51
|
Bird JA, Burks A. Food Allergy. Clin Immunol 2023. [DOI: 10.1016/b978-0-7020-8165-1.00049-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
52
|
Management of Adult Patients with Gastrointestinal Symptoms from Food Hypersensitivity-Narrative Review. J Clin Med 2022; 11:jcm11247326. [PMID: 36555942 PMCID: PMC9784954 DOI: 10.3390/jcm11247326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/29/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
The incidence of food hypersensitivity has increased dramatically over the years not only among children but also in adults. Adult patients are usually less suspected of food hypersensitivity symptoms since food allergies are more typical for small children, with a tendency to outgrow the condition. The aim of this article is to increase awareness of hypersensitivity to food symptoms and their diagnosis and treatment possibilities among gastroenterologists and other health care professionals dealing with this type of patient. Symptoms of many gastrointestinal disorders, especially functional, may be driven by different types of mechanisms, and food intolerance or allergy should be considered as a potential cause. This article presents the current understanding of the epidemiology, diagnosis and treatment of immune- and non-immune-mediated food-induced diseases. Diagnosis of food hypersensitivity is based mainly on medical history, different types of sensitivity tests, e.g., hydrogen breath test, specific IgE (sIgE) serum concentration, tissue eosinophil count, skin tests and oral food challenges considered as a "gold standard" for food allergy. Elimination diet and pharmacologic treatment for allergy symptoms are first-line therapies. Eosinophilic gastrointestinal diseases are often caused by non-IgE-mediated food allergies, require endoscopic biopsy samples to confirm diagnosis and proper elimination diet often combined with steroids or proton pump inhibitor agents for treatment. Mast cell activation syndrome (MCAS) derives from pathologic reaction of mast cells with increased tryptase serum level as a marker. Symptoms may occur in the digestive, respiratory, skin, neurologic and cardiovascular system. Treatment is based on histamine type 1, type 2 (H1, H2) receptor antagonists and other mast cell stabilizing agents. Carbohydrate intolerances are the most common type of food hypersensitivity in adult patients, and an elimination diet is effective for reducing symptoms. Food additives hypersensitivity remains difficult to diagnose, but use of a diet low in chemical substances alleviates symptoms and helps to diagnose the triggering factors.
Collapse
|
53
|
Chernikova DA, Zhao MY, Jacobs JP. Microbiome Therapeutics for Food Allergy. Nutrients 2022; 14:5155. [PMID: 36501184 PMCID: PMC9738594 DOI: 10.3390/nu14235155] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/23/2022] [Accepted: 12/01/2022] [Indexed: 12/10/2022] Open
Abstract
The prevalence of food allergies continues to rise, and with limited existing therapeutic options there is a growing need for new and innovative treatments. Food allergies are, in a large part, related to environmental influences on immune tolerance in early life, and represent a significant therapeutic challenge. An expanding body of evidence on molecular mechanisms in murine models and microbiome associations in humans have highlighted the critical role of gut dysbiosis in the pathogenesis of food allergies. As such, the gut microbiome is a rational target for novel strategies aimed at preventing and treating food allergies, and new methods of modifying the gastrointestinal microbiome to combat immune dysregulation represent promising avenues for translation to future clinical practice. In this review, we discuss the intersection between the gut microbiome and the development of food allergies, with particular focus on microbiome therapeutic strategies. These emerging microbiome approaches to food allergies are subject to continued investigation and include dietary interventions, pre- and probiotics, microbiota metabolism-based interventions, and targeted live biotherapeutics. This exciting frontier may reveal disease-modifying food allergy treatments, and deserves careful study through ongoing clinical trials.
Collapse
Affiliation(s)
- Diana A. Chernikova
- Department of Pediatrics, Division of Immunology, Allergy, and Rheumatology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90073, USA
- The Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Matthew Y. Zhao
- The Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Jonathan P. Jacobs
- The Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| |
Collapse
|
54
|
Tyutkov N, Zhernyakova A, Birchenko A, Eminova E, Nadtochii L, Baranenko D. Probiotics viability in frozen food products. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
55
|
Jensen C, Antonsen MF, Lied GA. Gut Microbiota and Fecal Microbiota Transplantation in Patients with Food Allergies: A Systematic Review. Microorganisms 2022; 10:microorganisms10101904. [PMID: 36296181 PMCID: PMC9609703 DOI: 10.3390/microorganisms10101904] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
The prevalence of food allergies (FAs) has increased considerably in recent decades, with the only available treatment being the avoidance of the specific food items causing the allergy. FAs may have a major impact on quality of life, and it is of great interest to explore new strategies to prevent and treat FAs. Some studies show an altered gut microbiota profile in individuals with FAs, and the modulation of gut microbiota is therefore proposed as a potential strategy for prevention and treatment. This systematic review aimed to investigate: (1) the gut microbiota profile in individuals with FAs compared to healthy individuals and (2) the effect of fecal microbiota transplantation (FMT) on gut microbiota profiles and/or allergy symptoms. A literature search was conducted in PubMed (Medline) on 5 April 2022. Of the 236 publications identified, 12 studies were included based on inclusion and exclusion criteria. Eleven of these studies reported results on the gut microbiota in children with FAs compared to healthy controls (HCs). The majority of studies (six studies) observed no difference in alpha diversity when comparing children with FAs to HCs; however, a difference in beta diversity was observed in five studies. At the phylum level, we observed a high abundance of Firmicutes (six studies) and Proteobacteria (five studies), whereas a low abundance of Bacteroidetes (5 studies) was observed in children with FAs compared to HCs. Of the 12 included studies, four explored the effect of FMT on gut microbiota and/or allergy symptoms. Three studies reported that transferring gut microbiota from children without FAs to germ-free mice, protected the mice against allergic reactions, whereas one study did not report findings on the allergic symptoms. The results on gut microbiota after FMT varied and were too divergent to draw any conclusions. Overall, our results suggest that there are differences in the gut microbiota profile in individuals with FAs compared to individuals without FAs. FMT seems to be a promising strategy to prevent allergic symptoms but needs to be further explored in animal and human models. As the findings in this review are based on a small number of studies (12 studies), further studies are warranted before any clear conclusions can be drawn regarding gut microbiota profiles and the effect of FMT on individuals with FAs.
Collapse
Affiliation(s)
- Caroline Jensen
- Centre for Nutrition, Department of Clinical Medicine, University of Bergen, 5021 Bergen, Norway
- Division of Gastroenterology, Department of Medicine, Haukeland University Hospital, 5020 Bergen, Norway
- Correspondence:
| | - Marie Fagervik Antonsen
- Centre for Nutrition, Department of Clinical Medicine, University of Bergen, 5021 Bergen, Norway
| | - Gülen Arslan Lied
- Centre for Nutrition, Department of Clinical Medicine, University of Bergen, 5021 Bergen, Norway
- Division of Gastroenterology, Department of Medicine, Haukeland University Hospital, 5020 Bergen, Norway
- Section of Clinical Allergy, Department of Occupational Medicine, Haukeland University Hospital, 5020 Bergen, Norway
| |
Collapse
|
56
|
Kelly MS, Bunyavanich S, Phipatanakul W, Lai PS. The Environmental Microbiome, Allergic Disease, and Asthma. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:2206-2217.e1. [PMID: 35750322 PMCID: PMC9704440 DOI: 10.1016/j.jaip.2022.06.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/24/2022] [Accepted: 06/03/2022] [Indexed: 04/26/2023]
Abstract
The environmental microbiome represents the entirety of the microbes and their metabolites that we encounter in our environments. A growing body of evidence supports the role of the environmental microbiome in risk for and severity of allergic diseases and asthma. The environmental microbiome represents a ubiquitous, lifelong exposure to non-self antigens. During the critical window between birth and 1 year of life, interactions between our early immune system and the environmental microbiome have 2 consequences: our individual microbiome is populated by environmental microbes, and our immune system is trained regarding which antigens to tolerate. During this time, a diversity of exposures appears largely protective, dramatically decreasing the risk of developing allergic diseases and asthma. As we grow older, our interactions with the environmental microbiome change. While it continues to exert influence over the composition of the human microbiome, the environmental microbiome becomes increasingly a source for antigenic stimulation and infection. The same microbial exposure protective against disease development may exacerbate disease severity. Although much has been learned about the importance of the environmental microbiome in allergic disease, much more remains to be understood about these complicated interactions between our environment, our microbiome, our immune system, and disease.
Collapse
Affiliation(s)
- Michael S Kelly
- Department of Internal Medicine, Massachusetts General Hospital, Boston, Mass; Harvard Medical School, Boston, Mass
| | - Supinda Bunyavanich
- Division of Allergy and Immunology, Department of Pediatrics, and Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Wanda Phipatanakul
- Harvard Medical School, Boston, Mass; Division of Allergy and Immunology, Boston Children's Hospital, Boston, Mass
| | - Peggy S Lai
- Department of Internal Medicine, Massachusetts General Hospital, Boston, Mass; Harvard Medical School, Boston, Mass; Division of Allergy and Immunology, Boston Children's Hospital, Boston, Mass; Division of Pulmonary and Critical Care, Massachusetts General Hospital, Boston, Mass; Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Mass.
| |
Collapse
|
57
|
Davis EC, Jackson CM, Ting T, Harizaj A, Järvinen KM. Predictors and biomarkers of food allergy and sensitization in early childhood. Ann Allergy Asthma Immunol 2022; 129:292-300. [PMID: 35490857 DOI: 10.1016/j.anai.2022.04.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 12/23/2022]
Abstract
OBJECTIVE To review existing literature on the early risk factors for and biomarkers of food allergy (FA) and food sensitization (FS) and highlight opportunities for future research that will further the understanding of FA pathogenesis in infancy and toddlerhood. DATA SOURCES PubMed search of English-language articles related to FA and atopic disease. STUDY SELECTIONS Human studies with outcomes related to FA, FS, and other atopic disease in childhood were selected and reviewed. Studies published after 2015 were prioritized. RESULTS The prevalence of FA has greatly increased in recent decades and is now a global public health concern. A complex network of early life risk factors has been associated with development of FA and FS in childhood. Food allergy has a genetic component, but recent evidence suggests that interactions between risk alleles and other environmental exposures are important for disease pathogenesis, potentially through epigenetic mechanisms. Lifestyle factors, such as delivery mode, antibiotic use, and pet exposure also influence FA risk, which may be through their effect on the early life gut microbiome. How these early life risk factors, along with route and timing of antigen exposure, collectively target the developing immune system remains an ongoing and important area of study. CONCLUSION The current body of evidence emphasizes the first 1000 days of life as a critical period for FA development. More observational studies and adequately powered clinical trials spanning early pregnancy through childhood are needed to identify novel biomarkers and risk factors that can predict susceptibility toward or protection against FA.
Collapse
Affiliation(s)
- Erin C Davis
- Division of Allergy and Immunology, Center for Food Allergy, Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Golisano Children's Hospital, Rochester, New York
| | - Courtney M Jackson
- Division of Allergy and Immunology, Center for Food Allergy, Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Golisano Children's Hospital, Rochester, New York
| | - Tiffany Ting
- Division of Allergy and Immunology, Center for Food Allergy, Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Golisano Children's Hospital, Rochester, New York
| | - Albana Harizaj
- Division of Allergy and Immunology, Center for Food Allergy, Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Golisano Children's Hospital, Rochester, New York; Division of Allergy, Immunology, and Rheumatology, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Kirsi M Järvinen
- Division of Allergy and Immunology, Center for Food Allergy, Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Golisano Children's Hospital, Rochester, New York; Division of Allergy, Immunology, and Rheumatology, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York; Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York.
| |
Collapse
|
58
|
Fiocchi A, Cabana MD, Mennini M. Current Use of Probiotics and Prebiotics in Allergy. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:2219-2242. [PMID: 35792336 DOI: 10.1016/j.jaip.2022.06.038] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 01/06/2023]
Abstract
The microbiome plays an important role in the pathogenesis of allergic diseases. This review updates the reader on studies aimed at influencing allergic diseases through modulation of the gut microflora. A nonsystematic review of the literature was performed, focusing on relevant trials evaluating the effect of probiotics/prebiotics/symbiotics in the prevention and treatment of allergic disease. For each allergic disease, we were able to find not only a substantial number of clinical trials but also systematic reviews. Specific guidelines, based on systematic reviews and meta-analyses, are available for the prevention of allergic disease and for the treatment of food allergy. In each of the areas examined-allergic rhinitis, allergic asthma, atopic dermatitis, food allergy, and gastrointestinal allergies-there are substantial uncertainties in the efficacy of gut microflora modulation in prevention and treatment. At present, practicing clinicians can avail themselves of intestinal flora modulators as an adjunct in the prevention of atopic dermatitis but not of other forms of allergic diseases. Their effects on the treatment of allergic diseases remain controversial.
