51
|
Gould HJ, James LK. Orchestration of immunoglobulin isotypes, subclasses, and specificities in patients receiving intravenous IgG or subcutaneous immunotherapy and those with chronic rhinosinusitis with nasal polyps: Toward precision medicine. J Allergy Clin Immunol 2019; 144:407-409. [PMID: 31253362 DOI: 10.1016/j.jaci.2019.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/07/2019] [Accepted: 05/28/2019] [Indexed: 10/26/2022]
Affiliation(s)
- Hannah J Gould
- Randall Centre for Cell & Molecular Biophysics, King's College London, London, United Kingdom.
| | - Louisa K James
- Blizard Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
52
|
Mucosal IgE immune responses in respiratory diseases. Curr Opin Pharmacol 2019; 46:100-107. [PMID: 31220711 DOI: 10.1016/j.coph.2019.05.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 05/17/2019] [Indexed: 01/19/2023]
Abstract
IgE is the less abundant immunoglobulin isotype in serum and displays higher affinity for its cognate Fc receptor (FcεRI) than the rest of antibody isotypes. Moreover, the class switch recombination and the generation of memory responses remarkably differ between IgE and other isotypes. Importantly, class switch recombination to IgE can occur in the mucosae, preferentially through the sequential switching from IgG. Therefore, resident effector cells get rapidly sensitized, and free IgE can be found in mucosal secretions. All these aspects explain the involvement of IgE in respiratory diseases. In allergic rhinitis and allergic asthma, the IgE-sensitization to environmental allergens triggers an eosinophilic inflammation of the airway mucosa of atopic patients. In recent years, growing evidence indicates that some non-atopic patients with nasal reactivity to allergens display nasal eosinophilic inflammation, which could be triggered by the local production of allergen-specific IgE. This phenotype has been termed local allergic rhinitis. Mucosal IgE is also implicated in the pathophysiology of chronic rhinosinusitis with nasal polyps, even though the mechanisms for IgE synthesis might differ in this case. The role of IgE as mediator of airway diseases identify this marker as a therapeutic target. Some biologicals antagonize IgE-mediated inflammation of the airway mucosa, but they have not shown a beneficial long-term effect after discontinuation. In contrast, allergen immunotherapy does not only control the symptoms of airway allergy, but it also induces a long-lasting effect after discontinuation, thus modifying the natural course of the disease.
Collapse
|
53
|
Saunders SP, Ma EGM, Aranda CJ, Curotto de Lafaille MA. Non-classical B Cell Memory of Allergic IgE Responses. Front Immunol 2019; 10:715. [PMID: 31105687 PMCID: PMC6498404 DOI: 10.3389/fimmu.2019.00715] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 03/18/2019] [Indexed: 02/03/2023] Open
Abstract
The long-term effectiveness of antibody responses relies on the development of humoral immune memory. Humoral immunity is maintained by long-lived plasma cells that secrete antigen-specific antibodies, and memory B cells that rapidly respond to antigen re-exposure by generating new plasma cells and memory B cells. Developing effective immunological memory is essential for protection against pathogens, and is the basis of successful vaccinations. IgE responses have evolved for protection against helminth parasites infections and against toxins, but IgE is also a potent mediator of allergic diseases. There has been a dramatic increase in the incidence of allergic diseases in recent decades and this has provided the impetus to study the nature of IgE antibody responses. As will be discussed in depth in this review, the IgE memory response has unique features that distinguish it from classical B cell memory.
Collapse
Affiliation(s)
- Sean P Saunders
- Division of Pulmonary, Critical Care and Sleep Medicine, Laboratory of Allergy and Inflammation, Department of Medicine, New York University, New York, NY, United States
| | - Erica G M Ma
- Division of Pulmonary, Critical Care and Sleep Medicine, Laboratory of Allergy and Inflammation, Department of Medicine, New York University, New York, NY, United States.,Sackler Institute of Graduate Biomedical Sciences, New York University, New York, NY, United States
| | - Carlos J Aranda
- Division of Pulmonary, Critical Care and Sleep Medicine, Laboratory of Allergy and Inflammation, Department of Medicine, New York University, New York, NY, United States
| | - Maria A Curotto de Lafaille
- Division of Pulmonary, Critical Care and Sleep Medicine, Laboratory of Allergy and Inflammation, Department of Medicine, New York University, New York, NY, United States.,Department of Cell Biology, New York University School of Medicine, New York, NY, United States
| |
Collapse
|
54
|
Louis R, Pilette C, Michel O, Michils A, Brusselle G, Poskin A, Van Schoor J, Denhaerynck K, Vancayzeele S, Abraham I, Gurdain S. Variability in total serum IgE over 1 year in severe asthmatics. Allergy Asthma Clin Immunol 2019; 15:20. [PMID: 30976287 PMCID: PMC6441212 DOI: 10.1186/s13223-019-0331-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 03/04/2019] [Indexed: 12/16/2022] Open
Abstract
Background Immunoglobulin E (IgE) is the treatment target of omalizumab, a monoclonal antibody indicated in the treatment of severe allergic asthma. Long-term variability of serum total IgE (sIgEtot) in asthmatics remains poorly documented. Methods In this prospective study, sIgEtot levels were measured over 1 year at 7 time points in 41 severe asthmatics treated with high-dose of inhaled corticosteroids and long-acting β2 agonists. 33 patients were atopic based on at least one positive RAST to common aeroallergens. Patients were divided into three groups according to their baseline sIgEtot level: low (< 76 IU/mL; n = 10), intermediate (76-700 IU/mL; n = 20) or high (> 700 IU/mL; n = 11). Patients also completed the six-item Juniper Asthma Control Questionnaire (ACQ6). The sIgEtot variability and factors predictive for this variability were studied, as well as ACQ6 outcomes. Results The variation in sIgEtot level was mostly the consequence of between patient-variability, which represented 96%, 71% and 96% of the total variability in the low, intermediate and high sIgEtot subgroups, respectively. The residual within-patient variability was therefore limited. In 10/41 patients, sIgEtot levels increased or decreased, for at least one visit, beyond the predefined range of the subgroups to which they were assigned (< 76 IU/mL; 76-700 IU/mL; > 700 IU/mL). There was a significant but weak correlation between sIgEtot and ACQ6 score over all time points (r = 0.15, p = 0.02), but sIgEtot failed to associate with severe exacerbation. sIgEtot decreased by 3% with any additional year of age for the whole group (p = 0.01) and increased by 5% per one unit of allergen exposure score in atopic patients (p = 0.002). Conclusion In severe asthmatics, limited within-patient variability of sIgEtot levels was observed over 1 year as opposed to marked between-subject variability. sIgEtot decreases with age. Variation in sIgEtot weakly associates with asthma control but not with exacerbation.
Collapse
Affiliation(s)
- Renaud Louis
- 1Service de Pneumologie-Allergologie, CHU Sart Tilman B35, 4000 Liege, Belgium
| | - Charles Pilette
- 2Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200 Brussels, Belgium
| | - Olivier Michel
- 3CHU Brugmann, Place A.Van Gehuchten 4, 1020 Brussels, Belgium
| | - Alain Michils
- 4CUB Hôpital Erasme, Route de Lennik 808, 1070 Brussels, Belgium
| | - Guy Brusselle
- 5UZ Gent, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | | | | | - Kris Denhaerynck
- Matrix45, LLC, 6159 West Sunset Road, Tucson, AZ 85743 USA.,8University of Basel, Basel, Switzerland
| | | | - Ivo Abraham
- Matrix45, LLC, 6159 West Sunset Road, Tucson, AZ 85743 USA
| | | |
Collapse
|
55
|
Zastrzeżyńska W, Przybyszowski M, Bazan-Socha S, Gawlewicz-Mroczka A, Sadowski P, Okoń K, Jakieła B, Plutecka H, Ćmiel A, Sładek K, Musiał J, Soja J. Omalizumab may decrease the thickness of the reticular basement membrane and fibronectin deposit in the bronchial mucosa of severe allergic asthmatics. J Asthma 2019; 57:468-477. [PMID: 30905217 DOI: 10.1080/02770903.2019.1585872] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Introduction: Immunoglobulin E is an important modulator of the inflammatory reaction in allergic asthma. It also contributes to airway remodeling in the course of the disease. The authors evaluated airway structural changes in severe allergic asthma during the omalizumab therapy. Patients and methods: The study included 13 patients with severe allergic asthma treated with omalizumab for at least one year. In each patient clinical, laboratory, and spirometry parameters were evaluated before and after the treatment. In addition, bronchoscopy with bronchial mucosa biopsy and bronchoalveolar lavage was performed. The basal lamina thickness, inflammatory cell infiltration, fibronectin, as well as type I and III collagen accumulation were assessed in bronchial mucosa specimens, together with the assessment of bronchoalveolar lavage cellularity. Results: The omalizumab therapy led to a decrease in the basal lamina thickness (p = 0.002), and to a reduction in fibronectin (p = 0.02), but not collagen deposits in the bronchial mucosa. The decrease in fibronectin accumulation was associated with an improvement in asthma control and quality of life (p = 0.01, both), and a diminished dose of systemic corticosteroids (p = 0.001). It was also associated with a tendency towards reduction of the eosinophil count in the peripheral blood, bronchoalveolar lavage fluid, and bronchial mucosa specimens. Conclusion: Our study has shown that omalizumab, effective in the treatment of severe allergic asthma, may also decrease unfavorable structural airway changes in allergic asthmatics, at least with respect to the fibronectin deposit and an increased thickness of the basal lamina. However, more extensive observational studies are needed to verify the above hypothesis.
Collapse
Affiliation(s)
| | - Marek Przybyszowski
- Department of Pulmonology, University Hospital, Krakow, Poland.,Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Stanisława Bazan-Socha
- Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Agnieszka Gawlewicz-Mroczka
- Department of Pulmonology, University Hospital, Krakow, Poland.,Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Piotr Sadowski
- Department of Pathology, Jagiellonian University Medical College, Krakow, Poland
| | - Krzysztof Okoń
- Department of Pathology, Jagiellonian University Medical College, Krakow, Poland
| | - Bogdan Jakieła
- Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Hanna Plutecka
- Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Adam Ćmiel
- Faculty of Applied Mathematics, AGH University of Science and Technology, Kraków, Poland
| | - Krzysztof Sładek
- Department of Pulmonology, University Hospital, Krakow, Poland.,Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Jacek Musiał
- Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Jerzy Soja
- Department of Pulmonology, University Hospital, Krakow, Poland.,Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
56
|
Ebrahim N, Mandour YMH, Farid AS, Nafie E, Mohamed AZ, Safwat M, Taha R, Sabry D, Sorour SM, Refae A. Adipose Tissue-Derived Mesenchymal Stem Cell Modulates the Immune Response of Allergic Rhinitis in a Rat Model. Int J Mol Sci 2019; 20:E873. [PMID: 30781605 PMCID: PMC6412869 DOI: 10.3390/ijms20040873] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/13/2019] [Accepted: 02/14/2019] [Indexed: 12/19/2022] Open
Abstract
This study was designed to investigate the potential effects and underlying mechanism of adipose tissue-derived mesenchymal stem cells (MSCs) on allergic inflammation compared to Montelukast as an antileukotriene drug in a rat model of allergic rhinitis (AR). The effect of MSCs was evaluated in albino rats that were randomly divided into four (control, AR, AR + Montelukast, and AR + MSCs) groups. Rats of AR group were sensitized by ovalbumin (OVA) and then challenged with daily nasal drops of OVA diluted in sterile physiological saline (50 μL/nostril, 100 mg/mL, 10% OVA) from day 15 to day 21 of treatment with/without Montelukast (1 h before each challenge) or MSCs I/P injection (1 × 10⁶ MCSs; weekly for three constitutive weeks). Both Montelukast and MSCs treatment started from day 15 of the experiment. At the end of the 5th week, blood samples were collected from all rats for immunological assays, histological, and molecular biology examinations. Both oral Montelukast and intraperitoneal injection of MSCs significantly reduced allergic symptoms and OVA-specific immunoglobulin E (IgE), IgG1, IgG2a and histamine as well as increasing prostaglandin E2 (PGE2). Further analysis revealed that induction of nasal innate cytokines, such as interleukin (IL)-4 and TNF-α; and chemokines, such as CCL11 and vascular cell adhesion molecule-1 (VCAM-1), were suppressed; and transforming growth factor-β (TGF-β) was up-regulated in Montelukast and MSCs-treated groups with superior effect to MSCs, which explained their underlying mechanism. In addition, the adipose tissue-derived MSCs-treated group had more restoring effects on nasal mucosa structure demonstrated by electron microscopical examination.
Collapse
Affiliation(s)
- Nesrine Ebrahim
- Department of Histology and Cell Biology, Benha University, Benha, Qalyubia 13518, Egypt.
- Stem Cell Unit, Benha University, Benha, Qalyubia 13518, Egypt.
| | | | - Ayman Samir Farid
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Qalyubia 13736, Egypt.
| | - Ebtesam Nafie
- Zoology Department, Faculty of Science, Benha University, Benha 13518, Egypt.
| | - Amira Zaky Mohamed
- Department of Microbiology, Faculty of Science, Tanta University, Tanta 31527, Egypt.
| | - Miriam Safwat
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo 11562, Egypt.
| | - Radwa Taha
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo 11562, Egypt.
| | - Dina Sabry
- Department of Medical Biochemistry, Faculty of Medicine, Cairo University, Cairo 11562, Egypt.
