51
|
Song A, Zhu L, Gorantla G, Berdysz O, Amici SA, Guerau-de-Arellano M, Madalena KM, Lerch JK, Liu X, Quan N. Salient type 1 interleukin 1 receptor expression in peripheral non-immune cells. Sci Rep 2018; 8:723. [PMID: 29335509 PMCID: PMC5768710 DOI: 10.1038/s41598-018-19248-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 12/21/2017] [Indexed: 12/26/2022] Open
Abstract
Interleukin 1 is a pleiotropic cytokine that mediates diverse functions through its receptor, type I interleukin 1 receptor (IL-1R1). Most previous studies have focused on the expression and function of IL-1R1 in immune cells. Here we performed a comprehensive mapping of IL-1R1 distribution in multiple peripheral tissues using our IL-1R1 reporter (IL-1R1GR/GR) mice. This method yielded the highest sensitivity of in situ detection of IL-1R1 mRNA and protein. Besides validating previously reported IL-1R1 expression in the endocrine tissues including pituitary and pancreas, our results refuted previously reported exclusive IL-1R1 expression in neurons of the spinal cord dorsal horn and dorsal root ganglia (DRG). Instead, IL-1R1 expression was detected in endothelial cells within DRG, spinal cord, pancreas, colon, muscles and many immune organs. In addition, gp38+ fibroblastic reticular cells (FRCs), rather than tissue macrophages or other immune cells, were found to express high levels of IL-1R1 in colon and many immune organs. A functional test of spleen FRCs showed that they responded rapidly to systemic IL-1β stimulation in vivo. Taken together, this study provides a rigorous re-examination of IL-1R1 expression in peripheral tissues and reveals tissue FRCs as a previously unappreciated novel high IL-1R1-expressing cell type in peripheral IL-1 signaling.
Collapse
Affiliation(s)
- Anping Song
- Department of Oncolgy, Tongji Hospital, Huazhong University of Science and Technology Tongji Medical College, Wuhan, Hubei, 430030, P. R. China
| | - Ling Zhu
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.,West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Gowthami Gorantla
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Olimpia Berdysz
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Stephanie A Amici
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.,School of Health and Rehabilitation Sciences, Division of Medical Laboratory Science, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Mireia Guerau-de-Arellano
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.,School of Health and Rehabilitation Sciences, Division of Medical Laboratory Science, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, 43210, USA.,Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, 43210, USA.,Department of Neuroscience, The Ohio State University, Columbus, OH, 43210, USA
| | - Kathryn M Madalena
- Department of Neuroscience, The Ohio State University, Columbus, OH, 43210, USA.,Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, OH, 43210, USA
| | - Jessica K Lerch
- Department of Neuroscience, The Ohio State University, Columbus, OH, 43210, USA.,Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, OH, 43210, USA
| | - Xiaoyu Liu
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA. .,Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, 43210, USA. .,Institute for Behavioral Medicine Research, 460 Medical Center Drive, Columbus, OH, 43210, USA.
| | - Ning Quan
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA. .,Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, 43210, USA. .,Institute for Behavioral Medicine Research, 460 Medical Center Drive, Columbus, OH, 43210, USA.
| |
Collapse
|
52
|
D’Attilio L, Santucci N, Bongiovanni B, Bay ML, Bottasso O. Tuberculosis, the Disrupted Immune-Endocrine Response and the Potential Thymic Repercussion As a Contributing Factor to Disease Physiopathology. Front Endocrinol (Lausanne) 2018; 9:214. [PMID: 29765355 PMCID: PMC5938357 DOI: 10.3389/fendo.2018.00214] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 04/16/2018] [Indexed: 12/31/2022] Open
Abstract
Upon the pathogen encounter, the host seeks to ensure an adequate inflammatory reaction to combat infection but at the same time tries to prevent collateral damage, through several regulatory mechanisms, like an endocrine response involving the production of adrenal steroid hormones. Our studies show that active tuberculosis (TB) patients present an immune-endocrine imbalance characterized by an impaired cellular immunity together with increased plasma levels of cortisol, pro-inflammatory cytokines, and decreased amounts of dehydroepiandrosterone. Studies in patients undergoing specific treatment revealed that cortisol levels remained increased even after several months of initiating therapy. In addition to the well-known metabolic and immunological effects, glucocorticoids are involved in thymic cortical depletion with immature thymocytes being quite sensitive to such an effect. The thymus is a central lymphoid organ supporting thymocyte T-cell development, i.e., lineage commitment, selection events and thymic emigration. While thymic TB is an infrequent manifestation of the disease, several pieces of experimental and clinical evidence point out that the thymus can be infected by mycobacteria. Beyond this, the thymic microenvironment during TB may be also altered because of the immune-hormonal alterations. The thymus may be then an additional target of organ involvement further contributing to a deficient control of infection and disease immunopathology.
Collapse
|
53
|
Gies V, Guffroy A, Korganow AS. [Thymic B cells: not simple bystanders of T cell lymphopoiesis]. Med Sci (Paris) 2017; 33:771-778. [PMID: 28945568 DOI: 10.1051/medsci/20173308023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The thymus is the central site for the differentiation and selection of T cells. It has been known for decades that B lymphocytes reside in the thymus, but little attention has been paid to this unique population. Thymic B cells are mainly located in the medulla and at the cortico-medullary junction. They develop intrathymically, do not recirculate and harbor a distinct phenotype in comparison to peripheral B cells. Furthermore, because of their activated phenotype and their precise histological localization, they have been suspected to play a role in the selection of self-reactive T cells. But it is only during this last decade that murine and human studies have highlighted their functions, such as antigen-presenting cells shaping the T cell repertoire. These works have demonstrated the major role of thymic B cells in the immune system.