Collapse
Affiliation(s)
- Alessandro Fiocchi
- Translational Research in Pediatric Specialities Area, Allergy Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| | - Michael D Cabana
- Department of Pediatrics, Albert Einstein College of Medicine and the Children's Hospital at Montefiore, Bronx, NY
| | - Maurizio Mennini
- Translational Research in Pediatric Specialities Area, Allergy Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
59
|
Piazzesi A, Putignani L. Extremely small and incredibly close: Gut microbes as modulators of inflammation and targets for therapeutic intervention. Front Microbiol 2022; 13:958346. [PMID: 36071979 PMCID: PMC9441770 DOI: 10.3389/fmicb.2022.958346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/25/2022] [Indexed: 11/15/2022] Open
Abstract
Chronic inflammation is a hallmark for a variety of disorders and is at least partially responsible for disease progression and poor patient health. In recent years, the microbiota inhabiting the human gut has been associated with not only intestinal inflammatory diseases but also those that affect the brain, liver, lungs, and joints. Despite a strong correlation between specific microbial signatures and inflammation, whether or not these microbes are disease markers or disease drivers is still a matter of debate. In this review, we discuss what is known about the molecular mechanisms by which the gut microbiota can modulate inflammation, both in the intestine and beyond. We identify the current gaps in our knowledge of biological mechanisms, discuss how these gaps have likely contributed to the uncertain outcome of fecal microbiota transplantation and probiotic clinical trials, and suggest how both mechanistic insight and -omics-based approaches can better inform study design and therapeutic intervention.
Collapse
Affiliation(s)
- Antonia Piazzesi
- Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Lorenza Putignani
- Department of Diagnostic and Laboratory Medicine, Unit of Microbiology and Diagnostic Immunology, Unit of Microbiomics and Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- *Correspondence: Lorenza Putignani,
| |
Collapse
|
60
|
Blackman AC, Thapa S, Venkatachalam A, Horvath TD, Runge JK, Haidacher SJ, Hoch KM, Haag AM, Luna RA, Anagnostou A. Insights into Microbiome and Metabolic Signatures of Children Undergoing Peanut Oral Immunotherapy. CHILDREN 2022; 9:children9081192. [PMID: 36010081 PMCID: PMC9406383 DOI: 10.3390/children9081192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/15/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022]
Abstract
Background: Peanut oral immunotherapy has emerged as a novel, active management approach for peanut-allergic sufferers, but limited data exist currently on the role of the microbiome in successful desensitization. Objective: We examined the oral and gut microbiome in a cohort of 17 children undergoing peanut oral immunotherapy with the aim to identify the microbiome signatures associated with successful desensitization. We also set out to characterize their fecal metabolic profiles after successful therapy. Methods: Participants gradually built up their daily dose from 2 mg (starting dose) to 300 mg (maintenance dose) within approximately 40 weeks. We collected a buccal and stool specimen from each subject at two different time points: at baseline and post-therapy (1 month after reaching maintenance). The oral (buccal) and gut (fecal) microbiome was characterized based on sequencing of 16S rRNA gene amplicons with Illumina MiSeq. Fecal short chain fatty acid levels were measured using liquid chromatography-tandem mass spectrometry. Results: We report increased alpha diversity of the oral microbiome post-therapy and have also identified a significant increase in the relative abundance of oral Actinobacteria, associated with the desensitized state. However, the baseline gut microbiome did not differ from the post-therapy. Additionally, fecal short chain fatty acids increased after therapy, but not significantly. Conclusion: Our research adds to the limited current knowledge on microbiome and metabolic signatures in pediatric patients completing oral immunotherapy. Post-therapy increased trends of fecal fatty acid levels support a role in modulating the allergic response and potentially exerting protective and anti-inflammatory effects alongside successful desensitization. A better understanding of the microbiome-related mechanisms underlying desensitization may allow development of smarter therapeutic approaches in the near future. Clinical implication: The oral microbiome composition is altered following successful peanut oral immunotherapy, with a significant increase in alpha diversity and the relative abundance of phylum Actinobacteria. Capsule summary: Significant microbiome changes in children completing peanut immunotherapy include increase in alpha-diversity and overrepresentation of Actinobacteria in the oral microbiome, and increased trends for fecal short chain fatty acids, suggesting a protective effect against the allergic response.
Collapse
Affiliation(s)
- Andrea C. Blackman
- Department of Pediatrics, Section of Immunology, Allergy and Retrovirology, Texas Children’s Hospital, Houston, TX 77030, USA
- Section of Allergy, Immunology & Retrovirology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Santosh Thapa
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Children’s Microbiome Center, Department of Pathology, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Alamelu Venkatachalam
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Children’s Microbiome Center, Department of Pathology, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Thomas D. Horvath
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Children’s Microbiome Center, Department of Pathology, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Jessica K. Runge
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Children’s Microbiome Center, Department of Pathology, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Sigmund J. Haidacher
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Children’s Microbiome Center, Department of Pathology, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Kathleen M. Hoch
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Children’s Microbiome Center, Department of Pathology, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Anthony M. Haag
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Children’s Microbiome Center, Department of Pathology, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Ruth Ann Luna
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Children’s Microbiome Center, Department of Pathology, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Aikaterini Anagnostou
- Department of Pediatrics, Section of Immunology, Allergy and Retrovirology, Texas Children’s Hospital, Houston, TX 77030, USA
- Section of Allergy, Immunology & Retrovirology, Baylor College of Medicine, Houston, TX 77030, USA
- Correspondence: ; Tel.: +1-832-824-1319
| |
Collapse
|
61
|
Shao H, Min F, Huang M, Wang Z, Bai T, Lin M, Li X, Chen H. Novel perspective on the regulation of food allergy by probiotic: The potential of its structural components. Crit Rev Food Sci Nutr 2022; 64:172-186. [PMID: 35912422 DOI: 10.1080/10408398.2022.2105304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Food allergy (FA) is a global public health issue with growing prevalence. Increasing evidence supports the strong correlation between intestinal microbiota dysbiosis and food allergies. Probiotic intervention as a microbiota-based therapy could alleviate FA effectively. In addition to improving the intestinal microbiota disturbance and affecting microbial metabolites to regulate immune system, immune responses induced by the recognition of pattern recognition receptors to probiotic components may also be one of the mechanisms of probiotics protecting against FA. In this review, it is highlighted in detail about the regulatory effects on the immune system and anti-allergic potential of probiotic components including the flagellin, pili, peptidoglycan, lipoteichoic acid, exopolysaccharides, surface (S)-layer proteins and DNA. Probiotic components could enhance the function of intestinal epithelial barrier as well as regulate the balance of cytokines and T helper (Th) 1/Th2/regulatory T cell (Treg) responses. These evidences suggest that probiotic components could be used as nutritional or therapeutic agents for maintaining immune homeostasis to prevent FA, which will contribute to providing new insights into the resolution of FA and better guidance for the development of probiotic products.
Collapse
Affiliation(s)
- Huming Shao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
- School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, Jiangxi, China
| | - Fangfang Min
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
- School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, Jiangxi, China
| | - Meijia Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
- School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, Jiangxi, China
| | - Zhongliang Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
- School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, Jiangxi, China
| | - Tianliang Bai
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
- School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, Jiangxi, China
| | - Min Lin
- Department of Dermatology, Jiangxi Provincial Children's Hospital, Nanchang, Jiangxi, China
| | - Xin Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
- School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, Jiangxi, China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, Jiangxi, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
62
|
How primary care providers can help prevent food allergies. Curr Opin Pediatr 2022; 34:430-437. [PMID: 35797492 DOI: 10.1097/mop.0000000000001145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
PURPOSE OF REVIEW IgE-mediated food allergy rates have increased in recent decades, yet treatment options remain limited. Prevention strategies are thus essential. We will review recent research and consensus guidelines for food allergy prevention. RECENT FINDINGS Research has continued to support that early introduction of allergens via the gastrointestinal tract induces tolerance and prevents development of food allergy. In contrast, allergen sensitization may occur via transcutaneous allergen exposure. This is supported by research that shows a decreased risk of food allergy with aggressive treatment of atopic dermatitis. More recent research suggests that transcutaneous sensitization could also be facilitated by frequent emollient use in the absence of atopic dermatitis but definitive research is lacking. Murine models have shown a likely role of dysbiosis, or disruption of the body's normal healthy microbiome, in development of food allergy, yet human studies have yet to show a conclusive benefit of probiotics in the prevention of food allergy. SUMMARY Important approaches for food allergy prevention are: introduction of peanut and cooked egg at 4-6 months, early introduction of other allergenic foods, and early diagnosis and treatment of atopic dermatitis (because of a predisposition to food sensitization through the damaged skin barrier). More research is needed to clarify the role, if any, of emollient use and probiotics.
Collapse
|
63
|
Li Xu L, Wei Zhang H, Lin H, Mei Zhang X, Qi Wen Y, Long Zhao J, Xing Li Z, Gasset M. SWATH-MS-based proteomics reveals functional biomarkers of Th1/Th2 responses of tropomyosin allergy in mouse models. Food Chem 2022; 383:132474. [PMID: 35189446 DOI: 10.1016/j.foodchem.2022.132474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/22/2022] [Accepted: 02/13/2022] [Indexed: 12/01/2022]
Abstract
Type-I food allergies are hypersensitive reactions compromising the immune organs and epithelial barriers. To investigate the organ-specific proteomic alterations of the allergy responses, the spleen and intestine of mice sensitized with high (shrimp and clam) and weak (fish) allergenic tropomyosins were analyzed using sequential windowed acquisition of all theoretical fragment ion mass spectra (SWATH-MS)-based proteomics. The results showed that Th1 and Th2 tropomyosin-induced responses in the spleen are characterized by the unique upregulation of innate (cochlin) and adaptive (Ig κ chain V-III region PC 7175) immune regulators, respectively. In the intestine, tropomyosin allergy concurred with the downregulation of 35 differentiating proteins featuring the overall impairment of metabolic pathways, absorption processes and ammonium ion responses. These data provide new functional biomarkers of tropomyosin-induced immune responses as well as candidate targets for intervention.
Collapse
Affiliation(s)
- Li Li Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003 Shandong, China; Institute of Physical Chemistry Rocasolano, Spanish National Research Council, 28006 Madrid, Spain
| | - Hong Wei Zhang
- Technology Center of Qingdao Customs District, Qingdao 266002 Shandong, China
| | - Hong Lin
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003 Shandong, China
| | - Xiao Mei Zhang
- Technology Center of Qingdao Customs District, Qingdao 266002 Shandong, China
| | - Yun Qi Wen
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003 Shandong, China
| | - Jin Long Zhao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003 Shandong, China
| | - Zhen Xing Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003 Shandong, China.
| | - María Gasset
- Institute of Physical Chemistry Rocasolano, Spanish National Research Council, 28006 Madrid, Spain.
| |
Collapse
|
64
|
Li H, Yang J, Qin A, Yang F, Liu D, Li H, Yu J. Milk protein hydrolysates obtained with immobilized alcalase and neutrase on magnetite nanoparticles: Characterization and antigenicity study. J Food Sci 2022; 87:3107-3116. [PMID: 35638323 DOI: 10.1111/1750-3841.16189] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/08/2022] [Accepted: 04/25/2022] [Indexed: 01/14/2023]
Abstract
Enzymatic hydrolysis is the most commonly used method to reduce the antigenicity of milk protein, but free protease is unstable and difficult to recycle after application. In this study, alcalase and neutrase were selected for immobilization on the modified magnetic Fe3 O4 nanoparticles. The reusability of the immobilized enzyme was 68.23% of the total starting activity after 5 recycling batches. The optimal hydrolysis conditions were an enzyme to substrate ratio of 6000 U/g and reaction at 50℃ and pH 8.5 for 3 h. Under these conditions, 22.76% hydrolysis of hydrolysate was achieved, and the antigenicity reduction rates of β-lactoglobulin and casein were 21.34% and 30.89%, respectively. In addition, 82.75% of the hydrolysate had a molecular weight less than 1 kDa, and free amino acids represented 13.65% of the sample. This result showed that the hydrolysis with immobilized enzyme was similar to that with free enzyme and the immobilized enzyme could be applied to produce hypoallergenic hydrolysate. PRACTICAL APPLICATION: Reduces milk protein allergenicity.