- Molecular Biology and Stem Cell Unit, Faculty of Medicine, Cairo University, Cairo 11562, Egypt.
| | - Safwa M Sorour
- Department of Clinical Pharmacology, Faculty of Medicine, Benha University, Benha, Qalyubia 13518, Egypt.
| | - Ahmed Refae
- Department of Otorhinolaryngology, Faculty of Medicine, Benha University, Benha, Qalyubia 13518, Egypt.
| |
Collapse
|
57
|
Shamji MH, Thomsen I, Layhadi JA, Kappen J, Holtappels G, Sahiner U, Switzer A, Durham SR, Pabst O, Bachert C. Broad IgG repertoire in patients with chronic rhinosinusitis with nasal polyps regulates proinflammatory IgE responses. J Allergy Clin Immunol 2019; 143:2086-2094.e2. [PMID: 30763592 DOI: 10.1016/j.jaci.2019.02.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 01/27/2019] [Accepted: 02/01/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Chronic rhinosinusitis with nasal polyps (CRSwNP) is often characterized by local production of polyclonal IgE idiotypes. Although tissue IgE concentrations can be in the range of several thousand kilounits per liter, the regulatory mechanisms by which IgE-mediated inflammation is controlled in patients with nasal polyps are not well understood. OBJECTIVE We sought to determine whether locally induced IgG antibodies in patients with nasal polyps can inhibit an IgE-mediated proallergic response. METHODS Nasal polyp homogenates were collected from patients with grass pollen allergy with CRSwNP and nonallergic control subjects. IgE levels were measured using the Immuno Solid-phase Allergen Chip assay. IgE-containing nasal polyp homogenates with or without IgG depletion were evaluated for their capacity to promote IgE-facilitated allergen presentation, basophil activation, and histamine release. Local IgE and IgG repertoires were evaluated using Immunoglobulin 454 sequencing. RESULTS We show that IgG plays a key role in controlling IgE-mediated inflammatory responses in patients with nasal polyps. Depletion of IgG from nasal homogenates resulted in an increase in CD23-mediated IgE-facilitated allergen binding to B cells but also enhanced FcεRI-mediated allergen-driven basophil activation and histamine release. A similar response was observed in relation to specific IgE antibodies to Staphylococcus aureus enterotoxins. The capacity of IgG in nasal polyps to limit IgE-mediated inflammation is based on the fact that IgG repertoires widely share the antigen targets with the IgE repertoires in both allergic and nonallergic subjects. CONCLUSION Polyclonal IgE idiotypes in patients with CRSwNP are functional, promote IgE-mediated proallergic inflammation, and are partially antagonized by corresponding IgG idiotypes. This is most likely due to the fact that IgE and IgG clonotypes are widely shared in patients with nasal polyps.
Collapse
Affiliation(s)
- Mohamed H Shamji
- Allergy & Clinical Immunology, Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, and the Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom; Division of ENT Diseases, CLINTEC, Karolinska Institute, Stockholm, Sweden.
| | - Irene Thomsen
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Janice A Layhadi
- Allergy & Clinical Immunology, Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, and the Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom
| | - Jasper Kappen
- Allergy & Clinical Immunology, Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, and the Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom; Department of Pulmonology, STZ centre of excellence for Asthma & COPD, Sint Franciscus Vlietland group, Rotterdam, The Netherlands
| | - Gabriële Holtappels
- Upper Airways Research Laboratory, Ghent University, Ghent, Belgium; Division of ENT Diseases, CLINTEC, Karolinska Institute, Stockholm, Sweden
| | - Umit Sahiner
- Pediatric Allergy Department, Hacettepe University School of Medicine, Ankara, Turkey
| | - Amy Switzer
- Allergy & Clinical Immunology, Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, and the Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom
| | - Stephen R Durham
- Allergy & Clinical Immunology, Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, and the Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom
| | - Oliver Pabst
- Institute of Immunology, Hannover Medical School, Hannover, Germany; Institute of Molecular Medicine, RWTH Aachen, Aachen, Germany
| | - Claus Bachert
- Upper Airways Research Laboratory, Ghent University, Ghent, Belgium; Division of ENT Diseases, CLINTEC, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
58
|
Arias Á, Lucendo AJ. Molecular basis and cellular mechanisms of eosinophilic esophagitis for the clinical practice. Expert Rev Gastroenterol Hepatol 2019; 13:99-117. [PMID: 30791784 DOI: 10.1080/17474124.2019.1546120] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Eosinophilic esophagitis (EoE) is a chronic, allergen-driven inflammatory esophageal disease characterized by predominantly eosinophilic inflammation leading to esophageal dysfunction. Recent efforts to understand EoE have increased our knowledge of the disease. Areas covered: Multiple cells, molecules, and genes interplay with early life environmental factors in the pathophysiology of EoE to converge in the esophageal epithelium at the center of disease pathogenesis. Epithelial cells constitute a mayor cytokine source for TSLP and Calpain-14; an impaired epithelial barrier function allowing penetration of food and microbiota-derived antigens is involved in triggering and maintaining inflammation. Eosinophil and mast cell-derived products, including TGFβ, together with IL-1β and TNFα, promote epithelial mesenchymal transition in EoE, contributing to tissue remodeling by synthetizing and depositing extracellular matrix in subepithelial layers. This article aims to provide a state-of-the-art update on the pathophysiology of EoE applied to clinical practice, and latest research and developments with potential interest to improve the diagnosis and treatment of patients with EoE are revised. Expert commentary: Preliminary approaches have provided promising results toward incorporating minimally invasive methods for patient diagnosis and monitoring in clinical practice. Early diagnosis and optimized therapies will allow for personalized medicine in EoE.
Collapse
Affiliation(s)
- Ángel Arias
- a Research Unit , Hospital General La Mancha Centro , Alcázar de San Juan , Spain.,b Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) , Madrid , Spain
| | - Alfredo J Lucendo
- b Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) , Madrid , Spain.,c Department of Gastroenterology , Hospital General de Tomelloso , Ciudad Real , Spain
| |
Collapse
|
59
|
Varricchi G, Raap U, Rivellese F, Marone G, Gibbs BF. Human mast cells and basophils-How are they similar how are they different? Immunol Rev 2019; 282:8-34. [PMID: 29431214 DOI: 10.1111/imr.12627] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mast cells and basophils are key contributors to allergies and other inflammatory diseases since they are the most prominent source of histamine as well as numerous additional inflammatory mediators which drive inflammatory responses. However, a closer understanding of their precise roles in allergies and other pathological conditions has been marred by the considerable heterogeneity that these cells display, not only between mast cells and basophils themselves but also across different tissue locations and species. While both cell types share the ability to rapidly degranulate and release histamine following high-affinity IgE receptor cross-linking, they differ markedly in their ability to either react to other stimuli, generate inflammatory eicosanoids or release immunomodulating cytokines and chemokines. Furthermore, these cells display considerable pharmacological heterogeneity which has stifled attempts to develop more effective anti-allergic therapies. Mast cell- and basophil-specific transcriptional profiling, at rest and after activation by innate and adaptive stimuli, may help to unravel the degree to which these cells differ and facilitate a clearer understanding of their biological functions and how these could be targeted by new therapies.
Collapse
Affiliation(s)
- Gilda Varricchi
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research, University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy
| | - Ulrike Raap
- Department of Dermatology and Allergology, University of Oldenburg, Oldenburg, Germany
| | - Felice Rivellese
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research, University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy.,Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Gianni Marone
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research, University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy.,Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore" (IEOS), National Research Council (CNR), Naples, Italy
| | - Bernhard F Gibbs
- Department of Dermatology and Allergology, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
60
|
Huang SSY, Al Ali F, Boughorbel S, Toufiq M, Chaussabel D, Garand M. A curated collection of transcriptome datasets to investigate the molecular mechanisms of immunoglobulin E-mediated atopic diseases. Database (Oxford) 2019; 2019:baz066. [PMID: 31290545 PMCID: PMC6616200 DOI: 10.1093/database/baz066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 04/14/2019] [Accepted: 04/29/2019] [Indexed: 12/17/2022]
Abstract
Prevalence of allergies has reached ~20% of population in developed countries and sensitization rate to one or more allergens among school age children are approaching 50%. However, the combination of the complexity of atopic allergy susceptibility/development and environmental factors has made identification of gene biomarkers challenging. The amount of publicly accessible transcriptomic data presents an unprecedented opportunity for mechanistic discoveries and validation of complex disease signatures across studies. However, this necessitates structured methodologies and visual tools for the interpretation of results. Here, we present a curated collection of transcriptomic datasets relevant to immunoglobin E-mediated atopic diseases (ranging from allergies to primary immunodeficiencies). Thirty-three datasets from the Gene Expression Omnibus, encompassing 1860 transcriptome profiles, were made available on the Gene Expression Browser (GXB), an online and open-source web application that allows for the query, visualization and annotation of metadata. The thematic compositions, disease categories, sample number and platforms of the collection are described. Ranked gene lists and sample grouping are used to facilitate data visualization/interpretation and are available online via GXB (http://ige.gxbsidra.org/dm3/geneBrowser/list). Dataset validation using associated publications showed good concordance in GXB gene expression trend and fold-change.
Collapse
Affiliation(s)
| | - Fatima Al Ali
- Sidra Medicine, Al Gharrafa Street Ar-Rayyan, Doha, Qatar
| | | | | | | | - Mathieu Garand
- Sidra Medicine, Al Gharrafa Street Ar-Rayyan, Doha, Qatar
| |
Collapse
|
61
|
Lu Y, Kared H, Tan SW, Becht E, Newell EW, Van Bever HPS, Ng TP, Larbi A. Dynamics of helper CD4 T cells during acute and stable allergic asthma. Mucosal Immunol 2018; 11:1640-1652. [PMID: 30087444 DOI: 10.1038/s41385-018-0057-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 05/14/2018] [Accepted: 06/12/2018] [Indexed: 02/04/2023]
Abstract
Asthma comprises heterogeneous clinical subtypes driven by diverse pathophysiological mechanisms. We characterized the modulation of the inflammatory environment with the phenotype, gene expression, and function of helper CD4 T cells among acutely exacerbated and stable asthma patients. Systemic Th2 immune deviation (IgE and Th2 cytokines) and inflammation (IL-6, CRP) were associated with increased Th17 cells during acute asthma. Th2/Th17 cell differentiation during acute asthma was regulated by the enhanced expression of transcription factors (c-MAF, IRF-4). The development of pathogenic Th2 cells during acute asthma was characterized by the secretion of inflammatory cytokines coupled with Th2 molecules and PPARγ expression. The acquisition of CD15S, CD39, CD101, and CCR4 contributed to the increased heterogeneity of Regulatory T cells during asthma. Two clusters were derived from above cytokines, CD4 T cell phenotypes, and clinical data. Cluster 1, characterized by high eosinophils, Th2 and ILC2 frequencies, and higher exacerbation rates, may represent Th2-high subtype. Cluster 2 represents a more complex subtype; it is constituted by higher neutrophils or Th17 frequencies, higher inhaled corticosteroids dose and poor asthma control. In conclusion, we characterized systematically and longitudinally Th2-high and non-Th2 asthma subtypes and the heterogeneity of CD4 T cells in stable and acute asthma.
Collapse
Affiliation(s)
- Yanxia Lu
- Singapore Immunology Network (SIgN), Immunos Building at Biopolis, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore. .,Department of Clinical Psychology and Psychiatry/School of Public Health, Zhejiang University College of Medicine, Hangzhou, China.
| | - Hassen Kared
- Singapore Immunology Network (SIgN), Immunos Building at Biopolis, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Shu Wen Tan
- Singapore Immunology Network (SIgN), Immunos Building at Biopolis, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Etienne Becht
- Singapore Immunology Network (SIgN), Immunos Building at Biopolis, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Evan W Newell
- Singapore Immunology Network (SIgN), Immunos Building at Biopolis, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Hugo P S Van Bever
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Tze Pin Ng
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Anis Larbi
- Singapore Immunology Network (SIgN), Immunos Building at Biopolis, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,Department of Biology, Faculty of Science, University Tunis El Manar, Tunis, Tunisia.,Department of Medicine, Research Center on Aging, University of Sherbrooke, Sherbrooke, Canada
| |
Collapse
|
62
|
Abstract
Eosinophilic esophagitis (EoE) is a chronic inflammatory disease of the esophagus associated with an atopic predisposition which appears to be increasing in prevalence over the last few decades. Symptoms stem from fibrosis, swelling, and smooth muscle dysfunction. In the past two decades, the etiology of EoE has been and is continuing to be revealed. This review provides an overview of the effects of genetics, environment, and immune function including discussions that touch on microbiome, the role of diet, food allergy, and aeroallergy. The review further concentrates on the pathophysiology of the disease with particular focus on the important concepts of the molecular etiology of EoE including barrier dysfunction and allergic hypersensitivity.
