51
|
Huang L, Li GH, Yu Q, Xu Y, Cvetkovski S, Wang X, Parajuli N, Udo-Inyang I, Kaplan D, Zhou L, Yao Z, Mi QS. Smad2/4 Signaling Pathway Is Critical for Epidermal Langerhans Cell Repopulation Under Inflammatory Condition but Not Required for Their Homeostasis at Steady State. Front Immunol 2020; 11:912. [PMID: 32457763 PMCID: PMC7221176 DOI: 10.3389/fimmu.2020.00912] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 04/20/2020] [Indexed: 01/17/2023] Open
Abstract
Epidermal Langerhans cells (LCs) are skin-resident dendritic cells that are essential for the induction of skin immunity and tolerance. Transforming growth factor-β 1 (TGFβ1) is a crucial factor for LC maintenance and function. However, the underlying TGFβ1 signaling pathways remain unclear. Our previous research has shown that the TGFβ1/Smad3 signaling pathway does not impact LC homeostasis and maturation. In this study, we generated mice with conditional deletions of either individual Smad2, Smad4, or both Smad2 and Smad4 in the LC lineage or myeloid lineage, to further explore the impact of TGFβ1/Smad signaling pathways on LCs. We found that interruption of Smad2 or Smad4 individually or simultaneously in the LC lineage did not significantly impact the maintenance, maturation, antigen uptake, and migration of LCs in vivo or in vitro during steady state. However, the interruption of both Smad2 and Smad4 pathways in the myeloid lineage led to a dramatic inhibition of bone marrow-derived LCs in the inflammatory state. Overall, our data suggest that canonical TGFβ1/Smad2/4 signaling pathways are dispensable for epidermal LC homeostasis and maturation at steady state, but are critical for the long-term LC repopulation directly originating from the bone marrow in the inflammatory state.
Collapse
Affiliation(s)
- Linting Huang
- Department of Dermatology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, Detroit, MI, United States.,Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI, United States.,Institute of Dermatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gui-Hua Li
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, Detroit, MI, United States.,Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI, United States
| | - Qian Yu
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, Detroit, MI, United States.,Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI, United States
| | - Yingping Xu
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, Detroit, MI, United States.,Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI, United States
| | - Steven Cvetkovski
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, Detroit, MI, United States.,Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI, United States
| | - Xuan Wang
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, Detroit, MI, United States.,Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI, United States
| | - Nirmal Parajuli
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, Detroit, MI, United States.,Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI, United States
| | - Imo Udo-Inyang
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, Detroit, MI, United States.,Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI, United States
| | - Daniel Kaplan
- Department of Dermatology, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Immunology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Li Zhou
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, Detroit, MI, United States.,Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI, United States.,Department of Internal Medicine, Henry Ford Health System, Detroit, MI, United States
| | - Zhirong Yao
- Department of Dermatology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing-Sheng Mi
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, Detroit, MI, United States.,Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI, United States.,Department of Internal Medicine, Henry Ford Health System, Detroit, MI, United States
| |
Collapse
|
52
|
Abdallah FW, Gilron I, Fillingim RB, Tighe P, Parvataneni HK, Ghasemlou N, Sawhney M, McCartney CJL. AAAPT Diagnostic Criteria for Acute Knee Arthroplasty Pain. PAIN MEDICINE (MALDEN, MASS.) 2020; 21:1049-1060. [PMID: 32022891 PMCID: PMC8453639 DOI: 10.1093/pm/pnz355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
OBJECTIVE The relationship between preexisting osteoarthritic pain and subsequent post-total knee arthroplasty (TKA) pain is not well defined. This knowledge gap makes diagnosis of post-TKA pain and development of management plans difficult and may impair future investigations on personalized care. Therefore, a set of diagnostic criteria for identification of acute post-TKA pain would inform standardized management and facilitate future research. METHODS The Analgesic, Anesthetic, and Addiction Clinical Trial Translations, Innovations, Opportunities, and Networks (ACTTION) public-private partnership with the US Food and Drug Administration (FDA), the American Pain Society (APS), and the American Academy of Pain Medicine (AAPM) formed the ACTTION-APS-AAPM Pain Taxonomy (AAAPT) initiative to address this goal. A multidisciplinary work group of pain experts was invited to conceive diagnostic criteria and dimensions of acute post-TKA pain. RESULTS The working group used contemporary literature combined with expert opinion to generate a five-dimensional taxonomical structure based upon the AAAPT framework (i.e., core diagnostic criteria, common features, modulating factors, impact/functional consequences, and putative mechanisms) that characterizes acute post-TKA pain. CONCLUSIONS The diagnostic criteria created are proposed to define the nature of acute pain observed in patients following TKA.
Collapse
Affiliation(s)
- Faraj W Abdallah
- Department of Anesthesiology and Pain Medicine, Ottawa Hospital Research Institute, University of Ottawa, Ontario, Canada
| | - Ian Gilron
- Department of Anesthesiology & Perioperative Medicine
- Department of Biomedical & Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| | | | | | - Hari K Parvataneni
- Department of Orthopedic Surgery and Rehabilitation, University of Florida, Gainesville, Florida, USA
| | - Nader Ghasemlou
- Department of Anesthesiology & Perioperative Medicine
- Department of Biomedical & Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| | - Mona Sawhney
- School of Nursing & Department of Anesthesiology and Perioperative Medicine, Queen’s University, Kingston, Ontario, Canada
| | - Colin J L McCartney
- Department of Anesthesiology and Pain Medicine, Ottawa Hospital Research Institute, University of Ottawa, Ontario, Canada
| |
Collapse
|
53
|
Botting RA, Haniffa M. The developing immune network in human prenatal skin. Immunology 2020; 160:149-156. [PMID: 32173857 PMCID: PMC7218404 DOI: 10.1111/imm.13192] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 02/06/2023] Open
Abstract
Establishment of a well‐functioning immune network in skin is crucial for its barrier function. This begins in utero alongside the structural differentiation and maturation of skin, and continues to expand and diversify across the human lifespan. The microenvironment of the developing human skin supports immune cell differentiation and has an overall anti‐inflammatory profile. Immunologically inert and skewed immune populations found in developing human skin promote wound healing, and as such may play a crucial role in the structural changes occurring during skin development.
Collapse
Affiliation(s)
- Rachel Anne Botting
- Faculty of Medical Sciences, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Muzlifah Haniffa
- Faculty of Medical Sciences, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.,Wellcome Sanger Institute, Hinxton, UK.,Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| |
Collapse
|
54
|
Israr M, DeVoti JA, Lam F, Abramson AL, Steinberg BM, Bonagura VR. Altered Monocyte and Langerhans Cell Innate Immunity in Patients With Recurrent Respiratory Papillomatosis (RRP). Front Immunol 2020; 11:336. [PMID: 32210959 PMCID: PMC7076114 DOI: 10.3389/fimmu.2020.00336] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 02/11/2020] [Indexed: 12/24/2022] Open
Abstract
The micromilieu within respiratory papillomas supports persistent human papillomavirus (HPV) infection and disease recurrence in patients with recurrent respiratory papillomatosis (RRP). These patients show polarized (TH2-/Treg) adaptive immunity in papillomas and blood, enriched immature Langerhans cell (iLC) numbers, and overexpression of cyclooxygenase-2/prostaglandin E2 (PGE2) in the upper airway. Blood monocyte-derived, and tissue-derived iLCs from RRP patients and controls were now studied to more fully understand innate immune dysregulation in RRP. Patients' monocytes generated fewer iLCs than controls, due to a reduced fraction of classical monocytes that generated most but not all the iLCs. Prostaglandin E2, which was elevated in RRP plasma, reduced monocyte-iLC differentiation from controls to the levels of RRP patients, but had no effect on subsequent iLC maturation. Cytokine/chemokine responses by iLCs from papillomas, foreskin, and abdominal skin differed significantly. Freshly derived tissue iLCs expressed low CCL-1 and high CCL-20 mRNAs and were unresponsive to IL-36γ stimulation. Papilloma iLCs uniquely expressed IL-36γ at baseline and expressed CCL1 when cultured overnight outside their immunosuppressive microenvironment without additional stimulation. We conclude that monocyte/iLC innate immunity is impaired in RRP, in part due to increased PGE2 exposure in vivo. The immunosuppressive papilloma microenvironment likely alters iLC responses, and vice versa, supporting TH2-like/Treg HPV-specific adaptive immunity in RRP.
Collapse
Affiliation(s)
- Mohd Israr
- Barbara and Donald Zucker School of Medicine at Hofstra/Northwell, Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - James A DeVoti
- Barbara and Donald Zucker School of Medicine at Hofstra/Northwell, Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Fung Lam
- Barbara and Donald Zucker School of Medicine at Hofstra/Northwell, Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Allan L Abramson
- Department of Otolaryngology, Long Island Jewish Medical Center, Barbara and Donald Zucker School of Medicine at Hofstra/Northwell, New Hyde Park, NY, United States
| | - Bettie M Steinberg
- Barbara and Donald Zucker School of Medicine at Hofstra/Northwell, Feinstein Institutes for Medical Research, Manhasset, NY, United States.,Department of Otolaryngology, Long Island Jewish Medical Center, Barbara and Donald Zucker School of Medicine at Hofstra/Northwell, New Hyde Park, NY, United States
| | - Vincent R Bonagura
- Barbara and Donald Zucker School of Medicine at Hofstra/Northwell, Feinstein Institutes for Medical Research, Manhasset, NY, United States.,Department of Pediatrics, Steven and Alexandra Cohen Children's Medical Center of New York, Barbara and Donald Zucker School of Medicine at Hofstra/Northwell, New Hyde Park, NY, United States
| |
Collapse
|
55
|
Borek I, Köffel R, Feichtinger J, Spies M, Glitzner-Zeis E, Hochgerner M, Sconocchia T, Krump C, Tam-Amersdorfer C, Passegger C, Benezeder T, Tittes J, Redl A, Painsi C, Thallinger GG, Wolf P, Stary G, Sibilia M, Strobl H. BMP7 aberrantly induced in the psoriatic epidermis instructs inflammation-associated Langerhans cells. J Allergy Clin Immunol 2019; 145:1194-1207.e11. [PMID: 31870764 DOI: 10.1016/j.jaci.2019.12.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 12/08/2019] [Accepted: 12/13/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND Epidermal hyperplasia represents a morphologic hallmark of psoriatic skin lesions. Langerhans cells (LCs) in the psoriatic epidermis engage with keratinocytes (KCs) in tight physical interactions; moreover, they induce T-cell-mediated immune responses critical to psoriasis. OBJECTIVE This study sought to improve the understanding of epidermal factors in psoriasis pathogenesis. METHODS BMP7-LCs versus TGF-β1-LCs were phenotypically characterized and their functional properties were analyzed using flow cytometry, cell kinetic studies, co-culture with CD4 T cells, and cytokine measurements. Furthermore, immunohistology of healthy and psoriatic skin was performed. Additionally, in vivo experiments with Junf/fJunBf/fK5cre-ERT mice were carried out to assess the role of bone morphogenetic protein (BMP) signaling in psoriatic skin inflammation. RESULTS This study identified a KC-derived signal (ie, BMP signaling) to promote epidermal changes in psoriasis. Whereas BMP7 is strictly confined to the basal KC layer in the healthy skin, it is expressed at high levels throughout the lesional psoriatic epidermis. BMP7 instructs precursor cells to differentiate into LCs that phenotypically resemble psoriatic LCs. These BMP7-LCs exhibit proliferative activity and increased sensitivity to bacterial stimulation. Moreover, aberrant high BMP signaling in the lesional epidermis is mediated by a KC intrinsic mechanism, as suggested from murine data and clinical outcome after topical antipsoriatic treatment in human patients. CONCLUSIONS These data indicate that available TGF-β family members within the lesional psoriatic epidermis preferentially signal through the canonical BMP signaling cascade to instruct inflammatory-type LCs and to promote psoriatic epidermal changes. Targeting BMP signaling might allow to therapeutically interfere with cutaneous psoriatic manifestations.