Collapse
Affiliation(s)
- Vincent Gies
- CNRS UPR 3572, Immunopathologie et chimie thérapeutique, Laboratoire d'Excellence Médalis, Institut de biologie moléculaire et cellulaire (IBMC), 67000 Strasbourg, France. Service d'immunologie clinique et de médecine interne, Centre national de référence des maladies auto-immunes rares, Hôpitaux universitaires de Strasbourg, 67091 Strasbourg, France
| | - Aurélien Guffroy
- CNRS UPR 3572, Immunopathologie et chimie thérapeutique, Laboratoire d'Excellence Médalis, Institut de biologie moléculaire et cellulaire (IBMC), 67000 Strasbourg, France. Service d'immunologie clinique et de médecine interne, Centre national de référence des maladies auto-immunes rares, Hôpitaux universitaires de Strasbourg, 67091 Strasbourg, France
| | - Anne-Sophie Korganow
- CNRS UPR 3572, Immunopathologie et chimie thérapeutique, Laboratoire d'Excellence Médalis, Institut de biologie moléculaire et cellulaire (IBMC), 67000 Strasbourg, France. Service d'immunologie clinique et de médecine interne, Centre national de référence des maladies auto-immunes rares, Hôpitaux universitaires de Strasbourg, 67091 Strasbourg, France
| |
Collapse
|
54
|
Ayasoufi K, Fan R, Valujskikh A. Depletion-Resistant CD4 T Cells Enhance Thymopoiesis During Lymphopenia. Am J Transplant 2017; 17:2008-2019. [PMID: 28397358 PMCID: PMC5519419 DOI: 10.1111/ajt.14309] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/08/2017] [Accepted: 04/01/2017] [Indexed: 01/25/2023]
Abstract
Lymphoablation is routinely used in transplantation, and its success is defined by the balance of pathogenic versus protective T cells within reconstituted repertoire. While homeostatic proliferation and thymopoiesis may both cause T cell recovery during lymphopenia, the relative contributions of these mechanisms remain unclear. The goal of this study was to investigate the role of the thymus during T cell reconstitution in adult allograft recipients subjected to lymphoablative induction therapy. Compared with euthymic mice, thymectomized heart allograft recipients demonstrated severely impaired CD4 and CD8 T cell recovery and prolonged heart allograft survival after lymphoablation with murine anti-thymocyte globulin (mATG). The injection with agonistic anti-CD40 mAb or thymus transplantation only partially restored T cell reconstitution in mATG-treated thymectomized mice. After mATG depletion, residual CD4 T cells migrated into the thymus and enhanced thymopoiesis. Conversely, depletion of CD4 T cells before lymphoablation inhibited thymopoiesis at the stage of CD4- CD8- CD44hi CD25+ immature thymocytes. This is the first demonstration that the thymus and peripheral CD4 T cells cooperate to ensure optimal T cell reconstitution after lymphoablation. Targeting thymopoiesis through manipulating functions of depletion-resistant helper T cells may thus improve therapeutic benefits and minimize the risks of lymphoablation in clinical settings.
Collapse
Affiliation(s)
- Katayoun Ayasoufi
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH
| | - Ran Fan
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Anna Valujskikh
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
55
|
Ansari AR, Liu H. Acute Thymic Involution and Mechanisms for Recovery. Arch Immunol Ther Exp (Warsz) 2017; 65:401-420. [PMID: 28331940 DOI: 10.1007/s00005-017-0462-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 03/12/2017] [Indexed: 12/14/2022]
Abstract
Acute thymic involution (ATI) is usually regarded as a virulence trait. It is caused by several infectious agents (bacteria, viruses, parasites, fungi) and other factors, including stress, pregnancy, malnutrition and chemotherapy. However, the complex mechanisms that operate during ATI differ substantially from each other depending on the causative agent. For instance, a transient reduction in the size and weight of the thymus and depletion of populations of T cell subsets are hallmarks of ATI in many cases, whereas severe disruption of the anatomical structure of the organ is also associated with some factors, including fungal, parasitic and viral infections. However, growing evidence shows that ATI may be therapeutically halted or reversed. In this review, we highlight the current progress in this field with respect to numerous pathological factors and discuss the possible mechanisms. Moreover, these new observations also show that ATI can be mechanistically reversed.
Collapse
Affiliation(s)
- Abdur Rahman Ansari
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, 430070, Wuhan, Hubei, China.,Section of Anatomy and Histology, Department of Basic Sciences, College of Veterinary and Animal Sciences (CVAS), Jhang, Pakistan.,University of Veterinary and Animal Sciences (UVAS), Lahore, Pakistan
| | - Huazhen Liu
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, 430070, Wuhan, Hubei, China.
| |
Collapse
|
56
|
Ito R, Hale LP, Geyer SM, Li J, Sornborger A, Kajimura J, Kusunoki Y, Yoshida K, van den Brink MRM, Kyoizumi S, Manley NR, Nakachi K, Sempowski GD. Late Effects of Exposure to Ionizing Radiation and Age on Human Thymus Morphology and Function. Radiat Res 2017; 187:589-598. [PMID: 28319462 DOI: 10.1667/rr4554.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The thymus is essential for proper development and maintenance of a T-cell repertoire that can respond to newly encountered antigens, but its function can be adversely affected by internal factors such as pregnancy and normal aging or by external stimuli such as stress, infection, chemotherapy and ionizing radiation. We have utilized a unique archive of thymus tissues, obtained from 165 individuals, exposed to the 1945 atomic bomb blast in Hiroshima, to study the long-term effects of receiving up to ∼3 Gy dose of ionizing radiation on human thymus function. A detailed morphometric analysis of thymus activity and architecture in these subjects at the time of their natural deaths was performed using bright-field immunohistochemistry and dual-color immunofluorescence and compared to a separate cohort of nonexposed control subjects. After adjusting for age-related effects, increased hallmarks of thymic involution were observed histologically in individuals exposed to either low (5-200 mGy) or moderate-to-high (>200 mGy) doses of ionizing radiation compared to unirradiated individuals (<5 mGy). Sex-related differences were seen when the analysis was restricted to individuals under 60 years of attained age at sample collection, but were not observed when comparing across the entire age range. This indicates that while females undergo slower involution than males, they ultimately attain similar phenotypes. These findings suggest that even low-dose-radiation exposure can accelerate thymic aging, with decreased thymopoiesis relative to nonexposed controls evident years after exposure. These data were used to develop a model that can predict thymic function during normal aging or in individuals therapeutically or accidentally exposed to radiation.
Collapse
Affiliation(s)
- Reiko Ito
- a Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Laura P Hale
- b Department of Pathology and the Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina
| | - Susan M Geyer
- c Department of Pediatrics, Health Informatics Institute, University of South Florida, Tampa, Florida
| | - Jie Li
- d Department of Genetics, Paul D. Coverdell Center, University of Georgia, Athens, Georgia
| | - Andrew Sornborger
- e Department of Mathematics, University of California, Davis, California.,f Department of Mathematics and College of Engineering, University of Georgia, Athens, Georgia
| | - Junko Kajimura
- a Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Yoichiro Kusunoki
- a Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Kengo Yoshida
- a Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Marcel R M van den Brink
- g Departments of Medicine and Immunology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Seishi Kyoizumi
- g Departments of Medicine and Immunology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nancy R Manley
- d Department of Genetics, Paul D. Coverdell Center, University of Georgia, Athens, Georgia
| | - Kei Nakachi
- a Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Gregory D Sempowski
- b Department of Pathology and the Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
57
|
Truffault F, de Montpreville V, Eymard B, Sharshar T, Le Panse R, Berrih-Aknin S. Thymic Germinal Centers and Corticosteroids in Myasthenia Gravis: an Immunopathological Study in 1035 Cases and a Critical Review. Clin Rev Allergy Immunol 2017; 52:108-124. [PMID: 27273086 DOI: 10.1007/s12016-016-8558-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The most common form of Myasthenia gravis (MG) is due to anti-acetylcholine receptor (AChR) antibodies and is frequently associated with thymic pathology. In this review, we discuss the immunopathological characteristics and molecular mechanisms of thymic follicular hyperplasia, the effects of corticosteroids on this thymic pathology, and the role of thymic epithelial cells (TEC), a key player in the inflammatory thymic mechanisms. This review is based not only on the literature data but also on thymic transcriptome results and analyses of pathological and immunological correlations in a vast cohort of 1035 MG patients without thymoma. We show that among patients presenting a thymic hyperplasia with germinal centers (GC), 80 % are females, indicating that thymic follicular hyperplasia is mainly a disease of women. The presence of anti-AChR antibodies is correlated with the degree of follicular hyperplasia, suggesting that the thymus is a source of anti-AChR antibodies. The degree of hyperplasia is not dependent upon the time from the onset, implying that either the antigen is chronically expressed and/or that the mechanisms of the resolution of the GC are not efficiently controlled. Glucocorticoids, a conventional therapy in MG, induce a significant reduction in the GC number, together with changes in the expression of chemokines and angiogenesis. These changes are likely related to the acetylation molecular process, overrepresented in corticosteroid-treated patients, and essential for gene regulation. Altogether, based on the pathological and molecular thymic abnormalities found in MG patients, this review provides some explanations for the benefit of thymectomy in early-onset MG patients.
