selection are essential for the successful and rapid development of emerging targeted anti-cancer therapeutics. In this study, we report the discovery of a novel patient selection strategy for the p53-HDM2 inhibitor NVP-CGM097, currently under evaluation in clinical trials. By intersecting high-throughput cell line sensitivity data with genomic data, we have identified a gene expression signature consisting of 13 up-regulated genes that predicts for sensitivity to NVP-CGM097 in both cell lines and in patient-derived tumor xenograft models. Interestingly, these 13 genes are known p53 downstream target genes, suggesting that the identified gene signature reflects the presence of at least a partially activated p53 pathway in NVP-CGM097-sensitive tumors. Together, our findings provide evidence for the use of this newly identified predictive gene signature to refine the selection of patients with wild-type p53 tumors and increase the likelihood of response to treatment with p53-HDM2 inhibitors, such as NVP-CGM097.
Collapse
Affiliation(s)
- Sébastien Jeay
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Swann Gaulis
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Stéphane Ferretti
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Hans Bitter
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Cambridge, United States
| | - Moriko Ito
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Thérèse Valat
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Masato Murakami
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Stephan Ruetz
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Daniel A Guthy
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Caroline Rynn
- Metabolism and Pharmacokinetics, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Michael R Jensen
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Marion Wiesmann
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Joerg Kallen
- Center of Proteomic Chemistry, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Pascal Furet
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - François Gessier
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Philipp Holzer
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Keiichi Masuya
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Jens Würthner
- Translational Clinical Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Ensar Halilovic
- Translational Clinical Oncology, Novartis Institutes for BioMedical Research, Cambridge, United States
| | - Francesco Hofmann
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - William R Sellers
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Cambridge, United States
| | - Diana Graus Porta
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| |
Collapse
|
76
|
Lauritsen JPH, Boding L, Buus TB, Kongsbak M, Levring TB, Rode AKO, Bonefeld CM, Geisler C. Fine-tuning of T-cell development by the CD3γ di-leucine-based TCR-sorting motif. Int Immunol 2015; 27:393-404. [DOI: 10.1093/intimm/dxv022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 04/24/2015] [Indexed: 01/13/2023] Open
|
77
|
Zhou X, Liao WJ, Liao JM, Liao P, Lu H. Ribosomal proteins: functions beyond the ribosome. J Mol Cell Biol 2015; 7:92-104. [PMID: 25735597 DOI: 10.1093/jmcb/mjv014] [Citation(s) in RCA: 442] [Impact Index Per Article: 49.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 12/05/2014] [Indexed: 01/05/2023] Open
Abstract
Although ribosomal proteins are known for playing an essential role in ribosome assembly and protein translation, their ribosome-independent functions have also been greatly appreciated. Over the past decade, more than a dozen of ribosomal proteins have been found to activate the tumor suppressor p53 pathway in response to ribosomal stress. In addition, these ribosomal proteins are involved in various physiological and pathological processes. This review is composed to overview the current understanding of how ribosomal stress provokes the accumulation of ribosome-free ribosomal proteins, as well as the ribosome-independent functions of ribosomal proteins in tumorigenesis, immune signaling, and development. We also propose the potential of applying these pieces of knowledge to the development of ribosomal stress-based cancer therapeutics.
Collapse
Affiliation(s)
- Xiang Zhou
- Department of Biochemistry & Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Wen-Juan Liao
- Department of Biochemistry & Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Jun-Ming Liao
- Department of Biochemistry & Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Peng Liao
- Department of Biochemistry & Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Hua Lu
- Department of Biochemistry & Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
78
|
Abstract
Ribosomopathies are largely congenital diseases linked to defects in ribosomal proteins or biogenesis factors. Some of these disorders are characterized by hypoproliferative phenotypes such as bone marrow failure and anemia early in life, followed by elevated cancer risks later in life. This transition from hypo- to hyperproliferation presents an intriguing paradox in the field of hematology known as "Dameshek's riddle." Recent cancer sequencing studies also revealed somatically acquired mutations and deletions in ribosomal proteins in T-cell acute lymphoblastic leukemia and solid tumors, further extending the list of ribosomopathies and strengthening the association between ribosomal defects and oncogenesis. In this perspective, we summarize and comment on recent findings in the field of ribosomopathies. We explain how ribosomopathies may provide clues to help explain Dameshek's paradox and highlight some of the open questions and challenges in the field.
Collapse
|
79
|
Miz-1 regulates translation of Trp53 via ribosomal protein L22 in cells undergoing V(D)J recombination. Proc Natl Acad Sci U S A 2014; 111:E5411-9. [PMID: 25468973 DOI: 10.1073/pnas.1412107111] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
To be effective, the adaptive immune response requires a large repertoire of antigen receptors, which are generated through V(D)J recombination in lymphoid precursors. These precursors must be protected from DNA damage-induced cell death, however, because V(D)J recombination generates double-strand breaks and may activate p53. Here we show that the BTB/POZ domain protein Miz-1 restricts p53-dependent induction of apoptosis in both pro-B and DN3a pre-T cells that actively rearrange antigen receptor genes. Miz-1 exerts this function by directly activating the gene for ribosomal protein L22 (Rpl22), which binds to p53 mRNA and negatively regulates its translation. This mechanism limits p53 expression levels and thus contains its apoptosis-inducing functions in lymphocytes, precisely at differentiation stages in which V(D)J recombination occurs.