Collapse
Affiliation(s)
- Izabela Borek
- Otto Loewi Research Center, Chair of Immunology and Pathophysiology, Medical University of Graz, Graz, Austria
| | - René Köffel
- Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Julia Feichtinger
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Graz, Austria
| | - Melanie Spies
- Otto Loewi Research Center, Chair of Immunology and Pathophysiology, Medical University of Graz, Graz, Austria
| | - Elisabeth Glitzner-Zeis
- Institute of Cancer Research, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Mathias Hochgerner
- Institute of Cancer Research, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Tommaso Sconocchia
- Otto Loewi Research Center, Chair of Immunology and Pathophysiology, Medical University of Graz, Graz, Austria
| | - Corinna Krump
- Otto Loewi Research Center, Chair of Immunology and Pathophysiology, Medical University of Graz, Graz, Austria
| | - Carmen Tam-Amersdorfer
- Otto Loewi Research Center, Chair of Immunology and Pathophysiology, Medical University of Graz, Graz, Austria
| | - Christina Passegger
- Otto Loewi Research Center, Chair of Immunology and Pathophysiology, Medical University of Graz, Graz, Austria
| | - Theresa Benezeder
- Department of Dermatology, Medical University of Graz, Graz, Austria
| | - Julia Tittes
- Division of Immunology, Allergy and Infectious Diseases, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Anna Redl
- Division of Immunology, Allergy and Infectious Diseases, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Clemens Painsi
- Department of Dermatology, State Hospital Klagenfurt, Klagenfurt, Austria
| | - Gerhard G Thallinger
- Institute of Computational Biotechnology, Graz University of Technology, Graz, Austria; Omics Center Graz, BioTechMed Graz, Graz, Austria
| | - Peter Wolf
- Department of Dermatology, Medical University of Graz, Graz, Austria
| | - Georg Stary
- Division of Immunology, Allergy and Infectious Diseases, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Maria Sibilia
- Institute of Cancer Research, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Herbert Strobl
- Otto Loewi Research Center, Chair of Immunology and Pathophysiology, Medical University of Graz, Graz, Austria.
| |
Collapse
|
56
|
Wang A, Bai Y. Dendritic cells: The driver of psoriasis. J Dermatol 2019; 47:104-113. [PMID: 31833093 DOI: 10.1111/1346-8138.15184] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/17/2019] [Indexed: 12/20/2022]
Abstract
Psoriasis is a chronic skin inflammatory disorder, the immune mechanism of which has been profoundly elucidated in the past few years. The dominance of the interleukin (IL)-23/IL-17 axis is a significant breakthrough in the understanding of the pathogenesis of psoriasis, and treatment targeting IL-23 and IL-17 has successfully benefited patients with the disease. The skin contains a complex network of dendritic cells (DC) mainly composed of epidermal Langerhans cells, bone marrow-derived dermal conventional DC, plasmacytoid DC and inflammatory DC. As the prominent cellular source of α-interferon, tumor necrosis factor-α, IL-12 and IL-23, DC play a pivotal role in psoriasis. Thus, targeting pathogenic DC subsets is a valid strategy for alleviating and preventing psoriasis and other DC-derived diseases. In this review, we survey the known role of DC in this disease.
Collapse
Affiliation(s)
- Ao Wang
- Clinical Institute of China-Japan Friendship Hospital, Graduate School of Peking Union Medical College, Beijing, China.,Department of Dermatology and Venerology, China-Japan Friendship Hospital, Beijing, China
| | - YanPing Bai
- Clinical Institute of China-Japan Friendship Hospital, Graduate School of Peking Union Medical College, Beijing, China.,Department of Dermatology and Venerology, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
57
|
Amon L, Lehmann CHK, Baranska A, Schoen J, Heger L, Dudziak D. Transcriptional control of dendritic cell development and functions. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 349:55-151. [PMID: 31759434 DOI: 10.1016/bs.ircmb.2019.10.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dendritic cells (DCs) are major regulators of adaptive immunity, as they are not only capable to induce efficient immune responses, but are also crucial to maintain peripheral tolerance and thereby inhibit autoimmune reactions. DCs bridge the innate and the adaptive immune system by presenting peptides of self and foreign antigens as peptide MHC complexes to T cells. These properties render DCs as interesting target cells for immunomodulatory therapies in cancer, but also autoimmune diseases. Several subsets of DCs with special properties and functions have been described. Recent achievements in understanding transcriptional programs on single cell level, together with the generation of new murine models targeting specific DC subsets, advanced our current understanding of DC development and function. Thus, DCs arise from precursor cells in the bone marrow with distinct progenitor cell populations splitting the monocyte populations and macrophage populations from the DC lineage, which upon lineage commitment can be separated into conventional cDC1, cDC2, and plasmacytoid DCs (pDCs). The DC populations harbor intrinsic programs enabling them to react for specific pathogens in dependency on the DC subset, and thereby orchestrate T cell immune responses. Similarities, but also varieties, between human and murine DC subpopulations are challenging, and will require further investigation of human specimens under consideration of the influence of the tissue micromilieu and DC subset localization in the future.
Collapse
Affiliation(s)
- Lukas Amon
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Christian H K Lehmann
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Anna Baranska
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Janina Schoen
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Lukas Heger
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Diana Dudziak
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
58
|
Keratinocytes Share Gene Expression Fingerprint with Epidermal Langerhans Cells via mRNA Transfer. J Invest Dermatol 2019; 139:2313-2323.e8. [DOI: 10.1016/j.jid.2019.05.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/10/2019] [Accepted: 05/13/2019] [Indexed: 01/13/2023]
|
59
|
Baek JH. The Impact of Versatile Macrophage Functions on Acute Kidney Injury and Its Outcomes. Front Physiol 2019; 10:1016. [PMID: 31447703 PMCID: PMC6691123 DOI: 10.3389/fphys.2019.01016] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 07/23/2019] [Indexed: 12/18/2022] Open
Abstract
Acute kidney injury (AKI) is a common and devastating clinical condition with a high morbidity and mortality rate and is associated with a rapid decline of kidney function mostly resulting from the injury of proximal tubules. AKI is typically accompanied by inflammation and immune activation and involves macrophages (Mϕ) from the beginning: The inflamed kidney recruits “classically” activated (M1) Mϕ, which are initially poised to destroy potential pathogens, exacerbating inflammation. Of note, they soon turn into “alternatively” activated (M2) Mϕ and promote immunosuppression and tissue regeneration. Based on their roles in kidney recovery, there is a growing interest to use M2 Mϕ and Mϕ-modulating agents therapeutically against AKI. However, it is pertinent to note that the clinical translation of Mϕ-based therapies needs to be critically reviewed and questioned since Mϕ are functionally plastic with versatile roles in AKI and some Mϕ functions are detrimental to the kidney during AKI. In this review, we discuss the current state of knowledge on the biology of different Mϕ subtypes during AKI and, especially, on their role in AKI and assess the impact of versatile Mϕ functions on AKI based on the findings from translational AKI studies.
Collapse
Affiliation(s)
- Jea-Hyun Baek
- Research & Early Development, Biogen Inc., Cambridge, MA, United States
| |
Collapse
|
60
|
Rajesh A, Wise L, Hibma M. The role of Langerhans cells in pathologies of the skin. Immunol Cell Biol 2019; 97:700-713. [PMID: 30989674 DOI: 10.1111/imcb.12253] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/07/2019] [Accepted: 04/12/2019] [Indexed: 12/31/2022]
Abstract
Langerhans cells (LCs) are epidermal immune cells of myeloid origin. Although these cells were primarily thought to play a defensive role in the skin, evidence now indicates a diverse range of LC-mediated effects including the relay of viral antigens in herpes simplex infection, recruitment of eosinophils in atopic dermatitis and promotion of a Th17 response in Candida infection. LCs may have a protective or suppressive function in pathologies of the skin, with differing functions being driven by the skin milieu. Understanding LC function will help guide the development of interventions that modulate these cells for therapeutic benefit.
Collapse
Affiliation(s)
- Aarthi Rajesh
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Lyn Wise
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | - Merilyn Hibma
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| |
Collapse
|
61
|
The Dynamics of the Skin's Immune System. Int J Mol Sci 2019; 20:ijms20081811. [PMID: 31013709 PMCID: PMC6515324 DOI: 10.3390/ijms20081811] [Citation(s) in RCA: 317] [Impact Index Per Article: 63.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/09/2019] [Accepted: 04/09/2019] [Indexed: 12/12/2022] Open
Abstract
The skin is a complex organ that has devised numerous strategies, such as physical, chemical, and microbiological barriers, to protect the host from external insults. In addition, the skin contains an intricate network of immune cells resident to the tissue, crucial for host defense as well as tissue homeostasis. In the event of an insult, the skin-resident immune cells are crucial not only for prevention of infection but also for tissue reconstruction. Deregulation of immune responses often leads to impaired healing and poor tissue restoration and function. In this review, we will discuss the defensive components of the skin and focus on the function of skin-resident immune cells in homeostasis and their role in wound healing.