Collapse
Affiliation(s)
- Frédérique Truffault
- INSERM U974, Paris, France.,CNRS FRE3617, Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, Paris, France.,AIM, Institut de myologie, Paris, France
| | | | - Bruno Eymard
- Department of Neuromuscular Disorders, CHU Salpêtrière, Paris, France
| | - Tarek Sharshar
- General Intensive Care Medicine, Assistance Publique Hôpitaux de Paris, Raymond Poincaré Hospital, University of Versailles Saint-Quentin en Yvelines, 92380, Garches, France
| | - Rozen Le Panse
- INSERM U974, Paris, France.,CNRS FRE3617, Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, Paris, France.,AIM, Institut de myologie, Paris, France
| | - Sonia Berrih-Aknin
- INSERM U974, Paris, France. .,CNRS FRE3617, Paris, France. .,Sorbonne Universités, UPMC Univ Paris 06, Paris, France. .,AIM, Institut de myologie, Paris, France. .,UMRS 974 UPMC, INSERM, FRE 3617 CNRS, AIM, Center of Research in Myology, 105 Boulevard de l'Hôpital, Paris, 75013, France.
| |
Collapse
|
58
|
Matteucci C, Grelli S, Balestrieri E, Minutolo A, Argaw-Denboba A, Macchi B, Sinibaldi-Vallebona P, Perno CF, Mastino A, Garaci E. Thymosin alpha 1 and HIV-1: recent advances and future perspectives. Future Microbiol 2017; 12:141-155. [PMID: 28106477 DOI: 10.2217/fmb-2016-0125] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In spite of the consistent benefits for HIV-1 infected patients undergoing antiretroviral therapy, a complete immune reconstitution is usually not achieved. Actually, antiretroviral therapy may be frequently accompanied by immunological unresponsiveness, persistent inflammatory conditions and inefficient cytotoxic T-cell response. Thymosin alpha 1 is a thymic peptide that demonstrates a peculiar ability to restore immune system homeostasis in different physiological and pathological conditions (i.e., infections, cancer, immunodeficiency, vaccination and aging) acting as multitasking protein depending on the host state of inflammation or immune dysfunction. This review reports the present knowledge on the in vitro and in vivo studies concerning the use of thymosin alpha 1 in HIV-1 infection. Recent findings and future perspectives of therapeutic intervention are discussed.
Collapse
Affiliation(s)
- Claudia Matteucci
- Department of Experimental Medicine & Surgery, University of Rome 'Tor Vergata', Via Montepellier, 1, Rome 00133, Italy
| | - Sandro Grelli
- Department of Experimental Medicine & Surgery, University of Rome 'Tor Vergata', Via Montepellier, 1, Rome 00133, Italy
| | - Emanuela Balestrieri
- Department of Experimental Medicine & Surgery, University of Rome 'Tor Vergata', Via Montepellier, 1, Rome 00133, Italy
| | - Antonella Minutolo
- Department of Experimental Medicine & Surgery, University of Rome 'Tor Vergata', Via Montepellier, 1, Rome 00133, Italy
| | - Ayele Argaw-Denboba
- Department of Experimental Medicine & Surgery, University of Rome 'Tor Vergata', Via Montepellier, 1, Rome 00133, Italy
| | - Beatrice Macchi
- Department of System Medicine, University of Rome 'Tor Vergata', Via Montepellier, 1, Rome 00133, Italy
| | - Paola Sinibaldi-Vallebona
- Department of Experimental Medicine & Surgery, University of Rome 'Tor Vergata', Via Montepellier, 1, Rome 00133, Italy.,Institute of Translational Pharmacology, National Research Council, Via Fosso del Cavaliere, 100, Rome 00133, Italy
| | - Carlo Federico Perno
- Department of Experimental Medicine & Surgery, University of Rome 'Tor Vergata', Via Montepellier, 1, Rome 00133, Italy
| | - Antonio Mastino
- Institute of Translational Pharmacology, National Research Council, Via Fosso del Cavaliere, 100, Rome 00133, Italy.,Department of Chemical, Biological, Pharmaceutical & Environmental Sciences, University of Messina, Via F. Stagno d'Alcontres 31, Messina 98166, Italy
| | - Enrico Garaci
- Department of Experimental Medicine & Surgery, University of Rome 'Tor Vergata', Via Montepellier, 1, Rome 00133, Italy.,IRCSS San Raffaele Pisana, Scientific Institute for Research, Hospitalization & Health Care, Via di Val Cannuta, 247, Roma 00166, Italy
| |
Collapse
|
59
|
Nuñez S, Moore C, Gao B, Rogers K, Hidalgo Y, Del Nido PJ, Restaino S, Naka Y, Bhagat G, Madsen JC, Bono MR, Zorn E. The human thymus perivascular space is a functional niche for viral-specific plasma cells. Sci Immunol 2016; 1. [PMID: 28459117 DOI: 10.1126/sciimmunol.aah4447] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The human thymus is susceptible to viral infections that can severely alter thymopoiesis and compromise the mechanisms of acquired tolerance to self-antigens. In humans, plasma cells residing primarily in the bone marrow confer long-lasting protection to common viruses by secreting antigen-specific antibodies. Since the thymus also houses B cells, we examined the phenotypic complexity of these thymic resident cells and their possible protective role against viral infections. Using tissue specimens collected from subjects ranging in age from 5 days to 71 years, we found that starting during the first year of life, CD138+ plasma cells (PC) begin accumulating in the thymic perivascular space (PVS) where they constitutively produce IgG without the need for additional stimulation. These, thymic PC secrete almost exclusively IgG1 and IgG3, the two main complement-fixing effector IgG subclasses. Moreover, using antigen-specific ELISpot assays, we demonstrated that thymic PC include a high frequency of cells reactive to common viral proteins. Our study reveals an unrecognized role of the PVS as a functional niche for viral-specific PCs. The PVS is located between the thymic epithelial areas and the circulation. PCs located in this compartment may therefore provide internal protection against pathogen infections and preserve the integrity and function of the organ.