Collapse
Affiliation(s)
- Benjamin P Davis
- Department of Internal Medicine, Division of Immunology, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, Iowa City, IA, 52246, USA.
| |
Collapse
|
63
|
Rondón C, Eguíluz-Gracia I, Shamji MH, Layhadi JA, Salas M, Torres MJ, Campo P. IgE Test in Secretions of Patients with Respiratory Allergy. Curr Allergy Asthma Rep 2018; 18:67. [PMID: 30317418 DOI: 10.1007/s11882-018-0821-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW IgE is a key player in multiple inflammatory airway diseases. Ample literature demonstrates its presence in mucosa of patients with allergic rhinitis (AR), local allergic rhinitis (LAR), asthma, or chronic rhinosinusitis with nasal polyposis (CRSwNP). RECENT FINDINGS Current evidence shows that high-affinity IgE in blood stream of allergic individuals derives mainly from the mucosae. Also, mucosal synthesis of IgE can occur in the absence of systemic atopy, and may be relevant in atopic and non-atopic phenotypes of rhinitis as demonstrated in LAR. Specific IgE (sIgE) detection varies depending on technique used for sample collection and its measurement. sIgE detection is highly specific for diagnosis of LAR. Moreover, measurement of sIgE in secretions could be useful in monitoring response to allergen-specific immunotherapy in both AR and LAR phenotypes. This review will focus on recent developments in the role of IgE in respiratory diseases, and the clinical implications of its measurement in secretions.
Collapse
Affiliation(s)
- Carmen Rondón
- Allergy Unit, IBIMA-Regional University Hospital of Málaga, Málaga, Spain
| | | | - Mohamed H Shamji
- Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Inflammation, Repair and Development, MRC Asthma UK Centre Imperial College London, London, UK
| | - Janice A Layhadi
- Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Inflammation, Repair and Development, MRC Asthma UK Centre Imperial College London, London, UK
| | - María Salas
- Allergy Unit, IBIMA-Regional University Hospital of Málaga, Málaga, Spain
| | - María José Torres
- Allergy Unit, IBIMA-Regional University Hospital of Málaga, Málaga, Spain
| | - Paloma Campo
- Allergy Unit, IBIMA-Regional University Hospital of Málaga, Málaga, Spain.
- Plaza Hospital Civil, 29009, Málaga, Spain.
| |
Collapse
|
64
|
Hoh RA, Boyd SD. Gut Mucosal Antibody Responses and Implications for Food Allergy. Front Immunol 2018; 9:2221. [PMID: 30319658 PMCID: PMC6170638 DOI: 10.3389/fimmu.2018.02221] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/07/2018] [Indexed: 12/28/2022] Open
Abstract
The gastrointestinal mucosa is a critical environmental interface where plasma cells and B cells are exposed to orally-ingested antigens such as food allergen proteins. It is unclear how the development of B cells and plasma cells in the gastrointestinal mucosa differs between healthy humans and those with food allergy, and how B cells contribute to, or are affected by, the breakdown of oral tolerance. In particular, the antibody gene repertoires associated with symptomatic allergy have only begun to be characterized in full molecular detail. Here, we review literature concerning B cells and plasma cells in the gastrointestinal system in the context of food allergy, with a focus on human studies.
Collapse
Affiliation(s)
- Ramona A Hoh
- Department of Pathology, Stanford University, Stanford, CA, United States
| | - Scott D Boyd
- Department of Pathology, Stanford University, Stanford, CA, United States
| |
Collapse
|
65
|
Omalizumab for Severe Asthma: Beyond Allergic Asthma. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3254094. [PMID: 30310816 PMCID: PMC6166383 DOI: 10.1155/2018/3254094] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/18/2018] [Indexed: 11/28/2022]
Abstract
Different subsets of asthma patients may be recognized according to the exposure trigger and the frequency and severity of clinical signs and symptoms. Regarding the exposure trigger, generally asthma can be classified as allergic (or atopic) and nonallergic (or nonatopic). Allergic and nonallergic asthma are distinguished by the presence or absence of clinical allergic reaction and in vitro IgE response to specific aeroallergens. The mechanisms of allergic asthma have been extensively studied with major advances in the last two decades. Nonallergic asthma is characterized by its apparent independence from allergen exposure and sensitization and a higher degree of severity, but little is known regarding the underlying mechanisms. Clinically, allergic and nonallergic asthma are virtually indistinguishable in exacerbations, although exacerbation following allergen exposure is typical of allergic asthma. Although they both show several distinct clinical phenotypes and different biomarkers, there are no ideal biomarkers to stratify asthma phenotypes and guide therapy in clinical practice. Nevertheless, some biomarkers may be helpful to select subsets of atopic patients which might benefit from biologic agents, such as omalizumab. Patients with severe asthma, uncontrolled besides optimal treatment, notwithstanding nonatopic, may also benefit from omalizumab therapy, although currently there are no randomized double-blind placebo controlled clinical trials to support this suggestion. However, omalizumab discontinuation according to each patient's response to therapy and pharmacoeconomical analysis are questions that remain to be answered.
Collapse
|
66
|
Ohm-Laursen L, Meng H, Chen J, Zhou JQ, Corrigan CJ, Gould HJ, Kleinstein SH. Local Clonal Diversification and Dissemination of B Lymphocytes in the Human Bronchial Mucosa. Front Immunol 2018; 9:1976. [PMID: 30245687 PMCID: PMC6137163 DOI: 10.3389/fimmu.2018.01976] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 08/13/2018] [Indexed: 12/23/2022] Open
Abstract
The efficacy of the adaptive humoral immune response likely requires diverse, yet focused regional B cell antibody production throughout the body. Here we address, in the first study of its kind, the B cell repertoire in the bronchial mucosa, an important barrier to antigens inhaled from the atmosphere. To accomplish this, we have applied high-throughput Adaptive Immune Receptor Repertoire Sequencing (AIRR-Seq) to 10 bronchial biopsies from altogether four different sites in the right lungs from an asthmatic patient and a healthy subject. While the majority of identified B cell clones were restricted to a single site, many were disseminated in multiple sites. Members of a clone were shared more between adjacent biopsies than between distal biopsies, suggesting local mucosal migration and/or a homing mechanism for B cells through the blood or lymph. A smaller fraction of clones spanned the bronchial mucosa and peripheral blood, suggesting ongoing trafficking between these compartments. The bronchial mucosal B cell repertoire in the asthmatic patient was geographically more variable but less diverse compared to that of the healthy subject, suggesting an ongoing, antigen-driven humoral immune response in atopic asthma. Whether this is a feature of atopy or disease status remains to be clarified in future studies. We observed a subset of highly mutated and antigen-selected IgD-only cells in the bronchial mucosa. These cells were found in relative high abundance in the asthmatic individual but also, albeit at lower abundance, in the healthy subject. This novel finding merits further exploration using a larger cohort of subjects.
Collapse
Affiliation(s)
- Line Ohm-Laursen
- Randall Centre for Cell and Molecular Biophysics and School of Basic and Medical Biosciences, King's College London, London, United Kingdom.,Medical Research Council and Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom
| | - Hailong Meng
- Department of Pathology, Yale School of Medicine, New Haven, CT, United States
| | - Jessica Chen
- Department of Pathology, Yale School of Medicine, New Haven, CT, United States
| | - Julian Q Zhou
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, United States
| | - Chris J Corrigan
- Medical Research Council and Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom.,Department of Respiratory Medicine and Allergy and School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
| | - Hannah J Gould
- Randall Centre for Cell and Molecular Biophysics and School of Basic and Medical Biosciences, King's College London, London, United Kingdom.,Medical Research Council and Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom
| | - Steven H Kleinstein
- Department of Pathology, Yale School of Medicine, New Haven, CT, United States.,Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, United States.,Department of Immunobiology, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
67
|
Campo P, Eguiluz-Gracia I, Bogas G, Salas M, Plaza Serón C, Pérez N, Mayorga C, Torres MJ, Shamji MH, Rondon C. Local allergic rhinitis: Implications for management. Clin Exp Allergy 2018; 49:6-16. [PMID: 29900607 DOI: 10.1111/cea.13192] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/10/2018] [Accepted: 06/11/2018] [Indexed: 12/19/2022]
Abstract
A significant proportion of rhinitis patients without systemic IgE-sensitisation tested by skin prick test and serum allergen-specific IgE (sIgE) display nasal reactivity upon nasal allergen provocation test (NAPT). This disease phenotype has been termed local allergic rhinitis (LAR). LAR is an underdiagnosed entity affecting children and adults from different parts of the world, with moderate-to-severe symptoms, impairment of quality of life and rapid progression to symptom worsening. LAR is a stable phenotype and not merely an initial state of AR. Allergic rhinitis and LAR share many clinical features including a positive NAPT response, markers of type 2 nasal inflammation including sIgE in nasal secretions and a significant rate of asthma development. LAR should be considered as a differential diagnosis in those subjects of any age with symptoms suggestive of AR but no evidence of systemic atopy. Although LAR pathophysiology is partially unknown, in some patients sIgE can be demonstrated directly in the nasal secretions and/or indirectly via positive responses in basophil activation test (BAT). LAR can coexist with other rhinitis phenotypes, especially AR. The diagnosis currently relies on the positivity of NAPT to a single or multiple allergens. NAPT has high sensitivity, specificity and reproducibility, and it is considered the gold standard. BAT and the measurement of nasal sIgE can also contribute to LAR diagnosis. LAR patients benefit from the same therapeutic strategies than AR individuals, including the avoidance of allergen exposure and the pharmacotherapy. Moreover, several recent studies support the effectiveness and safety of allergen immunotherapy for LAR, which opens a window of treatment opportunity in these patients.
Collapse
Affiliation(s)
- P Campo
- Allergy Unit, IBIMA-Hospital Regional Universitario de Málaga, UMA, Málaga, Spain
| | - I Eguiluz-Gracia
- Allergy Unit, IBIMA-Hospital Regional Universitario de Málaga, UMA, Málaga, Spain
| | - G Bogas
- Allergy Unit, IBIMA-Hospital Regional Universitario de Málaga, UMA, Málaga, Spain
| | - M Salas
- Allergy Unit, IBIMA-Hospital Regional Universitario de Málaga, UMA, Málaga, Spain
| | - C Plaza Serón
- Research Laboratory-Allergy Unit, Hospital Regional Universitario de Málaga, UMA, Málaga, Spain
| | - N Pérez
- Allergy Unit, IBIMA-Hospital Regional Universitario de Málaga, UMA, Málaga, Spain
| | - C Mayorga
- Research Laboratory-Allergy Unit, Hospital Regional Universitario de Málaga, UMA, Málaga, Spain
| | - M J Torres
- Allergy Unit, IBIMA-Hospital Regional Universitario de Málaga, UMA, Málaga, Spain
| | - M H Shamji
- Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Inflammation, Repair & Development, MRC Asthma UK Centre Imperial College London, London, UK
| | - C Rondon
- Allergy Unit, IBIMA-Hospital Regional Universitario de Málaga, UMA, Málaga, Spain
| |
Collapse
|
68
|
Heeringa JJ, Rijvers L, Arends NJ, Driessen GJ, Pasmans SG, Dongen JJM, Jongste JC, Zelm MC. IgE-expressing memory B cells and plasmablasts are increased in blood of children with asthma, food allergy, and atopic dermatitis. Allergy 2018; 73:1331-1336. [PMID: 29380876 DOI: 10.1111/all.13421] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2018] [Indexed: 12/11/2022]
Abstract
Despite the critical role of soluble IgE in the pathology of IgE-mediated allergic disease, little is known about abnormalities in the memory B cells and plasma cells that produce IgE in allergic patients. We here applied a flow cytometric approach to cross-sectionally study blood IgE+ memory B cells and plasmablasts in 149 children with atopic dermatitis, food allergy, and/or asthma and correlated these to helper T(h)2 cells and eosinophils. Children with allergic disease had increased numbers of IgE+CD27- and IgE+CD27+ memory B cells and IgE+ plasmablasts, as well as increased numbers of eosinophils and Th2 cells. IgE+ plasmablast numbers correlated positively with Th2 cell numbers. These findings open new possibilities for diagnosis and monitoring of treatment in patients with allergic diseases.
Collapse
Affiliation(s)
- J. J. Heeringa
- Department of Immunology Erasmus MC University Medical Center Rotterdam The Netherlands
- Department of Pediatrics Erasmus MC University Medical Center Rotterdam The Netherlands
| | - L. Rijvers
- Department of Immunology Erasmus MC University Medical Center Rotterdam The Netherlands
| | - N. J. Arends
- Department of Allergy Erasmus MC University Medical Center Rotterdam The Netherlands
| | - G. J. Driessen
- Department of Pediatrics Erasmus MC University Medical Center Rotterdam The Netherlands
- Department of Pediatrics Haga Teaching Hospital Juliana Children's Hospital The Hague The Netherlands
| | - S. G. Pasmans
- Department of Pediatric Dermatology Erasmus MC University Medical Center Rotterdam The Netherlands
| | - J. J. M. Dongen
- Department of Immunology Erasmus MC University Medical Center Rotterdam The Netherlands
- Department of Immunology Leiden University Medical Center Leiden The Netherlands
| | - J. C. Jongste
- Department of Pediatrics Division of Respiratory Medicine Erasmus MC University Medical Center Rotterdam The Netherlands
| | - M. C. Zelm
- Department of Immunology Erasmus MC University Medical Center Rotterdam The Netherlands
- Department of Immunology and Pathology Central Clinical School Monash University and Alfred Hospital Melbourne VIC Australia
| |
Collapse
|
69
|
Velez TE, Bryce PJ, Hulse KE. Mast Cell Interactions and Crosstalk in Regulating Allergic Inflammation. Curr Allergy Asthma Rep 2018; 18:30. [PMID: 29667026 DOI: 10.1007/s11882-018-0786-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW This review summarizes recent findings on mast cell biology with a focus on IgE-independent roles of mast cells in regulating allergic responses. RECENT FINDINGS Recent studies have described novel mast cell-derived molecules, both secreted and membrane-bound, that facilitate cross-talk with a variety of immune effector cells to mediate type 2 inflammatory responses. Mast cells are complex and dynamic cells that are persistent in allergy and are capable of providing signals that lead to the initiation and persistence of allergic mechanisms.
