51
|
Stewart I, Radtke D, Phillips B, McGowan SJ, Bannard O. Germinal Center B Cells Replace Their Antigen Receptors in Dark Zones and Fail Light Zone Entry when Immunoglobulin Gene Mutations are Damaging. Immunity 2019; 49:477-489.e7. [PMID: 30231983 PMCID: PMC6162340 DOI: 10.1016/j.immuni.2018.08.025] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 04/23/2018] [Accepted: 08/28/2018] [Indexed: 12/15/2022]
Abstract
Adaptive immunity involves the development of bespoke antibodies in germinal centers (GCs) through immunoglobulin somatic hypermutation (SHM) in GC dark zones (DZs) and clonal selection in light zones (LZs). Accurate selection requires that cells fully replace surface B cell receptors (BCRs) following SHM, but whether this happens before LZ entry is not clear. We found that most GC B cells degrade pre-SHM receptors before leaving the DZ, and that B cells acquiring crippling mutations during SHM rarely reached the LZ. Instead, apoptosis was triggered preferentially in late G1, a stage wherein cells with functional BCRs re-entered cell cycle or reduced surface expression of the chemokine receptor CXCR4 to enable LZ migration. Ectopic expression of the anti-apoptotic gene Bcl2 was not sufficient for cells with damaging mutations to reach the LZ, suggesting that BCR-dependent cues may actively facilitate the transition. Thus, BCR replacement and pre-screening in DZs prevents the accumulation of clones with non-functional receptors and facilitates selection in the LZ.
Collapse
Affiliation(s)
- Isabelle Stewart
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Daniel Radtke
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Bethan Phillips
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Simon J McGowan
- Computational Biology Research Group, MRC Weatherall Institute of Molecular Medicinex, University of Oxford, Oxford, OX3 9DS, UK
| | - Oliver Bannard
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK.
| |
Collapse
|
52
|
Abstract
In this review, Boothby et al. summarize some salient advances toward elucidation of the molecular programming of the fate choices and function of B cells in the periphery. They also note unanswered questions that pertain to differences among subsets of B lymphocytes and plasma cells. Mature B lymphocytes are crucial components of adaptive immunity, a system essential for the evolutionary fitness of mammals. Adaptive lymphocyte function requires an initially naïve cell to proliferate extensively and its progeny to have the capacity to assume a variety of fates. These include either terminal differentiation (the long-lived plasma cell) or metastable transcriptional reprogramming (germinal center and memory B cells). In this review, we focus principally on the regulation of differentiation and functional diversification of the “B2” subset. An overview is combined with an account of more recent advances, including initial work on mechanisms that eliminate DNA methylation and potential links between intracellular metabolites and chromatin editing.
Collapse
|
53
|
Regulation of metabolic supply and demand during B cell activation and subsequent differentiation. Curr Opin Immunol 2018; 57:8-14. [PMID: 30339937 DOI: 10.1016/j.coi.2018.10.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/29/2018] [Accepted: 10/01/2018] [Indexed: 12/21/2022]
Abstract
B cell activation and differentiation are associated with marked changes in proliferative and effector functions. Each stage of B cell differentiation thus has unique metabolic demands. New studies have provided insight on how nutrient uptake and usage by B cells are regulated by B cell receptor signals, autophagy, mammalian target of rapamycin, and transcriptional control of transporters and rate-limiting enzymes. A recurring theme is that these pathways play distinct roles ranging from survival to antibody production, depending on the B cell fate. We review recently published data that define how these pathways control metabolic flux in B cells, with a particular emphasis on genetic and in vivo evidence. We further discuss how lessons from T cells can guide future directions.
Collapse
|
54
|
Ap4 is rate limiting for intestinal tumor formation by controlling the homeostasis of intestinal stem cells. Nat Commun 2018; 9:3573. [PMID: 30177706 PMCID: PMC6120921 DOI: 10.1038/s41467-018-06001-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 08/06/2018] [Indexed: 01/07/2023] Open
Abstract
The gene encoding the transcription factor TFAP4/AP4 represents a direct target of the c-MYC oncoprotein. Here, we deleted Ap4 in ApcMin mice, a preclinical model of inherited colorectal cancer. Ap4 deficiency extends their average survival by 110 days and decreases the formation of intestinal adenomas and tumor-derived organoids. The effects of Ap4 deletion are presumably due to the reduced number of functional intestinal stem cells (ISCs) amenable to adenoma-initiating mutational events. Deletion of Ap4 also decreases the number of colonic stem cells and increases the number of Paneth cells. Expression profiling revealed that ISC signatures, as well as the Wnt/β-catenin and Notch signaling pathways are downregulated in Ap4-deficient adenomas and intestinal organoids. AP4-associated signatures are conserved between murine adenomas and human colorectal cancer samples. Our results establish Ap4 as rate-limiting mediator of adenoma initiation, as well as regulator of intestinal and colonic stem cell and Paneth cell homeostasis.