Collapse
Affiliation(s)
- Sarah Nuñez
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, New York, NY, USA.,Department of Biology, University of Chile, Santiago, Chile
| | - Carolina Moore
- MGH Transplant Center and Division of Cardiac Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Baoshan Gao
- MGH Transplant Center and Division of Cardiac Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kortney Rogers
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Yessia Hidalgo
- Department of Biology, University of Chile, Santiago, Chile
| | - Pedro J Del Nido
- Department of Surgery, Boston Children Hospital, Boston, MA, USA
| | - Susan Restaino
- Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Yoshifumi Naka
- Department of Surgery, Columbia University Medical Center, New York, NY, USA
| | - Govind Bhagat
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Joren C Madsen
- MGH Transplant Center and Division of Cardiac Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Emmanuel Zorn
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
60
|
Jaïdane H, Halouani A, Jmii H, Elmastour F, Abdelkefi S, Bodart G, Michaux H, Chakroun T, Sane F, Mokni M, Geenen V, Hober D, Aouni M. In-utero coxsackievirus B4 infection of the mouse thymus. Clin Exp Immunol 2016; 187:399-407. [PMID: 27790717 DOI: 10.1111/cei.12893] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2016] [Indexed: 12/29/2022] Open
Abstract
Type B coxsackievirus (CV-B) infections are involved frequently in the triggering of several autoimmune diseases such as myocarditis, dilated cardiomyopathy, pericarditis, pancreatitis, type 1 diabetes, encephalitis, thyroiditis or Sjögren's syndrome. Serological and virological evidence suggests that maternal infections during pregnancy can play a role in the appearance of these diseases in offspring. The current study aims to explore the effect of an in-utero CV-B infection on the fetal thymus, the central site for programming immunological self-tolerance. In this perspective, female Swiss albino mice were inoculated intraperitoneally or orally with the diabetogenic CV-B4 E2 strain at gestational days 10 or 17. Offspring were killed at different post-inoculation times, and their thymuses were analysed for evidence of infection and alterations in thymic T cell subsets. In-utero CV-B infection of the thymus was demonstrated during the course of vertical transmission, as attested by viral RNA and infectious virus detection in most analysed samples. No histopathological changes were evident. Thymic T cells were not depleted, despite being positive for viral RNA. As evidenced by flow cytometry analysis, CV-B infection of the fetal thymus induced significant changes of thymic T cell populations, particularly with maternal inoculation at gestational day 10. Altogether, these findings suggest that CV-B infection of the fetal thymus may play an important role in the genesis of autoimmune diseases.
Collapse
Affiliation(s)
- H Jaïdane
- Université de Monastir, Laboratoire des Maladies Transmissibles et Substances Biologiquement Actives LR99ES27, Faculté de Pharmacie de Monastir, Monastir, Tunisia.,Université de Tunis El Manar, Faculté des Sciences de Tunis, Tunis, Tunisia
| | - A Halouani
- Université de Monastir, Laboratoire des Maladies Transmissibles et Substances Biologiquement Actives LR99ES27, Faculté de Pharmacie de Monastir, Monastir, Tunisia.,Université de Tunis El Manar, Faculté des Sciences de Tunis, Tunis, Tunisia
| | - H Jmii
- Université de Monastir, Laboratoire des Maladies Transmissibles et Substances Biologiquement Actives LR99ES27, Faculté de Pharmacie de Monastir, Monastir, Tunisia.,Université de Tunis El Manar, Faculté des Sciences de Tunis, Tunis, Tunisia
| | - F Elmastour
- Université de Monastir, Laboratoire des Maladies Transmissibles et Substances Biologiquement Actives LR99ES27, Faculté de Pharmacie de Monastir, Monastir, Tunisia.,Université de Tunis El Manar, Faculté des Sciences de Tunis, Tunis, Tunisia
| | - S Abdelkefi
- Université de Sousse, Unité de recherche 'UR06SP05', Centre Régional de Transfusion Sanguine, Hôpital Farhat Hached, Sousse, Tunisia
| | - G Bodart
- Université de Liege, GIGA Research - Centre d'Immunologie, CHU-B34, B-4000 Liege-Sart, Tilman, Belgium
| | - H Michaux
- Université de Liege, GIGA Research - Centre d'Immunologie, CHU-B34, B-4000 Liege-Sart, Tilman, Belgium
| | - T Chakroun
- Université de Sousse, Unité de recherche 'UR06SP05', Centre Régional de Transfusion Sanguine, Hôpital Farhat Hached, Sousse, Tunisia
| | - F Sane
- Université Lille 2, CHRU Lille, Laboratoire de Virologie EA3610, Bâtiment P. Boulanger, Hôpital A. Calmette CHRU, Lille, 59037, France
| | - M Mokni
- Université de Sousse, CHU Farhat Hached, Service d'Anatomopathologie, Sousse, Tunisia
| | - V Geenen
- Université de Liege, GIGA Research - Centre d'Immunologie, CHU-B34, B-4000 Liege-Sart, Tilman, Belgium
| | - D Hober
- Université Lille 2, CHRU Lille, Laboratoire de Virologie EA3610, Bâtiment P. Boulanger, Hôpital A. Calmette CHRU, Lille, 59037, France
| | - M Aouni
- Université de Monastir, Laboratoire des Maladies Transmissibles et Substances Biologiquement Actives LR99ES27, Faculté de Pharmacie de Monastir, Monastir, Tunisia
| |
Collapse
|
61
|
Kugler DG, Flomerfelt FA, Costa DL, Laky K, Kamenyeva O, Mittelstadt PR, Gress RE, Rosshart SP, Rehermann B, Ashwell JD, Sher A, Jankovic D. Systemic toxoplasma infection triggers a long-term defect in the generation and function of naive T lymphocytes. J Exp Med 2016; 213:3041-3056. [PMID: 27849554 PMCID: PMC5154934 DOI: 10.1084/jem.20151636] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 08/05/2016] [Accepted: 10/18/2016] [Indexed: 12/12/2022] Open
Abstract
Kugler et al. show that systemic infection with Toxoplasma gondii triggers a long-term impairment in thymic function, which leads to an immunodeficient state reflected in decreased antimicrobial resistance. Because antigen-stimulated naive T cells either die as effectors or enter the activated/memory pool, continuous egress of new T lymphocytes from thymus is essential for maintenance of peripheral immune homeostasis. Unexpectedly, we found that systemic infection with the protozoan Toxoplasma gondii triggers not only a transient increase in activated CD4+ Th1 cells but also a persistent decrease in the size of the naive CD4+ T lymphocyte pool. This immune defect is associated with decreased thymic output and parasite-induced destruction of the thymic epithelium, as well as disruption of the overall architecture of that primary lymphoid organ. Importantly, the resulting quantitative and qualitative deficiency in naive CD4+ T cells leads to an immunocompromised state that both promotes chronic toxoplasma infection and leads to decreased resistance to challenge with an unrelated pathogen. These findings reveal that systemic infectious agents, such as T. gondii, can induce long-term immune alterations associated with impaired thymic function. When accumulated during the lifetime of the host, such events, even when occurring at low magnitude, could be a contributing factor in immunological senescence.