Collapse
Affiliation(s)
- Tania E Velez
- Division of Allergy-Immunology, Northwestern University Feinberg School of Medicine, 240 E. Huron St, Chicago, IL, 60611, USA
| | - Paul J Bryce
- Division of Allergy-Immunology, Northwestern University Feinberg School of Medicine, 240 E. Huron St, Chicago, IL, 60611, USA
| | - Kathryn E Hulse
- Division of Allergy-Immunology, Northwestern University Feinberg School of Medicine, 240 E. Huron St, Chicago, IL, 60611, USA.
| |
Collapse
|
70
|
Cho KS, Kim SH, Hong SL, Lee J, Mun SJ, Roh YE, Kim YM, Kim HY. Local Atopy in Childhood Adenotonsillar Hypertrophy. Am J Rhinol Allergy 2018; 32:160-166. [PMID: 29649882 DOI: 10.1177/1945892418765003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Although the cause of adenotonsillar hypertrophy remains unknown, some studies have shown that allergy may be a risk factor. Purpose This study determined the levels of allergen-specific immunoglobulin E (sIgE) in the adenotonsillar tissues of children with adenotonsillar hypertrophy and evaluated the clinical significance of local atopy in adenotonsillar tissues. Methods We measured 21 types of specific immunoglobulin E in the serum and adenotonsillar tissues of 102 children with adenotonsillar hypertrophy and compared the sensitization patterns of the serum and local tissues. The patients were divided into three groups-atopy, local atopy, and nonatopy-according to the sensitization of serum and adenotonsillar tissues, and the clinical symptoms among the groups were analyzed. Results Seventy-two (70.6%) children with adenotonsillar hypertrophy were sensitized to more than one allergen in the serum and/or adenotonsillar tissue. Thirty (29.4%) children had no IgE positivity to any allergen in both serum and adenotonsillar tissues. Fifty-five (53.9%) were sensitized to at least one allergen in the serum. Seventy (68.6%) were sensitized to at least one allergen in the adenotonsillar tissue. Seventeen (36.2%) of 47 children with specific immunoglobulin E-negative serum had specific immunoglobulin E-positive adenotonsillar tissues. The rate of specific immunoglobulin E was significantly higher in local tissues than in serum. The rate of inhalant allergen specific immunoglobulin E was significantly higher in the adenoids than in the tonsils. However, the rate of food allergen specific immunoglobulin E was significantly higher in the tonsils than adenoids. The lifetime prevalence of asthma and allergic rhinitis, recent symptoms or treatment of allergic rhinitis, and severity of nasal symptoms (rhinorrhea, sneezing, and nasal itching) were significantly higher in children with local atopy than with nonatopy. Conclusions These results confirm that allergic response may be a risk factor for adenotonsillar hypertrophy. Local allergic inflammation may play an important role in childhood adenotonsillar hypertrophy, and local atopy in adenotonsillar tissues can cause respiratory allergic symptoms in children.
Collapse
Affiliation(s)
- Kyu-Sup Cho
- 1 Department of Otorhinolaryngology and Biomedical Research Institute, Pusan National University School of Medicine, Pusan National University Hospital, Busan, Republic of Korea
| | - Seong Heon Kim
- 2 Department of Pediatrics, Pusan National University Children's Hospital, Yangsan, Republic of Korea.,3 Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Sung-Lyong Hong
- 1 Department of Otorhinolaryngology and Biomedical Research Institute, Pusan National University School of Medicine, Pusan National University Hospital, Busan, Republic of Korea
| | - Jaeyoung Lee
- 4 Department of Nursing Science, College of Natural Sciences, Kyungsung University, Busan, Republic of Korea
| | - Sue Jean Mun
- 5 Department of Otorhinolaryngology and Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Young Eun Roh
- 6 Department of Pediatrics, Medical Research Institute, Pusan National University School of Medicine, Pusan National University Hospital, Busan, Republic of Korea
| | - Young Mi Kim
- 6 Department of Pediatrics, Medical Research Institute, Pusan National University School of Medicine, Pusan National University Hospital, Busan, Republic of Korea
| | - Hye-Young Kim
- 6 Department of Pediatrics, Medical Research Institute, Pusan National University School of Medicine, Pusan National University Hospital, Busan, Republic of Korea
| |
Collapse
|
71
|
Qibi O, Audusseau S, Mogas A, Allakhverdi Z, Soussi Gounni A, Al Heialy S, Hamid Q. No evidence for IgE receptor FcεRI expression on bronchial epithelial cells of asthmatic patients. AIMS ALLERGY AND IMMUNOLOGY 2018. [DOI: 10.3934/allergy.2018.4.165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
72
|
Pelaia C, Calabrese C, Terracciano R, de Blasio F, Vatrella A, Pelaia G. Omalizumab, the first available antibody for biological treatment of severe asthma: more than a decade of real-life effectiveness. Ther Adv Respir Dis 2018; 12:1753466618810192. [PMID: 30400762 PMCID: PMC6236630 DOI: 10.1177/1753466618810192] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/10/2018] [Indexed: 12/17/2022] Open
Abstract
Omalizumab was the first, and for a long time the only available monoclonal antibody for the add-on treatment of severe allergic asthma. In particular, omalizumab selectively targets human immunoglobulin (Ig)E, forming small-size immune complexes that inhibit IgE binding to its high- and low-affinity receptors. Therefore, omalizumab effectively blunts the immune response in atopic asthmatic patients, thus significantly improving the control of asthma symptoms and successfully preventing disease exacerbations. These very positive effects of omalizumab make it possible to drastically decrease both referrals to the emergency room and hospitalizations for asthma exacerbations. Such important therapeutic actions of omalizumab have been documented by several randomized clinical trials, and especially by more than 10 years of real-life experience in daily clinical practice. Omalizumab can also interfere with airway remodelling by inhibiting the activation of IgE receptors located on structural cells such as bronchial epithelial cells and airway smooth muscle cells. Moreover, omalizumab is characterized by a very good safety and tolerability profile. Hence, omalizumab represents a valuable therapeutic option for the add-on biological treatment of severe allergic asthma.
Collapse
Affiliation(s)
- Corrado Pelaia
- Department of Medical and Surgical Sciences,
University ‘Magna Græcia’ of Catanzaro, Catanzaro, Italy
| | - Cecilia Calabrese
- Department of Cardio-Thoracic and Respiratory
Sciences, University of Campania ‘Luigi Vanvitelli’, Naples, Italy
| | - Rosa Terracciano
- Department of Health Sciences, University ‘Magna
Græcia’ of Catanzaro, Catanzaro, Italy
| | - Francesco de Blasio
- Respiratory Medicine and Pulmonary
Rehabilitation Section, Clinic Center Private Hospital, Naples, Italy
- Department of Medicine and Health Sciences ‘V.
Tiberio’, University of Molise, Campobasso, Italy
| | - Alessandro Vatrella
- Department of Medicine, Surgery and Dentistry,
University of Salerno, Salerno, Italy
| | - Girolamo Pelaia
- Department of Medical and Surgical Sciences,
University ‘Magna Græcia’ of Catanzaro, Catanzaro, Italy; Campus
Universitario ‘Salvatore Venuta’, Viale Europa – Località Germaneto,
Catanzaro, 88100, Italy
| |
Collapse
|
73
|
Cellular and molecular mechanisms of asthma and COPD. Clin Sci (Lond) 2017; 131:1541-1558. [PMID: 28659395 DOI: 10.1042/cs20160487] [Citation(s) in RCA: 299] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 02/28/2017] [Accepted: 03/01/2017] [Indexed: 12/19/2022]
Abstract
Asthma and chronic obstructive pulmonary disease (COPD) both cause airway obstruction and are associated with chronic inflammation of the airways. However, the nature and sites of the inflammation differ between these diseases, resulting in different pathology, clinical manifestations and response to therapy. In this review, the inflammatory and cellular mechanisms of asthma and COPD are compared and the differences in inflammatory cells and profile of inflammatory mediators are highlighted. These differences account for the differences in clinical manifestations of asthma and COPD and their response to therapy. Although asthma and COPD are usually distinct, there are some patients who show an overlap of features, which may be explained by the coincidence of two common diseases or distinct phenotypes of each disease. It is important to better understand the underlying cellular and molecular mechanisms of asthma and COPD in order to develop new treatments in areas of unmet need, such as severe asthma, curative therapy for asthma and effective anti-inflammatory treatments for COPD.
Collapse
|
74
|
Occelli A, Soize S, Ranc C, Giovannini-Chami L, Bailly C, Leloutre B, Boyer C, Baque-Juston M. Bronchocele density in cystic fibrosis as an indicator of allergic broncho-pulmonary aspergillosis: A preliminary study. Eur J Radiol 2017; 93:195-199. [DOI: 10.1016/j.ejrad.2017.05.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 02/03/2017] [Accepted: 05/30/2017] [Indexed: 12/26/2022]
|
75
|
Kim DY, Lee SH, Carter RG, Kato A, Schleimer RP, Cho SH. A Recently Established Murine Model of Nasal Polyps Demonstrates Activation of B Cells, as Occurs in Human Nasal Polyps. Am J Respir Cell Mol Biol 2017; 55:170-5. [PMID: 27163839 DOI: 10.1165/rcmb.2016-0002rc] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Animal model systems are invaluable for examining human diseases. Our laboratory recently established a mouse model of nasal polyps (NPs) and investigated similarities and differences between this mouse model and human NPs. We especially focus on the hypothesis that B cell activation occurs during NP generation in the murine model. After induction of ovalbumin-induced allergic rhinosinusitis, 6% ovalbumin and Staphylococcus aureus enterotoxin B (10 ng) were instilled into the nasal cavity of mice three times per week for 8 weeks. The development of structures that somewhat resemble NPs (which we will refer to as NPs) was confirmed by hematoxylin and eosin staining. The mRNA and protein levels of various inflammatory cell markers and mediators were measured by real-time PCR in nasal tissue and by ELISA in nasal lavage fluid (NLF), respectively. Total Ig isotype levels in NLF were also quantitated using the Mouse Ig Isotyping Multiplex kit (EMD Millipore, Billerica, MA) on a Luminex 200 instrument (Life Technologies, Grand Island, NY). Similar to human NPs, there were significant increases in gene expression of inflammatory cell markers, such as CD19, CD138, CD11c, and mast cell protease-6 in nasal tissue samples of the NP group compared with those of the control group. In further investigations of B cell activation, mRNA expressions of B cell activating factor and a proliferation-inducing ligand were found to be significantly increased in mouse NP tissue. B cell-activating factor protein concentration and IgA and IgG1 levels in NLF were significantly higher in the NP group compared with the control group. In this study, the NP mouse model demonstrated enhanced B cell responses, which are reminiscent of B cell responses in human NPs.
Collapse
Affiliation(s)
- Dong-Young Kim
- 1 Department of Medicine, Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois.,2 Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Sun Hye Lee
- 1 Department of Medicine, Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Roderick G Carter
- 1 Department of Medicine, Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Atsushi Kato
- 1 Department of Medicine, Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Robert P Schleimer
- 1 Department of Medicine, Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Seong H Cho
- 1 Department of Medicine, Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois.,3 Department of Internal Medicine, Division of Allergy-Immunology, Morsani College of Medicine, University of South Florida, Tampa, Florida; and.,4 Department of Internal Medicine, Division of Rheumatology, Kyung Hee University School of Medicine, Seoul, Korea
| |
Collapse
|
76
|
Abstract
Local allergic inflammation (LAI) is recognized recently. 'entopy' was used to define LAI, which was positively correlated with allergen provocation testing, local sIgE up-regulation, inflammatory mediator secretion, and a lack of systemic allergy. The study of LAI is in its infancy and focuses mainly on the respiratory system. It is closely related to nasal inflammation and plays important roles in patients with nonallergic rhinitis (NAR), nonallergic chronic sinusitis with nasal polyps (CRSwNP), and nonallergic fungal rhinosinusitis (NAFRS). Based on studies using nasal allergen provocation testing, 40-57% of patients with NAR exhibited positive results and could be diagnosed as local allergic rhinitis. Total IgE and common airborne allergen-sIgE were up-regulated in eosinophilic CRSwNP patients compared to noneosinophilic CRSwNP patients and healthy controls, possibly due to local allergic inflammation. Some researchers also found that the level of local sIgE was increased in patients with NAFRS; they suggested that local allergic inflammation occurs in NAFRS. Studies of LAI will increase our understanding of nasal inflammation and help to establish novel treatments. However, the diagnosis of local allergic inflammation is complex due to the lack of convenient detection methods. The relationship between local allergic inflammation and systemic allergic inflammation is unclear, and an appropriate treatment for local allergic inflammation is required.