Collapse
|
55
|
Weniger MA, Tiacci E, Schneider S, Arnolds J, Rüschenbaum S, Duppach J, Seifert M, Döring C, Hansmann ML, Küppers R. Human CD30+ B cells represent a unique subset related to Hodgkin lymphoma cells. J Clin Invest 2018; 128:2996-3007. [PMID: 29889102 DOI: 10.1172/jci95993] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 04/17/2018] [Indexed: 01/05/2023] Open
Abstract
Very few B cells in germinal centers (GCs) and extrafollicular (EF) regions of lymph nodes express CD30. Their specific features and relationship to CD30-expressing Hodgkin and Reed/Sternberg (HRS) cells of Hodgkin lymphoma are unclear but highly relevant, because numerous patients with lymphoma are currently treated with an anti-CD30 immunotoxin. We performed a comprehensive analysis of human CD30+ B cells. Phenotypic and IgV gene analyses indicated that CD30+ GC B lymphocytes represent typical GC B cells, and that CD30+ EF B cells are mostly post-GC B cells. The transcriptomes of CD30+ GC and EF B cells largely overlapped, sharing a strong MYC signature, but were strikingly different from conventional GC B cells and memory B and plasma cells, respectively. CD30+ GC B cells represent MYC+ centrocytes redifferentiating into centroblasts; CD30+ EF B cells represent active, proliferating memory B cells. HRS cells shared typical transcriptome patterns with CD30+ B cells, suggesting that they originate from these lymphocytes or acquire their characteristic features during lymphomagenesis. By comparing HRS to normal CD30+ B cells we redefined aberrant and disease-specific features of HRS cells. A remarkable downregulation of genes regulating genomic stability and cytokinesis in HRS cells may explain their genomic instability and multinuclearity.
Collapse
Affiliation(s)
| | | | | | - Judith Arnolds
- Department of Otorhinolaryngology, University of Duisburg-Essen, Essen, Germany
| | | | | | - Marc Seifert
- Institute of Cell Biology (Cancer Research), and
| | - Claudia Döring
- Dr. Senckenberg Institute of Pathology, University of Frankfurt/Main, Medical School, Frankfurt, Germany
| | - Martin-Leo Hansmann
- Dr. Senckenberg Institute of Pathology, University of Frankfurt/Main, Medical School, Frankfurt, Germany.,Frankfurt Institute for Advanced Studies, Frankfurt, Germany
| | - Ralf Küppers
- Institute of Cell Biology (Cancer Research), and
| |
Collapse
|
56
|
Song J, Xie C, Jiang L, Wu G, Zhu J, Zhang S, Tang M, Song L, Li J. Transcription factor AP-4 promotes tumorigenic capability and activates the Wnt/β-catenin pathway in hepatocellular carcinoma. Am J Cancer Res 2018; 8:3571-3583. [PMID: 30026867 PMCID: PMC6037031 DOI: 10.7150/thno.25194] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 04/19/2018] [Indexed: 01/27/2023] Open
Abstract
It has been reported that the transcription factor activating enhancer-binding protein 4 (TFAP4) is upregulated and associated with an aggressive phenotype in several cancers. However, the precise mechanisms underlying the oncogenic role of TFAP4 remain largely unknown. Methods: TFAP4 expression levels in hepatocellular carcinoma (HCC) cells and tissues were detected by quantitative real-time PCR (qPCR) and immunohistochemistry (IHC). In vitro and in vivo assays were performed to investigate the oncogenic function of TFAP4 in the tumor-initiating cell (TIC)-like phenotype and the tumorigenic capability of HCC cells. Luciferase reporter and chromatin immunoprecipitation (ChIP)-qPCR assays were performed to determine the underlying mechanism of TFAP4-mediated HCC aggressiveness. Results: TFAP4 was markedly upregulated in human HCC, and was associated with significantly poorer overall and relapse-free survival in patients with HCC. Furthermore, we found that overexpression of TFAP4 significantly enhanced, whereas silencing TFAP4 inhibited, the tumor sphere formation ability and proportion of side-population cells in HCC cells in vitro, and ectopic TFAP4 enhanced the tumorigenicity of HCC cells in vivo. Mechanistically, we demonstrated that TFAP4 played an important role in activating Wnt/β-catenin signaling by directly binding to the promoters of DVL1 (dishevelled segment polarity protein 1) and LEF1 (lymphoid enhancer binding factor 1). Conclusions: Our results provide new insight into the mechanisms underlying hyperactivation of the Wnt/β-catenin pathway in HCC, as well the oncogenic ability of TFAP4 to enhance the tumor-forming ability of HCC cells.