Collapse
Affiliation(s)
- David G Kugler
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Francis A Flomerfelt
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Diego L Costa
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Karen Laky
- T Cell Development Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Olena Kamenyeva
- Biological Imaging, Research Technology Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Paul R Mittelstadt
- Laboratory of Immune Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Ronald E Gress
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Stephan P Rosshart
- Immunology Section, Liver Diseases Branch, National Institute for Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Barbara Rehermann
- Immunology Section, Liver Diseases Branch, National Institute for Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Jonathan D Ashwell
- Laboratory of Immune Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Alan Sher
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Dragana Jankovic
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
62
|
Zamora-Pineda J, Kumar A, Suh JH, Zhang M, Saba JD. Dendritic cell sphingosine-1-phosphate lyase regulates thymic egress. J Exp Med 2016; 213:2773-2791. [PMID: 27810923 PMCID: PMC5110016 DOI: 10.1084/jem.20160287] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 09/09/2016] [Indexed: 11/30/2022] Open
Abstract
Saba and collaborators show that dendritic cells generate the thymic sphingosine-1-phosphate gradient and regulate T cell egress. T cell egress from the thymus is essential for adaptive immunity and involves chemotaxis along a sphingosine-1-phosphate (S1P) gradient. Pericytes at the corticomedullary junction produce the S1P egress signal, whereas thymic parenchymal S1P levels are kept low through S1P lyase (SPL)–mediated metabolism. Although SPL is robustly expressed in thymic epithelial cells (TECs), in this study, we show that deleting SPL in CD11c+ dendritic cells (DCs), rather than TECs or other stromal cells, disrupts the S1P gradient, preventing egress. Adoptive transfer of peripheral wild-type DCs rescued the egress phenotype of DC-specific SPL knockout mice. These studies identify DCs as metabolic gatekeepers of thymic egress. Combined with their role as mediators of central tolerance, DCs are thus poised to provide homeostatic regulation of thymic export.
Collapse
Affiliation(s)
- Jesus Zamora-Pineda
- Center for Cancer Research, University of California, San Francisco Benioff Children's Hospital, Oakland, CA 94609
| | - Ashok Kumar
- Center for Cancer Research, University of California, San Francisco Benioff Children's Hospital, Oakland, CA 94609
| | - Jung H Suh
- Center for Cancer Research, University of California, San Francisco Benioff Children's Hospital, Oakland, CA 94609
| | - Meng Zhang
- Center for Cancer Research, University of California, San Francisco Benioff Children's Hospital, Oakland, CA 94609
| | - Julie D Saba
- Center for Cancer Research, University of California, San Francisco Benioff Children's Hospital, Oakland, CA 94609
| |
Collapse
|
63
|
Mavrommatis B, Baudino L, Levy P, Merkenschlager J, Eksmond U, Donnarumma T, Young G, Stoye J, Kassiotis G. Dichotomy between T Cell and B Cell Tolerance to Neonatal Retroviral Infection Permits T Cell Therapy. THE JOURNAL OF IMMUNOLOGY 2016; 197:3628-3638. [PMID: 27647833 PMCID: PMC5073355 DOI: 10.4049/jimmunol.1600734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 08/05/2016] [Indexed: 11/23/2022]
Abstract
Elucidation of the immune requirements for control or elimination of retroviral infection remains an important aim. We studied the induction of adaptive immunity to neonatal infection with a murine retrovirus, under conditions leading to immunological tolerance. We found that the absence of either maternal or offspring adaptive immunity permitted efficient vertical transmission of the retrovirus. Maternal immunodeficiency allowed the retrovirus to induce central Th cell tolerance in the infected offspring. In turn, this compromised the offspring’s ability to mount a protective Th cell–dependent B cell response. However, in contrast to T cells, offspring B cells were not centrally tolerized and retained their ability to respond to the infection when provided with T cell help. Thus, escape of retrovirus-specific B cells from deletional tolerance offers the opportunity to induce protective retroviral immunity by restoration of retrovirus-specific T cell help, suggesting similar T cell immunotherapies for persistent viral infections.
Collapse
Affiliation(s)
- Bettina Mavrommatis
- Retroviral Immunology, The Francis Crick Institute, Mill Hill Laboratory, London NW7 1AA, United Kingdom
| | - Lucie Baudino
- Retroviral Immunology, The Francis Crick Institute, Mill Hill Laboratory, London NW7 1AA, United Kingdom
| | - Prisca Levy
- Retroviral Immunology, The Francis Crick Institute, Mill Hill Laboratory, London NW7 1AA, United Kingdom
| | - Julia Merkenschlager
- Retroviral Immunology, The Francis Crick Institute, Mill Hill Laboratory, London NW7 1AA, United Kingdom
| | - Urszula Eksmond
- Retroviral Immunology, The Francis Crick Institute, Mill Hill Laboratory, London NW7 1AA, United Kingdom
| | - Tiziano Donnarumma
- Retroviral Immunology, The Francis Crick Institute, Mill Hill Laboratory, London NW7 1AA, United Kingdom
| | - George Young
- Retrovirus-Host Interactions, The Francis Crick Institute, Mill Hill Laboratory, London NW7 1AA, United Kingdom; and
| | - Jonathan Stoye
- Retrovirus-Host Interactions, The Francis Crick Institute, Mill Hill Laboratory, London NW7 1AA, United Kingdom; and.,Department of Medicine, Faculty of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
| | - George Kassiotis
- Retroviral Immunology, The Francis Crick Institute, Mill Hill Laboratory, London NW7 1AA, United Kingdom; .,Department of Medicine, Faculty of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
64
|
Di Gangi R, Alves da Costa T, Thomé R, Peron G, Burger E, Verinaud L. Paracoccidioides brasiliensis infection promotes thymic disarrangement and premature egress of mature lymphocytes expressing prohibitive TCRs. BMC Infect Dis 2016; 16:209. [PMID: 27189089 PMCID: PMC4869377 DOI: 10.1186/s12879-016-1561-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 05/10/2016] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Paracoccidioidomycosis, a chronic granulomatous fungal disease caused by Paracoccidioides brasiliensis yeast cells affects mainly rural workers, albeit recently cases in immunosuppressed individuals has been reported. Protective immune response against P. brasiliensis is dependent on the activity of helper T cells especially IFN-γ-producing Th1 cells. It has been proposed that Paracoccidioides brasiliensis is able to modulate the immune response towards a permissive state and that the thymus plays a major role in it. METHODS In this paper, we show that acute infection of BALB/c mice with P. brasiliensis virulent isolate (Pb18) might cause alterations in the thymic environment as well as the prohibitive TCR-expressing T cells in the spleens. RESULTS After seven days of infection, we found yeast cells on the thymic stroma, the thymic epithelial cells (TEC) were altered regarding their spatial-orientation and inflammatory mediators gene expression was increased. Likewise, thymocytes (differentiating T cells) presented higher migratory ability in ex vivo experiments. Notwithstanding, P. brasiliensis-infected mice showed an increased frequency of prohibitive TCR-expressing T cells in the spleens, suggesting that the selection processes that occur in the thymus may be compromised during the acute infection. CONCLUSION In this paper, for the first time, we show that acute infection with Paracoccidioides brasiliensis yeast cells promotes thymic alterations leading to a defective repertoire of peripheral T cells. The data presented here may represent new mechanisms by which P. brasiliensis subverts the immune response towards the chronic infection observed in humans.