Collapse
Affiliation(s)
- Hongbo Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin Economic-Technological Development Area (TEDA), Tianjin, China
| | - Jingjing Yang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin Economic-Technological Development Area (TEDA), Tianjin, China
| | - Airong Qin
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin Economic-Technological Development Area (TEDA), Tianjin, China
| | - Feifei Yang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin Economic-Technological Development Area (TEDA), Tianjin, China
| | - Dingkuo Liu
- Dingzheng Xinxing Biotechnology (Tianjin) Co., Ltd., Taifeng Road, TEDA, Tianjin, China
| | - Hongjuan Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin Economic-Technological Development Area (TEDA), Tianjin, China
| | - Jinghua Yu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin Economic-Technological Development Area (TEDA), Tianjin, China
| |
Collapse
|
65
|
Xie Q, Xue W. IgE-Mediated food allergy: Current diagnostic modalities and novel biomarkers with robust potential. Crit Rev Food Sci Nutr 2022; 63:10148-10172. [PMID: 35587740 DOI: 10.1080/10408398.2022.2075312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Food allergy (FA) is a serious public health issue afflicting millions of people globally, with an estimated prevalence ranging from 1-10%. Management of FA is challenging due to overly restrictive diets and the lack of diagnostic approaches with high accuracy and prediction. Although measurement of serum-specific antibodies combined with patient medical history and skin prick test is a useful diagnostic tool, it is still an imprecise predictor of clinical reactivity with a high false-positive rate. The double-blind placebo-controlled food challenge represents the gold standard for FA diagnosis; however, it requires large healthcare and involves the risk of acute onset of allergic reactions. Improvement in our understanding of the molecular mechanism underlying allergic disease pathology, development of omics-based methods, and advances in bioinformatics have boosted the generation of a number of robust diagnostic biomarkers of FA. In this review, we discuss how traditional diagnostic modalities guide appropriate diagnosis and management of FA in clinical practice, as well as uncover the potential of the latest biomarkers for the diagnosis, monitoring, and prediction of FA. We also raise perspectives for precise and targeted medical intervention to fill the gap in the diagnosis of FA.
Collapse
Affiliation(s)
- Qiang Xie
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P.R. China
| | - Wentong Xue
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P.R. China
| |
Collapse
|
66
|
Gut Microbial Signatures Associated with Peanut Allergy in a BALB/c Mouse Model. Foods 2022; 11:foods11101395. [PMID: 35626965 PMCID: PMC9141413 DOI: 10.3390/foods11101395] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 11/17/2022] Open
Abstract
Multiple studies have uncovered the pivotal role of gut microbiota in the development of food allergy. However, the effects of gut microbiota on peanut allergy are still unclear. Here, we characterized the gut microbiota composition of peanut-allergic mice by 16S rRNA sequencing and analyzed the correlation between allergic indicators and gut microbiota composition. Outcomes showed that the gut microbiota composition was reshaped in peanut-allergic mice, with Acidobacteriota, Lachnospiraceae, Rikenellaceae, Alistipes, Lachnospiraceae_NK4A136_group significantly down-regulated and Muribaculaceae up-regulated. All of them were significantly correlated with the serum peanut-specific antibodies. These results suggested that these six bacterial OTUs might be the gut microbial signatures associated with peanut allergy.
Collapse
|
67
|
Cao LH, He HJ, Zhao YY, Wang ZZ, Jia XY, Srivastava K, Miao MS, Li XM. Food Allergy-Induced Autism-Like Behavior is Associated with Gut Microbiota and Brain mTOR Signaling. J Asthma Allergy 2022; 15:645-664. [PMID: 35603013 PMCID: PMC9122063 DOI: 10.2147/jaa.s348609] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/30/2022] [Indexed: 11/25/2022] Open
Abstract
Purpose Food allergy-induced autism-like behavior has been increasing for decades, but the causal drivers of this association are unclear. We sought to test the association of gut microbiota and mammalian/mechanistic target of rapamycin (mTOR) signaling with cow’s milk allergy (CMA)-induced autism pathogenesis. Methods Mice were sensitized intragastrically with whey protein containing cholera toxin before sensitization on intraperitoneal injection with whey-containing alum, followed by intragastric allergen challenge to induce experimental CMA. The food allergic immune responses, ASD-like behavioral tests and changes in the mTOR signaling pathway and gut microbial community structure were performed. Results CMA mice showed autism-like behavioral abnormalities and several distinct biomarkers. These include increased levels of 5-hydroxymethylcytosine (5-hmC) in the hypothalamus; c-Fos were predominantly located in the region of the lateral orbital prefrontal cortex (PFC), but not ventral; decreased serotonin 1A in amygdala and PFC. CMA mice exhibited a specific microbiota signature characterized by coordinate changes in the abundance of taxa of several bacterial genera, including the Lactobacillus. Interestingly, the changes were accompanied by promoted mTOR signaling in the brain of CMA mice. Conclusion We found that disease-associated microbiota and mTOR activation may thus play a pathogenic role in the intestinal, immunological, and psychiatric Autism Spectrum Disorder (ASD)-like symptoms seen in CAM associated autism. However, this is only a preliminary study, and their mechanisms require further investigation.
Collapse
Affiliation(s)
- Li-Hua Cao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan Province, People’s Republic of China
| | - Hong-Juan He
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan Province, People’s Republic of China
| | - Yuan-Yuan Zhao
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan Province, People’s Republic of China
| | - Zhen-Zhen Wang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan Province, People’s Republic of China
| | - Xing-Yuan Jia
- Department of Pharmacy, Henan Province Hospital of Traditional Chinese Medicine, Zhengzhou, 450046, Henan Province, People’s Republic of China
| | - Kamal Srivastava
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, 10595, USA
- General Nutraceutical Technology, Elmsford, NY, 10523, USA
| | - Ming-San Miao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan Province, People’s Republic of China
| | - Xiu-Min Li
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, 10595, USA
- Department of Otolaryngology, New York Medical College, Valhalla, NY, 10595, USA
- Correspondence: Xiu-Min Li; Ming-San Miao, Tel +1 914-594-4197, Fax +1 371-65962546, Email ;
| |
Collapse
|
68
|
Wang S, Wei Y, Liu L, Li Z. Association Between Breastmilk Microbiota and Food Allergy in Infants. Front Cell Infect Microbiol 2022; 11:770913. [PMID: 35096637 PMCID: PMC8790183 DOI: 10.3389/fcimb.2021.770913] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 12/17/2021] [Indexed: 12/27/2022] Open
Abstract
Regulating the composition of human breastmilk has the potential to prevent allergic diseases early in life. The composition of breastmilk is complex, comprising varying levels of oligosaccharides, immunoactive molecules, vitamins, metabolites, and microbes. Although several studies have examined the relationship between different components of breastmilk and infant food allergies, few have investigated the relationship between microorganisms in breastmilk and infant food allergy. In the present study, we selected 135 healthy pregnant women and their full-term newborns from a cohort of 202 mother-infant pairs. Among them, 69 infants were exclusively breastfed until 6 mo after birth. At follow-up, 11 of the 69 infants developed a food allergy in infancy while 22 showed no signs of allergy. Thirty-three breastmilk samples were collected within 1 mo after delivery, and 123 infant fecal samples were collected at five time points following their birth. These samples were analyzed using microbial 16S rRNA gene sequencing. The abundance and evenness of the milk microbiota and the number of differential bacteria were higher in the breastmilk samples from the non-allergy group than in those from the food allergy group. The non-allergy group showed relatively high abundance of Bifidobacterium, Akkermansia, Clostridium IV, Clostridium XIVa, Veillonella, and butyrate-producing bacteria such as Fusobacterium, Lachnospiraceae incertae sedis, Roseburia, and Ruminococcus. In contrast, the abundance of Proteobacteria, Acinetobacter, and Pseudomonas in breastmilk was higher in the food allergy group. A comparison of the changes in dominant differential breastmilk microbiota in the intestinal flora of the two groups of infants over time revealed that the changes in Bifidobacterium abundance were consistent with those in the breastmilk flora. Functional pathway prediction of breastmilk microflora showed that the enhancement of the metabolic pathways of tyrosine, tryptophan, and fatty acids was significantly different between the groups. We suggest that changes in the breastmilk microbiota can influence the development of food allergies. Breastmilk contains several microbes that have protective effects against food allergies, both by influencing the colonization of intestinal microbiota and by producing butyrate. This study may provide new ideas for improving infant health through early intervention with probiotics.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Pediatrics, Peking University Third Hospital, Beijing, China
| | - Yuan Wei
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Luyan Liu
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Zailing Li
- Department of Pediatrics, Peking University Third Hospital, Beijing, China
| |
Collapse
|
69
|
Oral exposure to bisphenol A exacerbates allergic inflammation in a mouse model of food allergy. Toxicology 2022; 472:153188. [DOI: 10.1016/j.tox.2022.153188] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 12/12/2022]
|
70
|
Zhao X, Hogenkamp A, Li X, Chen H, Garssen J, Knippels LMJ. Role of selenium in IgE mediated soybean allergy development. Crit Rev Food Sci Nutr 2022; 63:7016-7024. [PMID: 35187987 DOI: 10.1080/10408398.2022.2039898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Food allergy is a pathological immune reaction triggered by normal innocuous dietary proteins. Soybean is widely used in many food products and has long been recognized as a source of high-quality proteins. However, soybean is listed as one of the 8 most significant food allergens. The prevalence of soybean allergy is increasing worldwide and impacts the quality of life of patients. Currently, the only strategy to manage food allergy relies on strict avoidance of the offending food. Nutritional supplementation is a new prevention strategy which is currently under evaluation. Selenium (Se), as one of the essential micronutrients for humans and animals, carries out biological effects through its incorporation into selenoproteins. The use of interventions with micronutrients, like Se, might be an interesting new approach. In this review we describe the involvement of Se in a variety of processes, including maintaining immune homeostasis, preventing free radical damage, and modulating the gut microbiome, all of which may contribute to in both the prevention and treatment of food allergy. Se interventions could be an interesting new approach for future treatment strategies to manage soybean allergy, and food allergy in general, and could help to improve the quality of life for food allergic patients.