Collapse
|
57
|
Wu X, Su Z, Cai B, Yan L, Li Y, Feng W, Wang L. Increased Circulating Follicular Regulatory T-Like Cells May Play a Critical Role in Chronic Hepatitis B Virus Infection and Disease Progression. Viral Immunol 2018; 31:379-388. [PMID: 29683413 DOI: 10.1089/vim.2017.0171] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Xiaojuan Wu
- Department of Laboratory Medicine, Research Center of Clinical Laboratory Medicine, West China Hospital of Sichuan University , Chengdu, Sichuan Province, China
| | - Zhenzhen Su
- Department of Laboratory Medicine, Research Center of Clinical Laboratory Medicine, West China Hospital of Sichuan University , Chengdu, Sichuan Province, China
| | - Bei Cai
- Department of Laboratory Medicine, Research Center of Clinical Laboratory Medicine, West China Hospital of Sichuan University , Chengdu, Sichuan Province, China
| | - Lin Yan
- Department of Laboratory Medicine, Research Center of Clinical Laboratory Medicine, West China Hospital of Sichuan University , Chengdu, Sichuan Province, China
| | - Yamei Li
- Department of Laboratory Medicine, Research Center of Clinical Laboratory Medicine, West China Hospital of Sichuan University , Chengdu, Sichuan Province, China
| | - Weihua Feng
- Department of Laboratory Medicine, Research Center of Clinical Laboratory Medicine, West China Hospital of Sichuan University , Chengdu, Sichuan Province, China
| | - Lanlan Wang
- Department of Laboratory Medicine, Research Center of Clinical Laboratory Medicine, West China Hospital of Sichuan University , Chengdu, Sichuan Province, China
| |
Collapse
|
58
|
Huynh JP, Lin CC, Kimmey JM, Jarjour NN, Schwarzkopf EA, Bradstreet TR, Shchukina I, Shpynov O, Weaver CT, Taneja R, Artyomov MN, Edelson BT, Stallings CL. Bhlhe40 is an essential repressor of IL-10 during Mycobacterium tuberculosis infection. J Exp Med 2018; 215:1823-1838. [PMID: 29773644 DOI: 10.1084/jem.20171704] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 04/10/2018] [Accepted: 05/09/2018] [Indexed: 12/22/2022] Open
Abstract
The cytokine IL-10 antagonizes pathways that control Mycobacterium tuberculosis (Mtb) infection. Nevertheless, the impact of IL-10 during Mtb infection has been difficult to decipher because loss-of-function studies in animal models have yielded only mild phenotypes. We have discovered that the transcription factor basic helix-loop-helix family member e40 (Bhlhe40) is required to repress Il10 expression during Mtb infection. Loss of Bhlhe40 in mice results in higher Il10 expression, higher bacterial burden, and early susceptibility similar to that observed in mice lacking IFN-γ. Deletion of Il10 in Bhlhe40-/- mice reverses these phenotypes. Bhlhe40 deletion in T cells or CD11c+ cells is sufficient to cause susceptibility to Mtb Bhlhe40 represents the first transcription factor found to be essential during Mtb infection to specifically regulate Il10 expression, revealing the importance of strict control of IL-10 production by innate and adaptive immune cells during infection. Our findings uncover a previously elusive but significant role for IL-10 in Mtb pathogenesis.