Collapse
Affiliation(s)
- Rosaria Di Gangi
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Rua Monteiro Lobato, 255, Cidade Universitária, SP, Brazil
| | - Thiago Alves da Costa
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Rua Monteiro Lobato, 255, Cidade Universitária, SP, Brazil
| | - Rodolfo Thomé
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Rua Monteiro Lobato, 255, Cidade Universitária, SP, Brazil
| | - Gabriela Peron
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Rua Monteiro Lobato, 255, Cidade Universitária, SP, Brazil
| | - Eva Burger
- Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas, MG, Brazil
| | - Liana Verinaud
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Rua Monteiro Lobato, 255, Cidade Universitária, SP, Brazil.
| |
Collapse
|
65
|
Huang H, Liu A, Wu H, Ansari AR, Wang J, Huang X, Zhao X, Peng K, Zhong J, Liu H. Transcriptome analysis indicated that Salmonella lipopolysaccharide-induced thymocyte death and thymic atrophy were related to TLR4-FOS/JUN pathway in chicks. BMC Genomics 2016; 17:322. [PMID: 27142675 PMCID: PMC4855877 DOI: 10.1186/s12864-016-2674-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 04/26/2016] [Indexed: 12/25/2022] Open
Abstract
Background Thymus is the crucial site for T cell development and once believed to be immune privileged. Recently, thymus has gained special attention as it is commonly targeted by infectious agents which may cause pathogenic tolerance and subsequent immunosuppression. Results We analyzed thymic responses to the challenge with Salmonella typhimurium (STm) or lipopolysaccharide (LPS) derived from STm in chicks. Newly hatched chicks were injected intraperitoneally with 5 × 104 CFU/mL STm or 50 mg/kg LPS. After LPS treatment, maximum thymocyte death (3 ~ 5-fold change) compared to controls was found at 12 h, and maximum loss of thymic weight (35 %) and reduced thymic index (20 %) were found at 36 h. After STm infection, maximum thymocyte death and thymic atrophy occurred at 36 and 72 h, respectively. No significant changes of thymic structure, chT1+ and CD4+/CD8+ T cell ratio were observed in thymus or spleen tissues after LPS treatment. Furthermore, transcriptome analysis revealed important roles for the TLR4-FOS/JUN signaling pathway in thymic injury. Thus, the major process of thymic atrophy in this study first involved activation of transcriptional factors FOS/JUN upon LPS binding to TLR4 that caused release of inflammatory factors, thereby inducing inflammatory responses and DNA damage and ultimately cell cycle arrest and thymic injury. Conclusions STm and Salmonella LPS could induce acute chick thymic injury. LPS treatment acted faster than STm. TLR4-FOS/JUN pathway may play an important role in LPS induced chick thymic injury. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2674-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Haibo Huang
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - An Liu
- Key Lab of Animal Genetics, Breeding and Reproduction of Ministry Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hui Wu
- Key Lab of Animal Genetics, Breeding and Reproduction of Ministry Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Abdur Rahman Ansari
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jixiang Wang
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiyao Huang
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xing Zhao
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kemei Peng
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Juming Zhong
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, 36849, USA
| | - Huazhen Liu
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
66
|
Abstract
As the primary site of T-cell development, the thymus plays a key role in the generation of a strong yet self-tolerant adaptive immune response, essential in the face of the potential threat from pathogens or neoplasia. As the importance of the role of the thymus has grown, so too has the understanding that it is extremely sensitive to both acute and chronic injury. The thymus undergoes rapid degeneration following a range of toxic insults, and also involutes as part of the aging process, albeit at a faster rate than many other tissues. The thymus is, however, capable of regenerating, restoring its function to a degree. Potential mechanisms for this endogenous thymic regeneration include keratinocyte growth factor (KGF) signaling, and a more recently described pathway in which innate lymphoid cells produce interleukin-22 (IL-22) in response to loss of double positive thymocytes and upregulation of IL-23 by dendritic cells. Endogenous repair is unable to fully restore the thymus, particularly in the aged population, and this paves the way toward the need for exogenous strategies to help regenerate or even replace thymic function. Therapies currently in clinical trials include KGF, use of the cytokines IL-7 and IL-22, and hormonal modulation including growth hormone administration and sex steroid inhibition. Further novel strategies are emerging in the preclinical setting, including the use of precursor T cells and thymus bioengineering. The use of such strategies offers hope that for many patients, the next regeneration of their thymus is a step closer.
Collapse
Affiliation(s)
- Mohammed S Chaudhry
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Enrico Velardi
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jarrod A Dudakov
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Marcel R M van den Brink
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
67
|
Menkova-Garnier I, Hocini H, Foucat E, Tisserand P, Bourdery L, Delaugerre C, Benne C, Lévy Y, Lelièvre JD. P2X7 Receptor Inhibition Improves CD34 T-Cell Differentiation in HIV-Infected Immunological Nonresponders on c-ART. PLoS Pathog 2016; 12:e1005571. [PMID: 27082982 PMCID: PMC4833302 DOI: 10.1371/journal.ppat.1005571] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 03/22/2016] [Indexed: 11/18/2022] Open
Abstract
Peripheral CD4+ T-cell levels are not fully restored in a significant proportion of HIV+ individuals displaying long-term viral suppression on c-ART. These immunological nonresponders (INRs) have a higher risk of developing AIDS and non-AIDS events and a lower life expectancy than the general population, but the underlying mechanisms are not fully understood. We used an in vitro system to analyze the T- and B-cell potential of CD34+ hematopoietic progenitor cells. Comparisons of INRs with matched HIV+ patients with high CD4+ T-cell counts (immune responders (IRs)) revealed an impairment of the generation of T-cell progenitors, but not of B-cell progenitors, in INRs. This impairment resulted in the presence of smaller numbers of recent thymic emigrants (RTE) in the blood and lower peripheral CD4+ T-cell counts. We investigated the molecular pathways involved in lymphopoiesis, focusing particularly on T-cell fate specification (Notch pathway), survival (IL7R-IL7 axis) and death (Fas, P2X7, CD39/CD73). P2X7 expression was abnormally strong and there was no CD73 mRNA in the CD34+ cells of INRs, highlighting a role for the ATP pathway. This was confirmed by the demonstration that in vitro inhibition of the P2X7-mediated pathway restored the T-cell potential of CD34+ cells from INRs. Moreover, transcriptomic analysis revealed major differences in cell survival and death pathways between CD34+ cells from INRs and those from IRs. These findings pave the way for the use of complementary immunotherapies, such as P2X7 antagonists, to restore T-cell lymphopoiesis in INRs.
