51
|
Zhang C, Li Y, Yu Y, Li Z, Xu X, Talifu Z, Liu W, Yang D, Gao F, Wei S, Zhang L, Gong H, Peng R, Du L, Li J. Impact of inflammation and Treg cell regulation on neuropathic pain in spinal cord injury: mechanisms and therapeutic prospects. Front Immunol 2024; 15:1334828. [PMID: 38348031 PMCID: PMC10859493 DOI: 10.3389/fimmu.2024.1334828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/03/2024] [Indexed: 02/15/2024] Open
Abstract
Spinal cord injury is a severe neurological trauma that can frequently lead to neuropathic pain. During the initial stages following spinal cord injury, inflammation plays a critical role; however, excessive inflammation can exacerbate pain. Regulatory T cells (Treg cells) have a crucial function in regulating inflammation and alleviating neuropathic pain. Treg cells release suppressor cytokines and modulate the function of other immune cells to suppress the inflammatory response. Simultaneously, inflammation impedes Treg cell activity, further intensifying neuropathic pain. Therefore, suppressing the inflammatory response while enhancing Treg cell regulatory function may provide novel therapeutic avenues for treating neuropathic pain resulting from spinal cord injury. This review comprehensively describes the mechanisms underlying the inflammatory response and Treg cell regulation subsequent to spinal cord injury, with a specific focus on exploring the potential mechanisms through which Treg cells regulate neuropathic pain following spinal cord injury. The insights gained from this review aim to provide new concepts and a rationale for the therapeutic prospects and direction of cell therapy in spinal cord injury-related conditions.
Collapse
Affiliation(s)
- Chunjia Zhang
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Yan Li
- Institute of Rehabilitation medicine, China Rehabilitation Research Center, Beijing, China
| | - Yan Yu
- Institute of Rehabilitation medicine, China Rehabilitation Research Center, Beijing, China
| | - Zehui Li
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Xin Xu
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Zuliyaer Talifu
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Wubo Liu
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Degang Yang
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Feng Gao
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Song Wei
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Liang Zhang
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Han Gong
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Run Peng
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Liangjie Du
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Jianjun Li
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Institute of Rehabilitation medicine, China Rehabilitation Research Center, Beijing, China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
52
|
Xu F, Tian Z, Wang Z. Cilostazol protects against degenerative cervical myelopathy injury and cell pyroptosis via TXNIP-NLRP3 pathway. Cell Div 2024; 19:2. [PMID: 38233884 DOI: 10.1186/s13008-024-00108-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 01/11/2024] [Indexed: 01/19/2024] Open
Abstract
Degenerative cervical myelopathy (DCM) is one of the most common and serious neurological diseases. Cilostazol has protective effects of anterior horn motor neurons and prevented the cell apoptosis. However, there was no literatures of Cilostazol on DCM. In this study, we established the DCM rat model to detect the effects of Cilostazol. Meanwhile, the neurobehavioral assessments, histopathology changes, inflammatory cytokines, Thioredoxin-interacting protein (TXNIP), NOD‑like receptor pyrin domain containing 3 (NLRP3) and pro-caspase-1 expressions were detected by Basso, Beattie, and Bresnahan score assessment, Hematoxylin and Eosin Staining, Enzyme-linked immunosorbent assay, immunofluorescence and Western blotting, respectively. After treated with Cilostazol, the Basso, Beattie, and Bresnahan (BBB) score, inclined plane test and forelimb grip strength in DCM rats were significantly increased meanwhile the histopathology injury and inflammatory cytokines were decreased. Additionally, TXNIP, NLRP3 and pro-caspase-1 expressions levels were decreased in Cilostazol treated DCM rats. Interestingly, the using of siTXNIP significantly changed inflammatory cytokines, TXNIP, NLRP3 and pro-caspase-1 expressions, however there was no significance between siTXNIP and Cilostazol + siTXNIP group. These observations showed that Cilostazol rescues DCM injury and ameliorates neuronal destruction mediated by TXNIP/NLRP3/caspase-1 and pro-inflammatory cytokines. As a result of our study, these findings provide further evidence that Cilostazol may represent promising therapeutic candidates for DCM.
Collapse
Affiliation(s)
- Fei Xu
- Department of Neck-Shoulder and Lumbocrural Pain, Yantai hospital of traditional Chinese medicine, 39 Xingfu Road, Zhifu District, Yantai, 264000, Shandong, P.R. China
| | - Zhuo Tian
- Department of General Surgery, Yantai hospital of traditional Chinese medicine, Yantai, Shandong, China
| | - Zhengguang Wang
- Department of Neck-Shoulder and Lumbocrural Pain, Yantai hospital of traditional Chinese medicine, 39 Xingfu Road, Zhifu District, Yantai, 264000, Shandong, P.R. China.