Collapse
|
80
|
Tavanez JP, Quina AS, Cunha C. Virus and noncoding RNAs: stars in the host–virus interaction game. Future Virol 2014. [DOI: 10.2217/fvl.14.84] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
ABSTRACT: In the past few years, noncoding RNAs (ncRNAs) have emerged as key modulators of the transcriptional and post-transcriptional control of a variety of cellular processes such as development, signaling, homeostasis and oncogenesis. Like their host cells, many viruses produce ncRNAs. During viral infection, and in order to establish persistent life-long infection of the host, viruses express both protein-coding and noncoding genes, modulating the cellular environment to favor infection. Given their limited genomic capacity, viruses evolved or acquired ncRNAs only if advantageous, either by enhancing the viral life cycle or assisting the virus in immune evasion of the host's response to infection. With variable length, structure, number, abundance and protein-binding partners, viral ncRNAs show specificity and diversity with respect to time of expression during the different stages of the virus life cycle and viral infection. Here, we review our current knowledge on the RNA-based mechanisms that regulate host–virus interaction focusing on viral ncRNAs and cellular ncRNAs modulated by viruses upon infection.
Collapse
Affiliation(s)
- João Paulo Tavanez
- Unidade de Microbiologia Médica, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Ana Sofia Quina
- Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Centro de Estudos do Ambiente e do Mar, Aveiro, Portugal
| | - Celso Cunha
- Unidade de Microbiologia Médica, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisboa, Portugal
| |
Collapse
|
81
|
Gismondi A, Caldarola S, Lisi G, Juli G, Chellini L, Iadevaia V, Proud CG, Loreni F. Ribosomal stress activates eEF2K-eEF2 pathway causing translation elongation inhibition and recruitment of terminal oligopyrimidine (TOP) mRNAs on polysomes. Nucleic Acids Res 2014; 42:12668-80. [PMID: 25332393 PMCID: PMC4227798 DOI: 10.1093/nar/gku996] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 09/30/2014] [Accepted: 10/06/2014] [Indexed: 11/14/2022] Open
Abstract
The synthesis of adequate amounts of ribosomes is an essential task for the cell. It is therefore not surprising that regulatory circuits exist to organize the synthesis of ribosomal components. It has been shown that defect in ribosome biogenesis (ribosomal stress) induces apoptosis or cell cycle arrest through activation of the tumor suppressor p53. This mechanism is thought to be implicated in the pathophysiology of a group of genetic diseases such as Diamond Blackfan Anemia which are called ribosomopathies. We have identified an additional response to ribosomal stress that includes the activation of eukaryotic translation elongation factor 2 kinase with a consequent inhibition of translation elongation. This leads to a translational reprogramming in the cell that involves the structurally defined group of messengers called terminal oligopyrimidine (TOP) mRNAs which encode ribosomal proteins and translation factors. In fact, while general protein synthesis is decreased by the impairment of elongation, TOP mRNAs are recruited on polysomes causing a relative increase in the synthesis of TOP mRNA-encoded proteins compared to other proteins. Therefore, in response to ribosomal stress, there is a change in the translation pattern of the cell which may help restore a sufficient level of ribosomes.
Collapse
Affiliation(s)
- Angelo Gismondi
- Department of Biology, University Tor Vergata, Roma, 00133, Italy
| | - Sara Caldarola
- Department of Biology, University Tor Vergata, Roma, 00133, Italy
| | - Gaia Lisi
- Department of Biology, University Tor Vergata, Roma, 00133, Italy
| | - Giada Juli
- Department of Biology, University Tor Vergata, Roma, 00133, Italy
| | - Lidia Chellini
- Department of Biology, University Tor Vergata, Roma, 00133, Italy
| | - Valentina Iadevaia
- Centre for Biological Sciences, University of Southampton, Southampton, UK
| | | | - Fabrizio Loreni
- Department of Biology, University Tor Vergata, Roma, 00133, Italy
| |
Collapse
|
82
|
Wang W, Nag S, Zhang X, Wang MH, Wang H, Zhou J, Zhang R. Ribosomal proteins and human diseases: pathogenesis, molecular mechanisms, and therapeutic implications. Med Res Rev 2014; 35:225-85. [PMID: 25164622 DOI: 10.1002/med.21327] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ribosomes are essential components of the protein synthesis machinery. The process of ribosome biogenesis is well organized and tightly regulated. Recent studies have shown that ribosomal proteins (RPs) have extraribosomal functions that are involved in cell proliferation, differentiation, apoptosis, DNA repair, and other cellular processes. The dysfunction of RPs has been linked to the development and progression of hematological, metabolic, and cardiovascular diseases and cancer. Perturbation of ribosome biogenesis results in ribosomal stress, which triggers activation of the p53 signaling pathway through RPs-MDM2 interactions, resulting in p53-dependent cell cycle arrest and apoptosis. RPs also regulate cellular functions through p53-independent mechanisms. We herein review the recent advances in several forefronts of RP research, including the understanding of their biological features and roles in regulating cellular functions, maintaining cell homeostasis, and their involvement in the pathogenesis of human diseases. We also highlight the translational potential of this research for the identification of molecular biomarkers, and in the discovery and development of novel treatments for human diseases.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, 79106; Cancer Biology Center, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, 79106