Collapse
Affiliation(s)
- Jeremy P Huynh
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO
| | - Chih-Chung Lin
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Jacqueline M Kimmey
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO
| | - Nicholas N Jarjour
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Elizabeth A Schwarzkopf
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Tara R Bradstreet
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Irina Shchukina
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Oleg Shpynov
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO.,JetBrains Research, Saint Petersburg, Russia
| | - Casey T Weaver
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL
| | - Reshma Taneja
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Maxim N Artyomov
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Brian T Edelson
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Christina L Stallings
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
59
|
Raju S, Kometani K, Kurosaki T, Shaw AS, Egawa T. The adaptor molecule CD2AP in CD4 T cells modulates differentiation of follicular helper T cells during chronic LCMV infection. PLoS Pathog 2018; 14:e1007053. [PMID: 29734372 PMCID: PMC5957453 DOI: 10.1371/journal.ppat.1007053] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 05/17/2018] [Accepted: 04/24/2018] [Indexed: 12/24/2022] Open
Abstract
CD4 T cell-mediated help to CD8 T cells and B cells is a critical arm of the adaptive immune system required for control of pathogen infection. CD4 T cells express cytokines and co-stimulatory molecules that support a sustained CD8 T cell response and also enhance generation of protective antibody by germinal center B cells. However, the molecular components that modulate CD4 T cell functions in response to viral infection or vaccine are incompletely understood. Here we demonstrate that inactivation of the signaling adaptor CD2-associated protein (CD2AP) promotes CD4 T cell differentiation towards the follicular helper lineage, leading to enhanced control of viral infection by augmented germinal center response in chronic lymphocytic choriomeningitis virus (LCMV) infection. The enhanced follicular helper differentiation is associated with extended duration of TCR signaling and enhanced cytokine production of CD2AP-deficient CD4 T cells specifically under TH1 conditions, while neither prolonged TCR signaling nor enhanced follicular helper differentiation was observed under conditions that induce other helper effector subsets. Despite the structural similarity between CD2AP and the closely related adaptor protein CIN85, we observed defective antibody-mediated control of chronic LCMV infection in mice lacking CIN85 in T cells, suggesting non-overlapping and potentially antagonistic roles for CD2AP and CIN85. These results suggest that tuning of TCR signaling by targeting CD2AP improves protective antibody responses in viral infection. Enhancing the production of protective antibodies in response to infection or vaccine is critically important for host protection. However, we have only limited knowledge about molecular targets to enhance functions of CD4 helper T cells that are essential for antibody affinity maturation and class switching. In this work, we found that inhibiting the function of the adaptor molecule CD2AP results in enhanced antibody responses and improved protection of mice from chronic infection by LCMV. Mice lacking CD2AP specifically in T cells showed enhanced CD4 T cell differentiation towards the follicular helper subset, which is a critical regulator of antibody responses, and generated more germinal center B cells leading to production of mutated, protective antibodies. This effect was specific to CD4 T cells in type-I immune responses, associated with viral infection, while deletion of CD2AP had little impact on CD4 T cells in type-II immune responses or CD8 T cells. Our results thus suggest that CD2AP can be a specific target to enhance antiviral protective immunity during viral infection or vaccination.
Collapse
Affiliation(s)
- Saravanan Raju
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Kohei Kometani
- Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Tomohiro Kurosaki
- Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Andrey S. Shaw
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Takeshi Egawa
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
60
|
Kumar V. T cells and their immunometabolism: A novel way to understanding sepsis immunopathogenesis and future therapeutics. Eur J Cell Biol 2018; 97:379-392. [PMID: 29773345 DOI: 10.1016/j.ejcb.2018.05.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/03/2018] [Accepted: 05/03/2018] [Indexed: 02/08/2023] Open
Abstract
Sepsis has always been considered as a big challenge for pharmaceutical companies in terms of discovering and designing new therapeutics. The pathogenesis of sepsis involves aberrant activation of innate immune cells (i.e. macrophages, neutrophils etc.) at early stages. However, a stage of immunosuppression is also observed during sepsis even in the patients who have recovered from it. This stage of immunosuppression is observed due to the loss of conventional (i.e. CD4+, CD8+) T cells, Th17 cells and an upregulation of regulatory T cells (Tregs). This process also impacts metabolic processes controlling immune cell metabolism called immunometabolism. The present review is focused on the T cell-mediated immune response, their immunometabolism and targeting T cell immunometabolism during sepsis as future therapeutic approach. The first part of the manuscripts describes an impact of sepsis on conventional T cells, Th17 cells and Tregs along with their impact on sepsis. The subsequent section further describes the immunometabolism of these cells (CD4+, CD8+, Th17, and Tregs) under normal conditions and during sepsis-induced immunosuppression. The article ends with the therapeutic targeting of T cell immunometabolism (both conventional T cells and Tregs) during sepsis as a future immunomodulatory approach for its management.