Collapse
|
62
|
Durham BH. Molecular characterization of the histiocytoses: Neoplasia of dendritic cells and macrophages. Semin Cell Dev Biol 2019. [DOI: 10.1016/j.semcdb.2018.03.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
63
|
Loh JT, Lim TJF, Ikumi K, Matoba T, Janela B, Gunawan M, Toyama T, Bunjamin M, Ng LG, Poidinger M, Morita A, Ginhoux F, Yamazaki S, Lam KP, Su IH. Ezh2 Controls Skin Tolerance through Distinct Mechanisms in Different Subsets of Skin Dendritic Cells. iScience 2018; 10:23-39. [PMID: 30496973 PMCID: PMC6260444 DOI: 10.1016/j.isci.2018.11.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/24/2018] [Accepted: 11/09/2018] [Indexed: 11/16/2022] Open
Abstract
Ezh2, a well-established epigenetic repressor, can down-regulate leukocyte inflammatory responses, but its role in cutaneous health remains elusive. Here we demonstrate that Ezh2 controls cutaneous tolerance by regulating Langerhans cell (LC) transmigration across the epidermal basement membrane directly via Talin1 methylation. Ezh2 deficiency impaired disassembly of adhesion structures in LCs, leading to their defective integrin-dependent emigration from the epidermis and failure in tolerance induction. Moreover, mobilization of Ezh2-deficient Langerin– dermal dendritic cells (dDCs) via high-dose treatment with a weak allergen restored tolerance, which is associated with an increased tolerogenic potential of Langerin– dDCs likely due to epigenetic de-repression of Aldh in the absence of Ezh2. Our data reveal novel roles for Ezh2 in governing LC- and dDC-mediated host protection against cutaneous allergen via distinct mechanisms. Ezh2 regulates LC transmigration across basement membrane via Talin1 methylation Ezh2-mediated LC migration is required for cutaneous tolerance induction Ezh2 represses Aldh epigenetically in dermal DCs Ezh2-deficient dermal DCs exhibit increased tolerogenicity
Collapse
Affiliation(s)
- Jia Tong Loh
- School of Biological Sciences, College of Science, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Republic of Singapore; Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, Singapore 138668, Republic of Singapore
| | - Thomas Jun Feng Lim
- School of Biological Sciences, College of Science, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| | - Kyoko Ikumi
- Department of Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan; Department of Geriatric and Environmental Dermatology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Takuma Matoba
- Department of Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan; Department of Otorhinolaryngology and Head and Neck Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Baptiste Janela
- Singapore Immunology Network, Agency for Science, Technology and Research, 8A Biomedical Grove, Singapore 138648, Republic of Singapore
| | - Merry Gunawan
- School of Biological Sciences, College of Science, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| | - Tatsuya Toyama
- Department of Breast Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Maegan Bunjamin
- School of Biological Sciences, College of Science, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| | - Lai Guan Ng
- Singapore Immunology Network, Agency for Science, Technology and Research, 8A Biomedical Grove, Singapore 138648, Republic of Singapore
| | - Michael Poidinger
- Singapore Immunology Network, Agency for Science, Technology and Research, 8A Biomedical Grove, Singapore 138648, Republic of Singapore
| | - Akimichi Morita
- Department of Geriatric and Environmental Dermatology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Florent Ginhoux
- Singapore Immunology Network, Agency for Science, Technology and Research, 8A Biomedical Grove, Singapore 138648, Republic of Singapore
| | - Sayuri Yamazaki
- Department of Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Kong-Peng Lam
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, Singapore 138668, Republic of Singapore
| | - I-Hsin Su
- School of Biological Sciences, College of Science, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Republic of Singapore.
| |
Collapse
|
64
|
Hovav AH. Mucosal and Skin Langerhans Cells – Nurture Calls. Trends Immunol 2018; 39:788-800. [DOI: 10.1016/j.it.2018.08.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/15/2018] [Accepted: 08/15/2018] [Indexed: 10/28/2022]
|
65
|
RARα supports the development of Langerhans cells and langerin-expressing conventional dendritic cells. Nat Commun 2018; 9:3896. [PMID: 30254197 PMCID: PMC6156335 DOI: 10.1038/s41467-018-06341-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 08/29/2018] [Indexed: 01/11/2023] Open
Abstract
Langerhans cells (LC) are the prototype langerin-expressing dendritic cells (DC) that reside specifically in the epidermis, but langerin-expressing conventional DCs also reside in the dermis and other tissues, yet the factors that regulate their development are unclear. Because retinoic acid receptor alpha (RARα) is highly expressed by LCs, we investigate the functions of RARα and retinoic acid (RA) in regulating the langerin-expressing DCs. Here we show that the development of LCs from embryonic and bone marrow-derived progenitors and langerin+ conventional DCs is profoundly regulated by the RARα-RA axis. During LC differentiation, RARα is required for the expression of a LC-promoting transcription factor Runx3, but suppresses that of LC-inhibiting C/EBPβ. RARα promotes the development of LCs and langerin+ conventional DCs only in hypo-RA conditions, a function effectively suppressed at systemic RA levels. Our findings identify positive and negative regulatory mechanisms to tightly regulate the development of the specialized DC populations. Langerhans cells (LC) and langerin-expressing conventional dendritic cells are made from distinct progenitors and enriched in the distinct microenvironments of the skin. Here the authors show that these immune cells are regulated by retinoic acid receptor alpha (RARα) via simultaneous induction of LC-promoting Runx3 and repression of LC-inhibiting C/EBPβ.
Collapse
|
66
|
Wu H, Shao Q. The role of inhibitor of binding or differentiation 2 in the development and differentiation of immune cells. Immunobiology 2018; 224:142-146. [PMID: 30340915 DOI: 10.1016/j.imbio.2018.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 09/05/2018] [Accepted: 09/19/2018] [Indexed: 12/24/2022]
Abstract
Inhibitor of binding or differentiation 2 (Id2), a member of helix-loop-helix (HLH) transcriptional factors, is recently reported as an important regulator of the development or differentiation of immune cells. It has been demonstrated that Id2 plays a critical role in the early lymphopoiesis. However, it has been discovered recently that Id2 displays new functions in different immune cells. In the adaptive immune cells, Id2 is required for determining T-cell subsets and B cells. In addition, Id2 is also involved in the development of innate immune cells, including dendritic cells (DCs), natural killer (NK) cells, and other innate lymphoid cells (ILCs). Here, we review the current reports about the role of Id2 in the development or differentiation of main immune cells.
Collapse
Affiliation(s)
- Haojie Wu
- Reproductive Sciences Institute of Jiangsu University, Zhenjiang 212001, Jiangsu, P.R. China; Department of Immunology, Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, P.R. China
| | - Qixiang Shao
- Reproductive Sciences Institute of Jiangsu University, Zhenjiang 212001, Jiangsu, P.R. China; Department of Immunology, Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, P.R. China.
| |
Collapse
|
67
|
Otsuka M, Egawa G, Kabashima K. Uncovering the Mysteries of Langerhans Cells, Inflammatory Dendritic Epidermal Cells, and Monocyte-Derived Langerhans Cell-Like Cells in the Epidermis. Front Immunol 2018; 9:1768. [PMID: 30105033 PMCID: PMC6077183 DOI: 10.3389/fimmu.2018.01768] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 07/17/2018] [Indexed: 11/25/2022] Open
Abstract
The identity of Langerhans cells (LCs) has been called into question of late due to the increasing evidence that LCs originate from macrophage lineage instead of dendritic cell (DC) lineage as previously thought. For many years, LCs have been assumed to be DCs due to its migratory capabilities. However, recent studies have demonstrated that LCs are from macrophage lineage of the adult fetal liver (FL) progenitor. Bona fide LCs are now considered tissue-resident macrophages as they originate from the FL as shown by fate mapping models. In recent years, studies have shown that there are three types of antigen-presenting cells present in the epidermis, such as LCs, monocyte-derived LC-like cells, and inflammatory dendritic epidermal cells (IDECs). Of these, LC-like cells have been characterized in both human and mouse studies, while IDECs have only been described in human studies. This has shed a new light on the area of epidermal macrophages, suggesting that there might be a misidentification and misclassification of LCs. IDECs and LC-like cells have been shown to be present in both steady state and inflammatory state, but they are present in more significant amounts under inflammatory conditions such as atopic dermatitis, ultra violet injury, and psoriasis. In this review, we discuss what is already known and discuss the possible roles of LCs, LC-like cells, and IDECs during inflammation. Most intriguingly, we discuss the possibility of LCs having a dual identity as both a macrophage and a DC. This is shown as LCs are the only tissue-resident macrophage to have shown migratory property-like DCs.
Collapse
Affiliation(s)
- Masayuki Otsuka
- Department of Dermatology, Graduate School of Medicine, Kyoto, Japan
| | - Gyohei Egawa
- Department of Dermatology, Graduate School of Medicine, Kyoto, Japan
| | - Kenji Kabashima
- Department of Dermatology, Graduate School of Medicine, Kyoto, Japan.,Singapore Immunology Network (SIgN), Singapore, Singapore.,Institute of Medical Biology (IMB), Agency for Science, Technology and Research (ASTAR), Biopolis, Singapore, Singapore
| |
Collapse
|
68
|
Cell-intrinsic regulation of murine epidermal Langerhans cells by protein S. Proc Natl Acad Sci U S A 2018; 115:E5736-E5745. [PMID: 29871951 DOI: 10.1073/pnas.1800303115] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
AXL, a member of the TYRO3, AXL, and MERTK (TAM) receptor tyrosine kinase family, has been shown to play a role in the differentiation and activation of epidermal Langerhans cells (LCs). Here, we demonstrate that growth arrest-specific 6 (GAS6) protein, the predominant ligand of AXL, has no impact on LC differentiation and homeostasis. We thus examined the role of protein S (PROS1), the other TAM ligand acting primarily via TYRO3 and MERTK, in LC function. Genetic ablation of PROS1 in keratinocytes resulted in a typical postnatal differentiation of LCs; however, a significant reduction in LC frequencies was observed in adult mice due to increased apoptosis. This was attributed to altered expression of cytokines involved in LC development and tissue homeostasis within keratinocytes. PROS1 was then excised in LysM+ cells to target LCs at early embryonic developmental stages, as well as in adult monocytes that also give rise to LCs. Differentiation and homeostasis of LCs derived from embryonic precursors was not affected following Pros1 ablation. However, differentiation of LCs from bone marrow (BM) precursors in vitro was accelerated, as was their capability to reconstitute epidermal LCs in vivo. These reveal an inhibitory role for PROS1 on BM-derived LCs. Collectively, this study highlights a cell-specific regulation of LC differentiation and homeostasis by TAM signaling.
Collapse
|
69
|
Collin M, Bigley V. Human dendritic cell subsets: an update. Immunology 2018; 154:3-20. [PMID: 29313948 PMCID: PMC5904714 DOI: 10.1111/imm.12888] [Citation(s) in RCA: 808] [Impact Index Per Article: 134.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/30/2017] [Accepted: 12/04/2017] [Indexed: 02/06/2023] Open
Abstract
Dendritic cells (DC) are a class of bone-marrow-derived cells arising from lympho-myeloid haematopoiesis that form an essential interface between the innate sensing of pathogens and the activation of adaptive immunity. This task requires a wide range of mechanisms and responses, which are divided between three major DC subsets: plasmacytoid DC (pDC), myeloid/conventional DC1 (cDC1) and myeloid/conventional DC2 (cDC2). Each DC subset develops under the control of a specific repertoire of transcription factors involving differential levels of IRF8 and IRF4 in collaboration with PU.1, ID2, E2-2, ZEB2, KLF4, IKZF1 and BATF3. DC haematopoiesis is conserved between mammalian species and is distinct from monocyte development. Although monocytes can differentiate into DC, especially during inflammation, most quiescent tissues contain significant resident populations of DC lineage cells. An extended range of surface markers facilitates the identification of specific DC subsets although it remains difficult to dissociate cDC2 from monocyte-derived DC in some settings. Recent studies based on an increasing level of resolution of phenotype and gene expression have identified pre-DC in human blood and heterogeneity among cDC2. These advances facilitate the integration of mouse and human immunology, support efforts to unravel human DC function in vivo and continue to present new translational opportunities to medicine.