| | | | | | | | | | | | | |
Collapse
|
83
|
Xiong X, Zhao Y, Tang F, Wei D, Thomas D, Wang X, Liu Y, Zheng P, Sun Y. Ribosomal protein S27-like is a physiological regulator of p53 that suppresses genomic instability and tumorigenesis. eLife 2014; 3:e02236. [PMID: 25144937 PMCID: PMC4163686 DOI: 10.7554/elife.02236] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 08/20/2014] [Indexed: 12/24/2022] Open
Abstract
Cell-based studies showed that several Mdm2-binding ribosomal proteins, upon overexpression, stabilize and activate p53. In contrast, here we show in a mouse knockout study that Mdm2-binding ribosomal protein S27-like (Rps27l), upon disruption, activates p53. Germline inactivation of Rps27l triggers ribosomal stress to stabilize Mdm2, which degrades Mdm4 to reduce Mdm2-Mdm4 E3 ligase towards p53, leading to p53-dependent apoptotic depletion of hematopoietic stem cells and postnatal death, which is rescued by Trp53 deletion. Paradoxically, while increased p53 is expected to inhibit tumorigenesis, Rps27l−/−;Trp53+/− mice develop lymphomas at higher incidence with p53 loss-of-heterozygosity and severe genome aneuploidy, suggesting that Rps27l disruption impose a selection pressure against p53. Thus, Rps27l has dual functions in p53 regulation: under Trp53+/+ background, Rps27l disruption triggers ribosomal stress to induce p53 and apoptosis, whereas under Trp53+/− background, Rps27l disruption triggers genomic instability and Trp53 deletion to promote tumorigenesis. Our study provides a new paradigm of p53 regulation. DOI:http://dx.doi.org/10.7554/eLife.02236.001 There are over a hundred different types of cancer that can affect humans; but, in general, all cancers are caused by mutations that cause cells to grow and divide abnormally. ‘Tumor suppressor genes’ are genes that normally protect a cell from genetic changes that can lead a cell towards becoming cancerous. About half of all cancers in humans have a mutation in one of the two copies of a tumor suppressor gene that encodes a protein called p53, which helps to control how and when cells grow and divide. In normal cells, the p53 protein can be activated in various ways. Damage to a cell's DNA triggers p53 to stop the cell growing, which gives the cell time to repair the DNA damage. However, if the damage is too severe and cannot be repaired, p53 essentially causes the cell to kill itself, via a process called apoptosis. Furthermore, if a cell has problems building new copies of its protein-making machinery, some of the parts (called ribosomal proteins) that make up these molecular machines can also lead to p53 being activated. By deleting the gene for a protein called Rps27l that is a newly characterized ribosomal protein, Xiong et al. have discovered that, in mice, Rps27I regulates the p53 protein in two different ways. In normal cells, Rps27l appears to inhibit p53, which is likely to encourage cancer to develop. But, if a cell has already lost a copy of the p53 gene—a situation that would normally encourage the cells to accrue further mutations and become cancerous—Rps27l acts as a tumor suppressor. In these mutated cells, the Rps27l protein helps to maintain the stability of the genome and prevent the loss of the second copy of gene for p53, and so protects the cell from becoming cancerous. Thus Rps27l can either activate or inactivate p53 activity depending on how many copies of the gene for p53 remain intact. The next challenge is to investigate if Rps27l levels determine the early-onset of tumor development in cancer-prone cells seen in patients with Li-Fraumeni syndrome, who are born with a mutated copy of the p53 gene. DOI:http://dx.doi.org/10.7554/eLife.02236.002
Collapse
Affiliation(s)
- Xiufang Xiong
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, Ann Arbor, United States
| | - Yongchao Zhao
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, Ann Arbor, United States
| | - Fei Tang
- Center for Cancer and Immunology Research, Children's National Medical Center, Washington, United States
| | - Dongping Wei
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, Ann Arbor, United States
| | - Daffyd Thomas
- Department of Pathology, University of Michigan Medical School, Ann Arbor, United States
| | - Xiang Wang
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, Ann Arbor, United States
| | - Yang Liu
- Center for Cancer and Immunology Research, Children's National Medical Center, Washington, United States
| | - Pan Zheng
- Center for Cancer and Immunology Research, Children's National Medical Center, Washington, United States
| | - Yi Sun
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, Ann Arbor, United States
| |
Collapse
|
84
|
Kafasla P, Skliris A, Kontoyiannis DL. Post-transcriptional coordination of immunological responses by RNA-binding proteins. Nat Immunol 2014; 15:492-502. [PMID: 24840980 DOI: 10.1038/ni.2884] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 04/01/2014] [Indexed: 12/22/2022]
Abstract
Immunological reactions are propelled by ever-changing signals that alter the translational ability of the RNA in the cells involved. Such alterations are considered to be consequential modifications in the transcriptomic decoding of the genetic blueprint. The identification of RNA-binding protein (RBP) assemblies engaged in the coordinative regulation of state-specific RNAs indicates alternative and exclusive means for determining the activation, plasticity and tolerance of cells of the immune system. Here we review current knowledge about RBP-regulated post-transcriptional events involved in the reactivity of cells of the immune system and the importance of their alteration during chronic inflammatory pathology and autoimmunity.