Collapse
Affiliation(s)
- Xiaoli Zhao
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, The Netherlands
- State Key Laboratory of Food Science and Technology, Nanchang University, Jiangxi, China
- School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Astrid Hogenkamp
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, The Netherlands
| | - Xin Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Jiangxi, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Jiangxi, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, The Netherlands
- Global Centre of Excellence Immunology, Danone/Nutricia Research, Utrecht, The Netherlands
| | - Leon M J Knippels
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, The Netherlands
- Global Centre of Excellence Immunology, Danone/Nutricia Research, Utrecht, The Netherlands
| |
Collapse
|
71
|
Bugrov N, Rudenko P, Lutsay V, Gurina R, Zharov A, Khairova N, Molchanova M, Krotova E, Shopinskaya M, Bolshakova M, Popova I. Fecal Microbiota Analysis in Cats with Intestinal Dysbiosis of Varying Severity. Pathogens 2022; 11:pathogens11020234. [PMID: 35215175 PMCID: PMC8875498 DOI: 10.3390/pathogens11020234] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 01/27/2023] Open
Abstract
Recent studies have shown that the gut microbiota plays an important role in the pathogenesis of gastrointestinal diseases in various animal species. There are only limited data on the microbiome in cats with varying grades of dysbiosis. The purpose of the study was a detailed analysis of the quantitative and qualitative fecal microbiota spectrum in cats with intestinal dysbiosis of varying severity. The data obtained indicate that, depending on the dysbiosis severity in cats, the intestinal microbiome landscape changes significantly. It has been established that, depending on the dysbiosis severity, there is a shift in the balance between the Gram-positive and Gram-negative bacterial pools and in the nature of the isolation of specific bacteria forms, in the amount of obligate microbiota isolation, as well as individual facultative strains. When analyzing the serotyping of E. coli cultures isolated at various grades of intestinal dysbiosis severity, differences were found both in the isolation amount of various serotypes from one animal and in the prevalence of certain serotypes for each disease severity. A retrospective analysis of the fecal microbiota sensitivity in cats with dysbiosis to antibacterial drugs showed that, depending on the disease severity, the number of isolates sensitive to antibiotics increases significantly.
Collapse
Affiliation(s)
- Nikolay Bugrov
- Department of Veterinary Medicine, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia; (N.B.); (P.R.); (V.L.); (E.K.); (M.S.); (M.B.)
| | - Pavel Rudenko
- Department of Veterinary Medicine, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia; (N.B.); (P.R.); (V.L.); (E.K.); (M.S.); (M.B.)
- Biological Testing Laboratory, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences (BIBCh RAS), 142290 Pushchino, Russia
| | - Vladimir Lutsay
- Department of Veterinary Medicine, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia; (N.B.); (P.R.); (V.L.); (E.K.); (M.S.); (M.B.)
| | - Regina Gurina
- Department of Technosphere Safety, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia; (R.G.); (A.Z.); (N.K.)
| | - Andrey Zharov
- Department of Technosphere Safety, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia; (R.G.); (A.Z.); (N.K.)
| | - Nadiya Khairova
- Department of Technosphere Safety, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia; (R.G.); (A.Z.); (N.K.)
| | - Maria Molchanova
- Department of Foreign Languages, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia;
| | - Elena Krotova
- Department of Veterinary Medicine, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia; (N.B.); (P.R.); (V.L.); (E.K.); (M.S.); (M.B.)
| | - Marina Shopinskaya
- Department of Veterinary Medicine, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia; (N.B.); (P.R.); (V.L.); (E.K.); (M.S.); (M.B.)
| | - Marina Bolshakova
- Department of Veterinary Medicine, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia; (N.B.); (P.R.); (V.L.); (E.K.); (M.S.); (M.B.)
| | - Irina Popova
- Department of Veterinary Medicine, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia; (N.B.); (P.R.); (V.L.); (E.K.); (M.S.); (M.B.)
- Correspondence:
| |
Collapse
|
72
|
Wu R, Yuan X, Li X, Ma N, Jiang H, Tang H, Xu G, Liu Z, Zhang Z. The bile acid-activated retinoic acid response in dendritic cells is involved in food allergen sensitization. Allergy 2022; 77:483-498. [PMID: 34365653 DOI: 10.1111/all.15039] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 06/13/2021] [Accepted: 06/27/2021] [Indexed: 01/10/2023]
Abstract
BACKGROUND Alteration of commensal microbiota is highly correlated with the prevalence of allergic reactions to food in the gastrointestinal tract. The mechanisms by which microbiota modulate food allergen sensitization in the mucosal site are not fully understood. METHODS We generate DCs specific knockout of retinoic acid receptor α (Rara) gene mice (DC KO Rara) to evaluate food sensitization. The bile acid-activated retinoic acid response was evaluated by flow cytometry, real-time RT-PCR and Illumina transcriptome sequencing. The global effect of Abx treatment on BA profiles in the mucosal lymph tissue mLN in mice was examined by UPLC-MS analysis. RESULTS In this study, we demonstrate that depletion of commensal gut bacteria leads to enhanced retinoic acid (RA) signaling in mucosal dendritic cells (DCs). RA signaling in DCs is required for the production of food allergen-specific IgE and IgG1. Antibiotics induced an enlarged bile acid (BA) pool, and dysregulated BA profiles contributed to enhanced RA signaling in mucosal DCs. BA-activated RA signaling promoted DC upregulation of interferon I signature, RA signature, OX40L, and PDL2, which may lead to T helper 2 differentiation of CD4+ T cells. BA-activated RA signaling involved the farnesoid X receptor and RA receptor α (RARa) interaction. Depletion of bile acid reduces food allergen specific IgE and IgG1 levels in mice. CONCLUSION Our research unveils a mechanism of food sensitization modulated by BA-RA signaling in DCs, which suggests a potential new approach for the intervention of food allergic reactions.
Collapse
Affiliation(s)
- Renlan Wu
- Inflammation & Allergic Diseases Research Unit Affiliated Hospital of Southwest Medical University Sichuan China
- Model Animal Research Center Nanjing University Nanjing China
| | - Xiefang Yuan
- Inflammation & Allergic Diseases Research Unit Affiliated Hospital of Southwest Medical University Sichuan China
| | - Xingjie Li
- Inflammation & Allergic Diseases Research Unit Affiliated Hospital of Southwest Medical University Sichuan China
- The School of Basic Medical Sciences Southwest Medical University Sichuan China
| | - Ning Ma
- Inflammation & Allergic Diseases Research Unit Affiliated Hospital of Southwest Medical University Sichuan China
| | - Hongyu Jiang
- Inflammation & Allergic Diseases Research Unit Affiliated Hospital of Southwest Medical University Sichuan China
- The School of Basic Medical Sciences Southwest Medical University Sichuan China
| | - Hongmei Tang
- Inflammation & Allergic Diseases Research Unit Affiliated Hospital of Southwest Medical University Sichuan China
| | - Guofeng Xu
- Inflammation & Allergic Diseases Research Unit Affiliated Hospital of Southwest Medical University Sichuan China
| | - Zhigang Liu
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen UniversityShenzhen University School of Medicine Shenzhen China
| | - Zongde Zhang
- Inflammation & Allergic Diseases Research Unit Affiliated Hospital of Southwest Medical University Sichuan China
- The School of Basic Medical Sciences Southwest Medical University Sichuan China
- Model Animal Research Center Nanjing University Nanjing China
| |
Collapse
|
73
|
Zhou R, Zhang L, Zhang K, Zhou P. Difference of egg ovalbumin sensitization between egg and duck eggs in BALB/c mice. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-021-03943-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
74
|
Brichová M, Svozílková P, Klímová A, Dušek O, Kverka M, Heissigerová J. MICROBIOME AND UVEITIDES. A REVIEW. CESKA A SLOVENSKA OFTALMOLOGIE : CASOPIS CESKE OFTALMOLOGICKE SPOLECNOSTI A SLOVENSKE OFTALMOLOGICKE SPOLECNOSTI 2022; 78:47-52. [PMID: 35105146 DOI: 10.31348/2021/30] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Microorganisms inhabiting all surfaces of mucous membranes and skin and forming a complex ecosystem with the host is called microbiota. The term microbiome is used for the aggregate genome of microbiota. The microbiota plays important role in the mechanisms of number of physiological and pathological processes, especially of the hosts immune system. The origin and course of autoimmune diseases not only of the digestive tract, but also of the distant organs, including the eye, are significantly influenced by intestinal microbiota. The role of microbiota and its changes (dysbiosis) in the etiopathogenesis of uveitis has so far been studied mainly in experimental models. Reduction of severity of non-infectious intraocular inflammation in germ-free mice or in conventional mice treated with broad-spectrum antibiotics was observed in both the induced experimental autoimmune uveitis model (EAU) and the spontaneous R161H model. Studies have confirmed that autoreactive T cell activation occurs in the intestinal wall in the absence of retinal antigen. Recent experiments focused on the effect of probiotic administration on the composition of intestinal microbiota and on the course of autoimmune uveitis. Our study group demonstrated significant prophylactic effect of the administration of the probiotic Escherichia coli Nissle 1917 on the intensity of inflammation in EAU. To date, only a few studies have been published investigating intestinal dysbiosis in patients with uveitis (e.g., in Behcets disease or Vogt-Koyanagi-Harada syndrome). The results of preclinical studies will be presumably used in clinical practice, mainly in the sense of prophylaxis and therapy, such as change in the lifestyle, diet and especially the therapeutic use of probiotics or the transfer of faecal microbiota.
Collapse
|
75
|
Allergic Diseases: A Comprehensive Review on Risk Factors, Immunological Mechanisms, Link with COVID-19, Potential Treatments, and Role of Allergen Bioinformatics. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182212105. [PMID: 34831860 PMCID: PMC8622387 DOI: 10.3390/ijerph182212105] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/02/2021] [Accepted: 11/16/2021] [Indexed: 12/24/2022]
Abstract
The prevalence of allergic diseases is regarded as one of the key challenges in health worldwide. Although the precise mechanisms underlying this rapid increase in prevalence are unknown, emerging evidence suggests that genetic and environmental factors play a significant role. The immune system, microbiota, viruses, and bacteria have all been linked to the onset of allergy disorders in recent years. Avoiding allergen exposure is the best treatment option; however, steroids, antihistamines, and other symptom-relieving drugs are also used. Allergen bioinformatics encompasses both computational tools/methods and allergen-related data resources for managing, archiving, and analyzing allergological data. This study highlights allergy-promoting mechanisms, algorithms, and concepts in allergen bioinformatics, as well as major areas for future research in the field of allergology.
Collapse
|
76
|
Zhang X, Li S, Shao X, Li M, Hemar Y. Probing the conjugation of epigallocatechin gallate with β-lactoglobulin and its in vivo desensitization efficiency. Food Funct 2021; 12:11343-11350. [PMID: 34668899 DOI: 10.1039/d1fo02293h] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Epigallocatechin gallate (EGCG) and β-lactoglobulin (βLg) were conjugated by covalent bonds to form EGCG-βLg conjugates. This conjugation causes structural and bioactivity changes in βLg, which in turn can be used as a possible approach for desensitization to allergens. In this study, the desensitization mechanism was investigated by monitoring βLg secondary structure and immunoglobulin E (IgE) combining capacity changes on the basis of the conjugation mechanism. Furthermore, the desensitization efficiency in vivo was evaluated through animal experiments. The results show that temperature influenced the conjugation by decreasing the binding affinities (Ka) and binding numbers (n) of EGCG. The conjugation of EGCG decreased βLg's IgE combining capacity by decreasing the β-sheet component and imparted antioxidant properties by the introduction of hydroxyl groups. In addition, animal experiment results indicated that βLg induced significant changes in the levels of IgE and inflammatory cytokines, and the relative abundance of small intestinal flora, linked to the inflammatory lesions and anaphylaxis symptoms. EGCG-βLg conjugates can suppress the allergic response, attenuating serum IgE and relieving the anaphylaxis symptoms.