| |
Collapse
|
53
|
He K, Yu H, Zhang J, Wu L, Han D, Ma R. A bibliometric analysis of the research hotspots and frontiers related to cell death in spinal cord injury. Front Neurol 2024; 14:1280908. [PMID: 38249747 PMCID: PMC10797099 DOI: 10.3389/fneur.2023.1280908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/14/2023] [Indexed: 01/23/2024] Open
Abstract
Background Spinal cord injury (SCI) is a severe central nervous trauma that can cause serious consequences. Cell death is emerging as a common pathogenesis after SCI. In the last two decades, numerous studies have been published in the field of cell death after SCI. However, it is still rare to find relevant bibliometric analyses. This bibliometric study aims to visually represent global research trends in the field of cell death after SCI. Methods Bibliometric data were sourced from the Web of Science Core Collection (WoSCC) database. VOSviewer, CiteSpace, and R software ("bibliometrix" package) were used to analyze and visualize bibliometric data. Annual scientific production, countries/regions, institutions, authors, journals, highly cited papers, keywords, and literature co-citation were evaluated to determine research performance. Results An analysis of 5,078 publications extracted from the WoSCC database revealed a fluctuating yet persistent growth in the field of cell death after SCI over the past 23 years. China and the United States, contributing 69% of the total publications, were the main driving force in this field. The Wenzhou Medical University from China contributed to the most papers. In terms of authors, Salvatore Cuzzocrea from the University of Messina had the highest number of publications. The "Journal of Neurotrauma" was the top journal in terms of the number of publications, however, the "Journal of Neuroscience" was the top journal in terms of the number of citations. The theme of the highly cited articles mainly focused on the mechanism of cell death after SCI. The keyword and literature co-citation analysis mainly focused on the mode of cell death, mechanism research of cell death, and functional recovery after SCI. Conclusion This study analyzes the research hotspots, frontiers, and development trends in the field of cell death after SCI, which is important for future studies.
Collapse
Affiliation(s)
- Kelin He
- Department of Acupuncture and Moxibustion, The Third Affiliated Hospital of Zhejiang Chinese Medical University (Zhongshan Hospital of Zhejiang Province), Hangzhou, Zhejiang, China
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Han Yu
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jieqi Zhang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Lei Wu
- Department of Acupuncture and Moxibustion, The Third Affiliated Hospital of Zhejiang Chinese Medical University (Zhongshan Hospital of Zhejiang Province), Hangzhou, Zhejiang, China
| | - Dexiong Han
- Department of Acupuncture and Moxibustion, The Third Affiliated Hospital of Zhejiang Chinese Medical University (Zhongshan Hospital of Zhejiang Province), Hangzhou, Zhejiang, China
| | - Ruijie Ma
- Department of Acupuncture and Moxibustion, The Third Affiliated Hospital of Zhejiang Chinese Medical University (Zhongshan Hospital of Zhejiang Province), Hangzhou, Zhejiang, China
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
54
|
Xie L, Wu H, Shi W, Zhang J, Huang X, Yu T. Melatonin Exerts an Anti-Panoptoic Role in Spinal Cord Ischemia-Reperfusion Injured Rats. Adv Biol (Weinh) 2024; 8:e2300424. [PMID: 37786299 DOI: 10.1002/adbi.202300424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/08/2023] [Indexed: 10/04/2023]
Abstract
Paraplegia is a serious consequence of spinal cord ischemia-reperfusion (SCIR) injury, which leads to neuron death and permanent loss of motor function. However, there is no effective treatment for SCIR. Melatonin exerts a neuroprotective effect in neurodegenerative diseases. However, whether pyroptosis, apoptosis, and necroptosis (PANoptosis) is the primary cause of the massive neural death in SCIR is unknown, and if melatonin exhibits anti-PANoptotic effect in rescuing the disastrous damage is to be decided. This study indicates that melatonin confers neuroprotection in SCIR, attenuating the loss of Nissl body and improving Basso, Beattie & Bresnahan locomotor rating scale scores. Specifically, the apoptotic hallmarks in neurons are increased in SCIR injured spinal cord compared to the sham group. The upregulated trend is reversed by melatonin while the effect of melatonin is abolished by the administration of luzindole, a selective melatonin receptor antagonist. Moreover, similar patterns are found in the necroptotic markers in neurons, the pyroptotic indicators, and the interleukin-1β staining in microglia. In conclusion, PANoptosis may underlie the mass neural death and paraplegia in SCIR, and melatonin confers neuroprotection to the spinal cord via inhibiting PANoptosis.
Collapse
Affiliation(s)
- Lei Xie
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, China
- Institute of Sports Medicine and Health, Qingdao University, Qingdao, 266071, China
| | - Hang Wu
- Institute of Sports Medicine and Health, Qingdao University, Qingdao, 266071, China
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Weipeng Shi
- Institute of Sports Medicine and Health, Qingdao University, Qingdao, 266071, China
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Jing Zhang
- Institute of Sports Medicine and Health, Qingdao University, Qingdao, 266071, China
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Xiaohong Huang
- Institute of Sports Medicine and Health, Qingdao University, Qingdao, 266071, China
- Shandong Institute of Traumatic Orthopedics, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Tengbo Yu
- Institute of Sports Medicine and Health, Qingdao University, Qingdao, 266071, China
- Department of Orthopedic Surgery, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, 266071, China
| |
Collapse
|
55
|
Wang M, Fu Q. Nanomaterials for Disease Treatment by Modulating the Pyroptosis Pathway. Adv Healthc Mater 2024; 13:e2301266. [PMID: 37354133 DOI: 10.1002/adhm.202301266] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/06/2023] [Indexed: 06/26/2023]
Abstract
Pyroptosis differs significantly from apoptosis and cell necrosis as an alternative mode of programmed cell death. Its occurrence is mediated by the gasdermin protein, leading to characteristic outcomes including cell swelling, membrane perforation, and release of cell contents. Research underscores the role of pyroptosis in the etiology and progression of many diseases, making it a focus of research intervention as scientists explore ways to regulate pyroptosis pathways in disease management. Despite numerous reviews detailing the relationship between pyroptosis and disease mechanisms, few delve into recent advancements in nanomaterials as a mechanism for modulating the pyroptosis pathway to mitigate disease effects. Therefore, there is an urgent need to fill this gap and elucidate the path for the use of this promising technology in the field of disease treatment. This review article delves into recent developments in nanomaterials for disease management through pyroptosis modulation, details the mechanisms by which drugs interact with pyroptosis pathways, and highlights the promise that nanomaterial research holds in driving forward disease treatment.