Collapse
Affiliation(s)
- Panagiota Kafasla
- Division of Immunology, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - Antonis Skliris
- Division of Immunology, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - Dimitris L Kontoyiannis
- Division of Immunology, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| |
Collapse
|
85
|
Perucho L, Artero-Castro A, Guerrero S, Ramón y Cajal S, LLeonart ME, Wang ZQ. RPLP1, a crucial ribosomal protein for embryonic development of the nervous system. PLoS One 2014; 9:e99956. [PMID: 24959908 PMCID: PMC4069005 DOI: 10.1371/journal.pone.0099956] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 05/20/2014] [Indexed: 12/22/2022] Open
Abstract
Ribosomal proteins are pivotal to development and tissue homeostasis. RP Large P1 (Rplp1) overexpression is associated with tumorigenesis. However, the physiological function of Rplp1 in mammalian development remains unknown. In this study, we disrupted Rplp1 in the mouse germline and central nervous system (Rplp1CNSΔ). Rplp1 heterozygosity caused body size reductions, male infertility, systemic abnormalities in various tissues and a high frequency of early postnatal death. Rplp1CNSΔ</emph> newborn mice exhibited perinatal lethality and brain atrophy with size reductions of the neocortex, midbrain and ganglionic eminence. The Rplp1 knockout neocortex exhibited progenitor cell proliferation arrest and apoptosis due to the dysregulation of key cell cycle and apoptosis regulators (cyclin A, cyclin E, p21CIP1, p27KIP1, p53). Similarly, Rplp1 deletion in pMEFs led to proliferation arrest and premature senescence. Importantly, Rplp1 deletion in primary mouse embryonic fibroblasts did not alter global protein synthesis, but did change the expression patterns of specific protein subsets involved in protein folding and the unfolded protein response, cell death, protein transport and signal transduction, among others. Altogether, we demonstrated that the translation “fine-tuning” exerted by Rplp1 is essential for embryonic and brain development and for proper cell proliferation.
Collapse
Affiliation(s)
- Laura Perucho
- Leibniz Institute for Age Research - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Ana Artero-Castro
- Oncology and Pathology Group, Institut de Recerca Hospital Vall d'Hebron, Barcelona, Spain
| | - Sergi Guerrero
- Oncology and Pathology Group, Institut de Recerca Hospital Vall d'Hebron, Barcelona, Spain
| | - Santiago Ramón y Cajal
- Oncology and Pathology Group, Institut de Recerca Hospital Vall d'Hebron, Barcelona, Spain
| | - Matilde E. LLeonart
- Oncology and Pathology Group, Institut de Recerca Hospital Vall d'Hebron, Barcelona, Spain
- * E-mail:
| | - Zhao-Qi Wang
- Leibniz Institute for Age Research - Fritz Lipmann Institute (FLI), Jena, Germany
- Faculty of Biology and Pharmacy, Friedrich Schiller University of Jena, Jena, Germany
| |
Collapse
|
86
|
Yang M, Sun H, He J, Wang H, Yu X, Ma L, Zhu C. Interaction of ribosomal protein L22 with casein kinase 2α: a novel mechanism for understanding the biology of non-small cell lung cancer. Oncol Rep 2014; 32:139-44. [PMID: 24840952 DOI: 10.3892/or.2014.3187] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 04/15/2014] [Indexed: 11/06/2022] Open
Abstract
Dysfunction of ribosomal proteins (RPs) may play an important role in molecular tumorigenesis, such as lung cancer, acting in extraribosomal functions. Many protein-protein interaction studies and genetic screens have confirmed the extraribosomal capacity of RPs. As reported, ribosomal protein L22 (RPL22) dysfunction could increase cancer risk. In the present study, we examined RPL22-protein complexes in lung cancer cells. Tandem affinity purification (TAP) was used to screen the RPL22-protein complexes, and GST pull-down experiments and confocal microscopy were used to assess the protein-protein interaction. The experiment of kinase assay was used to study the function of the RPL22-protein complexes. The results showed that several differentially expressed proteins were isolated and identified by LC-MS/MS, which revealed that one of the protein complexes included casein kinase 2α (CK2α). RPL22 and CK2α interact in vitro. RPL22 also inhibited CK2α substrate phosphorylation in vitro. This is the first report of the RPL22-CK2α relationship in lung cancer. Dysregulated CK2 may impact cell proliferation and apoptosis, key features of cancer cell biology. Our results indicate that RPL22 may be a candidate anticancer agent due to its CK2α-binding and -inhibitory functions in human lung cancer.
Collapse
Affiliation(s)
- Mingxia Yang
- Department of Respiratory Medicine, The Affiliated Changzhou No. 2 People's Hospital, Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| | - Haibo Sun
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Ji He
- State Key Laboratory of Monitoring and Detection for Medical Vectors, Xiamen Entry-Exit Inspection and Quarantine Bureau, Xiamen, Fujian 361012, P.R. China
| | - Hong Wang
- Department of Respiratory Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Xiaowei Yu
- Department of Respiratory Medicine, The Affiliated Changzhou No. 2 People's Hospital, Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| | - Lei Ma
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Changliang Zhu
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
87
|
Iwanami N. Zebrafish as a model for understanding the evolution of the vertebrate immune system and human primary immunodeficiency. Exp Hematol 2014; 42:697-706. [PMID: 24824573 DOI: 10.1016/j.exphem.2014.05.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 04/21/2014] [Accepted: 05/02/2014] [Indexed: 01/04/2023]
Abstract
Zebrafish is an important vertebrate model that provides the opportunity for the combination of genetic interrogation with advanced live imaging in the analysis of complex developmental and physiologic processes. Among the many advances that have been achieved using the zebrafish model, it has had a great impact on immunology. Here, I discuss recent work focusing on the genetic underpinnings of the development and function of lymphocytes in fish. Lymphocytes play critical roles in vertebrate-specific acquired immune systems of jawless and jawed fish. The unique opportunities afforded by the ability to carry out forward genetic screens and the rapidly evolving armamentarium of reverse genetics in fish usher in a new immunologic research that complements the traditional models of chicken and mouse. Recent work has greatly increased our understanding of the molecular components of the zebrafish immune system, identifying evolutionarily conserved and fish-specific functions of immune-related genes. Interestingly, some of the genes whose mutations underlie the phenotypes in immunodeficient zebrafish were also identified in immunodeficient human patients. In addition, because of the generally conserved structure and function of immune facilities, the zebrafish also provides a versatile model to examine the functional consequences of genetic variants in immune-relevant genes in the human population. Thus, I propose that genetic approaches using the zebrafish hold great potential for a better understanding of molecular mechanisms of human primary immunodeficiencies and the evolution of vertebrate immune systems.