Collapse
Affiliation(s)
- Xiaoning Zhang
- School of Food Science & Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, China.
| | - Sining Li
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China
| | - Xiaoqing Shao
- School of Food Science & Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, China.
| | - Meifeng Li
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China.
| | - Yacine Hemar
- Institute of Advanced Studies, Shenzhen University, Shenzhen, China
| |
Collapse
|
77
|
Altered diversity and composition of gut microbiota in patients with allergic rhinitis. Microb Pathog 2021; 161:105272. [PMID: 34740809 DOI: 10.1016/j.micpath.2021.105272] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Recently, multiple studies have suggested an association between gut dysbiosis and allergic rhinitis (AR) development. However, the role of gut microbiota in AR development remains obscure. METHODS The goal of this study was to compare the gut microbiota composition and short-chain fatty acid (SCFAs) differences associated with AR (N = 18) and HCs (healthy controls, N = 17). Gut microbiota 16SrRNA gene sequences were analyzed based on next-generation sequencing. SCFAs in stool samples were analyzed by gas chromatography-mass spectrometry (GC-MS). RESULTS Compared with HCs, the gut microbiota composition of AR was significantly different in diversity and richness. At the phylum level, the abundance of Firmicutes in the AR group were significantly lower than those in the HCs group. At the genus level, the abundance of Blautia, Eubacterium_hallii_group, Romboutsia, Collinsella, Dorea, Subdoligranulum and Fusicatenibacter in the AR group were significantly lower than that in the HCs group. The concentrations of SCFAs were significantly lower in the AR group compared with the HCs group. Correlation analysis showed that the Eubacterium-hallii-group and Blautia correlated positively with SCFAs. CONCLUSION Our results demonstrate compositional and functional alterations of the gut microbiome in AR.
Collapse
|
78
|
Tramper‐Stranders G, Ambrożej D, Arcolaci A, Atanaskovic‐Markovic M, Boccabella C, Bonini M, Karavelia A, Mingomataj E, O' Mahony L, Sokolowska M, Untersmayr E, Feleszko W. Dangerous liaisons: Bacteria, antimicrobial therapies, and allergic diseases. Allergy 2021; 76:3276-3291. [PMID: 34390006 DOI: 10.1111/all.15046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 07/31/2021] [Indexed: 12/15/2022]
Abstract
Microbiota composition and associated metabolic activities are essential for the education and development of a healthy immune system. Microbial dysbiosis, caused by risk factors such as diet, birth mode, or early infant antimicrobial therapy, is associated with the inception of allergic diseases. In turn, allergic diseases increase the risk for irrational use of antimicrobial therapy. Microbial therapies, such as probiotics, have been studied in the prevention and treatment of allergic diseases, but evidence remains limited due to studies with high heterogeneity, strain-dependent effectiveness, and variable outcome measures. In this review, we sketch the relation of microbiota with allergic diseases, the overuse and rationale for the use of antimicrobial agents in allergic diseases, and current knowledge concerning the use of bacterial products in allergic diseases. We urgently recommend 1) limiting antibiotic therapy in pregnancy and early childhood as a method contributing to the reduction of the allergy epidemic in children and 2) restricting antibiotic therapy in exacerbations and chronic treatment of allergic diseases, mainly concerning asthma and atopic dermatitis. Future research should be aimed at antibiotic stewardship implementation strategies and biomarker-guided therapy, discerning those patients that might benefit from antibiotic therapy.
Collapse
Affiliation(s)
- Gerdien Tramper‐Stranders
- Department of Pediatrics Franciscus Gasthuis & Vlietland Rotterdam the Netherlands
- Department of Neonatology Erasmus Medical CenterSophia Children's Hospital Rotterdam the Netherlands
| | - Dominika Ambrożej
- Department of Pediatric Pneumonology and Allergy Medical University of Warsaw Warsaw Poland
- Doctoral School Medical University of Warsaw Warsaw Poland
| | - Alessandra Arcolaci
- Immunology Unit University of Verona and General Hospital Borgo Roma Hospital Verona Italy
| | | | - Cristina Boccabella
- Department of Cardiovascular and Thoracic Sciences Università Cattolica del Sacro CuoreFondazione Policlinico Universitario A. Gemelli – IRCCS Rome Italy
| | - Matteo Bonini
- Department of Cardiovascular and Thoracic Sciences Università Cattolica del Sacro CuoreFondazione Policlinico Universitario A. Gemelli – IRCCS Rome Italy
- National Heart and Lung Institute (NHLI) Imperial College London London UK
| | - Aspasia Karavelia
- Department of Ear‐Nose‐Throat surgery General Hospital of Kozani Kozani Greece
| | - Ervin Mingomataj
- Department of Allergology & Clinical Immunology ‘Mother Theresa’ School of Medicine Tirana Albania
| | - Liam O' Mahony
- Departments of Medicine and Microbiology APC Microbiome IrelandNational University of Ireland Cork Ireland
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Zurich Switzerland
| | - Eva Untersmayr
- Institute of Pathophysiology and Allergy Research Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - Wojciech Feleszko
- Department of Pediatric Pneumonology and Allergy Medical University of Warsaw Warsaw Poland
| | | |
Collapse
|
79
|
Blanco-Pérez F, Steigerwald H, Schülke S, Vieths S, Toda M, Scheurer S. The Dietary Fiber Pectin: Health Benefits and Potential for the Treatment of Allergies by Modulation of Gut Microbiota. Curr Allergy Asthma Rep 2021; 21:43. [PMID: 34505973 PMCID: PMC8433104 DOI: 10.1007/s11882-021-01020-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2021] [Indexed: 02/08/2023]
Abstract
Purpose of Review The incidence of allergies is increasing and has been associated with several environmental factors including westernized diets. Changes in environment and nutrition can result in dysbiosis of the skin, gut, and lung microbiota altering the production of microbial metabolites, which may in turn generate epigenetic modifications. The present review addresses studies on pectin-mediated effects on allergies, including the immune modulating mechanisms by bacterial metabolites. Recent Findings Recently, microbiota have gained attention as target for allergy intervention, especially with prebiotics, that are able to stimulate the growth and activity of certain microorganisms. Dietary fibers, which cannot be digested in the gastrointestinal tract, can alter the gut microbiota and lead to increased local and systemic concentrations of gut microbiota-derived short chain fatty acids (SCFAs). These can promote the generation of peripheral regulatory T cells (Treg) by epigenetic modulation and suppress the inflammatory function of dendritic cells (DCs) by transcriptional modulation. The dietary fiber pectin (a plant-derived polysaccharide commonly used as gelling agent and dietary supplement) can alter the ratio of Firmicutes to Bacteroidetes in gut and lung microbiota, increasing the concentrations of SCFAs in feces and sera, and reducing the development of airway inflammation by suppressing DC function. Summary Pectin has shown immunomodulatory effects on allergies, although the underlying mechanisms still need to be elucidated. It has been suggested that the different types of pectin may exert direct and/or indirect immunomodulatory effects through different mechanisms. However, little is known about the relation of certain pectin structures to allergies.
Collapse
Affiliation(s)
- Frank Blanco-Pérez
- Molecular Allergology, Federal Institute for Vaccines and Biomedicines, Paul-Ehrlich-Institut, Langen, Germany.
| | - Hanna Steigerwald
- Molecular Allergology, Federal Institute for Vaccines and Biomedicines, Paul-Ehrlich-Institut, Langen, Germany
| | - Stefan Schülke
- Molecular Allergology, Federal Institute for Vaccines and Biomedicines, Paul-Ehrlich-Institut, Langen, Germany
| | - Stefan Vieths
- Molecular Allergology, Federal Institute for Vaccines and Biomedicines, Paul-Ehrlich-Institut, Langen, Germany
| | - Masako Toda
- Laboratory of Food and Biomolecular Science, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Stephan Scheurer
- Molecular Allergology, Federal Institute for Vaccines and Biomedicines, Paul-Ehrlich-Institut, Langen, Germany
| |
Collapse
|
80
|
Yang T, Li C, Xue W, Huang L, Wang Z. Natural immunomodulating substances used for alleviating food allergy. Crit Rev Food Sci Nutr 2021; 63:2407-2425. [PMID: 34494479 DOI: 10.1080/10408398.2021.1975257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Food allergy is a serious health problem affecting more than 10% of the human population worldwide. Medical treatments for food allergy remain limited because immune therapy is risky and costly, and anti-allergic drugs have many harmful side effects and can cause drug dependence. In this paper, we review natural bioactive substances capable of alleviating food allergy. The sources of the anti-allergic substances reviewed include plants, animals, and microbes, and the types of substances include polysaccharides, oligosaccharides, polyphenols, phycocyanin, polyunsaturated fatty acids, flavonoids, terpenoids, quinones, alkaloids, phenylpropanoids, and probiotics. We describe five mechanisms involved in anti-allergic activities, including binding with epitopes located in allergens, affecting the gut microbiota, influencing intestinal epithelial cells, altering antigen presentation and T cell differentiation, and inhibiting the degranulation of effector cells. In the discussion, we present the limitations of existing researches as well as promising advances in the development of anti-allergic foods and/or immunomodulating food ingredients that can effectively prevent or alleviate food allergy. This review provides a reference for further research on anti-allergic materials and their hyposensitizing mechanisms.
Collapse
Affiliation(s)
- Tian Yang
- Key Laboratory of Glycobiology and Glycoengineering of Xi'an, College of Food Science and Technology, Northwest University, Xi'an, China
| | - Cheng Li
- Key Laboratory of Glycobiology and Glycoengineering of Xi'an, College of Food Science and Technology, Northwest University, Xi'an, China
| | - Wentong Xue
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, People's Republic of China
| | - Linjuan Huang
- Key Laboratory of Glycobiology and Glycoengineering of Xi'an, College of Food Science and Technology, Northwest University, Xi'an, China
| | - Zhongfu Wang
- Key Laboratory of Glycobiology and Glycoengineering of Xi'an, College of Food Science and Technology, Northwest University, Xi'an, China
| |
Collapse
|
81
|
Yang Y, Li X, Yang Y, Shoaie S, Zhang C, Ji B, Wei Y. Advances in the Relationships Between Cow's Milk Protein Allergy and Gut Microbiota in Infants. Front Microbiol 2021; 12:716667. [PMID: 34484158 PMCID: PMC8415629 DOI: 10.3389/fmicb.2021.716667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 07/22/2021] [Indexed: 12/24/2022] Open
Abstract
Cow's milk protein allergy (CMPA) is an immune response to cow's milk proteins, which is one of the most common food allergies in infants and young children. It is estimated that 2-3% of infants and young children have CMPA. The diet, gut microbiota, and their interactions are believed to be involved in the alterations of mucosal immune tolerance, which might lead to the development of CMPA and other food allergies. In this review, the potential molecular mechanisms of CMPA, including omics technologies used for analyzing microbiota, impacts of early microbial exposures on CMPA development, and microbiota-host interactions, are summarized. The probiotics, prebiotics, synbiotics, fecal microbiota transplantation, and other modulation strategies for gut microbiota and the potential application of microbiota-based design of diets for the CMPA treatment are also discussed. This review not only summarizes the current studies about the interactions of CMPA with gut microbiota but also gives insights into the possible CMPA treatment strategies by modulating gut microbiota, which might help in improving the life quality of CMPA patients in the future.
Collapse
Affiliation(s)
- Yudie Yang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Xiaoqi Li
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Ying Yang
- Jing’an District Central Hospital of Shanghai, Jing’an Branch, Huashan Hospital, Fudan University, Shanghai, China
| | - Saeed Shoaie
- Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
- Faculty of Dentistry, Oral and Craniofacial Sciences, Centre for Host-Microbiome Interactions, King’s College London, London, United Kingdom
| | - Cheng Zhang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Boyang Ji
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Yongjun Wei
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Laboratory of Synthetic Biology, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
82
|
The gut microbiome-immune axis as a target for nutrition-mediated modulation of food allergy. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.05.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
83
|
Ho HE, Chun Y, Jeong S, Jumreornvong O, Sicherer SH, Bunyavanich S. Multidimensional study of the oral microbiome, metabolite, and immunologic environment in peanut allergy. J Allergy Clin Immunol 2021; 148:627-632.e3. [PMID: 33819506 PMCID: PMC8355025 DOI: 10.1016/j.jaci.2021.03.028] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/18/2021] [Accepted: 03/18/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND The oral mucosa is the initial interface between food antigens, microbiota, and mucosal immunity, yet, little is known about oral host-environment dynamics in food allergy. OBJECTIVE Our aim was to determine oral microbial, metabolic, and immunologic profiles associated with peanut allergy. METHODS We recruited 105 subjects (56 with peanut allergy and 49 healthy subjects) for salivary microbiome profiling using 16S ribosomal RNA sequencing, short-chain fatty acid (SCFA) metabolite assays using liquid chromatography/mass spectrometry, and measurement of oral secreted cytokines using multiplex assays. Analyses within and across data types were performed. RESULTS The oral microbiome of individuals with peanut allergy was characterized by reduced species in the orders Lactobacillales, Bacteroidales (Prevotella spp), and Bacillales, and increased Neisseriales spp. The distinct oral microbiome of subjects with peanut allergy was accompanied by significant reductions in oral SCFA levels, including acetate, butyrate, and propionate, and significant elevation of IL-4 secretion. Decreased abundances of oral Prevotella spp and Veillonella spp in subjects with peanut allergy were significantly correlated with reduced oral SCFA levels (false discovery rate < 0.05), and increased oral Neisseria spp was correlated with lower oral SCFA levels (false discovery rate < 0.05). Additionally, oral Prevotella spp abundances were correlated with decreased local secretion of TH2-stimulating epithelial factors (IL-33 and thymic stromal lymphopoietin) and TH2 cytokines (IL-4, IL-5, and IL-13), whereas oral Neisseria spp abundance was positively associated with a TH2-skewed oral immune milieu. CONCLUSION Our novel multidimensional analysis of the oral environment revealed distinct microbial and metabolic profiles associated with mucosal immune disturbances in peanut allergy. Our findings highlight the oral environment as an anatomic site of interest to examine host-microbiome dynamics in food allergy.