Collapse
Affiliation(s)
- Ke-Jia Cheng
- Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, #79 Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China
| | - Min-Li Zhou
- Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, #79 Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China
| | - Ying-Ying Xu
- Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, #79 Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China
| | - Shui-Hong Zhou
- Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, #79 Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China.
| |
Collapse
|
77
|
Asthma, a Comprehensive Clinical Review. Dela J Public Health 2017; 3:10-22. [PMID: 34466893 PMCID: PMC8352467 DOI: 10.32481/djph.2017.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
78
|
Perotin JM, Barnig C. [Omalizumab: Beyond anti-IgE properties]. Rev Mal Respir 2017; 34:121-133. [PMID: 28189435 DOI: 10.1016/j.rmr.2016.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 07/18/2016] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Omalizumab is used as a treatment for severe allergic asthma. Its intended mechanism of action is based on its anti-IgE proprieties. However, recent studies have highlighted other mechanisms of action. STATE OF THE ART Omalizumab treatment is associated with a decrease in the number of dendritic cells, T and B lymphocytes and eosinophils. This anti-inflammatory activity is characterized by a decrease in the levels of several cytokines involved in the recruitment, activation and survival of eosinophils and mastocytes, and in a Th2 orientation of the immune response. A modulation of bronchial remodeling by omalizumab has recently been shown. A decrease in the production of extracellular matrix components and in the proliferation of smooth muscle cells could be involved in this modulation. These mechanisms of action could explain in part the clinical efficiency of omalizumab in non-allergic conditions such as non-allergic asthma, non-allergic urticaria or nasal polyposis. CONCLUSION A precise knowledge of the mechanisms of action of omalizumab could allow the identification of biomarkers predictive of efficacy of this treatment. These could be useful tools in the phenotyping of severe asthma.
Collapse
Affiliation(s)
- J-M Perotin
- Service des maladies respiratoires, Inserm UMRS 903, centre hospitalier universitaire, 45, rue Cognacq-Jay, 51100 Reims, France.
| | - C Barnig
- Service de physiologie et d'explorations fonctionnelles, pôle de pathologie thoracique, centre hospitalier universitaire, 67000 Strasbourg, France
| |
Collapse
|
79
|
Rondón C, Bogas G, Barrionuevo E, Blanca M, Torres MJ, Campo P. Nonallergic rhinitis and lower airway disease. Allergy 2017; 72:24-34. [PMID: 27439024 DOI: 10.1111/all.12988] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2016] [Indexed: 12/17/2022]
Abstract
In the past years, several investigators have demonstrated the existence of local nasal responses in some patients with typical allergic rhinitis symptoms but without atopy and have defined a new phenotype called local allergic rhinitis (LAR) or 'entopy'. In a percentage of LAR subjects, the upper airway disease is also associated with lower airway symptoms. After the description of this phenotype, the differential diagnosis between LAR and nonallergic rhinitis (NAR) has become a challenge for the clinician. To correctly identify LAR patients is of high importance for treatment and management of these patients, and for an appropriate inclusion of patients in clinical trials and genetics studies. The treatment of LAR patients, in contrast with NAR, is oriented to allergen avoidance and specific treatment. Allergen immunotherapy, the aetiological treatment for allergic respiratory diseases, has demonstrated to be an effective and safe treatment in LAR, increasing immunological tolerance, and reducing the clinical symptoms and the use of medication. In this article, the important and novel aspects of LAR in terms of mechanisms, diagnosis and treatment will be discussed. Also, the involvement of the lower airway and the potential role of IgE in the bronchial disease will be also reviewed.
Collapse
Affiliation(s)
- C. Rondón
- Allergy Unit; IBIMA-Regional University Hospital of Málaga; UMA; Malaga Spain
| | - G. Bogas
- Allergy Unit; IBIMA-Regional University Hospital of Málaga; UMA; Malaga Spain
| | - E. Barrionuevo
- Allergy Unit; IBIMA-Regional University Hospital of Málaga; UMA; Malaga Spain
| | - M. Blanca
- Allergy Unit; IBIMA-Regional University Hospital of Málaga; UMA; Malaga Spain
| | - M. J. Torres
- Allergy Unit; IBIMA-Regional University Hospital of Málaga; UMA; Malaga Spain
| | - P. Campo
- Allergy Unit; IBIMA-Regional University Hospital of Málaga; UMA; Malaga Spain
| |
Collapse
|
80
|
Ramadani F, Bowen H, Upton N, Hobson PS, Chan YC, Chen JB, Chang TW, McDonnell JM, Sutton BJ, Fear DJ, Gould HJ. Ontogeny of human IgE-expressing B cells and plasma cells. Allergy 2017; 72:66-76. [PMID: 27061189 PMCID: PMC5107308 DOI: 10.1111/all.12911] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2016] [Indexed: 12/31/2022]
Abstract
Background IgE‐expressing (IgE+) plasma cells (PCs) provide a continuous source of allergen‐specific IgE that is central to allergic responses. The extreme sparsity of IgE+ cells in vivo has confined their study almost entirely to mouse models. Objective To characterize the development pathway of human IgE+PCs and to determine the ontogeny of human IgE+PCs. Methods To generate human IgE+ cells, we cultured tonsil B cells with IL‐4 and anti‐CD40. Using FACS and RT‐PCR, we examined the phenotype of generated IgE+ cells, the capacity of tonsil B‐cell subsets to generate IgE+PCs and the class switching pathways involved. Results We have identified three phenotypic stages of IgE+PC development pathway, namely (i) IgE+germinal centre (GC)‐like B cells, (ii) IgE+PC‐like ‘plasmablasts’ and (iii) IgE+PCs. The same phenotypic stages were also observed for IgG1+ cells. Total tonsil B cells give rise to IgE+PCs by direct and sequential switching, whereas the isolated GC B‐cell fraction, the main source of IgE+PCs, generates IgE+PCs by sequential switching. PC differentiation of IgE+ cells is accompanied by the down‐regulation of surface expression of the short form of membrane IgE (mIgES), which is homologous to mouse mIgE, and the up‐regulation of the long form of mIgE (mIgEL), which is associated with an enhanced B‐cell survival and expressed in humans, but not in mice. Conclusion Generation of IgE+PCs from tonsil GC B cells occurs mainly via sequential switching from IgG. The mIgEL/mIgES ratio may be implicated in survival of IgE+ B cells during PC differentiation and allergic disease.
Collapse
Affiliation(s)
- F. Ramadani
- Randall Division of Cell and Molecular Biohphysics; King's College; London UK
- Medical Research Council and Asthma UK Centre in Allergic Mechanisms in Asthma; London UK
| | - H. Bowen
- Randall Division of Cell and Molecular Biohphysics; King's College; London UK
- Medical Research Council and Asthma UK Centre in Allergic Mechanisms in Asthma; London UK
| | - N. Upton
- Randall Division of Cell and Molecular Biohphysics; King's College; London UK
- Medical Research Council and Asthma UK Centre in Allergic Mechanisms in Asthma; London UK
| | - P. S. Hobson
- Division of Asthma; Allergy and Lung Biology; King's College; London UK
- Medical Research Council and Asthma UK Centre in Allergic Mechanisms in Asthma; London UK
| | - Y.-C. Chan
- Randall Division of Cell and Molecular Biohphysics; King's College; London UK
- Medical Research Council and Asthma UK Centre in Allergic Mechanisms in Asthma; London UK
| | - J.-B. Chen
- Genomics Research Center; Academia Sinica; Taipei Taiwan
| | - T. W. Chang
- Genomics Research Center; Academia Sinica; Taipei Taiwan
| | - J. M. McDonnell
- Randall Division of Cell and Molecular Biohphysics; King's College; London UK
- Medical Research Council and Asthma UK Centre in Allergic Mechanisms in Asthma; London UK
| | - B. J. Sutton
- Randall Division of Cell and Molecular Biohphysics; King's College; London UK
- Medical Research Council and Asthma UK Centre in Allergic Mechanisms in Asthma; London UK
| | - D. J. Fear
- Division of Asthma; Allergy and Lung Biology; King's College; London UK
- Medical Research Council and Asthma UK Centre in Allergic Mechanisms in Asthma; London UK
| | - H. J. Gould
- Randall Division of Cell and Molecular Biohphysics; King's College; London UK
- Medical Research Council and Asthma UK Centre in Allergic Mechanisms in Asthma; London UK
| |
Collapse
|
81
|
Dilidaer, Zheng Y, Liu Z, Hu X, Zhang J, Hu L, Han M, Wang D, Li H. Increased BAFF expression in nasal polyps is associated with local IgE production, Th2 response and concomitant asthma. Eur Arch Otorhinolaryngol 2016; 274:1883-1890. [PMID: 28035475 DOI: 10.1007/s00405-016-4435-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 12/16/2016] [Indexed: 12/18/2022]
Abstract
B-cell activating factor of the TNF family is critical for the survival and maturation of B cells and play a role in the pathophysiology of chronic rhinosinusitis with nasal polyps (CRSwNP). In this study, nasal tissues were enrolled from 25 CRSwNP patients (asthmatic, 16; non-asthmatic, 9), 12 CRSsNP patients and ten control subjects, respectively. The immunoreactivity of BAFF, CD20 and CD138 were examined using immunohistochemistry staining. The mRNA expression of BAFF, CD20, εGLT, AID, GATA3 and CRTH2 were examined using real-time RT-PCR. The protein levels of BAFF, IL-5 and IgE were measured using ELISA assays and the Unicap system, respectively. We found the numbers of BAFF+ cells, CD20+ cells (B cells) and CD138+ cells (plasma cells) were significantly increased in polyp tissues compared with control groups. The concentrations of BAFF, IgE and IL-5 in tissue homogenates were also significantly increased in polyp tissues compared with control groups, and the BAFF protein level in the polyp homogenates was significantly associated with the IgE and IL-5 levels and with concomitant asthma in CRSwNP patients. Our findings indicate that BAFF expression is significantly increased in CRSwNP patients and may orchestrate inflammatory load in polyp tissues by regulating T and B cell-mediated response.
Collapse
Affiliation(s)
- Dilidaer
- Department of Otolaryngology, Head and Neck Surgery, Affiliated Eye, Ear, Nose and Throat Hospital, Fudan University, No. 83, Fenyang Road, Shanghai, 200031, China
| | - Yan Zheng
- Department of Otolaryngology, The Second Affiliated Hospital, Xinjiang Medical University, No. 38, East Nanhu Road, Xinjiang, 830063, China
| | - Zhuofu Liu
- Department of Otolaryngology, Head and Neck Surgery, Affiliated Eye, Ear, Nose and Throat Hospital, Fudan University, No. 83, Fenyang Road, Shanghai, 200031, China
| | - Xianting Hu
- Department of Otolaryngology, Head and Neck Surgery, Affiliated Eye, Ear, Nose and Throat Hospital, Fudan University, No. 83, Fenyang Road, Shanghai, 200031, China
| | - Jia Zhang
- Department of Otolaryngology, Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, No. 1665, Kongjiang Road, Shanghai, 200092, China
| | - Li Hu
- Department of Otolaryngology, Head and Neck Surgery, Affiliated Eye, Ear, Nose and Throat Hospital, Fudan University, No. 83, Fenyang Road, Shanghai, 200031, China
| | - Miaomiao Han
- Department of Otolaryngology, Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, No. 1665, Kongjiang Road, Shanghai, 200092, China
| | - Dehui Wang
- Department of Otolaryngology, Head and Neck Surgery, Affiliated Eye, Ear, Nose and Throat Hospital, Fudan University, No. 83, Fenyang Road, Shanghai, 200031, China.
| | - Huabin Li
- Department of Otolaryngology, Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, No. 1665, Kongjiang Road, Shanghai, 200092, China.
| |
Collapse
|
82
|
Redhu NS, Gounni AS. IgE regulates airway smooth muscle phenotype: Future perspectives in allergic asthma. World J Immunol 2016; 6:126-130. [DOI: 10.5411/wji.v6.i3.126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 08/15/2016] [Accepted: 10/27/2016] [Indexed: 02/05/2023] Open
Abstract
The purpose of this commentary is to highlight the emerging role of IgE on airway smooth muscle (ASM) cells function through activation of the high-affinity Fc receptor for IgE. We discuss the potential implications of IgE-mediated ASM sensitization in airway inflammation and remodeling, the hallmark features of allergic asthma.