Collapse
Affiliation(s)
- Matthew Collin
- Human Dendritic Cell LabInstitute of Cellular Medicine and NIHR Newcastle Biomedical Research Centre Newcastle upon Tyne Hospitals NHS Foundation Trust and Newcastle UniversityNewcastle upon TyneUK
| | - Venetia Bigley
- Human Dendritic Cell LabInstitute of Cellular Medicine and NIHR Newcastle Biomedical Research Centre Newcastle upon Tyne Hospitals NHS Foundation Trust and Newcastle UniversityNewcastle upon TyneUK
| |
Collapse
|
70
|
Control of mechanical pain hypersensitivity in mice through ligand-targeted photoablation of TrkB-positive sensory neurons. Nat Commun 2018; 9:1640. [PMID: 29691410 PMCID: PMC5915601 DOI: 10.1038/s41467-018-04049-3] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 03/28/2018] [Indexed: 01/24/2023] Open
Abstract
Mechanical allodynia is a major symptom of neuropathic pain whereby innocuous touch evokes severe pain. Here we identify a population of peripheral sensory neurons expressing TrkB that are both necessary and sufficient for producing pain from light touch after nerve injury in mice. Mice in which TrkB-Cre-expressing neurons are ablated are less sensitive to the lightest touch under basal conditions, and fail to develop mechanical allodynia in a model of neuropathic pain. Moreover, selective optogenetic activation of these neurons after nerve injury evokes marked nociceptive behavior. Using a phototherapeutic approach based upon BDNF, the ligand for TrkB, we perform molecule-guided laser ablation of these neurons and achieve long-term retraction of TrkB-positive neurons from the skin and pronounced reversal of mechanical allodynia across multiple types of neuropathic pain. Thus we identify the peripheral neurons which transmit pain from light touch and uncover a novel pharmacological strategy for its treatment. There are several classes of sensory neuron that contribute to pain states. Here, the authors demonstrate that TrkB+ sensory neurons detect light touch under normal conditions in mice but contribute to hypersensitivity in models of chronic pain, and that ligand-guided laser ablation of TrkB+ sensory neurons in the mouse skin attenuates this hypersensitivity.
Collapse
|
71
|
Goyal G, Wong K, Nirschl CJ, Souders N, Neuberg D, Anandasabapathy N, Dranoff G. PPARγ Contributes to Immunity Induced by Cancer Cell Vaccines That Secrete GM-CSF. Cancer Immunol Res 2018; 6:723-732. [PMID: 29669721 DOI: 10.1158/2326-6066.cir-17-0612] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 02/12/2018] [Accepted: 04/11/2018] [Indexed: 11/16/2022]
Abstract
Peroxisome proliferator activated receptor-γ (PPARγ) is a lipid-activated nuclear receptor that promotes immune tolerance through effects on macrophages, dendritic cells (DCs), and regulatory T cells (Tregs). Granulocyte-macrophage colony stimulating factor (GM-CSF) induces PPARγ expression in multiple myeloid cell types. GM-CSF contributes to both immune tolerance and protection, but the role of PPARγ in these pathways is poorly understood. Here, we reveal an unexpected stimulatory role for PPARγ in the generation of antitumor immunity with irradiated, GM-CSF-secreting tumor-cell vaccines (GVAX). Mice harboring a deletion of pparg in lysozyme M (LysM)-expressing myeloid cells (KO) showed a decreased ratio of CD8+ T effectors to Tregs and impaired tumor rejection with GVAX. Diminished tumor protection was associated with altered DC responses and increased production of the Treg attracting chemokines CCL17 and CLL22. Correspondingly, the systemic administration of PPARγ agonists to vaccinated mice elevated the CD8+ T effector to Treg ratio through effects on myeloid cells and intensified the antitumor activity of GVAX combined with cytotoxic T lymphocyte-associated antigen-4 antibody blockade. PPARγ agonists similarly attenuated Treg induction and decreased CCL17 and CCL22 levels in cultures of human peripheral blood mononuclear cells with GM-CSF-secreting tumor cells. Together, these results highlight a key role for myeloid cell PPARγ in GM-CSF-stimulated antitumor immunity and suggest that PPARγ agonists might be useful in cancer immunotherapy. Cancer Immunol Res; 6(6); 723-32. ©2018 AACR.
Collapse
Affiliation(s)
- Girija Goyal
- Department of Medical Oncology, Dana-Farber Cancer Institute and Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Karrie Wong
- Department of Medical Oncology, Dana-Farber Cancer Institute and Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Christopher J Nirschl
- Department of Dermatology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Nicholas Souders
- Department of Medical Oncology, Dana-Farber Cancer Institute and Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Donna Neuberg
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Niroshana Anandasabapathy
- Department of Dermatology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Glenn Dranoff
- Department of Medical Oncology, Dana-Farber Cancer Institute and Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
72
|
Lee M, Kim SH, Kim TG, Park J, Lee JW, Lee MG. Resident and monocyte-derived Langerhans cells are required for imiquimod-induced psoriasis-like dermatitis model. J Dermatol Sci 2018; 91:52-59. [PMID: 29655588 DOI: 10.1016/j.jdermsci.2018.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 03/18/2018] [Accepted: 04/03/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Langerhans cells (LCs) are dendritic cells that reside in the epidermis and local inflammation results in an increased differentiation of monocyte-derived LCs. Only few studies have investigated on the role of LCs in psoriasis-like dermatitis model, but the results are variable and the exact role of LCs in psoriasis model remains to be elucidated. OBJECTIVE To explore the functional role of resident (rLCs) and monocyte-derived LCs (mLCs) in imiquimod (IMQ)-induced psoriasis-like inflammation using human Langerin-diphtheria toxin subunit A (huLang-DTA) mice. METHODS 5% IMQ cream was topically applied on the skins. Clinical and histopathological features were evaluated. Psoriasis-related gene expression was analyzed by quantitative polymerase chain reaction. The production of psoriasis-related cytokines including IL-17A and IL-22 by T cells were assessed by flow cytometry from the lesional skins. RESULTS huLang-DTA mice showed a common depletion of both rLCs and mLCs in the IMQ-treated skins. huLang-DTA mice had a reduced IMQ-induced psoriasis-like inflammation featuring erythema, scale, and thickness compared with wild-type mice. Psoriatic lesions from huLang-DTA mice had a decreased level of Il23a and accordingly demonstrated an attenuated cytokine production of IL-17A and IL-22 from γδlow T cells. mLCs revealed a significantly greater level of IL-23 expression compared to rLCs in response to topical IMQ treatment. CONCLUSION Although both rLCs and mLCs are involved in the development of IMQ-induced psoriasis-like dermatitis, inflammation-induced mLCs present a superior capacity for producing IL-23 in this murine experimental model of psoriasis.
Collapse
Affiliation(s)
- Minseok Lee
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Sung Hee Kim
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Tae-Gyun Kim
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Jeyun Park
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, South Korea; Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Jae Won Lee
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Min-Geol Lee
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, South Korea; Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
73
|
Frederick DR, Goggins JA, Sabbagh LM, Freytag LC, Clements JD, McLachlan JB. Adjuvant selection regulates gut migration and phenotypic diversity of antigen-specific CD4 + T cells following parenteral immunization. Mucosal Immunol 2018; 11:549-561. [PMID: 28792004 PMCID: PMC6252260 DOI: 10.1038/mi.2017.70] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 06/28/2017] [Indexed: 02/04/2023]
Abstract
Infectious diarrheal diseases are the second leading cause of death in children under 5 years, making vaccines against these diseases a high priority. It is known that certain vaccine adjuvants, chiefly bacterial ADP-ribosylating enterotoxins, can induce mucosal antibodies when delivered parenterally. Based on this, we reasoned vaccine-specific mucosal cellular immunity could be induced via parenteral immunization with these adjuvants. Here, we show that, in contrast to the Toll-like receptor-9 agonist CpG, intradermal immunization with non-toxic double-mutant heat-labile toxin (dmLT) from enterotoxigenic Escherichia coli drove endogenous, antigen-specific CD4+ T cells to expand and upregulate the gut-homing integrin α4β7. This was followed by T-cell migration into gut-draining lymph nodes and both small and large intestines. We also found that dmLT produces a balanced T-helper 1 and 17 (Th1 and Th17) response, whereas T cells from CpG immunized mice were predominantly Th1. Immunization with dmLT preferentially engaged CD103+ dendritic cells (DCs) compared with CpG, and mice deficient in CD103+ DCs were unable to fully license antigen-specific T-cell migration to the intestinal mucosae following parenteral immunization. This work has the potential to redirect the design of existing and next generation vaccines to elicit pathogen-specific immunity in the intestinal tract with non-mucosal immunization.
Collapse
Affiliation(s)
- Daniel R. Frederick
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, USA 70112
| | - J. Alan Goggins
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, USA 70112
| | - Leila M. Sabbagh
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, USA 70112
| | - Lucy C. Freytag
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, USA 70112
| | - John D. Clements
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, USA 70112
| | - James B. McLachlan
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, USA 70112
| |
Collapse
|
74
|
Strobl H, Krump C, Borek I. Micro-environmental signals directing human epidermal Langerhans cell differentiation. Semin Cell Dev Biol 2018; 86:36-43. [PMID: 29448069 DOI: 10.1016/j.semcdb.2018.02.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 12/12/2017] [Accepted: 02/10/2018] [Indexed: 01/11/2023]
Abstract
Human Langerhans cells (LC) can be generated ex vivo from hematopoietic precursor cells in response to cytokines and cell-membrane associated ligands. These in vitro differentiation models provided mechanistic insights into the molecular and cellular pathways underlying the development of this unique, epithelia-associated dendritic cell subset. Notably, the human epidermal microenvironment is fully sufficient to induce LC differentiation from hematopoietic progenitors. Hence, dissecting the molecular characteristics of the human epithelial/epidermal LC niche, and testing defined ligands for their capacity to induce LC differentiation, led to a refined molecular model of LC lineage commitment. During epidermal ontogeny, spatially and temporally regulated availability of TGF-β family members cooperate with other keratinocyte-derived signals, such as E-cadherin and Notch ligands, for instructing LC differentiation. In this review, we discuss the signals known to instruct human hematopoietic progenitor cells and myelomonocytic cells to undergo LC lineage commitment. Additionally, the current methods for generation of large numbers of human LC-like cells ex vivo in defined serum-free media are discussed.
Collapse
Affiliation(s)
- Herbert Strobl
- Otto Loewi Research Center, Chair of Immunology and Pathophysiology, Medical University of Graz, Graz, Austria.
| | - Corinna Krump
- Otto Loewi Research Center, Chair of Immunology and Pathophysiology, Medical University of Graz, Graz, Austria
| | - Izabela Borek
- Otto Loewi Research Center, Chair of Immunology and Pathophysiology, Medical University of Graz, Graz, Austria
| |
Collapse
|
75
|
Bigley V, Cytlak U, Collin M. Human dendritic cell immunodeficiencies. Semin Cell Dev Biol 2018; 86:50-61. [PMID: 29452225 DOI: 10.1016/j.semcdb.2018.02.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 11/28/2017] [Accepted: 02/10/2018] [Indexed: 12/21/2022]
Abstract
The critical functions of dendritic cells (DCs) in immunity and tolerance have been demonstrated in many animal models but their non-redundant roles in humans are more difficult to probe. Human primary immunodeficiency (PID), resulting from single gene mutations, may result in DC deficiency or dysfunction. This relatively recent recognition illuminates the in vivo role of human DCs and the pathophysiology of the associated clinical syndromes. In this review, the development and function of DCs as established in murine models and human in vitro systems, discussed. This forms the basis of predicting the effects of DC deficiency in vivo and understanding the consequences of specific mutations on DC development and function. DC deficiency syndromes are associated with heterozygous GATA2 mutation, bi-allelic and heterozygous IRF8 mutation and heterozygous IKZF1 mutation. The intricate involvement of DCs in the balance between immunity and tolerance is leading to increased recognition of their involvement in a number of other immunodeficiencies and autoimmune conditions. Owing to the precise control of transcription factor gene expression by super-enhancer elements, phenotypic anomalies are relatively commonly caused by heterozygous mutations.