Collapse
Affiliation(s)
- Hsi-En Ho
- Division of Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY; Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Yoojin Chun
- Icahn Institute for Data Science and Genome Technology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Stephanie Jeong
- Division of Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Oranicha Jumreornvong
- Division of Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Scott H Sicherer
- Division of Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Supinda Bunyavanich
- Division of Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY; Icahn Institute for Data Science and Genome Technology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY.
| |
Collapse
|
84
|
Pérez-Burillo S, Hinojosa-Nogueira D, Navajas-Porras B, Blasco T, Balzerani F, Lerma-Aguilera A, León D, Pastoriza S, Apaolaza I, Planes FJ, Francino MP, Rufián-Henares JÁ. Effect of Freezing on Gut Microbiota Composition and Functionality for In Vitro Fermentation Experiments. Nutrients 2021; 13:nu13072207. [PMID: 34199047 PMCID: PMC8308218 DOI: 10.3390/nu13072207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/17/2021] [Accepted: 06/23/2021] [Indexed: 11/16/2022] Open
Abstract
The gut microbiota has a profound effect on human health and is modulated by food and bioactive compounds. To study such interaction, in vitro batch fermentations are performed with fecal material, and some experimental designs may require that such fermentations be performed with previously frozen stools. Although it is known that freezing fecal material does not alter the composition of the microbial community in 16S rRNA gene amplicon and metagenomic sequencing studies, it is not known whether the microbial community in frozen samples could still be used for in vitro fermentations. To explore this, we undertook a pilot study in which in vitro fermentations were performed with fecal material from celiac, cow’s milk allergic, obese, or lean children that was frozen (or not) with 20% glycerol. Before fermentation, the fecal material was incubated in a nutritious medium for 6 days, with the aim of giving the microbial community time to recover from the effects of freezing. An aliquot was taken daily from the stabilization vessel and used for the in vitro batch fermentation of lentils. The microbial community structure was significantly different between fresh and frozen samples, but the variation introduced by freezing a sample was always smaller than the variation among individuals, both before and after fermentation. Moreover, the potential functionality (as determined in silico by a genome-scaled metabolic reconstruction) did not differ significantly, possibly due to functional redundancy. The most affected genus was Bacteroides, a fiber degrader. In conclusion, if frozen fecal material is to be used for in vitro fermentation purposes, our preliminary analyses indicate that the functionality of microbial communities can be preserved after stabilization.
Collapse
Affiliation(s)
- Sergio Pérez-Burillo
- Centro de Investigación Biomédica, Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Granada, 18071 Granada, Spain; (S.P.-B.); (D.H.-N.); (B.N.-P.); (S.P.)
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - Daniel Hinojosa-Nogueira
- Centro de Investigación Biomédica, Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Granada, 18071 Granada, Spain; (S.P.-B.); (D.H.-N.); (B.N.-P.); (S.P.)
| | - Beatriz Navajas-Porras
- Centro de Investigación Biomédica, Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Granada, 18071 Granada, Spain; (S.P.-B.); (D.H.-N.); (B.N.-P.); (S.P.)
| | - Telmo Blasco
- Tecnun, University of Navarra, Manuel de Lardizábal 13, 20018 San Sebastián, Spain; (T.B.); (F.B.); (I.A.); (F.J.P.)
| | - Francesco Balzerani
- Tecnun, University of Navarra, Manuel de Lardizábal 13, 20018 San Sebastián, Spain; (T.B.); (F.B.); (I.A.); (F.J.P.)
| | - Alberto Lerma-Aguilera
- Area de Genòmica i Salut, Fundació per al Foment de la Investigació Sanitària i Biomèdica de la Comunitat Valenciana (FISABIO-Salut Pública), 46020 València, Spain; (A.L.-A.); (D.L.); (M.P.F.)
| | - Daniel León
- Area de Genòmica i Salut, Fundació per al Foment de la Investigació Sanitària i Biomèdica de la Comunitat Valenciana (FISABIO-Salut Pública), 46020 València, Spain; (A.L.-A.); (D.L.); (M.P.F.)
| | - Silvia Pastoriza
- Centro de Investigación Biomédica, Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Granada, 18071 Granada, Spain; (S.P.-B.); (D.H.-N.); (B.N.-P.); (S.P.)
| | - Iñigo Apaolaza
- Tecnun, University of Navarra, Manuel de Lardizábal 13, 20018 San Sebastián, Spain; (T.B.); (F.B.); (I.A.); (F.J.P.)
| | - Francisco J. Planes
- Tecnun, University of Navarra, Manuel de Lardizábal 13, 20018 San Sebastián, Spain; (T.B.); (F.B.); (I.A.); (F.J.P.)
| | - Maria Pilar Francino
- Area de Genòmica i Salut, Fundació per al Foment de la Investigació Sanitària i Biomèdica de la Comunitat Valenciana (FISABIO-Salut Pública), 46020 València, Spain; (A.L.-A.); (D.L.); (M.P.F.)
- CIBER en Epidemiología y Salud Pública, 28001 Madrid, Spain
| | - José Ángel Rufián-Henares
- Centro de Investigación Biomédica, Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Granada, 18071 Granada, Spain; (S.P.-B.); (D.H.-N.); (B.N.-P.); (S.P.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, Universidad de Granada, 18071 Granada, Spain
- Correspondence: ; Tel.: +34-958-24-28-41; Fax: +34-958-24-95-77
| |
Collapse
|
85
|
Zhou C, Chen LL, Lu RQ, Ma WW, Xiao R. Alteration of Intestinal Microbiota Composition in Oral Sensitized C3H/HeJ Mice Is Associated With Changes in Dendritic Cells and T Cells in Mesenteric Lymph Nodes. Front Immunol 2021; 12:631494. [PMID: 34177885 PMCID: PMC8222730 DOI: 10.3389/fimmu.2021.631494] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 04/12/2021] [Indexed: 12/14/2022] Open
Abstract
This research aimed to investigate the allergic reaction of C3H/HeJ mice after sensitization with ovalbumin (OVA) without any adjuvant and to analyze the association between intestinal microbiota and allergy-related immune cells in mesenteric lymph nodes (MLN). The allergic responses of C3H/HeJ mice orally sensitized with OVA were evaluated, and immune cell subsets in spleen and MLN and cytokines were also detected. The intestinal bacterial community structure was analyzed, followed by Spearman correlation analysis between changed gut microbiota species and allergic parameters. Sensitization induced a noticeable allergic response to the gavage of OVA without adjuvant. Increased levels of Th2, IL-4, CD103+CD86+ DC, and MHCII+CD86+ DC and decreased levels of Th1, Treg, IFN-γ, TGF-β1, and CD11C+CD103+ DC were observed in allergic mice. Furthermore, families of Lachnospiraceae, Clostridiaceae_1, Ruminococcaceae, and peprostreptococcaceae, all of which belonging to the order Clostridiales, were positively related to Treg and CD11C+CD103+ DC, while they were negatively related to an allergic reaction, levels of Th2, CD103+CD86+ DC, and MHCII+CD86+ DC in MLN. The family of norank_o_Mollicutes_RF39 belonging to the order Mollicutes_RF39 was similarly correlated with allergic reaction and immune cells in MLN of mice. To sum up, allergic reactions and intestinal flora disturbances could be induced by OVA oral administration alone. The orders of Clostridiales and Mollicutes_RF39 in intestinal flora are positively correlated with levels of Treg and CD11C+CD103+ DC in MLN of mice.
Collapse
Affiliation(s)
- Cui Zhou
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing, China
| | - Ling-Ling Chen
- Nutritional Department, Handan First Hospital, Handan, China
| | - Rui-Qi Lu
- School of Basic Medicine, Capital Medical University, Beijing, China
| | - Wei-Wei Ma
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing, China
| | - Rong Xiao
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing, China
| |
Collapse
|
86
|
Co-Encapsulated Synbiotics and Immobilized Probiotics in Human Health and Gut Microbiota Modulation. Foods 2021; 10:foods10061297. [PMID: 34200108 PMCID: PMC8230215 DOI: 10.3390/foods10061297] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/20/2022] Open
Abstract
Growing interest in the development of innovative functional products as ideal carriers for synbiotics, e.g., nutrient bars, yogurt, chocolate, juice, ice cream, and cheese, to ensure the daily intake of probiotics and prebiotics, which are needed to maintain a healthy gut microbiota and overall well-being, is undeniable and inevitable. This review focuses on the modern approaches that are currently being developed to modulate the gut microbiota, with an emphasis on the health benefits mediated by co-encapsulated synbiotics and immobilized probiotics. The impact of processing, storage, and simulated gastrointestinal conditions on the viability and bioactivity of probiotics together with prebiotics such as omega-3 polyunsaturated fatty acids, phytochemicals, and dietary fibers using various delivery systems are considered. Despite the proven biological properties of synbiotics, research in this area needs to be focused on the proper selection of probiotic strains, their prebiotic counterparts, and delivery systems to avoid suppression of their synergistic or complementary effect on human health. Future directions should lead to the development of functional food products containing stable synbiotics tailored for different age groups or specifically designed to fulfill the needs of adjuvant therapy.
Collapse
|
87
|
Daily full spectrum light exposure prevents food allergy-like allergic diarrhea by modulating vitamin D 3 and microbiota composition. NPJ Biofilms Microbiomes 2021; 7:41. [PMID: 33958592 PMCID: PMC8102508 DOI: 10.1038/s41522-021-00213-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 03/18/2021] [Indexed: 01/10/2023] Open
Abstract
The importance of sun exposure on human health is well recognized, and a recent trend in the avoidance of sun exposure has led to the risk of missing the beneficial effects such as vitamin D3 biogenesis. Vitamin D3 insufficiency is one of the risk factors for the development of food allergies (FAs), and vitamin D3 status controls gut homeostasis by modulating the microbiota. This study aimed to explore the impact of daily full spectrum light exposure (phototherapy) on the pathogenesis of FAs. Phototherapy ameliorated allergic diarrhea and improved FA-associated vitamin D3 insufficiency and dysbiosis. Fecal microbiota transplantation (FMT) of FA donor feces induced allergic diarrhea with OVA-specific IgE elevation in naïve mice. In contrast, FMT of naïve donor feces ameliorated allergic diarrhea in established FA mice, suggesting the involvement of the microbiota composition in FA. Phototherapy is an alternative approach for the prevention of FA-like allergic diarrhea through the modulation of vitamin D3 status and microbiota composition.