Collapse
|
83
|
Pillai P, Chan YC, Wu SY, Ohm-Laursen L, Thomas C, Durham SR, Menzies-Gow A, Rajakulasingam RK, Ying S, Gould HJ, Corrigan CJ. Omalizumab reduces bronchial mucosal IgE and improves lung function in non-atopic asthma. Eur Respir J 2016; 48:1593-1601. [DOI: 10.1183/13993003.01501-2015] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 08/03/2016] [Indexed: 11/05/2022]
Abstract
Omalizumab therapy of non-atopic asthmatics reduces bronchial mucosal IgE and inflammation and preserves/improves lung function when disease is destabilised by staged withdrawal of therapy.18 symptomatic, non-atopic asthmatics were randomised (1:1) to receive omalizumab or identical placebo treatment in addition to existing therapy for 20 weeks. Bronchial biopsies were collected before and after 12–14 weeks of treatment, then the patients destabilised by substantial, supervised reduction of their regular therapy. Primary outcome measures were changes in bronchial mucosal IgE+ cells at 12–14 weeks, prior to regular therapy reduction, and changes in lung function (forced expiratory volume in 1 s) after destabilisation at 20 weeks. Quality of life was also monitored.Omalizumab but not placebo therapy significantly reduced median total bronchial mucosal IgE+ cells (p<0.01) but did not significantly alter median total mast cells, plasma cells, B lymphocytes, eosinophils and plasmablasts, although the latter were difficult to enumerate, being distributed as disperse clusters. By 20 weeks, lung function declined in the placebo-treated patients but improved in the omalizumab treated patients, with significant differences in absolute (p=0.04) and % predicted forced expiratory volume in 1 s (p=0.015).Omalizumab therapy of non-atopic asthmatics reduces bronchial mucosal IgE+ mast cells and improves lung function despite withdrawal of conventional therapy.
Collapse
|
84
|
Chen JB, James LK, Davies AM, Wu YCB, Rimmer J, Lund VJ, Chen JH, McDonnell JM, Chan YC, Hutchins GH, Chang TW, Sutton BJ, Kariyawasam HH, Gould HJ. Antibodies and superantibodies in patients with chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol 2016; 139:1195-1204.e11. [PMID: 27658758 PMCID: PMC5380656 DOI: 10.1016/j.jaci.2016.06.066] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 05/07/2016] [Accepted: 06/13/2016] [Indexed: 01/19/2023]
Abstract
Background Chronic rhinosinusitis with nasal polyps is associated with local immunoglobulin hyperproduction and the presence of IgE antibodies against Staphylococcus aureus enterotoxins (SAEs). Aspirin-exacerbated respiratory disease is a severe form of chronic rhinosinusitis with nasal polyps in which nearly all patients express anti-SAEs. Objectives We aimed to understand antibodies reactive to SAEs and determine whether they recognize SAEs through their complementarity-determining regions (CDRs) or framework regions. Methods Labeled staphylococcal enterotoxin (SE) A, SED, and SEE were used to isolate single SAE-specific B cells from the nasal polyps of 3 patients with aspirin-exacerbated respiratory disease by using fluorescence-activated cell sorting. Recombinant antibodies with “matched” heavy and light chains were cloned as IgG1, and those of high affinity for specific SAEs, assayed by means of ELISA and surface plasmon resonance, were recloned as IgE and antigen-binding fragments. IgE activities were tested in basophil degranulation assays. Results Thirty-seven SAE-specific, IgG- or IgA-expressing B cells were isolated and yielded 6 anti-SAE clones, 2 each for SEA, SED, and SEE. Competition binding assays revealed that the anti-SEE antibodies recognize nonoverlapping epitopes in SEE. Unexpectedly, each anti-SEE mediated SEE-induced basophil degranulation, and IgG1 or antigen-binding fragments of each anti-SEE enhanced degranulation by the other anti-SEE. Conclusions SEEs can activate basophils by simultaneously binding as antigens in the conventional manner to CDRs and as superantigens to framework regions of anti-SEE IgE in anti-SEE IgE-FcεRI complexes. Anti-SEE IgG1s can enhance the activity of anti-SEE IgEs as conventional antibodies through CDRs or simultaneously as conventional antibodies and as “superantibodies” through CDRs and framework regions to SEEs in SEE–anti-SEE IgE-FcεRI complexes.
Collapse
Affiliation(s)
- Jiun-Bo Chen
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom; Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Louisa K James
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom; MRC & Asthma UK Centre for Allergic Mechanisms of Asthma, King's College London, Guy's Campus, London, United Kingdom
| | - Anna M Davies
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom; MRC & Asthma UK Centre for Allergic Mechanisms of Asthma, King's College London, Guy's Campus, London, United Kingdom
| | - Yu-Chang Bryan Wu
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom; MRC & Asthma UK Centre for Allergic Mechanisms of Asthma, King's College London, Guy's Campus, London, United Kingdom
| | - Joanne Rimmer
- Allergy and Rhinology, Royal National Throat Nose Ear Hospital, London, United Kingdom
| | - Valerie J Lund
- Allergy and Rhinology, Royal National Throat Nose Ear Hospital, London, United Kingdom
| | - Jou-Han Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - James M McDonnell
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom; MRC & Asthma UK Centre for Allergic Mechanisms of Asthma, King's College London, Guy's Campus, London, United Kingdom
| | - Yih-Chih Chan
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom; MRC & Asthma UK Centre for Allergic Mechanisms of Asthma, King's College London, Guy's Campus, London, United Kingdom
| | - George H Hutchins
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom
| | - Tse Wen Chang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Brian J Sutton
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom; MRC & Asthma UK Centre for Allergic Mechanisms of Asthma, King's College London, Guy's Campus, London, United Kingdom
| | - Harsha H Kariyawasam
- Allergy and Rhinology, Royal National Throat Nose Ear Hospital, London, United Kingdom
| | - Hannah J Gould
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom; MRC & Asthma UK Centre for Allergic Mechanisms of Asthma, King's College London, Guy's Campus, London, United Kingdom.
| |
Collapse
|
85
|
Samitas K, Delimpoura V, Zervas E, Gaga M. Anti-IgE treatment, airway inflammation and remodelling in severe allergic asthma: current knowledge and future perspectives. Eur Respir Rev 2016; 24:594-601. [PMID: 26621973 DOI: 10.1183/16000617.00001715] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Asthma is a disorder of the airways involving various inflammatory cells and mediators and characterised by bronchial hyperresponsiveness, chronic inflammation and structural alterations in the airways, also known as remodelling. IgE is an important mediator of allergic reactions and has a central role in allergic asthma pathophysiology, as it is implicated in both the early and late phase allergic response. Moreover, clinical and mechanistic evidence has lately emerged, implicating IgE in the development of airway remodelling. The use of monoclonal antibodies targeting IgE, such as omalizumab, has proven very effective in improving respiratory symptoms and quality of life, while reducing asthma exacerbations, emergency room visits and the use of systemic corticosteroids in allergic severe asthma. These effects are believed to be mainly mediated by omalizumab's inhibitory effect on the initiation and further propagation of the allergic inflammation cascade. However, there is evidence to suggest that anti-IgE treatment remains effective long after it has been discontinued. In part, these findings could be attributed to the possible ameliorating effects of anti-IgE treatment on airway remodelling. In this review, we discuss recent findings supporting the notion that anti-IgE treatment modulates the complex immune responses that manifest clinically as asthma and ameliorates airway remodelling changes often observed in allergic severe asthma phenotypes.
Collapse
Affiliation(s)
- Konstantinos Samitas
- 7th Respiratory Dept and Asthma Centre, Athens Chest Hospital "Sotiria", Athens, Greece Cellular Immunology Laboratory, Division of Cell Biology, Centre for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Vasiliki Delimpoura
- 7th Respiratory Dept and Asthma Centre, Athens Chest Hospital "Sotiria", Athens, Greece
| | - Eleftherios Zervas
- 7th Respiratory Dept and Asthma Centre, Athens Chest Hospital "Sotiria", Athens, Greece
| | - Mina Gaga
- 7th Respiratory Dept and Asthma Centre, Athens Chest Hospital "Sotiria", Athens, Greece
| |
Collapse
|
86
|
Altıntoprak N, Kar M, Bayar Muluk N, Oktemer T, Ipci K, Birdane L, Aricigil M, Senturk M, Bafaqeeh SA, Cingi C. Update on local allergic rhinitis. Int J Pediatr Otorhinolaryngol 2016; 87:105-9. [PMID: 27368453 DOI: 10.1016/j.ijporl.2016.06.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
We here provide an update on the literature regarding local allergic rhinitis (LAR). In reviewing LAR, we have included an updated definition, classifications, mechanisms, comorbidities, and recommendations for diagnosis and treatment for LAR, as well as the defined research areas for future evidence-based studies. LAR is a localised nasal allergic response in the absence of systemic atopy characterised by local production of specific IgE (sIgE) antibodies, a TH2 pattern of mucosal cell infiltration during natural exposure to aeroallergens, and a positive nasal allergen provocation test response, with the release of inflammatory mediators. The localised allergic response of LAR is an important topic for the study of allergies. This review provides an update on the current knowledge of LAR.
Collapse
Affiliation(s)
| | - Murat Kar
- Kumluca State Hospital, ENT Clinics, Antalya, Turkey.
| | - Nuray Bayar Muluk
- Kirikkale University, Medical Faculty, Department of Otorhinolaryngology, Kirikkale, Turkey.
| | - Tugba Oktemer
- Private Polatlı Can Hospital, ENT Clinics, Polatli/Ankara, Turkey.
| | - Kagan Ipci
- Ankara Koru Hospital, ENT Clinics, Ankara, Turkey.
| | - Leman Birdane
- Yunus Emre State Hospital, ENT Clinics, Eskisehir, Turkey.
| | - Mitat Aricigil
- Necmettin Erbakan University, Meram Medical Faculty, ENT Department, Konya, Turkey.
| | - Mehmet Senturk
- Konya Training and Research Hospital, ENT Clinics, Konya, Turkey.
| | | | - Cemal Cingi
- Eskisehir Osmangazi University, Medical Faculty, Department of Otorhinolaryngology, Eskisehir, Turkey.
| |
Collapse
|
87
|
Virk H, Arthur G, Bradding P. Mast cells and their activation in lung disease. Transl Res 2016; 174:60-76. [PMID: 26845625 DOI: 10.1016/j.trsl.2016.01.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 01/07/2016] [Accepted: 01/12/2016] [Indexed: 12/14/2022]
Abstract
Mast cells and their activation contribute to lung health via innate and adaptive immune responses to respiratory pathogens. They are also involved in the normal response to tissue injury. However, mast cells are involved in disease processes characterized by inflammation and remodeling of tissue structure. In these diseases mast cells are often inappropriately and chronically activated. There is evidence for activation of mast cells contributing to the pathophysiology of asthma, pulmonary fibrosis, and pulmonary hypertension. They may also play a role in chronic obstructive pulmonary disease, acute respiratory distress syndrome, and lung cancer. The diverse mechanisms through which mast cells sense and interact with the external and internal microenvironment account for their role in these diseases. Newly discovered mechanisms of redistribution and interaction between mast cells, airway structural cells, and other inflammatory cells may offer novel therapeutic targets in these disease processes.
Collapse
Affiliation(s)
- Harvinder Virk
- Department of Infection, Immunity and Inflammation, Institute of Lung Health, University of Leicester, Leicester, United Kingdom
| | - Greer Arthur
- Department of Infection, Immunity and Inflammation, Institute of Lung Health, University of Leicester, Leicester, United Kingdom
| | - Peter Bradding
- Department of Infection, Immunity and Inflammation, Institute of Lung Health, University of Leicester, Leicester, United Kingdom.
| |
Collapse
|
88
|
Varricchi G, Harker J, Borriello F, Marone G, Durham SR, Shamji MH. T follicular helper (Tfh ) cells in normal immune responses and in allergic disorders. Allergy 2016; 71:1086-94. [PMID: 26970097 DOI: 10.1111/all.12878] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2016] [Indexed: 12/21/2022]
Abstract
Follicular helper T cells (Tfh ) are located within germinal centers of lymph nodes. Cognate interaction between Tfh , B cells, and IL-21 drives B cells to proliferate and differentiate into plasma cells thereby leading to antibody production. Tfh cells and IL-21 are involved in infectious and autoimmune diseases, immunodeficiencies, vaccination, and cancer. Human peripheral blood CXCR5(+) CD4(+) T cells comprise different subsets of Tfh -like cells. Despite the importance of the IgE response in the pathogenesis of allergic disorders, little is known about the role of follicular and blood Tfh cells and IL-21 in human and experimental allergic disease. Here, we review recent advances regarding the phenotypic and functional characteristics of both follicular and blood Tfh cells and of the IL-21/IL-21R system in the context of allergic disorders.