Collapse
Affiliation(s)
- Venetia Bigley
- Human DC Lab, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK; Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.
| | - Urszula Cytlak
- Human DC Lab, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Matthew Collin
- Human DC Lab, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK; Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| |
Collapse
|
76
|
Zhang X, Liu Q, Wang J, Li G, Weiland M, Yu FS, Mi QS, Gu J, Zhou L. TIM-4 is differentially expressed in the distinct subsets of dendritic cells in skin and skin-draining lymph nodes and controls skin Langerhans cell homeostasis. Oncotarget 2018; 7:37498-37512. [PMID: 27224924 PMCID: PMC5122327 DOI: 10.18632/oncotarget.9546] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 05/09/2016] [Indexed: 12/28/2022] Open
Abstract
T cell immunoglobulin and mucin-4 (TIM-4), mainly expressed on dendritic cells (DC) and macrophages, plays an essential role in regulating immune responses. Langerhans cells (LC), which are the sole DC subpopulation residing at the epidermis, are potent mediators of immune surveillance and tolerance. However, the significance of TIM-4 on epidermal LCs, along with other cutaneous DCs, remains totally unexplored. For the first time, we discovered that epidermal LCs expressed TIM-4 and displayed an increased level of TIM-4 expression upon migration. We also found that dermal CD207+ DCs and lymph node (LN) resident CD207−CD4+ DCs highly expressed TIM-4, while dermal CD207− DCs and LN CD207−CD4− DCs had limited TIM-4 expressions. Using TIM-4-deficient mice, we further demonstrated that loss of TIM-4 significantly upregulated the frequencies of epidermal LCs and LN resident CD207−CD4+ DCs. In spite of this, the epidermal LCs of TIM-4-deficient mice displayed normal phagocytic and migratory abilities, comparable maturation status upon the stimulation as well as normal repopulation under the inflamed state. Moreover, lack of TIM-4 did not affect dinitrofluorobenzene-induced contact hypersensitivity response. In conclusion, our results indicated that TIM-4 was differentially expressed in the distinct subsets of DCs in skin and skin-draining LNs, and specifically regulated epidermal LC and LN CD207−CD4+ DC homeostasis.
Collapse
Affiliation(s)
- Xilin Zhang
- Department of Dermatology, Second Military Medical University Changhai Hospital, Shanghai, China.,Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI, United States of America.,Department of Dermatology, Henry Ford Health System, Detroit, MI, United States of America
| | - Queping Liu
- Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI, United States of America.,Department of Dermatology, Henry Ford Health System, Detroit, MI, United States of America
| | - Jie Wang
- Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI, United States of America.,Department of Dermatology, Henry Ford Health System, Detroit, MI, United States of America
| | - Guihua Li
- Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI, United States of America.,Department of Dermatology, Henry Ford Health System, Detroit, MI, United States of America
| | - Matthew Weiland
- Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI, United States of America.,Department of Dermatology, Henry Ford Health System, Detroit, MI, United States of America
| | - Fu-Shin Yu
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Qing-Sheng Mi
- Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI, United States of America.,Department of Dermatology, Henry Ford Health System, Detroit, MI, United States of America.,Department of Internal Medicine, Henry Ford Health System, Detroit, MI, United States of America
| | - Jun Gu
- Department of Dermatology, Second Military Medical University Changhai Hospital, Shanghai, China
| | - Li Zhou
- Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI, United States of America.,Department of Dermatology, Henry Ford Health System, Detroit, MI, United States of America.,Department of Internal Medicine, Henry Ford Health System, Detroit, MI, United States of America
| |
Collapse
|
77
|
Deckers J, Hammad H, Hoste E. Langerhans Cells: Sensing the Environment in Health and Disease. Front Immunol 2018; 9:93. [PMID: 29449841 PMCID: PMC5799717 DOI: 10.3389/fimmu.2018.00093] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 01/12/2018] [Indexed: 12/17/2022] Open
Abstract
In the last few decades, our understanding of Langerhans cells (LCs) has drastically changed based on novel findings regarding the developmental origin and biological functions of these epidermis-specific resident immune cells. It has become clear that LCs not only exert pivotal roles in immune surveillance and homeostasis but also impact on pathology by either inducing tolerance or mediating inflammation. Their unique capabilities to self-renew within the epidermis, while also being able to migrate to lymph nodes in order to present antigen, place LCs in a key position to sample the local environment and decide on the appropriate cutaneous immune response. Exciting new data distinguishing LCs from Langerin+ dermal dendritic cells (DCs) on a functional and ontogenic level reveal crucial roles for LCs in trauma and various skin pathologies, which will be thoroughly discussed here. However, despite rapid progress in the field, the exact role of LCs during immune responses has not been completely elucidated. This review focuses on what mouse models that have been developed in order to enable the study of murine LCs and other Langerin-expressing DCs have taught us about LC development and function.
Collapse
Affiliation(s)
- Julie Deckers
- VIB Center for Inflammation Research, Ghent, Belgium.,Department of Internal Medicine, Ghent University, Ghent, Belgium
| | - Hamida Hammad
- VIB Center for Inflammation Research, Ghent, Belgium.,Department of Internal Medicine, Ghent University, Ghent, Belgium
| | - Esther Hoste
- VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
78
|
Capucha T, Koren N, Nassar M, Heyman O, Nir T, Levy M, Zilberman-Schapira G, Zelentova K, Eli-Berchoer L, Zenke M, Hieronymus T, Wilensky A, Bercovier H, Elinav E, Clausen BE, Hovav AH. Sequential BMP7/TGF-β1 signaling and microbiota instruct mucosal Langerhans cell differentiation. J Exp Med 2018; 215:481-500. [PMID: 29343501 PMCID: PMC5789418 DOI: 10.1084/jem.20171508] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 11/09/2017] [Accepted: 12/08/2017] [Indexed: 01/29/2023] Open
Abstract
Capucha et al. demonstrate that mucosal Langerhans cell (LC) differentiation from pre–dendritic cells and monocytes involves consecutive BMP7 and TGF-β1 signaling in separate anatomical locations. Moreover, mucosal microbiota regulates the development of LCs that in turn shape microbial and immunological homeostasis. Mucosal Langerhans cells (LCs) originate from pre–dendritic cells and monocytes. However, the mechanisms involved in their in situ development remain unclear. Here, we demonstrate that the differentiation of murine mucosal LCs is a two-step process. In the lamina propria, signaling via BMP7-ALK3 promotes translocation of LC precursors to the epithelium. Within the epithelium, TGF-β1 finalizes LC differentiation, and ALK5 is crucial to this process. Moreover, the local microbiota has a major impact on the development of mucosal LCs, whereas LCs in turn maintain mucosal homeostasis and prevent tissue destruction. These results reveal the differential and sequential role of TGF-β1 and BMP7 in LC differentiation and highlight the intimate interplay of LCs with the microbiota.
Collapse
Affiliation(s)
- Tal Capucha
- The Institute of Dental Sciences, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Noam Koren
- The Institute of Dental Sciences, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Maria Nassar
- The Institute of Dental Sciences, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Oded Heyman
- Department of Periodontology, Faculty of Dental Medicine, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Tsipora Nir
- The Institute of Dental Sciences, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Maayan Levy
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Katya Zelentova
- The Institute of Dental Sciences, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Luba Eli-Berchoer
- The Institute of Dental Sciences, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Martin Zenke
- Institute for Biomedical Engineering, Department of Cell Biology, Medical Faculty and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Thomas Hieronymus
- Institute for Biomedical Engineering, Department of Cell Biology, Medical Faculty and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Asaf Wilensky
- Department of Periodontology, Faculty of Dental Medicine, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Herve Bercovier
- Department of Microbiology and Molecular Genetics, Faculty of Medicine, Hebrew University, Jerusalem, Israel
| | - Eran Elinav
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Björn E Clausen
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Avi-Hai Hovav
- The Institute of Dental Sciences, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| |
Collapse
|
79
|
Kim TG, Kim SH, Lee MG. The Origin of Skin Dendritic Cell Network and Its Role in Psoriasis. Int J Mol Sci 2017; 19:ijms19010042. [PMID: 29295520 PMCID: PMC5795992 DOI: 10.3390/ijms19010042] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 12/14/2017] [Accepted: 12/21/2017] [Indexed: 01/02/2023] Open
Abstract
Dendritic cells (DCs) are heterogeneous groups of innate immune cells, which orchestrate immune responses by presenting antigens to cognate T cells and stimulating other types of immune cells. Although the term ‘DCs’ generally represent highly mixed subsets with functional heterogeneity, the classical definition of DCs usually denotes conventional DCs (cDCs). Skin contains a unique DC network mainly composed of embryo precursor-derived epidermal Langerhans cells (LCs) and bone marrow-derived dermal cDCs, which can be further classified into type 1 (cDC1) and type 2 (cDC2) subsets. Psoriasis is a chronic inflammatory skin disease, which is principally mediated by IL-23/IL-17 cytokine axis. In the psoriatic skins, DCs are prominent cellular sources for TNF-α and IL-23, and the use of blocking antibodies against TNF-α and IL-23 leads to a significant clinical improvement in psoriatic patients. Recent elegant human and mouse studies have shown that inflammation-induced inflammatory DCs, LCs, dermal cDC2, and monocyte-derived DCs are pivotal DC subsets in psoriatic inflammation. Thus, targeting specific pathogenic DC subsets would be a potential strategy for alleviating and preventing DC-derived IL-23-dependent psoriatic inflammation and other inflammatory dermatoses in the future.
Collapse
Affiliation(s)
- Tae-Gyun Kim
- Department of Dermatology, Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul 03722 Korea.
| | - Sung Hee Kim
- Department of Dermatology, Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul 03722 Korea.
| | - Min-Geol Lee
- Department of Dermatology, Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul 03722 Korea.
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea.
| |
Collapse
|
80
|
Impaired epidermal Langerhans cell maturation in TGFβ-inducible early gene 1 (TIEG1) knockout mice. Oncotarget 2017; 8:112875-112882. [PMID: 29348873 PMCID: PMC5762558 DOI: 10.18632/oncotarget.22843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 11/11/2017] [Indexed: 12/17/2022] Open
Abstract
TGF-β-inducible early gene 1 (TIEG1), also known as Krüppel-like factor 10 (Klf10), represents a major downstream transcription factor of transforming growth factor-β1 (TGF-β1) signaling. Epidermal Langerhans cells (LCs), a unique subpopulation of dendritic cells (DC), essentially mediates immune surveillance and tolerance. TGF-β1 plays a pivotal role in LC maintenance and function after birth, although the underpinning mechanisms remain elusive. Here, we hypothesized that TIEG1 might be involved in TGF-β1-mediated LC homeostasis and function. Utilizing TIEG1 null mice, we discovered that TIEG1 deficiency did not alter LC homeostasis at the steady state and LC repopulation at inflamed-state, as well as their antigen-uptake capacity, but significantly impaired their maturation ability, which was opposite to the fact that loss of TGF-β1 induced spontaneous LC maturation. Moreover, the ablation of TIEG1 enhanced skin contact hypersensitivity response. Our results suggested that TIEG1 is not a key molecule involved in TGF-β1-mediated homeostasis, while TIEG1-related signaling pathways regulate LC maturation and their function.