Collapse
Affiliation(s)
- V Kumar
- Children's Health Queensland Clinical Unit, School of Clinical Medicine, Mater Research, Faculty of Medicine, University of Queensland, St. Lucia, Brisbane, Queensland 4078, Australia; School of Biomedical Sciences, Faculty of Medicine, University of Queensland, St. Lucia, Brisbane, Queensland 4078, Australia.
| |
Collapse
|
61
|
Verbaro DJ, Sakurai N, Kim B, Shinkai Y, Egawa T. Cutting Edge: The Histone Methyltransferase G9a Is Required for Silencing of Helper T Lineage-Associated Genes in Proliferating CD8 T Cells. THE JOURNAL OF IMMUNOLOGY 2018; 200:3891-3896. [PMID: 29720423 DOI: 10.4049/jimmunol.1701700] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 04/11/2018] [Indexed: 11/19/2022]
Abstract
Helper versus cytotoxic T lineage decision in the thymus has been studied as a model for silencing of alternative lineage genes. Although the transcription factor RUNX3 is required for the initiation of Cd4 silencing in developing CD8 T cells, it is unknown how silencing of Cd4 and other helper T lineage genes is maintained. We show that the histone methyltransferase G9a is necessary for silencing helper T lineage genes in proliferating mouse CD8 T cells. Despite normal initial Cd4 downregulation, G9a-deficient CD8 T cells derepress Cd4 and other helper lineage genes during repeated division in lymphopenia or in response to tumor Ag. However, G9a was dispensable for continued silencing of those genes in CD8 T cells that respond to infection by Listeria monocytogenes These results demonstrate that G9a facilitates maintenance of cellular identity of CD8 T cells during cell division, which is further reinforced by inflammatory signals.
Collapse
Affiliation(s)
- Daniel J Verbaro
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110; and
| | - Nagisa Sakurai
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110; and
| | - Byungil Kim
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110; and
| | - Yoichi Shinkai
- Cellular Memory Laboratory, RIKEN, Wako, Saitama 351-0198, Japan
| | - Takeshi Egawa
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110; and
| |
Collapse
|
62
|
Chen C, Zhai S, Zhang L, Chen J, Long X, Qin J, Li J, Huo R, Wang X. Uhrf1 regulates germinal center B cell expansion and affinity maturation to control viral infection. J Exp Med 2018; 215:1437-1448. [PMID: 29618490 PMCID: PMC5940267 DOI: 10.1084/jem.20171815] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/07/2017] [Accepted: 03/01/2018] [Indexed: 12/12/2022] Open
Abstract
The production of high-affinity antibody is essential for pathogen clearance. Antibody affinity is increased through germinal center (GC) affinity maturation, which relies on BCR somatic hypermutation (SHM) followed by antigen-based selection. GC B cell proliferation is essentially involved in these processes; it provides enough templates for SHM and also serves as a critical mechanism of positive selection. In this study, we show that expression of epigenetic regulator ubiquitin-like with PHD and RING finger domains 1 (Uhrf1) was markedly up-regulated by c-Myc-AP4 in GC B cells, and it was required for GC response. Uhrf1 regulates cell proliferation-associated genes including cdkn1a, slfn1, and slfn2 by DNA methylation, and its deficiency inhibited the GC B cell cycle at G1-S phase. Subsequently, GC B cell SHM and affinity maturation were impaired, and Uhrf1 GC B knockout mice were unable to control chronic virus infection. Collectively, our data suggest that Uhrf1 regulates GC B cell proliferation and affinity maturation, and its expression in GC B cells is required for virus clearance.