Collapse
Affiliation(s)
- Norimasa Iwanami
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
| |
Collapse
|
88
|
Loreni F, Mancino M, Biffo S. Translation factors and ribosomal proteins control tumor onset and progression: how? Oncogene 2014; 33:2145-56. [PMID: 23644661 DOI: 10.1038/onc.2013.153] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 03/12/2013] [Accepted: 03/13/2013] [Indexed: 12/18/2022]
Abstract
Gene expression is shaped by translational control. The modalities and the extent by which translation factors modify gene expression have revealed therapeutic scenarios. For instance, eukaryotic initiation factor (eIF)4E activity is controlled by the signaling cascade of growth factors, and drives tumorigenesis by favoring the translation of specific mRNAs. Highly specific drugs target the activity of eIF4E. Indeed, the antitumor action of mTOR complex 1 (mTORc1) blockers like rapamycin relies on their capability to inhibit eIF4E assembly into functional eIF4F complexes. eIF4E biology, from its inception to recent pharmacological targeting, is proof-of-principle that translational control is druggable. The case for eIF4E is not isolated. The translational machinery is involved in the biology of cancer through many other mechanisms. First, untranslated sequences on mRNAs as well as noncoding RNAs regulate the translational efficiency of mRNAs that are central for tumor progression. Second, other initiation factors like eIF6 show a tumorigenic potential by acting downstream of oncogenic pathways. Third, genetic alterations in components of the translational apparatus underlie an entire class of inherited syndromes known as 'ribosomopathies' that are associated with increased cancer risk. Taken together, data suggest that in spite of their evolutionary conservation and ubiquitous nature, variations in the activity and levels of ribosomal proteins and translation factors generate highly specific effects. Beside, as the structures and biochemical activities of several noncoding RNAs and initiation factors are known, these factors may be amenable to rational pharmacological targeting. The future is to design highly specific drugs targeting the translational apparatus.
Collapse
Affiliation(s)
- F Loreni
- Department of Biology, University 'Tor Vergata', Roma, Italy
| | - M Mancino
- 1] San Raffaele Scientific Institute, Ospedale San Raffaele, Milan, Italy [2] DISIT, Alessandria, Italy
| | - S Biffo
- 1] San Raffaele Scientific Institute, Ospedale San Raffaele, Milan, Italy [2] DISIT, Alessandria, Italy
| |
Collapse
|
89
|
Pontin is required for pre-TCR signaling at the β-selection checkpoint in T cell development. Biochem Biophys Res Commun 2014; 447:44-50. [PMID: 24680824 DOI: 10.1016/j.bbrc.2014.03.092] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 03/19/2014] [Indexed: 11/24/2022]
Abstract
Pontin is a chromatin remodeling factor that possesses both ATPase and DNA helicase activities. Based on high expression in lymphoid tissues, we examined whether Pontin has a T cell-specific function. We generated Pontin(f/f);Lck-Cre mice, in which Pontin can be conditionally deleted in T cells and then explored T cell-specific function of Pontin in vivo. Here, we show that specific abrogation of Pontin expression in T cells almost completely blocked development of αβ T cells at the β-selection checkpoint by inducing cell apoptosis indicating that Pontin is essential for early T cell development. Pontin-deficient thymocytes show a comparable expression level of T cell receptor (TCR)β chain, but have enhanced activation of p53 and Notch signaling compared to wild-type thymocytes. Intriguingly, the developmental block of αβ T cells can be partially rescued by loss of p53. Together, our data demonstrate a novel role of Pontin as a crucial regulator in pre-TCR signaling during T cell development.
Collapse
|
90
|
Armistead J, Triggs-Raine B. Diverse diseases from a ubiquitous process: the ribosomopathy paradox. FEBS Lett 2014; 588:1491-500. [PMID: 24657617 DOI: 10.1016/j.febslet.2014.03.024] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 03/08/2014] [Accepted: 03/12/2014] [Indexed: 01/03/2023]
Abstract
Collectively, the ribosomopathies are caused by defects in ribosome biogenesis. Although these disorders encompass deficiencies in a ubiquitous and fundamental process, the clinical manifestations are extremely variable and typically display tissue specificity. Research into this paradox has offered fascinating new insights into the role of the ribosome in the regulation of mRNA translation, cell cycle control, and signaling pathways involving TP53, MYC and mTOR. Several common features of ribosomopathies such as small stature, cancer predisposition, and hematological defects, point to how these diverse diseases may be related at a molecular level.