Collapse
Affiliation(s)
- Mengzhen Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, P. R. China
| | - Qinrui Fu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, P. R. China
| |
Collapse
|
56
|
Zhu K, Bi J, Zhang Q, Yang Y, Li J, Liang Y. Mechanism of action of curcumin targeting TRPM2/NLRP3 signaling axis to mediate cell death in the treatment of knee osteoarthritis. Hum Exp Toxicol 2024; 43:9603271241308798. [PMID: 39679472 DOI: 10.1177/09603271241308798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
OBJECTS This study intends to explore the possible mechanisms of curcumin's action after knee osteoarthritis. METHODS Chondrocytes alone were used to mimic the cellular inflammatory response with interleukin IL-1β. Overexpressing TRPM2 chondrocytes were constructed using cell transfection technique for mechanism verification. The proliferation of chondrocytes was assessed by CCK8 assay, cellular ROS level was detected by flow cytometry, cellular inflammatory factor content was detected by ELISA kit, and molecules of cellular pyroptosis-related signaling pathway were detected by western blot and immunofluorescence. In vivo experiments, a rat knee osteoarthritis model was constructed. Cartilage integrity was assessed by histological analysis, cellular inflammatory factor content was detected by ELISA kit, and cellular pyroptosis-related signaling pathway molecules were detected by western blot and immunohistochemistry. RESULTS Curcumin targeting the TRPM2/NLRP3 signaling axis significantly inhibited IL-1β induced decrease in cell viability, increase in ROS level, secretion of inflammatory factors such as TNF-α, IL-6, IL-10, etc., as well as decreased the expression of cellular scaffolding-related proteins, such as GSDMD, NLRP3 and pro-caspase-1, etc. (p < .05). Meanwhile, curcumin targeting the TRPM2/NLRP3 signaling axis also significantly improved the pathological state of cartilage tissue, maintained cartilage integrity, and reduced the secretion of inflammatory factors, and treated osteoarthritis of the knee in rats by mediating cellular pyroptosis. CONCLUSIONS Curcumin can effectively improve the inflammatory response of chondrocytes through the TRPM2/NLRP3 signaling axis in the treatment of osteoarthritis of the knee in rats.
Collapse
Affiliation(s)
- Kai Zhu
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jianping Bi
- Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qingkun Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yifan Yang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jie Li
- Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yanchen Liang
- Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
57
|
Mulla J, Katti R, Scott MJ. The Role of Gasdermin-D-Mediated Pyroptosis in Organ Injury and Its Therapeutic Implications. Organogenesis 2023; 19:2177484. [PMID: 36967609 PMCID: PMC9980590 DOI: 10.1080/15476278.2023.2177484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 02/03/2023] [Indexed: 02/25/2023] Open
Abstract
Gasdermin-D (GSDMD) belongs to the Gasdermin family (GSDM), which are pore-forming effector proteins that facilitate inflammatory cell death, also known as pyroptosis. This type of programmed cell death is dependent on inflammatory caspase activation, which cleaves gasdermin-D (GSDMD) to form membrane pores and initiates the release of pro-inflammatory cytokines. Pyroptosis plays an important role in achieving immune regulation and homeostasis within various organ systems. The role of GSDMD in pyroptosis has been extensively studied in recent years. In this review, we summarize the role of GSDMD in cellular and organ injury mediated by pyroptosis. We will also provide an outlook on GSDMD therapeutic targets in various organ systems.
Collapse
Affiliation(s)
- Joud Mulla
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rohan Katti
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Melanie J. Scott
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
58
|
Wang Y, Xiong Z, Zhang Q, Liu M, Zhang J, Qi X, Jiang X, Yu W. Acetyl-11-Keto-β-Boswellic Acid Accelerates the Repair of Spinal Cord Injury in Rats by Resisting Neuronal Pyroptosis with Nrf2. Int J Mol Sci 2023; 25:358. [PMID: 38203528 PMCID: PMC10779011 DOI: 10.3390/ijms25010358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/14/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
The primary aim of this study is to delve into the potential of Acetyl-11-keto-β-boswellic acid (AKBA) in ameliorating neuronal damage induced by acute spinal cord injury, as well as to unravel the intricate underlying mechanisms. A cohort of 40 Sprague-Dawley rats was meticulously categorized into four groups. Following a seven-day oral administration of AKBA, damaged spinal cord samples were meticulously procured for Nissl staining and electron microscopy to assess neuronal demise. Employing ELISA, immunofluorescence, Western blot (WB), and quantitative polymerase chain reaction (qPCR), the modulatory effects of AKBA within the context of spinal cord injury were comprehensively evaluated. Furthermore, employing an ex vivo extraction of spinal cord neurons, an ATP + LPS-induced pyroptotic injury model was established. The model was subsequently subjected to Nrf2 inhibition, followed by a battery of assessments involving ELISA, DCFH-DA staining, flow cytometry, immunofluorescence, and WB to decipher the effects of AKBA on the spinal cord neuron pyroptosis model. By engaging the Nrf2-ROS-NLRP3 pathway, AKBA exerted a repressive influence on the expression of the pyroptotic initiator protein Caspase-1, thereby mitigating the release of GSDMD and alleviating pyroptosis. Additionally, AKBA demonstrated the ability to attenuate the release of IL-18 and IL-1β, curbing neuronal loss and expediting the restorative processes within the context of spinal cord injury. Our study elucidates that AKBA can reduce spinal cord neuronal apoptosis, providing a basis for the development of AKBA as a clinical treatment for spinal cord injury.