Collapse
Affiliation(s)
- Inna Menkova-Garnier
- INSERM U955, Institut Mondor de Recherche Biomédicale, Créteil, France.,Université Paris Est Créteil, Faculté de Médecine, Créteil, France.,Vaccine Research Institute, Créteil, France
| | - Hakim Hocini
- INSERM U955, Institut Mondor de Recherche Biomédicale, Créteil, France.,Vaccine Research Institute, Créteil, France
| | - Emile Foucat
- Université Paris Est Créteil, Faculté de Médecine, Créteil, France
| | - Pascaline Tisserand
- INSERM U955, Institut Mondor de Recherche Biomédicale, Créteil, France.,Vaccine Research Institute, Créteil, France
| | - Laure Bourdery
- Université Paris Est Créteil, Faculté de Médecine, Créteil, France
| | | | - Clarisse Benne
- INSERM U955, Institut Mondor de Recherche Biomédicale, Créteil, France.,Université Paris Est Créteil, Faculté de Médecine, Créteil, France
| | - Yves Lévy
- INSERM U955, Institut Mondor de Recherche Biomédicale, Créteil, France.,Université Paris Est Créteil, Faculté de Médecine, Créteil, France.,Vaccine Research Institute, Créteil, France.,Groupe Hospitalier Henri-Mondor Albert-Chenevier, Créteil, France
| | - Jean-Daniel Lelièvre
- INSERM U955, Institut Mondor de Recherche Biomédicale, Créteil, France.,Université Paris Est Créteil, Faculté de Médecine, Créteil, France.,Vaccine Research Institute, Créteil, France.,Groupe Hospitalier Henri-Mondor Albert-Chenevier, Créteil, France
| |
Collapse
|
68
|
Savino W, Mendes-da-Cruz DA, Golbert DCF, Riederer I, Cotta-de-Almeida V. Laminin-Mediated Interactions in Thymocyte Migration and Development. Front Immunol 2015; 6:579. [PMID: 26635793 PMCID: PMC4648024 DOI: 10.3389/fimmu.2015.00579] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 10/29/2015] [Indexed: 11/30/2022] Open
Abstract
Intrathymic T-cell differentiation is a key process for the development and maintenance of cell-mediated immunity, and occurs concomitantly to highly regulated migratory events. We have proposed a multivectorial model for describing intrathymic thymocyte migration. One of the individual vectors comprises interactions mediated by laminins (LMs), a heterotrimeric protein family of the extracellular matrix. Several LMs are expressed in the thymus, being produced by microenvironmental cells, particularly thymic epithelial cells (TECs). Also, thymocytes and epithelial cells express integrin-type LM receptors. Functionally, it has been reported that the dy/dy mutant mouse (lacking the LM isoform 211) exhibits defective thymocyte differentiation. Several data show haptotactic effects of LMs upon thymocytes, as well as their adhesion on TECs; both effects being prevented by anti-LM or anti-LM receptor antibodies. Interestingly, LM synergizes with chemokines to enhance thymocyte migration, whereas classe-3 semaphorins and B ephrins, which exhibit chemorepulsive effects in the thymus, downregulate LM-mediated migratory responses of thymocytes. More recently, we showed that knocking down the ITGA6 gene (which encodes the α6 integrin chain of LM receptors) in human TECs modulates a large number of cell migration-related genes and results in changes of adhesion pattern of thymocytes onto the thymic epithelium. Overall, LM-mediated interactions can be placed at the cross-road of the multivectorial process of thymocyte migration, with a direct influence per se, as well as by modulating other molecular interactions associated with the intrathymic-trafficking events.
Collapse
Affiliation(s)
- Wilson Savino
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation , Rio de Janeiro , Brazil
| | | | | | - Ingo Riederer
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation , Rio de Janeiro , Brazil
| | - Vinicius Cotta-de-Almeida
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation , Rio de Janeiro , Brazil
| |
Collapse
|
69
|
2015 4(th) TERMIS World Congress Boston, Massachusetts September 8-11, 2015. Tissue Eng Part A 2015; 21 Suppl 1:S1-S413. [PMID: 26317531 DOI: 10.1089/ten.tea.2015.5000.abstracts] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
70
|
Martínez VG, Canseco NM, Hidalgo L, Valencia J, Entrena A, Fernández-Sevilla LM, Hernández-López C, Sacedón R, Vicente A, Varas A. A discrete population of IFN λ-expressing BDCA3hi dendritic cells is present in human thymus. Immunol Cell Biol 2015; 93:673-8. [PMID: 25753268 DOI: 10.1038/icb.2015.22] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 01/19/2015] [Accepted: 02/01/2015] [Indexed: 12/24/2022]
Abstract
Human thymus contains two major subpopulations of dendritic cells (DCs), conventional DCs (cDCs) and plasmacytoid DCs (pDCs), which are mainly involved in central tolerance and also in protecting the thymus against infections. In blood and peripheral organs cDCs include the subpopulation of BDCA3(hi) DCs, considered as equivalents to mouse CD8α(+) DCs. In this study we describe in human thymus the presence of a discrete population of BDCA3(hi) DCs that, like their peripheral counterparts, express CD13, low-intermediate levels of CD11c, CLEC9A, high levels of XCR1, IRF8 and TLR3, and mostly lack the expression of CD11b, CD14 and TLR7. Thymic BDCA3(hi) DCs display immature features with a low expression of costimulatory molecules and HLA-DR, and a low allostimulatory capacity. Also, BDCA3(hi) DCs exhibit a strong response to TLR3 stimulation, producing high levels of interferon (IFN)-λ1 and CXCL10, which indicates that, similarly to thymic pDCs, BDCA3(hi) DCs can have an important role in thymus protection against viral infections.