Collapse
Affiliation(s)
- Joy Armistead
- Department of Biochemistry and Medical Genetics, The University of Manitoba, 745 Bannatyne Ave., Winnipeg, MB R3E 0J9, Canada
| | - Barbara Triggs-Raine
- Department of Biochemistry and Medical Genetics, The University of Manitoba, 745 Bannatyne Ave., Winnipeg, MB R3E 0J9, Canada; The Manitoba Institute of Child Health, 715 McDermot Ave., Winnipeg, MB R3E 3P4, Canada.
| |
Collapse
|
91
|
Abstract
Melanocytes (MC) sit along the epidermal basal layer, largely quiescent except for constitutive melanin production. They are usually only activated after sun exposure. The recent paper by McGowan et al. (1) describes a novel mechanism by which melanocytes are induced to proliferate upon p53 activation in adjacent keratinocytes (KC). In this study, small subunit ribosomal protein mutations cause a dramatic activation of p53 that we propose mimics important aspects of the skin sunburn response after ultraviolet radiation (UVR) exposure. McGowan et al. show that the phenotype of their hyperpigmented mouse mutants results from p53-dependent upregulation of KITLG, a cytokine that binds to the KIT receptor on melanocytes and influences melanin synthesis, melanocyte proliferation, and dictates MC localization at the dermo-epidermal junction. These findings extend our knowledge about skin stress responses, in particular, how p53 activity in keratinocytes is central to the regulation of melanocyte behaviour.
Collapse
Affiliation(s)
- Graeme Walker
- Oncogenomics Laboratory, Queensland Institute of Medical Research, 300 Herston Rd, Herston, 4029, Qld, Australia
| | | |
Collapse
|
92
|
Bursac S, Brdovcak MC, Donati G, Volarevic S. Activation of the tumor suppressor p53 upon impairment of ribosome biogenesis. Biochim Biophys Acta Mol Basis Dis 2013; 1842:817-30. [PMID: 24514102 DOI: 10.1016/j.bbadis.2013.08.014] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 08/27/2013] [Indexed: 12/31/2022]
Abstract
Errors in ribosome biogenesis can result in quantitative or qualitative defects in protein synthesis and consequently lead to improper execution of the genetic program and the development of specific diseases. Evidence has accumulated over the last decade suggesting that perturbation of ribosome biogenesis triggers a p53-activating checkpoint signaling pathway, often referred to as the ribosome biogenesis stress checkpoint pathway. Although it was originally suggested that p53 has a prominent role in preventing diseases by monitoring the fidelity of ribosome biogenesis, recent work has demonstrated that p53 activation upon impairment of ribosome biogenesis also mediates pathological manifestations in humans. Perturbations of ribosome biogenesis can trigger a p53-dependent checkpoint signaling pathway independent of DNA damage and the tumor suppressor ARF through inhibitory interactions of specific ribosomal components with the p53 negative regulator, Mdm2. Here we review the recent advances made toward understanding of this newly-recognized checkpoint signaling pathway, its role in health and disease, and discuss possible future directions in this exciting research field. This article is part of a Special Issue entitled: Role of the Nucleolus in Human Disease.
Collapse
Affiliation(s)
- Sladana Bursac
- Department of Molecular Medicine and Biotechnology, School of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - Maja Cokaric Brdovcak
- Department of Molecular Medicine and Biotechnology, School of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - Giulio Donati
- Catalan Institute of Oncology, Bellvitge Biomedical Research Institute, Institut d'Investigacio' Biome'dica de Bellvitge (IDIBELL), 08908 Hospitalet de Llobregat, Barcelona, Spain
| | - Sinisa Volarevic
- Department of Molecular Medicine and Biotechnology, School of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia.
| |
Collapse
|
93
|
Nakata Y, Nishi K, Nishimoto S, Sugahara T. Phenylhydroquinone induces loss of thymocytes through cell cycle arrest and apoptosis elevation in p53-dependent pathway. J Toxicol Sci 2013; 38:325-35. [PMID: 23665931 DOI: 10.2131/jts.38.325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
ortho-Phenylphenol has been employed in post-harvest treatment of citrus fruits. Although o-phenylphenol has been reported to cause carcinomas in the urinary tract in rats, toxicity to the immune organs is still unknown. Herein, we report that administration of o-phenylphenol induces thymic atrophy and loss of thymocytes in female BALB/c mice. The influence seems to result from inhibition of the thymocyte development, because increased and decreased populations of the CD4⁻ CD8⁻ double-negative and CD4⁺ CD8⁺ double-positive thymocytes were observed in the o-phenylphenol-administered mice, respectively. ortho-Phenylphenol is metabolized to phenylhydroquinone by cytochrome P450 monooxygenases. Phenylhydroquinone made cell cycle of thymocytes to be arrested through reduced expression of the genes associated with G₂/M phase and through phosphorylation of p53 at Ser15. Phosphorylation of p53 at Ser15 was upregulated by activation of not only ATR but also Erk1/2 and p38, leading to increase of apoptosis. Gene expression of cytochrome P450 1A1 (CYP1A1) was promoted in thymocytes from the o-phenylphenol-administered mice. Overall, our results suggest that o-phenylphenol induces CYP1A1 expression and is metabolized into phenylhydroquinone by the expressed CYP1A1 in thymocytes. The produced phenylhydroquinone in turn induces inhibition of thymocyte development through cell cycle arrest and apoptosis in the p53-dependent pathway.