Collapse
Affiliation(s)
- G. Varricchi
- Immunomodulation and Tolerance Group; Imperial College London; London UK
- Allergy and Clinical Immunology; Imperial College London; London UK
| | - J. Harker
- Inflammation, Repair & Development Section; Faculty of Medicine; National Heart and Lung Institute; Imperial College London; London UK
- MRC & Asthma UK Centre in Allergic Mechanisms of Asthma; London UK
| | - F. Borriello
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI); School of Medicine; University of Naples Federico II; Naples Italy
| | - G. Marone
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI); School of Medicine; University of Naples Federico II; Naples Italy
- CNR Institute of Experimental Endocrinology and Oncology ‘G. Salvatore’; Naples Italy
| | - S. R. Durham
- Immunomodulation and Tolerance Group; Imperial College London; London UK
- Allergy and Clinical Immunology; Imperial College London; London UK
| | - M. H. Shamji
- Immunomodulation and Tolerance Group; Imperial College London; London UK
- Allergy and Clinical Immunology; Imperial College London; London UK
| |
Collapse
|
89
|
Lee KS, Yu J, Shim D, Choi H, Jang MY, Kim KR, Choi JH, Cho SH. Local Immune Responses in Children and Adults with Allergic and Nonallergic Rhinitis. PLoS One 2016; 11:e0156979. [PMID: 27281182 PMCID: PMC4900615 DOI: 10.1371/journal.pone.0156979] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 05/23/2016] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Allergic rhinitis (AR) is the most common allergic disease but little is known about the difference of local immune responses in children and adults with AR. OBJECTIVE To compare local immune responses between children and adults with AR and nonallergic rhinitis (NAR), and to investigate whether the association of local and systemic immune responses is different between the two age groups. METHODS Fifty-one patients with chronic rhinitis were enrolled and grouped into children (N = 27, mean age 7.2 years) and adults (N = 24, mean age 29.9 years). Diagnosis of AR was based on symptoms, skin prick tests and serum specific IgEs. Nasal lavage (NAL) fluids were collected from all subjects and used to measure the levels of total IgE, specific IgEs to house dust mites (Dp and Df), and cytokines (TNF-α, IL-4, IL-10, IL-17A and IFN-γ). Flow cytometry was used to measure inflammatory cell types in NAL fluids. RESULTS AR had significantly increased local levels of total IgE and specific IgEs to Dp and Df compared with NAR in both age groups (P < 0.05). Nasal eosinophils % (P = 0.01) was significantly increased only in children with AR. Local-systemic correlations of total IgE (r = 0.662, P = 0.000) and eosinophil % (r = 0.461, P = 0.015) between the peripheral blood and NAL fluids were found only in children. Moreover, children had correlations between total IgE and eosinophil % in the peripheral blood (r = 0.629, P = 0.001) and in NAL fluids (r = 0.373, P = 0.061). CONCLUSION Elevated local IgE is a common feature of AR in children and adults. Local measures in NAR showed naïve state of immune response which disagree with the hypothesis of local allergic rhinitis. Children showed intense local inflammation and close local-systemic interactions compared to adults supporting pediatric AR as a distinct feature.
Collapse
Affiliation(s)
- Kyung Suk Lee
- Department of Pediatrics, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam-si, Gyeonggi-do, Korea
| | - Jinho Yu
- Department of Pediatrics, Childhood Asthma Atopy Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Dahee Shim
- Department of Life Science, College of Natural Sciences, Research Institute for Natural Sciences, Seoul, Korea
| | - Hana Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Hanyang University, Seoul, Korea
| | - Man-Young Jang
- Department of Life Science, College of Natural Sciences, Research Institute for Natural Sciences, Seoul, Korea
| | - Kyung Rae Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Hanyang University, Seoul, Korea
| | - Jae-Hoon Choi
- Department of Life Science, College of Natural Sciences, Research Institute for Natural Sciences, Seoul, Korea
| | - Seok Hyun Cho
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Hanyang University, Seoul, Korea
| |
Collapse
|
90
|
Zissler UM, Esser-von Bieren J, Jakwerth CA, Chaker AM, Schmidt-Weber CB. Current and future biomarkers in allergic asthma. Allergy 2016; 71:475-94. [PMID: 26706728 DOI: 10.1111/all.12828] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2015] [Indexed: 12/12/2022]
Abstract
Diagnosis early in life, sensitization, asthma endotypes, monitoring of disease and treatment progression are key motivations for the exploration of biomarkers for allergic rhinitis and allergic asthma. The number of genes related to allergic rhinitis and allergic asthma increases steadily; however, prognostic genes have not yet entered clinical application. We hypothesize that the combination of multiple genes may generate biomarkers with prognostic potential. The current review attempts to group more than 161 different potential biomarkers involved in respiratory inflammation to pave the way for future classifiers. The potential biomarkers are categorized into either epithelial or infiltrate-derived or mixed origin, epithelial biomarkers. Furthermore, surface markers were grouped into cell-type-specific categories. The current literature provides multiple biomarkers for potential asthma endotypes that are related to T-cell phenotypes such as Th1, Th2, Th9, Th17, Th22 and Tregs and their lead cytokines. Eosinophilic and neutrophilic asthma endotypes are also classified by epithelium-derived CCL-26 and osteopontin, respectively. There are currently about 20 epithelium-derived biomarkers exclusively derived from epithelium, which are likely to innovate biomarker panels as they are easy to sample. This article systematically reviews and categorizes genes and collects current evidence that may promote these biomarkers to become part of allergic rhinitis or allergic asthma classifiers with high prognostic value.
Collapse
Affiliation(s)
- U. M. Zissler
- Center of Allergy & Environment (ZAUM); Technical University of Munich and Helmholtz Center Munich; German Research Center for Environmental Health member of the German Center for Lung Research (DZL); Munich Germany
| | - J. Esser-von Bieren
- Center of Allergy & Environment (ZAUM); Technical University of Munich and Helmholtz Center Munich; German Research Center for Environmental Health member of the German Center for Lung Research (DZL); Munich Germany
| | - C. A. Jakwerth
- Center of Allergy & Environment (ZAUM); Technical University of Munich and Helmholtz Center Munich; German Research Center for Environmental Health member of the German Center for Lung Research (DZL); Munich Germany
| | - A. M. Chaker
- Center of Allergy & Environment (ZAUM); Technical University of Munich and Helmholtz Center Munich; German Research Center for Environmental Health member of the German Center for Lung Research (DZL); Munich Germany
- Department of Otorhinolaryngology and Head and Neck Surgery; Medical School; Technical University of Munich; Munich Germany
| | - C. B. Schmidt-Weber
- Center of Allergy & Environment (ZAUM); Technical University of Munich and Helmholtz Center Munich; German Research Center for Environmental Health member of the German Center for Lung Research (DZL); Munich Germany
| |
Collapse
|
91
|
Campo P, Salas M, Blanca-López N, Rondón C. Local Allergic Rhinitis. Immunol Allergy Clin North Am 2016; 36:321-32. [PMID: 27083105 DOI: 10.1016/j.iac.2015.12.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This review focuses on local allergic rhinitis, a new phenotype of allergic rhinitis, commonly misdiagnosed as nonallergic rhinitis. It has gained attention over last decade and can affect patients from all countries, ethnic groups and ages, impairing their quality of life, and is frequently associated with conjunctivitis and asthma. Diagnosis is based on clinical history, the demonstration of a positive response to nasal allergen provocation test and/or the detection of nasal sIgE. A positive basophil activation test may support the diagnosis. Recent studies have demonstrated that allergen immunotherapy is an effective immune-modifying treatment, highlighting the importance of early diagnosis.
Collapse
Affiliation(s)
- Paloma Campo
- Regional University Hospital of Malaga, Plaza Hospital Civil s/n pabellon 6, Málaga 29009, Spain
| | - María Salas
- Regional University Hospital of Malaga, Plaza Hospital Civil s/n pabellon 6, Málaga 29009, Spain
| | - Natalia Blanca-López
- Allergy Service, Hospital Infanta Leonor, Gran Vía del Este, 80, Madrid 28031, Spain
| | - Carmen Rondón
- Regional University Hospital of Malaga, Plaza Hospital Civil s/n pabellon 6, Málaga 29009, Spain.
| |
Collapse
|
92
|
Davis BP, Rothenberg ME. Mechanisms of Disease of Eosinophilic Esophagitis. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2016; 11:365-93. [PMID: 26925500 DOI: 10.1146/annurev-pathol-012615-044241] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Eosinophilic esophagitis (EoE) is a recently recognized inflammatory disease of the esophagus with clinical symptoms derived from esophageal dysfunction. The etiology of EoE is now being elucidated, and food hypersensitivity is emerging as the central cornerstone of disease pathogenesis. Herein, we present a thorough picture of the current clinical, pathologic, and molecular understanding of the disease with a focus on disease mechanisms.
Collapse
Affiliation(s)
- Benjamin P Davis
- Division of Immunology, Department of Internal Medicine, University of Iowa Hospitals and Clinics, Iowa City, Iowa 52242;
| | - Marc E Rothenberg
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229;
| |
Collapse
|
93
|
Reisacher WR. Total and allergen-specific immunoglobulin E in the serum and nasal mucosa of a nonallergic population. Int Forum Allergy Rhinol 2016; 6:618-23. [PMID: 26833576 DOI: 10.1002/alr.21709] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 11/22/2015] [Accepted: 12/03/2015] [Indexed: 12/18/2022]
Abstract
BACKGROUND There has been a growing interest in measuring allergen-specific immunoglobulin E (sIgE) directly from the nasal mucosal epithelium of individuals with sinonasal disease. However, there is currently no normative data with which to estimate sensitivity, specificity, and the appropriate positive cutoff level for new testing methods. METHODS Twenty individuals with no history of sinonasal disease or food allergies underwent serum IgE testing and nasal mucosal brush biopsy (MBB) testing for total and sIgE to 7 common airborne allergens and 1 food allergen. The correlation between sIgE in serum and nasal samples was determined at both the 0.10-kU/L and 0.35-kU/L positive cutoff levels. RESULTS sIgE at the 0.35-kU/L cutoff level was detected for at least 1 allergen in 7 of 20 (35%) participants in both the serum and nose. At the 0.10-kU/L cutoff level, 8 of 20 (40%) and 19 of 20 (95%) participants had sIgE to at least 1 allergen in the serum and nose, respectively. At the 0.35-kU/L cutoff level, total serum IgE levels were significantly higher when at least 1 allergen was detected in the nose (p = 0.01). There was a strong association between sIgE in the serum and nasal mucosa (p < 0.0001) at both cutoff levels. CONCLUSION The significant association between serum and nasal samples for both total and sIgE suggests that nasal IgE and serum IgE are not independent of one another. Understanding levels of IgE in the nonallergic population will help answer the questions surrounding sensitization as new diagnostic tests for locally-present IgE become available.
Collapse
Affiliation(s)
- William R Reisacher
- Department of Otolaryngology - Head and Neck Surgery, Weill Cornell Medical College, New York, NY
| |
Collapse
|
94
|
Campo P, Rondón C, Gould HJ, Barrionuevo E, Gevaert P, Blanca M. Local IgE in non-allergic rhinitis. Clin Exp Allergy 2016; 45:872-881. [PMID: 25495772 DOI: 10.1111/cea.12476] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Local allergic rhinitis (LAR) is characterized by the presence of a nasal Th2 inflammatory response with local production of specific IgE antibodies and a positive response to a nasal allergen provocation test (NAPT) without evidence of systemic atopy. The prevalence has been shown to be up to 25% in subjects affected with rhinitis with persistence, comorbidity and evolution similar to allergic rhinitis. LAR is a consistent entity that does not evolve to allergic rhinitis with systemic atopy over time although patients have significant impairment in quality of life and increase in the severity of nasal symptoms over time. Lower airways can be also involved. The diagnosis of LAR is based mostly on demonstration of positive response to NAPT and/or local synthesis of specific IgE. Allergens involved include seasonal or perennial such as house dusts mites, pollens, animal epithelia, moulds (alternaria) and others. Basophils from peripheral blood may be activated by the involved allergens suggesting the spill over of locally synthesized specific IgE to the circulation. LAR patients will benefit from the same treatment as allergic patients using antihistamines, inhaled corticosteroids and IgE antagonists. Studies on immunotherapy are ongoing and will determine its efficacy in LAR in terms of symptoms improvement and evolution of the natural course of the disease.
Collapse
Affiliation(s)
- P Campo
- Allergy Unit, Regional University Hospital of Malaga, IBIMA, UMA, Malaga, Spain
| | - C Rondón
- Allergy Unit, Regional University Hospital of Malaga, IBIMA, UMA, Malaga, Spain
| | - H J Gould
- Randall Division of Cell and Molecular Biophysics, Division of Asthma, Allergy and Lung Biology, King's College London, MRC-Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | - E Barrionuevo
- Allergy Unit, Regional University Hospital of Malaga, IBIMA, UMA, Malaga, Spain
| | - P Gevaert
- Upper Airways Research Laboratory, Department of Otorhinolaryngology, Ghent University Hospital, Ghent, Belgium
| | - M Blanca
- Allergy Unit, Regional University Hospital of Malaga, IBIMA, UMA, Malaga, Spain
| |
Collapse
|
95
|
Integriertes Schleimhautimmunsystem der oberen Atemwege: intraepitheliale Lymphozyten, NALT und der Waldeyer-Rachenring. ALLERGOLOGIE 2016. [DOI: 10.1007/978-3-642-37203-2_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
96
|
Allergic Inflammation in Aspergillus fumigatus-Induced Fungal Asthma. Curr Allergy Asthma Rep 2015; 15:59. [PMID: 26288940 DOI: 10.1007/s11882-015-0561-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Although fungi are pervasive in many environments, few cause disease in humans. Of these, Aspergillus fumigatus is particularly well suited to be a pathogen of the human lung. Its physical and biological characteristics combine to provide an organism that can cause tremendous morbidity and high mortality if left unchecked. Luckily, that is rarely the case. However, repeated exposure to inhaled A. fumigatus spores often results in an immune response that carries significant immunopathology, exacerbating asthma and changing the structure of the lung with chronic impacts to pulmonary function. This review focuses on the current understanding of the mechanisms that are associated with fungal exposure, sensitization, and infection in asthmatics, as well as the function of various inflammatory cells associated with severe asthma with fungal sensitization.