Collapse
|
81
|
Clayton K, Vallejo AF, Davies J, Sirvent S, Polak ME. Langerhans Cells-Programmed by the Epidermis. Front Immunol 2017; 8:1676. [PMID: 29238347 PMCID: PMC5712534 DOI: 10.3389/fimmu.2017.01676] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 11/15/2017] [Indexed: 12/24/2022] Open
Abstract
Langerhans cells (LCs) reside in the epidermis as a dense network of immune system sentinels. These cells determine the appropriate adaptive immune response (inflammation or tolerance) by interpreting the microenvironmental context in which they encounter foreign substances. In a normal physiological, "non-dangerous" situation, LCs coordinate a continuous state of immune tolerance, preventing unnecessary and harmful immune activation. Conversely, when they sense a danger signal, for example during infection or when the physical integrity of skin has been compromised as a result of a trauma, they instruct T lymphocytes of the adaptive immune system to mount efficient effector responses. Recent advances investigating the molecular mechanisms underpinning the cross talk between LCs and the epidermal microenvironment reveal its importance for programming LC biology. This review summarizes the novel findings describing LC origin and function through the analysis of the transcriptomic programs and gene regulatory networks (GRNs). Review and meta-analysis of publicly available datasets clearly delineates LCs as distinct from both conventional dendritic cells (DCs) and macrophages, suggesting a primary role for the epidermal microenvironment in programming LC biology. This concept is further supported by the analysis of the effect of epidermal pro-inflammatory signals, regulating key GRNs in human and murine LCs. Applying whole transcriptome analyses and in silico analysis has advanced our understanding of how LCs receive, integrate, and process signals from the steady-state and diseased epidermis. Interestingly, in homeostasis and under immunological stress, the molecular network in LCs remains relatively stable, reflecting a key evolutionary need related to tissue localization. Importantly, to fulfill their key role in orchestrating antiviral adaptive immune responses, LC share specific transcriptomic modules with other DC types able to cross-present antigens to cytotoxic CD8+ T cells, pointing to a possible evolutionary convergence mechanism. With the development of more advanced technologies allowing delineation of the molecular networks at the level of chromatin organization, histone modifications, protein translation, and phosphorylation, future "omics" investigations will bring in-depth understanding of the complex molecular mechanisms underpinning human LC biology.
Collapse
Affiliation(s)
- Kalum Clayton
- Systems Immmunology Group, Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Andres F Vallejo
- Systems Immmunology Group, Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - James Davies
- Systems Immmunology Group, Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Sofia Sirvent
- Systems Immmunology Group, Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Marta E Polak
- Systems Immmunology Group, Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
82
|
Langerhans Cells – The Macrophage in Dendritic Cell Clothing. Trends Immunol 2017; 38:817-828. [DOI: 10.1016/j.it.2017.06.008] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 06/19/2017] [Accepted: 06/21/2017] [Indexed: 02/08/2023]
|
83
|
|
84
|
Lutz MB, Strobl H, Schuler G, Romani N. GM-CSF Monocyte-Derived Cells and Langerhans Cells As Part of the Dendritic Cell Family. Front Immunol 2017; 8:1388. [PMID: 29109731 PMCID: PMC5660299 DOI: 10.3389/fimmu.2017.01388] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 10/09/2017] [Indexed: 12/21/2022] Open
Abstract
Dendritic cells (DCs) and macrophages (Mph) share many characteristics as components of the innate immune system. The criteria to classify the multitude of subsets within the mononuclear phagocyte system are currently phenotype, ontogeny, transcription patterns, epigenetic adaptations, and function. More recently, ontogenetic, transcriptional, and proteomic research approaches uncovered major developmental differences between Flt3L-dependent conventional DCs as compared with Mphs and monocyte-derived DCs (MoDCs), the latter mainly generated in vitro from murine bone marrow-derived DCs (BM-DCs) or human CD14+ peripheral blood monocytes. Conversely, in vitro GM-CSF-dependent monocyte-derived Mphs largely resemble MoDCs whereas tissue-resident Mphs show a common embryonic origin from yolk sac and fetal liver with Langerhans cells (LCs). The novel ontogenetic findings opened discussions on the terminology of DCs versus Mphs. Here, we bring forward arguments to facilitate definitions of BM-DCs, MoDCs, and LCs. We propose a group model of terminology for all DC subsets that attempts to encompass both ontogeny and function.
Collapse
Affiliation(s)
- Manfred B Lutz
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Herbert Strobl
- Institute of Pathophysiology and Immunology, Medical University of Graz, Graz, Austria
| | - Gerold Schuler
- Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| | - Nikolaus Romani
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
85
|
Ontogeny and function of murine epidermal Langerhans cells. Nat Immunol 2017; 18:1068-1075. [PMID: 28926543 DOI: 10.1038/ni.3815] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 07/17/2017] [Indexed: 12/13/2022]
Abstract
Langerhans cells (LCs) are epidermis-resident antigen-presenting cells that share a common ontogeny with macrophages but function as dendritic cells (DCs). Their development, recruitment and retention in the epidermis is orchestrated by interactions with keratinocytes through multiple mechanisms. LC and dermal DC subsets often show functional redundancy, but LCs are required for specific types of adaptive immune responses when antigen is concentrated in the epidermis. This Review will focus on those developmental and functional properties that are unique to LCs.
Collapse
|
86
|
van Dinther D, Stolk DA, van de Ven R, van Kooyk Y, de Gruijl TD, den Haan JMM. Targeting C-type lectin receptors: a high-carbohydrate diet for dendritic cells to improve cancer vaccines. J Leukoc Biol 2017; 102:1017-1034. [PMID: 28729358 PMCID: PMC5597514 DOI: 10.1189/jlb.5mr0217-059rr] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 06/13/2017] [Accepted: 06/16/2017] [Indexed: 12/23/2022] Open
Abstract
There is a growing understanding of why certain patients do or do not respond to checkpoint inhibition therapy. This opens new opportunities to reconsider and redevelop vaccine strategies to prime an anticancer immune response. Combination of such vaccines with checkpoint inhibitors will both provide the fuel and release the brake for an efficient anticancer response. Here, we discuss vaccine strategies that use C-type lectin receptor (CLR) targeting of APCs, such as dendritic cells and macrophages. APCs are a necessity for the priming of antigen-specific cytotoxic and helper T cells. Because CLRs are natural carbohydrate-recognition receptors highly expressed by multiple subsets of APCs and involved in uptake and processing of Ags for presentation, these receptors seem particularly interesting for targeting purposes.
Collapse
Affiliation(s)
- Dieke van Dinther
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands; and
| | - Dorian A Stolk
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands; and
| | - Rieneke van de Ven
- Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Yvette van Kooyk
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands; and
| | - Tanja D de Gruijl
- Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Joke M M den Haan
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands; and
| |
Collapse
|
87
|
Korenfeld D, Gorvel L, Munk A, Man J, Schaffer A, Tung T, Mann C, Klechevsky E. A type of human skin dendritic cell marked by CD5 is associated with the development of inflammatory skin disease. JCI Insight 2017; 2:96101. [PMID: 28931765 DOI: 10.1172/jci.insight.96101] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 08/10/2017] [Indexed: 12/14/2022] Open
Abstract
Dendritic cells (DCs) are important in regulating immunity and tolerance and consist of functionally distinct subsets that differentially regulate T lymphocyte function. The underlying basis for this subset specificity is lacking, particularly in humans, where the classification of tissue DCs is currently incomplete. Examination of healthy human epidermal Langerhans cells and dermal skin cells revealed a tissue CD5-expressing DC subtype. The CD5+ DCs were potent inducers of cytotoxic T cells and Th22 cells. The products of these T cells, IL-22 and IFN-γ, play a key role in the pathogenesis of psoriasis. Remarkably, CD5+ DCs were significantly enriched in lesional psoriatic skin compared with distal tissues, suggesting their involvement in the disease. We show that CD5+ DCs can be differentiated from hematopoietic progenitor cells independently of the CD5- DCs. A progenitor population found in human cord blood and in the dermal skin layer, marked as CD34-CD123+CD117dimCD45RA+, was an immediate precursor of these CD11c+CD1c+CD5+ DCs. Overall, our discovery of the CD5-expressing DC subtype suggests that strategies to regulate their composition or function in the skin will represent an innovative approach for the treatment of immune-mediated disorders in and beyond the skin.
Collapse
Affiliation(s)
- Daniel Korenfeld
- Department of Pathology and Immunology, Division of Immunobiology
| | - Laurent Gorvel
- Department of Pathology and Immunology, Division of Immunobiology
| | - Adiel Munk
- Department of Pathology and Immunology, Division of Immunobiology
| | - Joshua Man
- Department of Pathology and Immunology, Division of Immunobiology
| | - Andras Schaffer
- Department of Pathology and Immunology, Dermatopathology Center
| | - Thomas Tung
- Department of Surgery, Division of Plastic and Reconstructive Surgery, and
| | - Caroline Mann
- Department of Medicine, Division of Dermatology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Eynav Klechevsky
- Department of Pathology and Immunology, Division of Immunobiology
| |
Collapse
|
88
|
Atmatzidis DH, Lambert WC, Lambert MW. Langerhans cell: exciting developments in health and disease. J Eur Acad Dermatol Venereol 2017; 31:1817-1824. [PMID: 28833602 DOI: 10.1111/jdv.14522] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 07/28/2017] [Indexed: 12/11/2022]
Abstract
Langerhans cells (LCs) have been the subject of much research since their discovery in 1868. LCs belong to the subset of leucocytes called dendritic cells. They are present in the epidermis and the pilosebaceous apparatus and monitor the cutaneous environment for changes in homeostasis. During embryogenesis, a wave of yolk sac macrophages seed the fetal skin. Then, fetal liver monocytes largely replace the yolk sac macrophages and comprise the majority of adult LCs. In the presence of skin irritation, LCs process antigen and travel to regional lymph nodes to present antigen to reactive T lymphocytes. Changes in LCs' surface markers during the journey occur under the influence of cytokines. The difference in expression of surface markers and the ability to resist radiation have allowed researchers to differentiate LCs from the murine Langerin-positive dermal dendritic cells. Exciting discoveries have been made recently regarding their role in inflammatory skin diseases, cancer and HIV. New research has shown that antibodies blocking CD1a appear to mitigate inflammation in contact hypersensitivity reactions and psoriasis. While it has been established that LCs have the potential to induce effector cells of the adaptive immune system to counter oncogenesis, recent studies have demonstrated that LCs coordinate with natural killer cells to impair development of squamous cell carcinoma caused by chemical carcinogens. However, LCs may also physiologically suppress T cells and permit keratinocyte transformation and tumorigenesis. Although long known to play a primary role in the progression of HIV infection, it is now understood that LCs also possess the ability to restrict the progression of the disease. There is a pressing need to discover more about how these cells affect various aspects of health and disease; new information gathered thus far seems promising and exciting.