Collapse
Affiliation(s)
- Yao Wang
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (Y.W.); (Z.X.); (Q.Z.); (M.L.); (J.Z.); (X.Q.)
| | - Zongliang Xiong
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (Y.W.); (Z.X.); (Q.Z.); (M.L.); (J.Z.); (X.Q.)
| | - Qiyuan Zhang
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (Y.W.); (Z.X.); (Q.Z.); (M.L.); (J.Z.); (X.Q.)
| | - Mengmeng Liu
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (Y.W.); (Z.X.); (Q.Z.); (M.L.); (J.Z.); (X.Q.)
| | - Jingjing Zhang
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (Y.W.); (Z.X.); (Q.Z.); (M.L.); (J.Z.); (X.Q.)
| | - Xinyue Qi
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (Y.W.); (Z.X.); (Q.Z.); (M.L.); (J.Z.); (X.Q.)
| | - Xiaowen Jiang
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (Y.W.); (Z.X.); (Q.Z.); (M.L.); (J.Z.); (X.Q.)
| | - Wenhui Yu
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (Y.W.); (Z.X.); (Q.Z.); (M.L.); (J.Z.); (X.Q.)
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, China
- Institute of Chinese Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
59
|
Li W, Liang J, Li S, Jiang S, Song M, Xu S, Wang L, Meng H, Zhai D, Tang L, Yang Y, Zhang B. The CXCL12-CXCR4-NLRP3 axis promotes Schwann cell pyroptosis and sciatic nerve demyelination in rats. Clin Exp Immunol 2023; 214:219-234. [PMID: 37497691 PMCID: PMC10714193 DOI: 10.1093/cei/uxad081] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/06/2023] [Accepted: 07/26/2023] [Indexed: 07/28/2023] Open
Abstract
Studies have shown that the activation of the NOD-like receptor protein 3 (NLRP3) inflammasome is detrimental to the functional recovery of the sciatic nerve, but the regulatory mechanisms of the NLRP3 inflammasome in peripheral nerves are unclear. C-X-C motif chemokine 12 (CXCL12) can bind to C-X-C chemokine receptor type 4 (CXCR4) and participate in a wide range of nerve inflammation by regulating the NLRP3 inflammasome. Based on these, we explore whether CXCL12-CXCR4 axis regulates the NLRP3 inflammasome in the peripheral nerve. We found that CXCR4/CXCL12, NLRP3 inflammasome-related components, pyroptosis-related proteins and inflammatory factors in the sciatic nerve injured rats were markedly increased compared with the sham-operated group. AMD3100, a CXCR4 antagonist, reverses the activation of NLRP3 inflammasome, Schwann cell pyroptosis and sciatic nerve demyelination. We further treated rat Schwann cells with LPS (lipopolysaccharide) and adenosine triphosphate (ATP) to mimic the cellular inflammation model of sciatic nerve injury, and the results were consistent with those in vivo. In addition, both in vivo and in vitro experiments demonstrated that AMD3100 treatment reduced the phosphorylation of nuclear factor κB (NF-κB) and the expression of thioredoxin interacting protein (TXNIP), which contributes to activating NLRP3 inflammasome. Therefore, our findings suggest that, after sciatic nerve injury, CXCL12-CXCR4 axis may promote Schwann cell pyroptosis and sciatic nerve demyelination through activating NLRP3 inflammasome and slow the recovery process of the sciatic nerve.
Collapse
Affiliation(s)
- Wei Li
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong Province, China
| | - Jie Liang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong Province, China
| | - Shaohua Li
- Department of Laboratory Medicine, The Third People’s Hospital of Qingdao, Qingdao, Shandong Province, China
| | - Suli Jiang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong Province, China
| | - Meiying Song
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong Province, China
| | - Shuo Xu
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong Province, China
| | - Luoyang Wang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong Province, China
| | - Haining Meng
- School of Emergency Medicine, Medical College of Qingdao University, Qingdao, Shandong Province, China
| | - Dongchang Zhai
- Department of Special Medicine, School of Basic Medical College, Qingdao University, Qingdao, Shandong Province, China
| | - Lei Tang
- Department of Special Medicine, School of Basic Medical College, Qingdao University, Qingdao, Shandong Province, China
| | - Yanyan Yang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong Province, China
| | - Bei Zhang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong Province, China
| |
Collapse
|
60
|
Song G, Wang J, Liu J, Ruan Y. Dimethyl fumarate ameliorates erectile dysfunction in bilateral cavernous nerve injury rats by inhibiting oxidative stress and NLRP3 inflammasome-mediated pyroptosis of nerve via activation of Nrf2/HO-1 signaling pathway. Redox Biol 2023; 68:102938. [PMID: 37931471 PMCID: PMC10652210 DOI: 10.1016/j.redox.2023.102938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/14/2023] [Accepted: 10/17/2023] [Indexed: 11/08/2023] Open
Abstract
OBJECTIVE To investigate the therapeutic potential of dimethyl fumarate (DMF) in improving erectile function of bilateral cavernous nerve injury (BCNI) rats, along with elucidating its underlying mechanisms. METHODS A BCNI rat model was established by clamping bilateral cavernous nerve (CN). DMF was given by gavage at low (20 mg/kg/day) and high (40 mg/kg/day) dosages for a duration of 4 weeks. Erectile function was assessed by electrical stimulation of CN. Penis and CN tissues were collected for subsequent analysis. Additionally, PC-12 cell line was used to verify the mechanism of DMF in vitro. Nfe2l2 or Ho-1 gene knockdown PC-12 cell lines were constructed by lentiviral transfection, respectively. A damaged cell model was induced using H2O2. And then molecular biological methods were employed to analyze cellular molecules and proteins. RESULTS DMF administration for 4 weeks led to improvements in erectile function, reduced fibrosis of penis corpus cavernosum in BCNI rats. The morphology of CN was improved and the number of nerve fibers increased. Furthermore, the levels of nNOS, NO, and cGMP were increased, while Ca2+ was decreased in penis corpus cavernosum. Notably, the levels of ROS, 3-NT and NLRP3 inflammasomes production were reduced, alongside increased expression of Nrf2 and HO-1 proteins in the dorsal penile nerve (DPN) and CN. In vitro, DMF increased cell viability, reduced ROS level, promoted SOD, diminished 3-NT, MDA and DNA damage markers, and inhibited the activation of NLRP3 inflammasomes in H2O2 induced PC-12 cells. Nfe2l2 knockdown and Ho-1 knockdown significantly attenuated the protective effect of DMF, respectively. Furthermore, inhibition of ROS production by N-acetylcysteine led to a reduction in NLRP3 inflammasome activation in H2O2 induced PC-12 cells. CONCLUSIONS DMF improved erectile function of BCNI rats by protecting nerves through inhibiting oxidative stress and the activation of NLRP3 inflammasome-mediated pyroptosis via activation of Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Guoda Song