Collapse
|
97
|
Samitas K, Delimpoura V, Zervas E, Gaga M. Anti-IgE treatment, airway inflammation and remodelling in severe allergic asthma: current knowledge and future perspectives. Eur Respir Rev 2015. [DOI: 10.10.1183/16000617.00001715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Asthma is a disorder of the airways involving various inflammatory cells and mediators and characterised by bronchial hyperresponsiveness, chronic inflammation and structural alterations in the airways, also known as remodelling. IgE is an important mediator of allergic reactions and has a central role in allergic asthma pathophysiology, as it is implicated in both the early and late phase allergic response. Moreover, clinical and mechanistic evidence has lately emerged, implicating IgE in the development of airway remodelling. The use of monoclonal antibodies targeting IgE, such as omalizumab, has proven very effective in improving respiratory symptoms and quality of life, while reducing asthma exacerbations, emergency room visits and the use of systemic corticosteroids in allergic severe asthma. These effects are believed to be mainly mediated by omalizumab's inhibitory effect on the initiation and further propagation of the allergic inflammation cascade. However, there is evidence to suggest that anti-IgE treatment remains effective long after it has been discontinued. In part, these findings could be attributed to the possible ameliorating effects of anti-IgE treatment on airway remodelling. In this review, we discuss recent findings supporting the notion that anti-IgE treatment modulates the complex immune responses that manifest clinically as asthma and ameliorates airway remodelling changes often observed in allergic severe asthma phenotypes.
Collapse
|
98
|
Levin M, King JJ, Glanville J, Jackson KJL, Looney TJ, Hoh RA, Mari A, Andersson M, Greiff L, Fire AZ, Boyd SD, Ohlin M. Persistence and evolution of allergen-specific IgE repertoires during subcutaneous specific immunotherapy. J Allergy Clin Immunol 2015; 137:1535-44. [PMID: 26559321 DOI: 10.1016/j.jaci.2015.09.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 07/24/2015] [Accepted: 09/23/2015] [Indexed: 10/22/2022]
Abstract
BACKGROUND Specific immunotherapy (SIT) is the only treatment with proved long-term curative potential in patients with allergic disease. Allergen-specific IgE is the causative agent of allergic disease, and antibodies contribute to SIT, but the effects of SIT on aeroallergen-specific B-cell repertoires are not well understood. OBJECTIVE We sought to characterize the IgE sequences expressed by allergen-specific B cells and track the fate of these B-cell clones during SIT. METHODS We used high-throughput antibody gene sequencing and identification of allergen-specific IgE with combinatorial antibody fragment library technology to analyze immunoglobulin repertoires of blood and the nasal mucosa from aeroallergen-sensitized subjects before and during the first year of subcutaneous SIT. RESULTS Of 52 distinct allergen-specific IgE heavy chains from 8 allergic donors, 37 were also detected by using high-throughput antibody gene sequencing of blood samples, nasal mucosal samples, or both. The allergen-specific clones had increased persistence, higher likelihood of belonging to clones expressing other switched isotypes, and possibly larger clone size than the rest of the IgE repertoire. Clone members in nasal tissue showed close mutational relationships. CONCLUSION In the future, combining functional binding studies, deep antibody repertoire sequencing, and information on clinical outcomes in larger studies might aid assessment of SIT mechanisms and efficacy.
Collapse
Affiliation(s)
- Mattias Levin
- Department of Immunotechnology, Lund University, Lund, Sweden
| | - Jasmine J King
- Department of Biology, Stanford University, Stanford, Calif; Department of Pathology, Stanford University, Stanford, Calif
| | - Jacob Glanville
- Department of Immunology, Stanford University, Stanford, Calif
| | | | | | - Ramona A Hoh
- Department of Pathology, Stanford University, Stanford, Calif
| | - Adriano Mari
- Center for Molecular Allergology, IDI-IRCCS, Rome, Italy; Associated Centers for Molecular Allergology, Rome, Italy
| | - Morgan Andersson
- Department of Otorhinolaryngology, Head and Neck Surgery, Skåne University Hospital, Lund, Sweden
| | - Lennart Greiff
- Department of Otorhinolaryngology, Head and Neck Surgery, Skåne University Hospital, Lund, Sweden
| | - Andrew Z Fire
- Department of Pathology, Stanford University, Stanford, Calif; Department of Genetics, Stanford University, Stanford, Calif
| | - Scott D Boyd
- Department of Pathology, Stanford University, Stanford, Calif
| | - Mats Ohlin
- Department of Immunotechnology, Lund University, Lund, Sweden.
| |
Collapse
|
99
|
Oeder S, Alessandrini F, Wirz OF, Braun A, Wimmer M, Frank U, Hauser M, Durner J, Ferreira F, Ernst D, Mempel M, Gilles S, Buters JTM, Behrendt H, Traidl-Hoffmann C, Schmidt-Weber C, Akdis M, Gutermuth J. Pollen-derived nonallergenic substances enhance Th2-induced IgE production in B cells. Allergy 2015. [PMID: 26214762 DOI: 10.1111/all.12707] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND B cells play a central role in IgE-mediated allergies. In damaged airway epithelium, they are exposed directly to aeroallergens. We aimed to assess whether direct exposure of B cells to pollen constituents affects allergic sensitization. METHODS B cells from murine splenocytes and from blood samples of healthy donors were incubated for 8 days under Th2-like conditions with aqueous ragweed pollen extracts (Amb-APE) or its constituents. Secreted total IgM, IgG, and IgE was quantified by ELISA. Additionally, birch, grass, or pine-pollen extracts were tested. The number of viable cells was evaluated by ATP measurements. B-cell proliferation was measured by CFSE staining. IgE class switch was analyzed by quantitation of class switch transcripts. In an OVA/Alum i.p.-sensitization mouse model, Amb-APE was intranasally instilled for 11 consecutive days. RESULTS Upon Th2 priming of murine B cells, ragweed pollen extract caused a dose-dependent increase in IgE production, while IgG and IgM were not affected. The low-molecular-weight fraction and phytoprostane E1 (PPE1) increased IgE production, while Amb a 1 did not. PPE1 enhanced IgE also in human memory B cells. Under Th1 conditions, Amb-APE did not influence immunoglobulin secretion. The IgE elevation was not ragweed specific. It correlated with proliferation of viable B cells, but not with IgE class switch. In vivo, Amb-APE increased total IgE and showed adjuvant activity in allergic airway inflammation. CONCLUSIONS Aqueous pollen extracts, the protein-free fraction of Amb-APE, and the pollen-contained substance PPE1 specifically enhance IgE production in Th2-primed B cells. Thus, pollen-derived nonallergenic substances might be responsible for B-cell-dependent aggravation of IgE-mediated allergies.
Collapse
Affiliation(s)
- S. Oeder
- Center of Allergy and Environment (ZAUM); Technische Universität München and Helmholtz Zentrum München; Member of the German Center for Lung Research (DZL); Munich Germany
- Christine Kühne - Center for Allergy Research and Education; CK-CARE; Davos Switzerland
| | - F. Alessandrini
- Center of Allergy and Environment (ZAUM); Technische Universität München and Helmholtz Zentrum München; Member of the German Center for Lung Research (DZL); Munich Germany
- Christine Kühne - Center for Allergy Research and Education; CK-CARE; Davos Switzerland
| | - O. F. Wirz
- Swiss Institute of Allergy and Asthma Research (SIAF); Davos Switzerland
| | - A. Braun
- Center of Allergy and Environment (ZAUM); Technische Universität München and Helmholtz Zentrum München; Member of the German Center for Lung Research (DZL); Munich Germany
- Department of Dermatology, Venereology and Allergology; University Medical Center; Georg August University; Göttingen Germany
| | - M. Wimmer
- Center of Allergy and Environment (ZAUM); Technische Universität München and Helmholtz Zentrum München; Member of the German Center for Lung Research (DZL); Munich Germany
- Christine Kühne - Center for Allergy Research and Education; CK-CARE; Davos Switzerland
- Institute of Environmental Medicine; UNIKA-T; Technische Universität München; Munich Germany
| | - U. Frank
- Christine Kühne - Center for Allergy Research and Education; CK-CARE; Davos Switzerland
- Institute of Biochemical Plant Pathology; Helmholtz Center Munich; Neuherberg Germany
| | - M. Hauser
- Christine Kühne - Center for Allergy Research and Education; CK-CARE; Davos Switzerland
- Department of Molecular Biology; University of Salzburg; Salzburg Austria
| | - J. Durner
- Institute of Biochemical Plant Pathology; Helmholtz Center Munich; Neuherberg Germany
| | - F. Ferreira
- Department of Molecular Biology; University of Salzburg; Salzburg Austria
| | - D. Ernst
- Institute of Biochemical Plant Pathology; Helmholtz Center Munich; Neuherberg Germany
| | - M. Mempel
- Center of Allergy and Environment (ZAUM); Technische Universität München and Helmholtz Zentrum München; Member of the German Center for Lung Research (DZL); Munich Germany
- Department of Dermatology, Venereology and Allergology; University Medical Center; Georg August University; Göttingen Germany
| | - S. Gilles
- Center of Allergy and Environment (ZAUM); Technische Universität München and Helmholtz Zentrum München; Member of the German Center for Lung Research (DZL); Munich Germany
- Christine Kühne - Center for Allergy Research and Education; CK-CARE; Davos Switzerland
- Institute of Environmental Medicine; UNIKA-T; Technische Universität München; Munich Germany
| | - J. T. M. Buters
- Center of Allergy and Environment (ZAUM); Technische Universität München and Helmholtz Zentrum München; Member of the German Center for Lung Research (DZL); Munich Germany
- Christine Kühne - Center for Allergy Research and Education; CK-CARE; Davos Switzerland
| | - H. Behrendt
- Center of Allergy and Environment (ZAUM); Technische Universität München and Helmholtz Zentrum München; Member of the German Center for Lung Research (DZL); Munich Germany
- Christine Kühne - Center for Allergy Research and Education; CK-CARE; Davos Switzerland
| | - C. Traidl-Hoffmann
- Center of Allergy and Environment (ZAUM); Technische Universität München and Helmholtz Zentrum München; Member of the German Center for Lung Research (DZL); Munich Germany
- Christine Kühne - Center for Allergy Research and Education; CK-CARE; Davos Switzerland
- Institute of Environmental Medicine; UNIKA-T; Technische Universität München; Munich Germany
| | - C. Schmidt-Weber
- Center of Allergy and Environment (ZAUM); Technische Universität München and Helmholtz Zentrum München; Member of the German Center for Lung Research (DZL); Munich Germany
| | - M. Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF); Davos Switzerland
| | - J. Gutermuth
- Center of Allergy and Environment (ZAUM); Technische Universität München and Helmholtz Zentrum München; Member of the German Center for Lung Research (DZL); Munich Germany
- Department of Dermatology; Vrije Universiteit Brussel; Brussels Belgium
| |
Collapse
|
100
|
Xiao L, Wei Y, Zhang YN, Luo X, Yang BY, Yu SF, Wu XM, Wu CY, Li HB. Increased IL-21 expression in chronic rhinosinusitis with nasalpolyps. Clin Exp Allergy 2015; 45:404-13. [PMID: 25495679 DOI: 10.1111/cea.12475] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 11/02/2014] [Accepted: 11/24/2014] [Indexed: 12/22/2022]
Abstract
BACKGROUND IL-21 is a key cytokine for regulating B cell immunity, which is involved in several inflammatory conditions. This study sought to define a role for IL-21 in activated B lymphocytes and enhanced tissue eosinophilia in NP tissues during the pathogenesis of chronic rhinosinusitis with nasal polyps (CRSwNP). METHODS NP and uncinate process tissues were collected from 64 CRSwNP patients, 25 CRSsNP patients, and 29 control subjects. IL-21 expression was examined using IHC staining, qRT-PCR, flow cytometry, and ELISA, and its clinical implication was evaluated. Moreover, the effects of IL-21 on B cell differentiation and Ig production in cultured NP cells were examined in vitro. RESULTS The mRNA and protein levels of IL-21 were significantly increased in polyp tissues compared with control tissues (P < 0.05). Polyp IL-21 level was significantly associated with polyp size, tissue eosinophilia and asthma comorbidity, and recurrence after surgery (P < 0.05). Both Th1 and Th17 cells were the main cellular sources of IL-21 in polyp tissues. The percentage of IL-21(+) CD4(+) cells was significantly higher in polyp tissues compared with control tissues and matched PBMCs (P < 0.01). Accordingly, the percentage of CD19(+) CD20(+/-) CD38(high) cells was significantly higher in polyp tissues compared with control tissues (P < 0.01). Moreover, recombinant IL-21 significantly increased the percentage of CD19(+) CD20(+/-) CD38(high) cells (plasmablasts) and IgG and IgA production in cultured NP cells in vitro (P < 0.05). CONCLUSION AND CLINICAL RELEVANCE Increased IL-21 level in polyp tissues was associated with disease severity, local B cell activation, and immunoglobulin production, suggesting that IL-21 might play an important role in promoting persistent mucosal inflammation in CRSwNP patients.
Collapse
Affiliation(s)
- L Xiao
- Institute of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|