Collapse
Affiliation(s)
- D H Atmatzidis
- Dermatology and Pathology, Rutgers University New Jersey Medical School, Newark, NJ, USA
| | - W C Lambert
- Dermatology and Pathology, Rutgers University New Jersey Medical School, Newark, NJ, USA
| | - M W Lambert
- Dermatology and Pathology, Rutgers University New Jersey Medical School, Newark, NJ, USA
| |
Collapse
|
89
|
CD207 +CD1a + cells circulate in pediatric patients with active Langerhans cell histiocytosis. Blood 2017; 130:1898-1902. [PMID: 28847997 DOI: 10.1182/blood-2017-05-782730] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 08/16/2017] [Indexed: 01/16/2023] Open
Abstract
Langerhans cell histiocytosis (LCH) is a rare disease with an unknown etiology characterized by heterogeneous lesions containing CD207+CD1a+ cells that can arise in almost any tissue and cause significant morbidity and mortality. Precursors of pathological Langerhans cells have yet to be defined. Our aim was to identify circulating CD207+CD1a+ cells and their inducers in LCH. Expression of CD207 and CD1a in the blood myeloid compartment as well as thymic stromal lymphopoietin (TSLP) and transforming growth factor β (TGF-β) plasma levels were measured in 22 pediatric patients with active disease (AD) or nonactive disease (NAD). In patients with AD vs those with NAD, the myeloid compartment showed an increased CD11b (CD11bhigh plus CD11b+) fraction (39.7 ± 3.6 vs 18.6 ± 1.9), a higher percentage of circulating CD11bhighCD11c+CD207+ cells (44.5 ± 11.3 vs 3.2 ± 0.5), and the presence of CD11chighCD207+CD1a+ cells (25.0 ± 9.1 vs 2.3 ± 0.5). Blood CD207+CD1a+ cells were not observed in adult controls or umbilical cord. Increased TSLP and TGF-β levels were detected in patients with AD. Interestingly, plasma from patients with AD induces CD207 expression on CD14+ monocytes. We conclude that CD207+CD1a+ cells are circulating in patients with active LCH, and TSLP and TGF-β are potential drivers of Langerhans-like cells in vivo.
Collapse
|
90
|
Abstract
The maintenance of monocytes, macrophages, and dendritic cells (DCs) involves manifold pathways of ontogeny and homeostasis that have been the subject of intense study in recent years. The concept of a peripheral mononuclear phagocyte system continually renewed by blood-borne monocytes has been modified to include specialized DC pathways of development that do not involve monocytes, and longevity through self-renewal of tissue macrophages. The study of development remains difficult owing to the plasticity of phenotypes and misconceptions about the fundamental structure of hematopoiesis. However, greater clarity has been achieved in distinguishing inflammatory monocyte-derived DCs from DCs arising in the steady state, and new concepts of conjoined lymphomyeloid hematopoiesis more easily accommodate the shared lymphoid and myeloid phenotypes of some DCs. Cross-species comparisons have also yielded coherent systems of nomenclature for all mammalian monocytes, macrophages, and DCs. Finally, the clear relationships between ontogeny and functional specialization offer information about the regulation of immune responses and provide new tools for the therapeutic manipulation of myeloid mononuclear cells in medicine.
Collapse
|
91
|
Tenno M, Shiroguchi K, Muroi S, Kawakami E, Koseki K, Kryukov K, Imanishi T, Ginhoux F, Taniuchi I. Cbfβ2 deficiency preserves Langerhans cell precursors by lack of selective TGFβ receptor signaling. J Exp Med 2017; 214:2933-2946. [PMID: 28814567 PMCID: PMC5626404 DOI: 10.1084/jem.20170729] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 06/18/2017] [Accepted: 07/14/2017] [Indexed: 12/23/2022] Open
Abstract
Tenno et al. show that loss of Cbfβ2, one of two RNA splice variants of the Cbfb gene, results in the persistence of embryonic Langerhans cell precursors in the adult epidermis by selective loss of BMP7-BMPR1A signaling with intact TGFβR1 signaling. The mouse Langerhans cell (LC) network is established through the differentiation of embryonic LC precursors. BMP7 and TGFβ1 initiate cellular signaling that is essential for inducing LC differentiation and preserving LCs in a quiescent state, respectively. Here we show that loss of Cbfβ2, one of two RNA splice variants of the Cbfb gene, results in long-term persistence of embryonic LC precursors after their developmental arrest at the transition into the EpCAM+ stage. This phenotype is caused by selective loss of BMP7-mediated signaling essential for LC differentiation, whereas TGFβR signaling is intact, maintaining cells in a quiescent state. Transgenic Cbfβ2 expression at the neonatal stage, but not at the adult stage, restored differentiation from Cbfβ2-deficient LC precursors. Loss of developmental potential in skin-residential precursor cells was accompanied by diminished BMP7–BMPR1A signaling. Collectively, our results reveal an essential requirement for the Cbfβ2 variant in LC differentiation and provide novel insight into how the establishment and homeostasis of the LC network is regulated.
Collapse
Affiliation(s)
- Mari Tenno
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Katsuyuki Shiroguchi
- Laboratory for Immunogenetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Laboratory for Integrative Omics, RIKEN Quantitative Biology Center, Osaka, Japan.,PRESTO, Japan Science and Technology Agency, Saitama, Japan
| | - Sawako Muroi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Eiryo Kawakami
- Disease Biology Group, RIKEN Medical Sciences Innovation Hub Program, Yokohama, Japan
| | - Keita Koseki
- Disease Biology Group, RIKEN Medical Sciences Innovation Hub Program, Yokohama, Japan
| | - Kirill Kryukov
- Biomedical Informatics Laboratory, Department of Molecular Life Science, Tokai University School of Medicine, Kanagawa, Japan
| | - Tadashi Imanishi
- Biomedical Informatics Laboratory, Department of Molecular Life Science, Tokai University School of Medicine, Kanagawa, Japan
| | - Florent Ginhoux
- Singapore Immunology Network, Agency for Science, Technology, and Research, Singapore
| | - Ichiro Taniuchi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| |
Collapse
|
92
|
Poncini CV, González-Cappa SM. Dual role of monocyte-derived dendritic cells in Trypanosoma cruzi infection. Eur J Immunol 2017; 47:1936-1948. [PMID: 28748529 DOI: 10.1002/eji.201646830] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 05/22/2017] [Accepted: 07/05/2017] [Indexed: 01/29/2023]
Abstract
Pathogens can cause inflammation when inoculated into the skin. The vector-transmitted protozoan parasite Trypanosoma cruzi induces poor cellular-infiltration and disseminates, causing high mortality in the experimental model. Here, we characterized the inflammatory foci at the parasite inoculation site and secondary lymphoid organs using a murine model. While no macrophages and few neutrophils and monocytes (Mo) were recruited into the skin, T. cruzi infection elicited the mobilization of Ly6C+ Mo to draining lymph nodes and spleen. Over time, this population became enriched in CD11b+ Ly6C+ CD11c+ MHCII+ CD86+ cells resembling inflammatory dendritic cells (DCs). Adoptive transfer of Ly6C+ Mo purified from the bone marrow of CD11c-GFP transgenic mice confirmed the monocytic origin of Ly6C+ DCs found in the spleen of infected animals. Isolated Mo-derived cells not only produced TNF-α and nitric oxide, but also IL-10 and displayed a poor capacity to induce lymphoproliferation. Ablation of Mo-derived cells by 5-fluorouracil confirmed their dual role during infection, limiting the parasite load by inducible nitric oxide synthase-related mechanisms and negatively affecting the development of anti-parasite T-cell response. This study demonstrated that consistent with their antagonistic properties, these cells not only control the parasite spreading but also its persistence in the host.
Collapse
Affiliation(s)
- Carolina V Poncini
- Instituto de Investigaciones en Microbiología y Parasitología Médicas (IMPaM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Argentina.,Departamento de Microbiología, Facultad de Medicina, Universidad de Buenos Aires, CABA, Argentina
| | - Stella M González-Cappa
- Instituto de Investigaciones en Microbiología y Parasitología Médicas (IMPaM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Argentina.,Departamento de Microbiología, Facultad de Medicina, Universidad de Buenos Aires, CABA, Argentina
| |
Collapse
|
93
|
Jurkin J, Krump C, Köffel R, Fieber C, Schuster C, Brunner PM, Borek I, Eisenwort G, Lim C, Mages J, Lang R, Bauer W, Mechtcheriakova D, Meshcheryakova A, Elbe-Bürger A, Stingl G, Strobl H. Human skin dendritic cell fate is differentially regulated by the monocyte identity factor Kruppel-like factor 4 during steady state and inflammation. J Allergy Clin Immunol 2017; 139:1873-1884.e10. [PMID: 27742396 PMCID: PMC5538449 DOI: 10.1016/j.jaci.2016.09.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/25/2016] [Accepted: 09/09/2016] [Indexed: 11/01/2022]
Abstract
BACKGROUND Langerhans cell (LC) networks play key roles in immunity and tolerance at body surfaces. LCs are established prenatally and can be replenished from blood monocytes. Unlike skin-resident dermal DCs (dDCs)/interstitial-type DCs and inflammatory dendritic epidermal cells appearing in dermatitis/eczema lesions, LCs lack key monocyte-affiliated markers. Inversely, LCs express various epithelial genes critical for their long-term peripheral tissue residency. OBJECTIVE Dendritic cells (DCs) are functionally involved in inflammatory diseases; however, the mechanisms remained poorly understood. METHODS In vitro differentiation models of human DCs, gene profiling, gene transduction, and immunohistology were used to identify molecules involved in DC subset specification. RESULTS Here we identified the monocyte/macrophage lineage identity transcription factor Kruppel-like factor 4 (KLF4) to be inhibited during LC differentiation from human blood monocytes. Conversely, KLF4 is maintained or induced during dermal DC and monocyte-derived dendritic cell/inflammatory dendritic epidermal cell differentiation. We showed that in monocytic cells KLF4 has to be repressed to allow their differentiation into LCs. Moreover, respective KLF4 levels in DC subsets positively correlate with proinflammatory characteristics. We identified epithelial Notch signaling to repress KLF4 in monocytes undergoing LC commitment. Loss of KLF4 in monocytes transcriptionally derepresses Runt-related transcription factor 3 in response to TGF-β1, thereby allowing LC differentiation marked by a low cytokine expression profile. CONCLUSION Monocyte differentiation into LCs depends on activation of Notch signaling and the concomitant loss of KLF4.