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Second Clinical College, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiaxin Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jihong Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Yajun Ruan
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
61
|
Wang X, Shen Z, Zhang H, Zhang HJ, Li F, Yu L, Chen H, Zhou K, Xu H, Sheng S. Bexarotene improves motor function after spinal cord injury in mice. Neural Regen Res 2023; 18:2733-2742. [PMID: 37449638 DOI: 10.4103/1673-5374.373676] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Abstract
Spinal cord injury is a challenge in orthopedics because it causes irreversible damage to the central nervous system. Therefore, early treatment to prevent lesion expansion is crucial for the management of patients with spinal cord injury. Bexarotene, a type of retinoid, exerts therapeutic effects on patients with cutaneous T-cell lymphoma and Parkinson's disease. Bexarotene has been proven to promote autophagy, but it has not been used in the treatment of spinal cord injury. To investigate the effects of bexarotene on spinal cord injury, we established a mouse model of T11-T12 spinal cord contusion and performed daily intraperitoneal injection of bexarotene for 5 consecutive days. We found that bexarotene effectively reduced the deposition of collagen and the number of pathological neurons in the injured spinal cord, increased the number of synapses of nerve cells, reduced oxidative stress, inhibited pyroptosis, promoted the recovery of motor function, and reduced death. Inhibition of autophagy with 3-methyladenine reversed the effects of bexarotene on spinal cord injury. Bexarotene enhanced the nuclear translocation of transcription factor E3, which further activated AMP-activated protein kinase-S-phase kinase-associated protein 2-coactivator-associated arginine methyltransferase 1 and AMP-activated protein kinase-mammalian target of rapamycin signaling pathways. Intravenous injection of transcription factor E3 shRNA or intraperitoneal injection of compound C, an AMP-activated protein kinase blocker, inhibited the effects of bexarotene. These findings suggest that bexarotene regulates nuclear translocation of transcription factor E3 through the AMP-activated protein kinase-S-phase kinase-associated protein 2-coactivator-associated arginine methyltransferase 1 and AMP-activated protein kinase-mammalian target of rapamycin signal pathways, promotes autophagy, decreases reactive oxygen species level, inhibits pyroptosis, and improves motor function after spinal cord injury.
Collapse
Affiliation(s)
- Xingyu Wang
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University; Zhejiang Provincial Key Laboratory of Orthopedics; The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Zhihao Shen
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University; Zhejiang Provincial Key Laboratory of Orthopedics; The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Haojie Zhang
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University; Zhejiang Provincial Key Laboratory of Orthopedics; The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Hao-Jie Zhang
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University; Zhejiang Provincial Key Laboratory of Orthopedics; The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Feida Li
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University; Zhejiang Provincial Key Laboratory of Orthopedics; The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Letian Yu
- Renji College of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Hua Chen
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University; Zhejiang Provincial Key Laboratory of Orthopedics; The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Kailiang Zhou
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University; Zhejiang Provincial Key Laboratory of Orthopedics; The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Hui Xu
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University; Zhejiang Provincial Key Laboratory of Orthopedics; The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Sunren Sheng
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University; Zhejiang Provincial Key Laboratory of Orthopedics; The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| |
Collapse
|
62
|
Liu G, Deng B, Huo L, Jiang S, Fan X, Mo Y, Ren J, Zhao Y, Xu L, Mu X. Temporal profiling and validation of oxidative stress-related genes in spinal cord injury. Brain Res Bull 2023; 205:110832. [PMID: 38042503 DOI: 10.1016/j.brainresbull.2023.110832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/15/2023] [Accepted: 11/28/2023] [Indexed: 12/04/2023]
Abstract
Oxidative stress (OS) plays a pivotal role in the pathogenesis of spinal cord injury (SCI), yet its underlying mechanisms remain elusive. In this study, we explored the OS phenotype in a rat model of SCI. Subsequently, comprehensive bioinformatic analyses were conducted on microarray data pertaining to SCI (GSE45006). Notably, KEGG enrichment analysis revealed a pronounced enrichment of pivotal pathways, namely MAPK, FoxO, Apoptosis, NF-κB, TNF, HIF-1, and Chemokine across distinct phases of SCI. Furthermore, GO enrichment analysis highlighted the significance of biological processes including response to hypoxia, response to decrease oxygen levels, response to reactive oxygen species, cellular response to oxidative stress, reactive oxygen species metabolic process, and regulation of neuron death in the context of OS following SCI. Notably, our study underscores the prominence of nine genes, namely Itgb1, Itgam, Fn1, Icam1, Cd44, Cxcr4, Ptprc, Tlr4, and Tlr2 as OS key genes in SCI, consistently expressed in both the acute phase (1, 3, 7 days) and sub-acute phase (14 days). Subsequently, the relative mRNA expression of these key genes in different time points (1, 3, 7, 14 days) post-SCI. Finally, leveraging the DsigDB database, we predicted ten potential compounds potentially targeting OS and facilitating the repair of SCI, thus providing novel insights into the mechanisms underlying OS and identifying potential therapeutic targets for SCI.