Collapse
Affiliation(s)
- Chao Chen
- Department of Immunology, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Sulan Zhai
- Department of Immunology, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Le Zhang
- Department of Immunology, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Jingjing Chen
- Department of Immunology, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Xuehui Long
- Department of Immunology, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Jun Qin
- Key Laboratory of Stem Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianhua Li
- Key Laboratory of Medical Molecular Virology, Department of Medical Microbiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ran Huo
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Xiaoming Wang
- Department of Immunology, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
63
|
Monzón-Casanova E, Screen M, Díaz-Muñoz MD, Coulson RMR, Bell SE, Lamers G, Solimena M, Smith CWJ, Turner M. The RNA-binding protein PTBP1 is necessary for B cell selection in germinal centers. Nat Immunol 2018; 19:267-278. [PMID: 29358707 PMCID: PMC5842895 DOI: 10.1038/s41590-017-0035-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 12/12/2017] [Indexed: 12/17/2022]
Abstract
Antibody affinity maturation occurs in germinal centres (GC) where B
cells cycle between the light zone (LZ) and the dark zone. In the LZ GC B cells
bearing immunoglobulins with the highest affinity for antigen receive positive
selection signals from T helper cells that promotes their rapid proliferation.
Here we show that the RNA binding protein PTBP1 is necessary for the progression
of GC B cells through late S-phase of the cell cycle and for affinity
maturation. PTBP1 is required for the proper expression of the c-MYC-dependent
gene program induced in GC B cells receiving T cell help and directly regulates
the alternative splicing and abundance of transcripts increased during positive
selection to promote proliferation.
Collapse
Affiliation(s)
- Elisa Monzón-Casanova
- Laboratory of Lymphocyte Signaling and Development, The Babraham Institute, Cambridge, UK.,Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Michael Screen
- Laboratory of Lymphocyte Signaling and Development, The Babraham Institute, Cambridge, UK
| | - Manuel D Díaz-Muñoz
- Laboratory of Lymphocyte Signaling and Development, The Babraham Institute, Cambridge, UK
| | - Richard M R Coulson
- Laboratory of Lymphocyte Signaling and Development, The Babraham Institute, Cambridge, UK
| | - Sarah E Bell
- Laboratory of Lymphocyte Signaling and Development, The Babraham Institute, Cambridge, UK
| | - Greta Lamers
- Laboratory of Lymphocyte Signaling and Development, The Babraham Institute, Cambridge, UK
| | - Michele Solimena
- Molecular Diabetology, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.,Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.,Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany.,German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | | | - Martin Turner
- Laboratory of Lymphocyte Signaling and Development, The Babraham Institute, Cambridge, UK.
| |
Collapse
|
64
|
Identification of lineage-specifying cytokines that signal all CD8 +-cytotoxic-lineage-fate 'decisions' in the thymus. Nat Immunol 2017; 18:1218-1227. [PMID: 28945245 PMCID: PMC5659273 DOI: 10.1038/ni.3847] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 08/29/2017] [Indexed: 12/11/2022]
Abstract
T cell antigen receptor (TCR) signaling in the thymus initiates positive selection but CD8 lineage fate is thought to be induced by cytokines after TCR signaling has ceased, although this remains controversial and unproven. We now identify four non-common gamma chain (γc) receptor-signaling cytokines (IL-6, IFN-γ, TSLP, TGF-β) that, like IL-7 and IL-15, induce expression of the lineage-specifying transcription factor Runx3d and signal the generation of CD8 T cells. Remarkably, elimination of in vivo signaling by all ‘lineage-specifying cytokines’ during positive selection eliminated Runx3d expression and completely abrogated CD8 single-positive thymocyte generation. Thus, this study proves that signaling during positive selection by lineage-specifying cytokines is responsible for all CD8 lineage fate decisions in the thymus.
Collapse
|
65
|
Abstract
During antibody affinity maturation, germinal center (GC) B cells cycle between affinity-driven selection in the light zone (LZ) and proliferation and somatic hypermutation in the dark zone (DZ). Although selection of GC B cells is triggered by antigen-dependent signals delivered in the LZ, DZ proliferation occurs in the absence of such signals. We show that positive selection triggered by T cell help activates the mechanistic target of rapamycin complex 1 (mTORC1), which promotes the anabolic program that supports DZ proliferation. Blocking mTORC1 prior to growth prevented clonal expansion, whereas blockade after cells reached peak size had little to no effect. Conversely, constitutively active mTORC1 led to DZ enrichment but loss of competitiveness and impaired affinity maturation. Thus, mTORC1 activation is required for fueling B cells prior to DZ proliferation rather than for allowing cell-cycle progression itself and must be regulated dynamically during cyclic re-entry to ensure efficient affinity-based selection.