Collapse
MESH Headings
- Antigens, Differentiation/analysis
- Antigens, Surface/analysis
- Apoptosis
- Cells, Cultured
- Chemokine CXCL10/analysis
- Child, Preschool
- Coculture Techniques
- Dendritic Cells/chemistry
- Dendritic Cells/classification
- Dendritic Cells/cytology
- HLA-DR Antigens/analysis
- Humans
- Infant
- Infant, Newborn
- Interferons
- Interleukins/analysis
- Interleukins/biosynthesis
- Interleukins/genetics
- Lectins, C-Type/analysis
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Receptors, G-Protein-Coupled/analysis
- Receptors, Mitogen/analysis
- Thrombomodulin
- Thymus Gland/cytology
- Thymus Gland/immunology
- Toll-Like Receptor 3/analysis
Collapse
Affiliation(s)
- Víctor G Martínez
- Department of Cell Biology, Faculty of Medicine, Complutense University, Madrid, Spain
| | - Noelia M Canseco
- Department of Cell Biology, Faculty of Medicine, Complutense University, Madrid, Spain
| | - Laura Hidalgo
- Department of Cell Biology, Faculty of Medicine, Complutense University, Madrid, Spain
| | - Jaris Valencia
- Department of Cell Biology, Faculty of Medicine, Complutense University, Madrid, Spain
| | - Ana Entrena
- Department of Cell Biology, Faculty of Medicine, Complutense University, Madrid, Spain
| | | | | | - Rosa Sacedón
- Department of Cell Biology, Faculty of Medicine, Complutense University, Madrid, Spain
| | - Angeles Vicente
- Department of Cell Biology, Faculty of Medicine, Complutense University, Madrid, Spain
| | - Alberto Varas
- Department of Cell Biology, Faculty of Medicine, Complutense University, Madrid, Spain
| |
Collapse
|
71
|
The DNA damage response and immune signaling alliance: Is it good or bad? Nature decides when and where. Pharmacol Ther 2015; 154:36-56. [PMID: 26145166 DOI: 10.1016/j.pharmthera.2015.06.011] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 06/10/2015] [Indexed: 12/15/2022]
Abstract
The characteristic feature of healthy living organisms is the preservation of homeostasis. Compelling evidence highlight that the DNA damage response and repair (DDR/R) and immune response (ImmR) signaling networks work together favoring the harmonized function of (multi)cellular organisms. DNA and RNA viruses activate the DDR/R machinery in the host cells both directly and indirectly. Activation of DDR/R in turn favors the immunogenicity of the incipient cell. Hence, stimulation of DDR/R by exogenous or endogenous insults triggers innate and adaptive ImmR. The immunogenic properties of ionizing radiation, a prototypic DDR/R inducer, serve as suitable examples of how DDR/R stimulation alerts host immunity. Thus, critical cellular danger signals stimulate defense at the systemic level and vice versa. Disruption of DDR/R-ImmR cross talk compromises (multi)cellular integrity, leading to cell-cycle-related and immune defects. The emerging DDR/R-ImmR concept opens up a new avenue of therapeutic options, recalling the Hippocrates quote "everything in excess is opposed by nature."
Collapse
|
72
|
von Bargen K, Gagnaire A, Arce-Gorvel V, de Bovis B, Baudimont F, Chasson L, Bosilkovski M, Papadopoulos A, Martirosyan A, Henri S, Mège JL, Malissen B, Gorvel JP. Cervical Lymph Nodes as a Selective Niche for Brucella during Oral Infections. PLoS One 2015; 10:e0121790. [PMID: 25919005 PMCID: PMC4412401 DOI: 10.1371/journal.pone.0121790] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 02/03/2015] [Indexed: 12/23/2022] Open
Abstract
Cervical lymph nodes (CLN) are the first lymph nodes encountered by material taking the oral route. To study their role in orally acquired infections, we analyzed 307 patients of up to 14 years treated in the university clinic of Skopje, Macedonia, for brucellosis, a zoonotic bacterial disease frequently acquired by ingestion of contaminated dairy products. From these children, 36% had lymphadenopathy. Among orally infected children, lymphadenopathy with CLN being the only lymph nodes affected was significantly more frequent as compared to those infected by contact with animals (83% vs. 63%), suggesting a possible involvement of CLN during orally acquired human brucellosis. Using a murine model where bacteria are delivered into the oral cavity, we show that Brucella quickly and selectively colonize the CLN where they proliferate and persist over long periods of time for up to 50 days post-infection. A similar efficient though less specific drainage to CLN was found for Brucella, Salmonella typhimurium and fluorescent microspheres delivered by gavage, a pathway likely representing a mixed infection mode of intragastric and oral infection, suggesting a central pathway of drained material. Microspheres as well as bacteria drained to CLN predominately reside in cells expressing CD68 and no or low levels of CD11c. Even though no systemic response could be detected, Brucella induced a locally restricted inflammatory reaction with increased expression levels of interferon γ, interleukin (IL)-6, IL-12, granzyme B and a delayed induction of Nos2. Inflammation led to pronounced lymphadenopathy, infiltration of macrophages/monocytes expressing high levels of major histocompatibility complex II and to formation of epitheloid granulomas. Together, these results highlight the role of CLN in oral infections as both, an initial and efficient trap for bacterial invaders and as possible reservoir for chronic pathogens. They likewise cast a new light on the significance of oral routes for means of vaccination.
Collapse
Affiliation(s)
- Kristine von Bargen
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, UM2, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1104, Marseille, France
- Centre National de la Recherche Scientifique (CNRS), UMR7280, Marseille, France
| | - Aurélie Gagnaire
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, UM2, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1104, Marseille, France
- Centre National de la Recherche Scientifique (CNRS), UMR7280, Marseille, France
| | - Vilma Arce-Gorvel
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, UM2, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1104, Marseille, France
- Centre National de la Recherche Scientifique (CNRS), UMR7280, Marseille, France
| | - Béatrice de Bovis
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, UM2, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1104, Marseille, France
- Centre National de la Recherche Scientifique (CNRS), UMR7280, Marseille, France
| | - Fannie Baudimont
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, UM2, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1104, Marseille, France
- Centre National de la Recherche Scientifique (CNRS), UMR7280, Marseille, France
| | - Lionel Chasson
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, UM2, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1104, Marseille, France
- Centre National de la Recherche Scientifique (CNRS), UMR7280, Marseille, France
| | - Mile Bosilkovski
- University Clinic for Infectious Diseases and Febrile Conditions, Skopje, Republic of Macedonia
| | - Alexia Papadopoulos
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, UM2, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1104, Marseille, France
- Centre National de la Recherche Scientifique (CNRS), UMR7280, Marseille, France
| | - Anna Martirosyan
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, UM2, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1104, Marseille, France
- Centre National de la Recherche Scientifique (CNRS), UMR7280, Marseille, France
| | - Sandrine Henri
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, UM2, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1104, Marseille, France
- Centre National de la Recherche Scientifique (CNRS), UMR7280, Marseille, France
| | - Jean-Louis Mège
- Unité des Rickettsies, Aix-Marseille University, Centre National de la Recherche Scientifique (CNRS), UMR6020, Faculté de Médecine, Marseille, France
| | - Bernard Malissen
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, UM2, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1104, Marseille, France
- Centre National de la Recherche Scientifique (CNRS), UMR7280, Marseille, France
| | - Jean-Pierre Gorvel
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, UM2, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1104, Marseille, France
- Centre National de la Recherche Scientifique (CNRS), UMR7280, Marseille, France
- * E-mail:
| |
Collapse
|
73
|
Boehm T, Swann JB. Thymus involution and regeneration: two sides of the same coin? Nat Rev Immunol 2013; 13:831-8. [DOI: 10.1038/nri3534] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|