Collapse
Affiliation(s)
- Gang Liu
- Department of Orthopedics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Bowen Deng
- Department of Orthopedics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Luyao Huo
- Department of Orthopedics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Shengyuan Jiang
- Department of Orthopedics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Xiao Fan
- Department of Orthopedics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Yanjun Mo
- Department of Orthopedics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Jingpei Ren
- Department of Orthopedics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Yi Zhao
- Department of Orthopedics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Lin Xu
- Department of Orthopedics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China.
| | - Xiaohong Mu
- Department of Orthopedics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China.
| |
Collapse
|
63
|
Chen Y, Zhang H, Hu X, Cai W, Jiang L, Wang Y, Wu Y, Wang X, Ni W, Zhou K. Extracellular Vesicles: Therapeutic Potential in Central Nervous System Trauma by Regulating Cell Death. Mol Neurobiol 2023; 60:6789-6813. [PMID: 37482599 DOI: 10.1007/s12035-023-03501-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 07/11/2023] [Indexed: 07/25/2023]
Abstract
CNS (central nervous system) trauma, which is classified as SCI (spinal cord injury) and TBI (traumatic brain injury), is gradually becoming a major cause of accidental death and disability worldwide. Many previous studies have verified that the pathophysiological mechanism underlying cell death and the subsequent neuroinflammation caused by cell death are pivotal factors in the progression of CNS trauma. Simultaneously, EVs (extracellular vesicles), membrane-enclosed particles produced by almost all cell types, have been proven to mediate cell-to-cell communication, and cell death involves complex interactions among molecules. EVs have also been proven to be effective carriers of loaded bioactive components to areas of CNS trauma. Therefore, EVs are promising therapeutic targets to cure CNS trauma. However, the link between EVs and various types of cell death in the context of CNS trauma remains unknown. Therefore, in this review, we summarize the mechanism underlying EV effects, the relationship between EVs and cell death and the pathophysiology underlying EV effects on the CNS trauma based on information in published papers. In addition, we discuss the prospects of applying EVs to the CNS as feasible therapeutic strategies for CNS trauma in the future.
Collapse
Affiliation(s)
- Yituo Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
| | - Haojie Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
| | - Xinli Hu
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wanta Cai
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
| | - Liting Jiang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
| | - Yongli Wang
- Department of Orthopedics, Huzhou Central Hospital, Huzhou, 313099, China
- Department of Orthopedics, Huzhou Basic and Clinical Translation of Orthopaedics Key Laboratory, Huzhou, 313099, China
| | - Yanqing Wu
- The Institute of Life Sciences, Wenzhou University, Wenzhou, 325035, China
| | - Xiangyang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
| | - Wenfei Ni
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China.
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 West Xueyuan Road, Wenzhou, Zhejiang, 325000, China.
| | - Kailiang Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China.
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 West Xueyuan Road, Wenzhou, Zhejiang, 325000, China.
| |
Collapse
|
64
|
Jiang Z, Zeng Z, He H, Li M, Lan Y, Hui J, Bie P, Chen Y, Liu H, Fan H, Xia H. Lycium barbarum glycopeptide alleviates neuroinflammation in spinal cord injury via modulating docosahexaenoic acid to inhibiting MAPKs/NF-kB and pyroptosis pathways. J Transl Med 2023; 21:770. [PMID: 37907930 PMCID: PMC10617163 DOI: 10.1186/s12967-023-04648-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 10/21/2023] [Indexed: 11/02/2023] Open
Abstract
BACKGROUND Lycium barbarum polysaccharide (LBP) is an active ingredient extracted from Lycium barbarum that inhibits neuroinflammation, and Lycium barbarum glycopeptide (LbGp) is a glycoprotein with immunological activity that was purified and isolated from LBP. Previous studies have shown that LbGp can regulate the immune microenvironment, but its specific mechanism of action remains unclear. AIMS In this study, we aimed to explore the mechanism of action of LbGp in the treatment of spinal cord injury through metabolomics and molecular experiments. METHODS SD male rats were randomly assigned to three experimental groups, and after establishing the spinal cord hemisection model, LbGp was administered orally. Spinal cord tissue was sampled on the seventh day after surgery for molecular and metabolomic experiments. In vitro, LbGp was administered to mimic the inflammatory microenvironment by activating microglia, and its mechanism of action in suppressing neuroinflammation was further elaborated using metabolomics and molecular biology techniques such as western blotting and q-PCR. RESULTS In vivo and in vitro experiments found that LbGp can improve the inflammatory microenvironment by inhibiting the NF-kB and pyroptosis pathways. Furthermore, LbGp induced the secretion of docosahexaenoic acid (DHA) by microglia, and DHA inhibited neuroinflammation through the MAPK/NF-κB and pyroptosis pathways. CONCLUSIONS In summary, we hypothesize that LbGp improves the inflammatory microenvironment by regulating the secretion of DHA by microglia and thereby inhibiting the MAPK/NF-κB and pyroptosis pathways and promoting nerve repair and motor function recovery. This study provides a new direction for the treatment of spinal cord injury and elucidates the potential mechanism of action of LbGp.