Collapse
|
66
|
Boothby M, Rickert RC. Metabolic Regulation of the Immune Humoral Response. Immunity 2017; 46:743-755. [PMID: 28514675 DOI: 10.1016/j.immuni.2017.04.009] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/15/2017] [Accepted: 04/21/2017] [Indexed: 12/13/2022]
Abstract
Productive humoral responses require that naive B cells and their differentiated progeny move among distinct micro-environments. In this review, we discuss how studies are beginning to address the nature of these niches as well as the interplay between cellular signaling, metabolic programming, and adaptation to the locale. Recent work adds evidence to the expectation that B cells at distinct stages of development or functional subsets are influenced by the altered profiles of nutrients and metabolic by-products that distinguish these sites. Moreover, emerging findings reveal a cross-talk among the external milieu, signal transduction pathways, and transcription factors that direct B cell fate in the periphery.
Collapse
Affiliation(s)
- Mark Boothby
- Department of Pathology, Microbiology and Immunology, School of Medicine, Vanderbilt University, and Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Medicine, School of Medicine, Vanderbilt University, and Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | - Robert C Rickert
- Tumor Microenvironment and Cancer Immunology Program, Sanford Burnham Prebys Medical Discovery Institute (SBP), La Jolla, CA 92037, USA; NCI-designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
67
|
Takahashi Y, Onodera T, Adachi Y, Ato M. Adaptive B Cell Responses to Influenza Virus Infection in the Lung. Viral Immunol 2017; 30:431-437. [PMID: 28661720 DOI: 10.1089/vim.2017.0025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Adaptive B cell response is a key arm of protective immunity against influenza viruses. Owing to the acutely infectious and cytopathic nature of these viruses, efficient containment of viral spread relies on the prompt provision of protective antibodies to the site of virus infection, the respiratory tract (RT). To accelerate the protective antibody response, B cell responses can be ectopically induced, maintained, and reactivated in the lungs after primary and secondary infection, thereby providing an anatomical advantage in supplying neutralizing antibodies against reinfecting viruses with faster kinetics. However, the prompt supply of protective antibodies may be insufficient to protect against reinfection because influenza viruses can easily change their antigenic profiles to escape antibody surveillance. B cell responses have multiple strategies for adjusting antibody repertoires according to viral fitness, one of which is the formation of local germinal centers capable of selecting B cell repertoires for antigenically subdominant, but conserved, epitopes. In this review, we discuss several unique aspects of B cell responses that take place at local sites to combat acutely infectious and rapidly mutating influenza viruses.
Collapse
Affiliation(s)
- Yoshimasa Takahashi
- Department of Immunology, National Institute of Infectious Diseases , Tokyo, Japan
| | - Taishi Onodera
- Department of Immunology, National Institute of Infectious Diseases , Tokyo, Japan
| | - Yu Adachi
- Department of Immunology, National Institute of Infectious Diseases , Tokyo, Japan
| | - Manabu Ato
- Department of Immunology, National Institute of Infectious Diseases , Tokyo, Japan
| |
Collapse
|
68
|
Abstract
The signaling pathways regulating positive selection in germinal centers (GCs) are incompletely understood. Ersching et al. (2017) identify a critical but temporal role for the action of the kinase mechanistic target of rapamycin complex (mTORC1), which promotes key changes in GC B cells and thereby facilitates affinity maturation.
Collapse
Affiliation(s)
- Elissa K Deenick
- Immunology Research Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia; St. Vincent's Clinical School, University of New South Wales, Darlinghurst, NSW, Australia.