Collapse
|
94
|
Al-Shami A, Crisostomo J, Wilkins C, Xu N, Humphries J, Chang WC, Anderson SJ, Oravecz T. Integrin-α FG-GAP repeat-containing protein 2 is critical for normal B cell differentiation and controls disease development in a lupus model. THE JOURNAL OF IMMUNOLOGY 2013; 191:3789-98. [PMID: 23997217 DOI: 10.4049/jimmunol.1203534] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The phenylalanyl-glycyl-glycyl-alanyl-prolyl (FG-GAP) domain plays an important role in protein-protein interactions, including interaction of integrins with their ligands. Integrin-α FG-GAP repeat-containing protein 2 (Itfg2) is a highly conserved protein in vertebrates that carries two FG-GAP domains, but its role in mammalian physiology is unknown. In this article, we show that Itfg2 is an intracellular protein and it plays a critical role in B cell differentiation and development of autoimmunity. Itfg2-deficient mice displayed a phenotype consistent with retention of B cells in the spleen and had a lower concentration of IgG in the blood when compared with wild-type littermates. Itfg2-deficient splenocytes also showed a defect in cell migration in vitro. After immunization with a thymus-dependent Ag, the absence of Itfg2 caused a shift in B cell maturation from the germinal centers to the extrafollicular regions of the spleen and blocked deposition of Ag-specific plasma cells in the bone marrow. In support of hematopoietic cell intrinsic activity of Itfg2, bone marrow transplantation of Itfg2-deficient cells was sufficient to impair germinal center development in wild-type mice. Furthermore, Itfg2 deficiency exacerbated development of autoimmune disease in MRL/lpr lupus-prone mice. These results identify Itfg2 as a novel contributor to B cell differentiation and a negative regulator of the autoimmune response during lupus.
Collapse
Affiliation(s)
- Amin Al-Shami
- Lexicon Pharmaceuticals, Inc., The Woodlands, TX 77381
| | | | | | | | | | | | | | | |
Collapse
|
95
|
Nallar SC, Kalvakolanu DV. Regulation of snoRNAs in cancer: close encounters with interferon. J Interferon Cytokine Res 2013; 33:189-98. [PMID: 23570385 DOI: 10.1089/jir.2012.0106] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The interferon (IFN) family of cytokines regulates many cellular processes, such as transcription, translation, post-translational modifications, and protein degradation. IFNs induce growth inhibition and/or cell death, depending on the cell type, by employing different proteins. This review describes a novel growth-suppressive pathway employed by IFNs that affects rRNA levels. Maturation of rRNA involves numerous noncoding small regulatory RNA-guided processes. These regulatory RNAs, called small nucleolar RNA (snoRNAs), function as a ribonucleoprotein particle (RNP) in the nucleolus. The biogenesis of snoRNPs is dependent on core protein and assembly factors. Our laboratory recently isolated a growth-suppressive protein gene associated with retinoid-IFN-induced mortality (GRIM)-1 using a genetic screen. IFN-inducible GRIM-1 (SHQ1) is an assembly factor that controls one arm of the snoRNP machinery. GRIM-1 inhibits sno/scaRNP formation to induce growth suppression via reduction in mature rRNA levels. Loss of GRIM-1 observed in certain cancers implicates it to be a novel tumor suppressor. Certain snoRNAs have been reported to act as either oncogenes or tumor suppressors in vitro. Recent studies have shown that certain sno/scaRNAs are further processed into micro RNA-like molecules to control translation of protein-coding RNAs. We present a model as to how these small regulatory RNAs influence cell growth and a potential role for GRIM-1 in this process.
Collapse
Affiliation(s)
- Shreeram C Nallar
- Department of Microbiology & Immunology, Greenebaum Cancer Center, University of Maryland School of Medicine , Baltimore, MD 21201, USA
| | | |
Collapse
|
96
|
Raiser DM, Narla A, Ebert BL. The emerging importance of ribosomal dysfunction in the pathogenesis of hematologic disorders. Leuk Lymphoma 2013; 55:491-500. [DOI: 10.3109/10428194.2013.812786] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
97
|
O'Leary MN, Schreiber KH, Zhang Y, Duc ACE, Rao S, Hale JS, Academia EC, Shah SR, Morton JF, Holstein CA, Martin DB, Kaeberlein M, Ladiges WC, Fink PJ, MacKay VL, Wiest DL, Kennedy BK. The ribosomal protein Rpl22 controls ribosome composition by directly repressing expression of its own paralog, Rpl22l1. PLoS Genet 2013; 9:e1003708. [PMID: 23990801 PMCID: PMC3750023 DOI: 10.1371/journal.pgen.1003708] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 06/25/2013] [Indexed: 12/31/2022] Open
Abstract
Most yeast ribosomal protein genes are duplicated and their characterization has led to hypotheses regarding the existence of specialized ribosomes with different subunit composition or specifically-tailored functions. In yeast, ribosomal protein genes are generally duplicated and evidence has emerged that paralogs might have specific roles. Unlike yeast, most mammalian ribosomal proteins are thought to be encoded by a single gene copy, raising the possibility that heterogenous populations of ribosomes are unique to yeast. Here, we examine the roles of the mammalian Rpl22, finding that Rpl22−/− mice have only subtle phenotypes with no significant translation defects. We find that in the Rpl22−/− mouse there is a compensatory increase in Rpl22-like1 (Rpl22l1) expression and incorporation into ribosomes. Consistent with the hypothesis that either ribosomal protein can support translation, knockdown of Rpl22l1 impairs growth of cells lacking Rpl22. Mechanistically, Rpl22 regulates Rpl22l1 directly by binding to an internal hairpin structure and repressing its expression. We propose that ribosome specificity may exist in mammals, providing evidence that one ribosomal protein can influence composition of the ribosome by regulating its own paralog. Translation is the process by which proteins are made within a cell. Ribosomes are the main macromolecular complexes involved in this process. Ribosomes are composed of ribosomal RNA and ribosomal proteins. Ribosomal proteins are generally thought to be structural components of the ribosome but recent findings have suggested that they might have a regulatory function as well. A growing number of human diseases have been linked to mutations in genes encoding factors involved in ribosome biogenesis and translation. These include developmental malformations, inherited bone marrow failure syndromes and cancer in a variety of organisms. Here, we describe the role of one ribosomal protein regulating another. We provide evidence that ribosomal proteins can influence the composition of the ribosome, which we hypothesize, may impact the function of the ribosome.