Collapse
|
88
|
Soriano VX, Koplin JJ, Forrester M, Peters RL, O'Hely M, Dharmage SC, Wright R, Ranganathan S, Burgner D, Thompson K, Dwyer T, Vuillerman P, Ponsonby AL. Infant pacifier sanitization and risk of challenge-proven food allergy: A cohort study. J Allergy Clin Immunol 2021; 147:1823-1829.e11. [PMID: 33810856 DOI: 10.1016/j.jaci.2021.01.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 12/07/2020] [Accepted: 01/14/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Environmental microbial exposure plays a role in immune system development and susceptibility to food allergy. OBJECTIVE We sought to investigate whether infant pacifier use during the first postnatal year, with further consideration of sanitization, alters the risk of food allergy by age 1 year. METHODS The birth cohort recruited pregnant mothers at under 28 weeks' gestation in southeast Australia, with 894 families followed up when infants turned 1 year. Infants were excluded if born under 32 weeks, with a serious illness, major congenital malformation, or genetic disease. Questionnaire data, collected at recruitment and infant ages 1, 6, and 12 months, included pacifier use and pacifier sanitization (defined as the joint exposure of a pacifier and cleaning methods). Challenge-proven food allergy was assessed at 12 months. RESULTS Any pacifier use at 6 months was associated with food allergy (adjusted odds ratio, 1.94; 95% CI, 1.04-3.61), but not pacifier use at other ages. This overall association was driven by the joint exposure of pacifier-antiseptic use (adjusted odds ratio, 4.83; 95% CI, 1.10-21.18) compared with no pacifier use. Using pacifiers without antiseptic at 6 months was not associated with food allergy. Among pacifier users, antiseptic cleaning was still associated with food allergy (adjusted odds ratio, 3.56; 95% CI, 1.18-10.77) compared with no antiseptic use. Furthermore, persistent and repeated antiseptic use over the first 6 months was associated with higher food allergy risk (P = .029). CONCLUSIONS This is the first report of a pacifier-antiseptic combination being associated with a higher risk of subsequent food allergy. Future work should investigate underlying biological pathways.
Collapse
Affiliation(s)
- Victoria X Soriano
- Population Health, Murdoch Children's Research Institute, Parkville, Australia; Department of Paediatrics, University of Melbourne, Parkville, Australia
| | - Jennifer J Koplin
- Population Health, Murdoch Children's Research Institute, Parkville, Australia; Department of Paediatrics, University of Melbourne, Parkville, Australia
| | - Mike Forrester
- School of Medicine, Deakin University, Geelong, Australia; Children's Services, Barwon Health, Geelong, Australia; St John of God Hospital, Geelong, Australia
| | - Rachel L Peters
- Population Health, Murdoch Children's Research Institute, Parkville, Australia; Department of Paediatrics, University of Melbourne, Parkville, Australia
| | - Martin O'Hely
- School of Medicine, Deakin University, Geelong, Australia; Murdoch Children's Research Institute, Parkville, Australia
| | - Shyamali C Dharmage
- Allergy and Lung Health Unit, School of Population and Global Health, University of Melbourne, Parkville, Australia
| | - Rosemary Wright
- National Centre for Epidemiology and Population Health, Research School of Population Health, Australian National University, Canberra, Australia
| | - Sarath Ranganathan
- Department of Paediatrics, University of Melbourne, Parkville, Australia; Murdoch Children's Research Institute, Parkville, Australia
| | - David Burgner
- Department of Paediatrics, University of Melbourne, Parkville, Australia; Murdoch Children's Research Institute, Parkville, Australia
| | - Kristie Thompson
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane, Australia
| | - Terence Dwyer
- Heart Research Group, Murdoch Children's Research Institute, Parkville, Australia; Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Peter Vuillerman
- School of Medicine, Deakin University, Geelong, Australia; Children's Services, Barwon Health, Geelong, Australia; Murdoch Children's Research Institute, Parkville, Australia
| | - Anne-Louise Ponsonby
- Murdoch Children's Research Institute, Parkville, Australia; Allergy and Lung Health Unit, School of Population and Global Health, University of Melbourne, Parkville, Australia; Neuroepidemiology Research Group, Florey Institute for Neuroscience and Mental Health, Parkville, Australia.
| | | |
Collapse
|
89
|
Wu Y, Zhou X, Zhang X, Niu H, Lyu L, Liang C, Chen S, Gong P, Pan J, Li Y, Jiang S, Han X, Zhang L. Breast milk flora plays an important role in infantile eczema: cohort study in Northeast China. J Appl Microbiol 2021; 131:2981-2993. [PMID: 33735474 DOI: 10.1111/jam.15076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/17/2021] [Accepted: 03/08/2021] [Indexed: 12/26/2022]
Abstract
AIMS Infantile eczema, usually coupled with a range of hypersensitive phenotypes, has come into notice with its rising prevalence and unclear pathogenesis. Recent studies show close ties between eczema and an infant's intestinal flora. To gain a further understanding of the interactions between microbiota and eczema, we studied the breast milk flora as a new factor and present the links among breast milk flora, infant intestinal flora and infantile eczema through a cohort study in Northeast China. METHODS AND RESULTS Fifty-two families were recruited with either an eczema or healthy infant younger than 6 months. Analysis and predictions using amplicon sequencing of microbiota found that Bifidobacterium and Bacteroidetes were enriched in healthy and eczema infant stools, respectively, consistent with previous reports. For breast milk flora, more 'positive' bacteria such as Akkermansia were enriched in breast milk from healthy infants' mothers. Further, higher bacterial delivery efficiencies were found in pairs of breast milk flora and infants' stool flora of families with eczema infants compared with families with healthy infants. Bacteroidetes, a widely known indicator of eczema, was found delivered more in eczema pairs. Further metagenomic predictions revealed that the breast milk microbiota participated significantly less in metabolism and immune system pathways, particularly in antigen processing and presentation and in Th17 cell-related pathways. CONCLUSIONS In conclusion, as with other components of breast milk, the breast milk microbiota closely associates with infants' health via mother-infant bacterial delivery and metabolic functions. SIGNIFICANCE AND IMPACT OF THE STUDY Our research aimed to fill the gap between the eczema and breast milk flora and describe the connections among breast milk and intestinal flora and eczema.
Collapse
Affiliation(s)
- Y Wu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - X Zhou
- Department of Adolescent Medical Clinic, Qingdao Central Hospital, Qingdao, China
| | - X Zhang
- Child Healthcare Department, Harbin Children's Hospital, Harbin, China
| | - H Niu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - L Lyu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - C Liang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - S Chen
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - P Gong
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - J Pan
- Feihe Innovation Center, Heilongjiang Feihe Dairy Co Ltd, Beijing, China
| | - Y Li
- Feihe Innovation Center, Heilongjiang Feihe Dairy Co Ltd, Beijing, China
| | - S Jiang
- Feihe Innovation Center, Heilongjiang Feihe Dairy Co Ltd, Beijing, China
| | - X Han
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - L Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
90
|
Rachid R, Stephen-Victor E, Chatila TA. The microbial origins of food allergy. J Allergy Clin Immunol 2021; 147:808-813. [PMID: 33347905 PMCID: PMC8096615 DOI: 10.1016/j.jaci.2020.12.624] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/18/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023]
Abstract
Food allergy (FA) is a significant public health issue, propelled by its rapidly increasing prevalence. Its sharp rise into prominence has focused attention on causative environmental factors and their interplay with the immune system in disease pathogenesis. In that regard, there is now substantial evidence that alterations in the gut microbiome early in life imprint the host gut mucosal immunity and may play a critical role in precipitating FA. These changes may impact key steps in the development of the infant gut microbiome, including its shaping by maternal factors and upon the introduction of solid food (the weaning reaction). These early-life changes may have long-range effects on host immunity that manifest later in time as disease pathology. Experimental studies have shown that resetting the host intestinal immune responses by treatment with either a healthy fecal microbiota transplantation or defined commensal bacterial taxa can prevent or treat FA. The mechanisms by which these interventions suppress FA include restoration of gut immune regulatory checkpoints, notably the retinoic orphan receptor gamma T+ regulatory T cells, the epithelial barrier, and healthy immunoglobulin A responses to the gut commensals. These findings inform human studies currently in progress that evaluate the role of microbial therapies in FA.
Collapse
Affiliation(s)
- Rima Rachid
- Division of Immunology, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Emmanuel Stephen-Victor
- Division of Immunology, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Talal A Chatila
- Division of Immunology, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass.
| |
Collapse
|
91
|
Mennini M, Tambucci R, Riccardi C, Rea F, De Angelis P, Fiocchi A, Assa'ad A. Eosinophilic Esophagitis and Microbiota: State of the Art. Front Immunol 2021; 12:595762. [PMID: 33679739 PMCID: PMC7933523 DOI: 10.3389/fimmu.2021.595762] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022] Open
Abstract
Eosinophilic esophagitis (EoE) is a chronic, food-triggered, immune-mediated disease of the oesophagus, clinically characterized by symptoms referred to oesophagal dysfunction, and histologically defined by an eosinophil productive inflammation of the oesophagal mucosa, among other cell types. The involvement of an adaptive Th2-type response to food antigens in EoE was known since 2000; several cytokines and chemokines promote food-specific responses, during which local production of IgE, but also IgG4 derived from plasma cells in lamina propria of oesophagal mucosa might play an important role. Evidence pointing towards a possible role for the innate immunity in EoE has arisen recently. Together, this evidence gives rise to a potential role that the innate immune system in general, and also the microbial pattern recognition receptors (PRRs) might play in EoE pathogenesis. Among PRRs, Toll-like receptors (TLRs) are type-I transmembrane receptors expressed both on epithelial and lamina propria cells with the capacity to distinguish between pathogen and commensal microbes. As TLRs in the different intestinal epithelia represent the primary mechanism of epithelial recognition of bacteria, this evidence underlines that oesophagal TLR-dependent signaling pathways in EoE support the potential implication of microbiota and the innate immune system in the pathogenesis of this disease. The oesophagal mucosa hosts a resident microbiota, although in a smaller population as compared with other districts of the gastrointestinal tract. Few studies have focused on the composition of the microbiota of the normal oesophagus alone. Still, additional information has come from studies investigating the oesophagal microbiota in disease and including healthy patients as controls. Our review aims to describe all the evidence on the oesophagal and intestinal microbiota in patients with EoE to identify the specific features of dysbiosis in this condition.
Collapse
Affiliation(s)
- Maurizio Mennini
- Division of Allergy, Bambino Gesù Children's Hospital-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Renato Tambucci
- Digestive Endoscopy and Surgery Unit, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Carla Riccardi
- Division of Allergy, Bambino Gesù Children's Hospital-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Francesca Rea
- Digestive Endoscopy and Surgery Unit, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Paola De Angelis
- Digestive Endoscopy and Surgery Unit, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Alessandro Fiocchi
- Division of Allergy, Bambino Gesù Children's Hospital-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Amal Assa'ad
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| |
Collapse
|
92
|
Williams AR, Myhill LJ, Stolzenbach S, Nejsum P, Mejer H, Nielsen DS, Thamsborg SM. Emerging interactions between diet, gastrointestinal helminth infection, and the gut microbiota in livestock. BMC Vet Res 2021; 17:62. [PMID: 33514383 PMCID: PMC7845040 DOI: 10.1186/s12917-021-02752-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 01/08/2021] [Indexed: 02/08/2023] Open
Abstract
Increasing evidence suggests that nutritional manipulation of the commensal gut microbiota (GM) may play a key role in maintaining animal health and production in an era of reduced antimicrobial usage. Gastrointestinal helminth infections impose a considerable burden on animal performance, and recent studies suggest that infection may substantially alter the composition and function of the GM. Here, we discuss the potential interactions between different bioactive dietary components (prebiotics, probiotics and phytonutrients) and helminth infection on the GM in livestock. A number of recent studies suggest that host diet can strongly influence the nature of the helminth-GM interaction. Nutritional manipulation of the GM may thus impact helminth infection, and conversely infection may also influence how the GM responds to dietary interventions. Moreover, a dynamic interaction exists between helminths, the GM, intestinal immune responses, and inflammation. Deciphering the mechanisms underlying the diet-GM-helminth axis will likely inform future helminth control strategies, as well as having implications for how health-promoting feed additives, such as probiotics, can play a role in sustainable animal production.