| | - Stuart G Tangye
- Immunology Research Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia; St. Vincent's Clinical School, University of New South Wales, Darlinghurst, NSW, Australia
| |
Collapse
|
69
|
Chen J, Cai Z, Zhang L, Yin Y, Chen X, Chen C, Zhang Y, Zhai S, Long X, Liu X, Wang X. Lis1 Regulates Germinal Center B Cell Antigen Acquisition and Affinity Maturation. THE JOURNAL OF IMMUNOLOGY 2017; 198:4304-4311. [PMID: 28446568 DOI: 10.4049/jimmunol.1700159] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 03/27/2017] [Indexed: 01/07/2023]
Abstract
The germinal center (GC) is the site where activated B cells undergo rapid expansions, somatic hypermutation, and affinity maturation. Affinity maturation is a process of Ag-driven selection. The amount of Ag acquired and displayed by GC B cells determines whether it can be positively selected, and therefore Ag acquisition has to be tightly regulated to ensure the efficient affinity maturation. Cell expansion provides sufficient quantity of GC B cells and Abs, whereas affinity maturation improves the quality of Abs. In this study, we found that Lis1 is a cell-intrinsic regulator of Ag acquisition capability of GC B cells. Lack of Lis1 resulted in redistribution of polymerized actin and accumulation of F-actin at uropod; larger amounts of Ags were acquired and displayed by GC B cells, which presumably reduced the selection stringency. Affinity maturation was thus compromised in Lis1-deficient mice. Consistently, overexpression of Lis1 in GC B cells led to less Ag acquisition and display. Additionally, Lis1 is required for GC B cell expansion, and Lis1 deficiency blocked the cell cycle at the mitotic phase and GC B cells were prone to apoptosis. Overall, we suggest that Lis1 is required for GC B cell expansion, affinity maturation, and maintaining functional intact GC response, thus ensuring both the quantity and quality of Ab response.
Collapse
Affiliation(s)
- Jingjing Chen
- Department of Immunology, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China; and
| | - Zhenming Cai
- Department of Immunology, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China; and
| | - Le Zhang
- Department of Immunology, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China; and
| | - Yuye Yin
- Department of Immunology, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China; and
| | - Xufeng Chen
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Chao Chen
- Department of Immunology, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China; and
| | - Yang Zhang
- Department of Immunology, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China; and
| | - Sulan Zhai
- Department of Immunology, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China; and
| | - Xuehui Long
- Department of Immunology, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China; and
| | - Xiaolong Liu
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaoming Wang
- Department of Immunology, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China; and
| |
Collapse
|
70
|
Bannard O, Cyster JG. Germinal centers: programmed for affinity maturation and antibody diversification. Curr Opin Immunol 2017; 45:21-30. [DOI: 10.1016/j.coi.2016.12.004] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 12/14/2016] [Indexed: 12/17/2022]
|
71
|
Deconstructing the germinal center, one cell at a time. Curr Opin Immunol 2017; 45:112-118. [PMID: 28319730 DOI: 10.1016/j.coi.2017.03.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 03/02/2017] [Indexed: 01/05/2023]
Abstract
Successful vaccination relies on driving the immune response towards high specificity, affinity and longevity. Germinal centers facilitate the evolution of antigen-specific B cells by iterative rounds of diversification, selection, and differentiation to memory and plasma cells. Experimental evidence points to B cell receptor affinity and amount of antigen presented to follicular helper T cells as main drivers of clonal evolution. Concurrent studies suggest that modifiers of cognate contact, temporal mechanisms, and stochastic factors can also shape diversity and influence differentiation to memory and plasma cells, but molecular pathways driving these selection decisions are unresolved. Due to rapid cycles of transcriptional change in the germinal center, single-cell resolution is imperative to dissect mechanisms dictating the mature antigen-specific repertoire. Future studies linking high-resolution analysis of this diverse evolving population with cellular outcome are needed to fully understand the complex mechanisms of selection driving antigen-specific humoral immunity.
Collapse
|
72
|
Mesin L, Ersching J, Victora GD. Germinal Center B Cell Dynamics. Immunity 2016; 45:471-482. [PMID: 27653600 PMCID: PMC5123673 DOI: 10.1016/j.immuni.2016.09.001] [Citation(s) in RCA: 646] [Impact Index Per Article: 80.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/07/2016] [Accepted: 06/08/2016] [Indexed: 01/01/2023]
Abstract
Germinal centers (GCs) are the site of antibody diversification and affinity maturation and as such are vitally important for humoral immunity. The study of GC biology has undergone a renaissance in the past 10 years, with a succession of findings that have transformed our understanding of the cellular dynamics of affinity maturation. In this review, we discuss recent developments in the field, with special emphasis on how GC cellular and clonal dynamics shape antibody affinity and diversity during the immune response.
Collapse
Affiliation(s)
- Luka Mesin
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Jonatan Ersching
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Gabriel D Victora
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.
| |
Collapse
|