Collapse
Affiliation(s)
- Monique N. O'Leary
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- Buck Institute for Research on Aging, Novato, California, United States of America
| | - Katherine H. Schreiber
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- Buck Institute for Research on Aging, Novato, California, United States of America
| | - Yong Zhang
- Blood Cell Development and Cancer Keystone, Immune Cell Development and Host Defense Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Anne-Cécile E. Duc
- Blood Cell Development and Cancer Keystone, Immune Cell Development and Host Defense Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Shuyun Rao
- Blood Cell Development and Cancer Keystone, Immune Cell Development and Host Defense Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - J. Scott Hale
- Department of Immunology, University of Washington, Seattle, Washington, United States of America
| | - Emmeline C. Academia
- Buck Institute for Research on Aging, Novato, California, United States of America
| | - Shreya R. Shah
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - John F. Morton
- Department of Comparative Medicine, University of Washington, Seattle, Washington, United States of America
| | - Carly A. Holstein
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Dan B. Martin
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Matt Kaeberlein
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
| | - Warren C. Ladiges
- Department of Comparative Medicine, University of Washington, Seattle, Washington, United States of America
| | - Pamela J. Fink
- Department of Immunology, University of Washington, Seattle, Washington, United States of America
| | - Vivian L. MacKay
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - David L. Wiest
- Blood Cell Development and Cancer Keystone, Immune Cell Development and Host Defense Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Brian K. Kennedy
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- Buck Institute for Research on Aging, Novato, California, United States of America
- * E-mail:
| |
Collapse
|
98
|
Yang M, Sun H, Wang H, Zhang S, Yu X, Zhang L. Down-regulation of ribosomal protein L22 in non-small cell lung cancer. Med Oncol 2013; 30:646. [DOI: 10.1007/s12032-013-0646-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Accepted: 06/14/2013] [Indexed: 11/30/2022]
|
99
|
Zhang Y, Duc ACE, Rao S, Sun XL, Bilbee AN, Rhodes M, Li Q, Kappes DJ, Rhodes J, Wiest DL. Control of hematopoietic stem cell emergence by antagonistic functions of ribosomal protein paralogs. Dev Cell 2013; 24:411-25. [PMID: 23449473 DOI: 10.1016/j.devcel.2013.01.018] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 11/15/2012] [Accepted: 01/20/2013] [Indexed: 01/14/2023]
Abstract
It remains controversial whether the highly homologous ribosomal protein (RP) paralogs found in lower eukaryotes have distinct functions and this has not been explored in vertebrates. Here we demonstrate that despite ubiquitous expression, the RP paralogs, Rpl22 and Rpl22-like1 (Rpl22l1) play essential, distinct, and antagonistic roles in hematopoietic development. Knockdown of Rpl22 in zebrafish embryos selectively blocks the development of T lineage progenitors after they have seeded the thymus. In contrast, knockdown of the Rpl22 paralog, Rpl22l1, impairs the emergence of hematopoietic stem cells (HSC) in the aorta-gonad-mesonephros by abrogating Smad1 expression and the consequent induction of essential transcriptional regulator, Runx1. Indeed, despite the ability of both paralogs to bind smad1 RNA, Rpl22 and Rpl22l1 have opposing effects on Smad1 expression. Accordingly, circumstances that tip the balance of these paralogs in favor of Rpl22 (e.g., Rpl22l1 knockdown or Rpl22 overexpression) result in repression of Smad1 and blockade of HSC emergence.
Collapse
Affiliation(s)
- Yong Zhang
- Blood Cell Development and Cancer Keystone, Immune Cell Development and Host Defense Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Poddar D, Basu A, Baldwin WM, Kondratov RV, Barik S, Mazumder B. An extraribosomal function of ribosomal protein L13a in macrophages resolves inflammation. THE JOURNAL OF IMMUNOLOGY 2013; 190:3600-12. [PMID: 23460747 DOI: 10.4049/jimmunol.1201933] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Inflammation is an obligatory attempt of the immune system to protect the host from infections. However, unregulated synthesis of proinflammatory products can have detrimental effects. Although mechanisms that lead to inflammation are well appreciated, those that restrain it are not adequately understood. Creating macrophage-specific L13a-knockout mice, we report that depletion of ribosomal protein L13a abrogates the endogenous translation control of several chemokines in macrophages. Upon LPS-induced endotoxemia, these animals displayed symptoms of severe inflammation caused by widespread infiltration of macrophages in major organs causing tissue injury and reduced survival rates. Macrophages from these knockout animals show unregulated expression of several chemokines (e.g., CXCL13, CCL22, CCL8, and CCR3). These macrophages failed to show L13a-dependent RNA binding complex formation on target mRNAs. In addition, increased polyribosomal abundance of these mRNAs shows a defect in translation control in the macrophages. Thus, to our knowledge, our studies provide the first evidence of an essential extraribosomal function of ribosomal protein L13a in resolving physiological inflammation in a mammalian host.
Collapse
Affiliation(s)
- Darshana Poddar
- Department of Biological, Geological, and Environmental Sciences, Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, OH 44115, USA
| | | | | | | | | | | |
Collapse
|