Collapse
Affiliation(s)
- Zhanfeng Jiang
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, People's Republic of China
- Ningxia Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Zhong Zeng
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, People's Republic of China
- Ningxia Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - He He
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, People's Republic of China
- Ningxia Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Mei Li
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, People's Republic of China
- Ningxia Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Yuanxiang Lan
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, People's Republic of China
- Ningxia Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Jianwen Hui
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, People's Republic of China
- Ningxia Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Pengfei Bie
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, People's Republic of China
- Ningxia Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Yanjun Chen
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, People's Republic of China
- Ningxia Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Hao Liu
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, People's Republic of China
| | - Heng Fan
- Ningxia Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, China.
| | - Hechun Xia
- Ningxia Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, China.
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, People's Republic of China.
| |
Collapse
|
65
|
An Y, Zhai Z, Wang X, Ding Y, He L, Li L, Mo Q, Mu C, Xie R, Liu T, Zhong W, Wang B, Cao H. Targeting Desulfovibrio vulgaris flagellin-induced NAIP/NLRC4 inflammasome activation in macrophages attenuates ulcerative colitis. J Adv Res 2023; 52:219-232. [PMID: 37586642 PMCID: PMC10555950 DOI: 10.1016/j.jare.2023.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 08/11/2023] [Accepted: 08/13/2023] [Indexed: 08/18/2023] Open
Abstract
INTRODUCTION The perturbations of gut microbiota could interact with excessively activated immune responses and play key roles in the etiopathogenesis of ulcerative colitis (UC). Desulfovibrio, the most predominant sulfate reducing bacteria (SRB) resided in the human gut, was observed to overgrow in patients with UC. The interactions between specific gut microbiota and drugs and their impacts on UC treatment have not been demonstrated well. OBJECTIVES This study aimed to elucidate whether Desulfovibrio vulgaris (D. vulgaris, DSV) and its flagellin could activate nucleotide-binding oligomerization domain-like receptors (NLR) family of apoptosis inhibitory proteins (NAIP) / NLR family caspase activation and recruitment domain-containing protein 4 (NLRC4) inflammasome and promote colitis, and further evaluate the efficacy of eugeniin targeting the interaction interface of D. vulgaris flagellin (DVF) and NAIP to attenuate UC. METHODS The abundance of DSV and the occurrence of macrophage pyroptosis in human UC tissues were investigated. Colitis in mice was established by dextran sulfate sodium (DSS) and gavaged with DSV or its purified flagellin. NAIP/NLRC4 inflammasome activation and macrophage pyroptosis were evaluated in vivo and in vitro. The effects of eugeniin on blocking the interaction of DVF and NAIP/NLRC4 and relieving colitis were also assessed. RESULTS The abundance of DSV increased in the feces of patients with UC and was found to be associated with disease activity. DSV and its flagellin facilitated DSS-induced colitis in mice. Mechanistically, RNA sequencing showed that gene expression associated with inflammasome complex and pyroptosis was upregulated after DVF treatment in macrophages. DVF was further demonstrated to induce significant macrophage pyroptosis in vitro, depending on NAIP/NLRC4 inflammasome activation. Furthermore, eugeniin was screened as an inhibitor of the interface between DVF and NAIP and successfully alleviated the proinflammatory effect of DVF in colitis. CONCLUSION Targeting DVF-induced NAIP/NLRC4 inflammasome activation and macrophage pyroptosis ameliorates UC. This finding is of great significance for exploring the gut microbiota-host interactions in UC development and providing new insights for precise treatment.
Collapse
Affiliation(s)
- Yaping An
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Zihan Zhai
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Xin Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Yiyun Ding
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Linlin He
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Lingfeng Li
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Qi Mo
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Chenlu Mu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Runxiang Xie
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Tianyu Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Weilong Zhong
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China.
| |
Collapse
|
66
|
Nazari S, Pourmand SM, Motevaseli E, Hassanzadeh G. Mesenchymal stem cells (MSCs) and MSC-derived exosomes in animal models of central nervous system diseases: Targeting the NLRP3 inflammasome. IUBMB Life 2023; 75:794-810. [PMID: 37278718 DOI: 10.1002/iub.2759] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/02/2023] [Indexed: 06/07/2023]
Abstract
The NLRP3 (NOD-, LRR-, and pyrin domain-containing protein 3) inflammasome is a multimeric protein complex that is engaged in the innate immune system and plays a vital role in inflammatory reactions. Activation of the NLRP3 inflammasome and subsequent release of proinflammatory cytokines can be triggered by microbial infection or cellular injury. The NLRP3 inflammasome has been implicated in the pathogenesis of many disorders affecting the central nervous system (CNS), ranging from stroke, traumatic brain injury, and spinal cord injury to Alzheimer's disease, Parkinson's disease, epilepsy, multiple sclerosis, and depression. Furthermore, emerging evidence has suggested that mesenchymal stem cells (MSCs) and their exosomes may modulate NLRP3 inflammasome activation in a way that might be promising for the therapeutic management of CNS diseases. In the present review, particular focus is placed on highlighting and discussing recent scientific evidence regarding the regulatory effects of MSC-based therapies on the NLRP3 inflammasome activation and their potential to counteract proinflammatory responses and pyroptotic cell death in the CNS, thereby achieving neuroprotective impacts and improvement in behavioral impairments.