Collapse
Affiliation(s)
- Jennifer Jurkin
- Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Corinna Krump
- Institute of Pathophysiology and Immunology, Medical University of Graz, Graz, Austria
| | - René Köffel
- Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Christina Fieber
- Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Christopher Schuster
- Division of Immunology, Allergy and Infectious Diseases, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Patrick M Brunner
- Division of Immunology, Allergy and Infectious Diseases, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Izabela Borek
- Institute of Pathophysiology and Immunology, Medical University of Graz, Graz, Austria
| | - Gregor Eisenwort
- Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Clarice Lim
- Institute of Pathophysiology and Immunology, Medical University of Graz, Graz, Austria; Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Jörg Mages
- Institute of Clinical Microbiology, Immunology and Hygiene, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Roland Lang
- Institute of Clinical Microbiology, Immunology and Hygiene, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Wolfgang Bauer
- Division of Immunology, Allergy and Infectious Diseases, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Diana Mechtcheriakova
- Departments of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Anastasia Meshcheryakova
- Departments of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Adelheid Elbe-Bürger
- Division of Immunology, Allergy and Infectious Diseases, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Georg Stingl
- Division of Immunology, Allergy and Infectious Diseases, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Herbert Strobl
- Institute of Pathophysiology and Immunology, Medical University of Graz, Graz, Austria; Institute of Immunology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
94
|
Affiliation(s)
- Sakeen W. Kashem
- Department of Dermatology, Center for Immunology, University of Minnesota, Minneapolis, Minnesota 55455
| | - Muzlifah Haniffa
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
- Department of Dermatology, Royal Victoria Infirmary, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 4LP, United Kingdom
| | - Daniel H. Kaplan
- Department of Dermatology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| |
Collapse
|
95
|
Kelly A, Houston SA, Sherwood E, Casulli J, Travis MA. Regulation of Innate and Adaptive Immunity by TGFβ. Adv Immunol 2017; 134:137-233. [PMID: 28413021 DOI: 10.1016/bs.ai.2017.01.001] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Immune regulation by cytokines is crucial in maintaining immune homeostasis, promoting responses to infection, resolving inflammation, and promoting immunological memory. Additionally, cytokine responses drive pathology in immune-mediated disease. A crucial cytokine in the regulation of all aspects of an immune response is transforming growth factor beta (TGFβ). Although best known as a crucial regulator of T cell responses, TGFβ plays a vital role in regulating responses mediated by virtually every innate and adaptive immune cell, including dendritic cells, B cells, NK cells, innate lymphoid cells, and granulocytes. Here, we review our current knowledge of how TGFβ regulates the immune system, highlighting the multifunctional nature of TGFβ and how its function can change depending on location and context of action.
Collapse
Affiliation(s)
- Aoife Kelly
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, United Kingdom; Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, United Kingdom; Manchester Immunology Group, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Stephanie A Houston
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, United Kingdom; Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, United Kingdom; Manchester Immunology Group, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Eleanor Sherwood
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, United Kingdom; Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, United Kingdom; Manchester Immunology Group, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Joshua Casulli
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, United Kingdom; Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, United Kingdom; Manchester Immunology Group, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Mark A Travis
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, United Kingdom; Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, United Kingdom; Manchester Immunology Group, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
96
|
Sontag S, Förster M, Qin J, Wanek P, Mitzka S, Schüler HM, Koschmieder S, Rose-John S, Seré K, Zenke M. Modelling IRF8 Deficient Human Hematopoiesis and Dendritic Cell Development with Engineered iPS Cells. Stem Cells 2017; 35:898-908. [DOI: 10.1002/stem.2565] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 12/20/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Stephanie Sontag
- Department of Cell Biology, Institute for Biomedical Engineering, RWTH Aachen University Medical School; Aachen Germany
- Helmholtz Institute for Biomedical Engineering; RWTH Aachen University; Aachen Germany
| | - Malrun Förster
- Department of Cell Biology, Institute for Biomedical Engineering, RWTH Aachen University Medical School; Aachen Germany
- Helmholtz Institute for Biomedical Engineering; RWTH Aachen University; Aachen Germany
| | - Jie Qin
- Department of Cell Biology, Institute for Biomedical Engineering, RWTH Aachen University Medical School; Aachen Germany
- Helmholtz Institute for Biomedical Engineering; RWTH Aachen University; Aachen Germany
| | - Paul Wanek
- Department of Cell Biology, Institute for Biomedical Engineering, RWTH Aachen University Medical School; Aachen Germany
- Helmholtz Institute for Biomedical Engineering; RWTH Aachen University; Aachen Germany
| | - Saskia Mitzka
- Department of Cell Biology, Institute for Biomedical Engineering, RWTH Aachen University Medical School; Aachen Germany
- Helmholtz Institute for Biomedical Engineering; RWTH Aachen University; Aachen Germany
| | - Herdit M. Schüler
- Department of Human Genetics, RWTH Aachen University Medical School; Aachen Germany
| | - Steffen Koschmieder
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation; RWTH Aachen University Medical School; Aachen Germany
| | - Stefan Rose-John
- Medical Faculty, Institute of Biochemistry, Christian-Albrechts-University; Kiel Germany
| | - Kristin Seré
- Department of Cell Biology, Institute for Biomedical Engineering, RWTH Aachen University Medical School; Aachen Germany
- Helmholtz Institute for Biomedical Engineering; RWTH Aachen University; Aachen Germany
| | - Martin Zenke
- Department of Cell Biology, Institute for Biomedical Engineering, RWTH Aachen University Medical School; Aachen Germany
- Helmholtz Institute for Biomedical Engineering; RWTH Aachen University; Aachen Germany
| |
Collapse
|
97
|
Italiani P, Boraschi D. Development and Functional Differentiation of Tissue-Resident Versus Monocyte-Derived Macrophages in Inflammatory Reactions. Results Probl Cell Differ 2017; 62:23-43. [PMID: 28455704 DOI: 10.1007/978-3-319-54090-0_2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Mononuclear phagocytes are key cells in tissue integrity and defense. Tissue-resident macrophages are abundantly present in all tissues of the body and have a complex role in ensuring tissue functions and homeostatic balance. Circulating blood monocytes can enter tissue both in steady-state conditions, for helping in replenishing the tissue-resident macrophage pool and, in particular, for acting as potent effector cells during inflammatory events such as infections, traumas, and diseases. The heterogeneity of monocytes and macrophages depends on their ontogeny, their tissue location, and their functional programming, with both monocytes and macrophages able to exert distinct or similar functions depending on the tissue-specific and stimulus-specific microenvironment. In this short review, we will review the current hypotheses on tissue-resident macrophage ontogeny and functions, as compared to blood-derived monocytes, with a particular focus on inflammatory conditions.
Collapse
Affiliation(s)
- Paola Italiani
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, 80131, Naples, Italy.
| | - Diana Boraschi
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, 80131, Naples, Italy
| |
Collapse
|
98
|
Monitoring Skin Dendritic Cells in Steady State and Inflammation by Immunofluorescence Microscopy and Flow Cytometry. Methods Mol Biol 2017; 1559:37-52. [PMID: 28063035 DOI: 10.1007/978-1-4939-6786-5_3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Skin dendritic cells (DC) are strategically positioned at the body's second largest epithelial border to the environment. Hence they are the first antigen presenting cells that encounter invading pathogens and environmental antigens, including contact sensitizers and carcinogens penetrating the skin. Moreover, DC have the unique ability to induce immunity or tolerance and thus take center stage in regulating innate and adaptive immune responses. Skin DC can be divided into several phenotypically and functionally distinct subtypes. The three main subsets are Langerin+ epidermal Langerhans cells (LC) and Langerin+ as well as Langerinneg dermal DC. In the steady state skin DC form a dense network to survey the periphery for pathogens and harmful substances breaching the cutaneous barrier. During inflammation DC become rapidly activated and start their migration to skin-draining lymph nodes where they initiate antigen-specific T cell responses. The homeostasis and mobilization of DC in the skin can be visualized by immunofluorescent staining of epidermal and dermal sheet preparations or skin sections. Here, we describe in detail how inflammation can be induced in the skin with tape stripping or FITC painting and how the skin DC network can be monitored using immunofluorescence microscopy and flow cytometry.
Collapse
|
99
|
Singh TP, Zhang HH, Borek I, Wolf P, Hedrick MN, Singh SP, Kelsall BL, Clausen BE, Farber JM. Monocyte-derived inflammatory Langerhans cells and dermal dendritic cells mediate psoriasis-like inflammation. Nat Commun 2016; 7:13581. [PMID: 27982014 PMCID: PMC5171657 DOI: 10.1038/ncomms13581] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 10/17/2016] [Indexed: 12/16/2022] Open
Abstract
Dendritic cells (DCs) have been implicated in the pathogenesis of psoriasis but the roles for specific DC subsets are not well defined. Here we show that DCs are required for psoriasis-like changes in mouse skin induced by the local injection of IL-23. However, Flt3L-dependent DCs and resident Langerhans cells are dispensable for the inflammation. In epidermis and dermis, the critical DCs are TNF-producing and IL-1β-producing monocyte-derived DCs, including a population of inflammatory Langerhans cells. Depleting Ly6Chi blood monocytes reduces DC accumulation and the skin changes induced either by injecting IL-23 or by application of the TLR7 agonist imiquimod. Moreover, we find that IL-23-induced inflammation requires expression of CCR6 by DCs or their precursors, and that CCR6 mediates monocyte trafficking into inflamed skin. Collectively, our results imply that monocyte-derived cells are critical contributors to psoriasis through production of inflammatory cytokines that augment the activation of skin T cells.
Imiquimod exacerbates IL-23-induced skin inflammation and models psoriasis in mice. Here the authors show that this pathology is not dependent on resident dendritic cells, but on CCR6-induced immigration of monocyte-derived cells.
Collapse
Affiliation(s)
- Tej Pratap Singh
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, US National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Howard H Zhang
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, US National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Izabela Borek
- Institute of Pathophysiology and Immunology, Medical University of Graz, 8010 Graz, Austria
| | - Peter Wolf
- Department of Dermatology, Medical University of Graz, A-8036 Graz, Austria
| | - Michael N Hedrick
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, US National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Satya P Singh
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, US National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Brian L Kelsall
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, US National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Bjorn E Clausen
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Joshua M Farber
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, US National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
100
|
Nirschl CJ, Anandasabapathy N. Duality at the gate: Skin dendritic cells as mediators of vaccine immunity and tolerance. Hum Vaccin Immunother 2016; 12:104-16. [PMID: 26836327 DOI: 10.1080/21645515.2015.1066050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Since Edward Jenner's discovery that intentional exposure to cowpox could provide lifelong protection from smallpox, vaccinations have been a major focus of medical research. However, while the protective benefits of many vaccines have been successfully translated into the clinic, the cellular and molecular mechanisms that differentiate effective vaccines from sub-optimal ones are not well understood. Dendritic cells (DCs) are the gatekeepers of the immune system, and are ultimately responsible for the generation of adaptive immunity and lifelong protective memory through interactions with T cells. In addition to lymph node and spleen resident DCs, a number of tissue resident DC populations have been identified at barrier tissues, such as the skin, which migrate to the local lymph node (migDC). These populations have unique characteristics, and play a key role in the function of cutaneous vaccinations by shuttling antigen from the vaccination site to the draining lymph node, rapidly capturing freely draining antigens in the lymph node, and providing key stimuli to T cells. However, while migDCs are responsible for the generation of immunity following exposure to certain pathogens and vaccines, recent work has identified a tolerogenic role for migDCs in the steady state as well as during protein immunization. Here, we examine the roles and functions of skin DC populations in the generation of protective immunity, as well as their role as regulators of the immune system.
Collapse
Affiliation(s)
- Christopher J Nirschl
- a Department of Dermatology ; Harvard Skin Disease Research Center; Brigham and Women's Hospital ; Boston , MA USA
| | - Niroshana Anandasabapathy
- a Department of Dermatology ; Harvard Skin Disease Research Center; Brigham and Women's Hospital ; Boston , MA USA
| |
Collapse
|