Collapse
Affiliation(s)
- Andrew R Williams
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Laura J Myhill
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sophie Stolzenbach
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter Nejsum
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Helena Mejer
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Dennis S Nielsen
- Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| | - Stig M Thamsborg
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
93
|
Irizar H, Kanchan K, Mathias RA, Bunyavanich S. Advancing Food Allergy Through Omics Sciences. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2021; 9:119-129. [PMID: 32777389 PMCID: PMC7855623 DOI: 10.1016/j.jaip.2020.07.044] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 07/24/2020] [Indexed: 02/07/2023]
Abstract
Since the publication of the first draft of the human genome, there has been an explosion of new technologies with increasing power to interrogate the totality of biological molecules (eg, DNA, RNA, proteins, metabolites) and their modifications (eg, DNA methylation, histone modifications). These technologies, collectively called omics, have been widely applied in the last 2 decades to study biological systems to gain deeper insight into mechanisms driving the physiology and pathophysiology of human health and disease. Because of its complex, multifactorial nature, food allergy is especially well suited to be investigated using omics approaches. In this rostrum, we review how omic technologies have been applied to explore diverse aspects of food allergy, including adaptive and innate immune processes in food-allergic responses, the role of the microbiome in food allergy risk, metabolic changes in the gut and blood associated with food allergy, and the identification of biomarkers and potential therapeutic targets for the condition. We discuss the strengths and limitations of the studies performed thus far and the need to adopt systems biology approaches that integrate data from multiple omics to fully leverage the potential of these technologies to advance food allergy research and care.
Collapse
Affiliation(s)
- Haritz Irizar
- Division of Psychiatry, University College London, London, United Kingdom; Department of Genetics & Genomic Sciences and Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Kanika Kanchan
- Department of Medicine, Johns Hopkins University, Baltimore, Md
| | | | - Supinda Bunyavanich
- Department of Genetics & Genomic Sciences and Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY.
| |
Collapse
|
94
|
The Association of Gut Microbiota and Treg Dysfunction in Autoimmune Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1278:191-203. [PMID: 33523449 PMCID: PMC9290759 DOI: 10.1007/978-981-15-6407-9_10] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Autoimmune conditions affect 23 million Americans or 7% of the US population. There are more than 100 autoimmune disorders, affecting every major organ system in humans. This chapter aims to further explain Treg dysfunction autoimmune disorders, including monogenic primary immune deficiency such as immune dysregulation polyendocrinopathy, enteropathy, X-linked inheritance (IPEX) syndrome, and polygenic autoimmune diseases with Treg dysfunction such as multiple sclerosis (MS), inflammatory bowel disease (IBD), and food allergy. These conditions are associated with an abnormal small intestinal and colonic microbiome. Some disorders clearly improve with therapies aimed at microbial modification, including probiotics and fecal microbiota transplantation (FMT). Approaches to prevent and treat these disorders will need to focus on the acquisition and maintenance of a healthy colonic microbiota, in addition to more focused approaches at immune suppression during acute disease exacerbations.
Collapse
|
95
|
Yan X, Yan J, Xiang Q, Wang F, Dai H, Huang K, Fang L, Yao H, Wang L, Zhang W. Fructooligosaccharides protect against OVA-induced food allergy in mice by regulating the Th17/Treg cell balance using tryptophan metabolites. Food Funct 2021; 12:3191-3205. [PMID: 33735338 DOI: 10.1039/d0fo03371e] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Fructooligosaccharides (FOS) can change gut microbiota composition and play a protective role in food allergy (FA).
Collapse
Affiliation(s)
- Xiumei Yan
- Department of Pediatrics
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University
- Wenzhou 325000
- China
| | - Jingbin Yan
- Department of Ultrasonography
- Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine
- Wenzhou 325000
- China
| | - Qiangwei Xiang
- Department of Pediatrics
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University
- Wenzhou 325000
- China
| | - Fanyan Wang
- Department of Pathophysiology
- School of Basic Medical Sciences
- Wenzhou Medical University
- Wenzhou 325000
- China
| | - Huan Dai
- Department of Pediatrics
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University
- Wenzhou 325000
- China
| | - Kaiyu Huang
- Department of Pediatrics
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University
- Wenzhou 325000
- China
| | - Lingjuan Fang
- Department of Pediatrics
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University
- Wenzhou 325000
- China
| | - Hao Yao
- Department of Pediatrics
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University
- Wenzhou 325000
- China
| | - Lingya Wang
- Department of Pediatrics
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University
- Wenzhou 325000
- China
| | - Weixi Zhang
- Department of Pediatrics
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University
- Wenzhou 325000
- China
| |
Collapse
|
96
|
Prevention of food allergy: can we stop the rise of IgE mediated food allergies? Curr Opin Allergy Clin Immunol 2020; 21:195-201. [PMID: 33394703 DOI: 10.1097/aci.0000000000000719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
PURPOSE OF REVIEW Food allergy has become more prevalent in recent decades. Without a curative treatment for food allergy, prevention is key. Can we intervene and halt the food allergy epidemic? RECENT FINDINGS There are three main hypotheses to explain the rise in food allergy: the dual-allergen exposure hypothesis, the hygiene hypothesis and the vitamin D hypothesis. In a recent systematic review of randomized controlled trials, only introduction of allergenic foods, namely egg and peanut, in the diet at the time of weaning and avoidance of temporary supplementation with cow's milk formula in the first few days of life showed low to moderate evidence of a preventive effect. SUMMARY For primary prevention, introduction of allergenic foods at the time of weaning and avoidance of temporary supplementation with cow's milk formula in the first few days of life has been recommended. Introduction of foods once allergy has been excluded may be beneficial for sensitized subjects (secondary prevention). Once food allergy has been established, it is important to minimise complications (tertiary prevention) through allergen avoidance, timely treatment of allergic reactions, control of atopic co-morbidities and dietetic and psychological support, as appropriate. Immunomodulatory treatments can potentially be disease-modifying and require further research.
Collapse
|
97
|
Raithel M, Bischoff SC. Allergisch bedingte Magen-Darm-Erkrankungen und Nahrungsmittelunverträglichkeiten. ALLERGO JOURNAL 2020; 29:40-44. [PMID: 33343098 PMCID: PMC7735185 DOI: 10.1007/s15007-020-2647-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Martin Raithel
- Malteser Waldkrankenhaus Erlangen, Rathsberger Str. 57, 91054 Erlangen, Germany
| | | |
Collapse
|
98
|
Han X, Krempski JW, Nadeau K. Advances and novel developments in mechanisms of allergic inflammation. Allergy 2020; 75:3100-3111. [PMID: 33068299 DOI: 10.1111/all.14632] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/13/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023]
Abstract
In the past decade, research in the molecular and cellular underpinnings of basic and clinical immunology has significantly advanced our understanding of allergic disorders, allowing scientists and clinicians to diagnose and treat disorders such as asthma, allergic and nonallergic rhinitis, and food allergy. In this review, we discuss several significant recent developments in basic and clinical research as well as important future research directions in allergic inflammation. Certain key regulatory cytokines, genes and molecules have recently been shown to play key roles in allergic disorders. For example, interleukin-33 (IL-33) plays an important role in refractory disorders such as asthma, allergic rhinitis and food allergy, mainly by inducing T helper (Th) 2 immune responses and clinical trials with IL-33 inhibitors are underway in food allergy. We discuss interleukin 4 receptor pathways, which recently have been shown to play a critical role among the allergic inflammatory pathways that drive allergic disorders and pathogenesis. Further, the cytokine thymic stromal lymphopoietin (TSLP) has recently been shown as a factor in maintaining immune homeostasis and regulating type 2 inflammatory responses at mucosal barriers in allergic inflammation and targeting TSLP-mediated signalling is considered an attractive therapeutic strategy. In addition, new findings establish an important T cell-intrinsic role of mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) proteolytic activity in the suppression of autoimmune responses. We have seen how mutations in the filaggrin gene are a significant risk factor for allergic diseases such as atopic dermatitis, asthma, allergic rhinitis, food allergy, contact allergy, and hand eczema. We are only beginning to understand the mechanisms by which the human microbiota may be regulating the immune system, and how sudden changes in the composition of the microbiota may have profound effects, linked with an increased risk of developing chronic inflammatory disorders, including allergies. New research has shown the important but complex role monocytes play in disorders such as food allergies. Finally, we discuss some of the new directions of research in this area, particularly the important use of biologicals in oral immunotherapy, advances in gene therapy, multifood therapy, novel diagnostics in diagnosing allergic disorders and the central role that omics play in creating molecular signatures and biomarkers of allergic disorders such as food allergy. Such exciting new developments and advances have significantly moved forth our ability to understand the mechanisms underlying allergic diseases for improved patient care.
Collapse
Affiliation(s)
- Xiaorui Han
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University Stanford University Stanford CA USA
| | - James W. Krempski
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University Stanford University Stanford CA USA
| | - Kari Nadeau
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University Stanford University Stanford CA USA
| |
Collapse
|
99
|
Whole Goat Milk as a Source of Fat and Milk Fat Globule Membrane in Infant Formula. Nutrients 2020; 12:nu12113486. [PMID: 33202897 PMCID: PMC7696746 DOI: 10.3390/nu12113486] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 01/03/2023] Open
Abstract
Cow milk is the most common dairy milk and has been extensively researched for its functional, technological and nutritional properties for a wide range of products. One such product category is infant formula, which is the most suitable alternative to feed infants, when breastfeeding is not possible. Most infant formulas are based on cow milk protein ingredients. For several reasons, consumers now seek alternatives such as goat milk, which has increasingly been used to manufacture infant, follow-on and young child formulas over the last 30 years. While similar in many aspects, compositional and functional differences exist between cow and goat milk. This offers the opportunity to explore different formulations or manufacturing options for formulas based on goat milk. The use of whole goat milk as the only source of proteins in formulas allows levels of milk fat, short and medium chain fatty acids, sn-2 palmitic acid, and milk fat globule membrane (MFGM) to be maximised. These features improve the composition and microstructure of whole goat milk-based infant formula, providing similarities to the complex human milk fat globules, and have been shown to benefit digestion, and cognitive and immune development. Recent research indicates a role for milk fat and MFGM on digestive health, the gut–brain axis and the gut–skin axis. This review highlights the lipid composition of whole goat milk-based infant formula and its potential for infant nutrition to support healthy digestion, brain development and immunity. Further work is warranted on the role of these components in allergy development and the advantages of goat milk fat and MFGM for infant nutrition and health.
Collapse
|
100
|
Depolymerized sulfated galactans from Eucheuma serra ameliorate allergic response and intestinal flora in food allergic mouse model. Int J Biol Macromol 2020; 166:977-985. [PMID: 33144260 DOI: 10.1016/j.ijbiomac.2020.10.254] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 11/20/2022]
Abstract
The ameliorative effect of depolymerized sulfated polysaccharides from Eucheuma serra (DESP) on ovalbumin (OVA)-caused induced food allergy was investigated in this work. Results showed that OVA stimulated the secretion of allergy-related cytokines (OVA-specific IgE, mMCP-1, IgA, TNF-α) and led to diarrhea, intestinal epithelial damage, and intestinal microflora dysbiosis in sensitized mice. After the administration of DESP, however, the anaphylactic symptoms (shortness of breath, hypothermia, diarrhea), along with the allergy-related cytokines, were effectively suppressed. Moreover, the reduced intestinal inflammation was discovered in the DESP-treated group. Additionally, 16S rRNA sequencing of fecal samples was performed, and gene count and α-diversity analysis revealed that DESP improved microbial community richness. Taxonomic composition analysis showed that DESP modulated the proportion of Firmicutes and Bacteroidetes/Proteobacteria. Particularly, DESP increased probiotics (Lactobacillaceae, Bifidobacteriaceae and Prevotellaceae) and decreased pathogenic bacteria (Helicobacteraceae and Desulfovibrionaceae). These findings, therefore, suggest that DESP may ameliorate food allergy through the regulation of intestinal microbiota.
Collapse
|