Collapse
Affiliation(s)
- Shahrzad Nazari
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mahmoud Pourmand
- School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elahe Motevaseli
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Hassanzadeh
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
67
|
Zhu R, Wang Y, Ouyang Z, Hao W, Zhou F, Lin Y, Cheng Y, Zhou R, Hu W. Targeting regulated chondrocyte death in osteoarthritis therapy. Biochem Pharmacol 2023; 215:115707. [PMID: 37506921 DOI: 10.1016/j.bcp.2023.115707] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/23/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
In vivo articular cartilage degeneration is an essential hallmark of osteoarthritis (OA), involving chondrocyte senescence, extracellular matrix degradation, chondrocyte death, cartilage loss, and bone erosion. Among them, chondrocyte death is one of the major factors leading to cartilage degeneration. Many studies have reported that various cell death modes, including apoptosis, ferroptosis, and autophagy, play a key role in OA chondrocyte death. Currently, there is insufficient understanding of OA pathogenesis, and there remains a lack of treatment methods to prevent OA and inhibit its progression. Studies suggest that OA prevention and treatment are mainly directed to arrest premature or excessive chondrocyte death. In this review, we a) discuss the forms of death of chondrocytes and the associations between them, b) summarize the critical factors in chondrocyte death, c) discuss the vital role of chondrocyte death in OA, d) and, explore new approaches for targeting the regulation of chondrocyte death in OA treatment.
Collapse
Affiliation(s)
- Rendi Zhu
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Yan Wang
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ziwei Ouyang
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Wenjuan Hao
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Fuli Zhou
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Yi Lin
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Yuanzhi Cheng
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Renpeng Zhou
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China; Anhui Provincial Institute of Translational Medicine, Hefei 230032, China.
| | - Wei Hu
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China; Anhui Provincial Institute of Translational Medicine, Hefei 230032, China.
| |
Collapse
|
68
|
Yang L, Gao Y, Huang J, Yang H, Zhao P, Li C, Yang Z. LncRNA Gm44206 Promotes Microglial Pyroptosis Through NLRP3/Caspase-1/GSDMD Axis and Aggravate Cerebral Ischemia-Reperfusion Injury. DNA Cell Biol 2023; 42:554-562. [PMID: 37566540 DOI: 10.1089/dna.2023.0106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2023] Open
Abstract
Inhibition of the inflammatory response triggered by microglial pyroptosis inflammatory activation may be one of the effective ways to alleviate cerebral ischemia-reperfusion injury, the specific mechanism of which remains unclear. In this study, BV-2 microglia with or without oxygen-glucose deprivation/reoxygenation (OGD/R) or long noncoding RNA (lncRNA) Gm44206 knockdown were used as cell models to conduct an in vitro study. Detection of lactate dehydrogenase release and pyroptosis-related protein levels was performed using a corresponding kit and western blotting, respectively. Proliferation of microglia was evaluated by CCK8 assay. Enzyme-linked immunosorbent assay was applied for measuring levels of proinflammatory cytokines. This study verified the involvement of microglial pyroptosis as well as upregulation of NLRP3, Caspase-1, GSDMD, and Apoptosis-associated Speck-like protein containing a C-terminal caspase-recruitment domain (ASC) in cerebral ischemia-reperfusion injury. Moreover, knockdown of lncRNA Gm44206 could alleviate OGD/R-induced microglial pyroptosis and cell proliferation inhibition through the NLRP3/Caspase-1/GSDMD pathway, thus decreasing the release of proinflammatory cytokines, including interleukin (IL)-1β, IL-6, IL-18, and tumor necrosis factor-alpha. In conclusion, this study established a correlation between microglial pyroptosis and cerebral ischemia-reperfusion injury and identified lncRNA Gm44206 as a potential regulator of NLRP3/Caspase-1/GSDMD axis-mediated microglial pyroptosis, which could be considered a promising therapeutic target.
Collapse
Affiliation(s)
- Liangliang Yang
- Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yang Gao
- Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jinlong Huang
- Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hantao Yang
- Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Puyuan Zhao
- Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chen Li
- Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhigang Yang
- Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China
- National Clinical Research Center for Interventional Medicine of China, Shanghai, China
| |
Collapse
|
69
|
Zhang Y, Bai Y, Ma XX, Song JK, Luo Y, Fei XY, Ru Y, Luo Y, Jiang JS, Zhang Z, Yang D, Xue TT, Zhang HP, Liu TY, Xiang YW, Kuai L, Liu YQ, Li B. Clinical-mediated discovery of pyroptosis in CD8 + T cell and NK cell reveals melanoma heterogeneity by single-cell and bulk sequence. Cell Death Dis 2023; 14:553. [PMID: 37620327 PMCID: PMC10449777 DOI: 10.1038/s41419-023-06068-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 08/01/2023] [Accepted: 08/15/2023] [Indexed: 08/26/2023]
Abstract
Histologically, melanoma tissues had fewer positive cells percentage of pyroptosis-related genes (PRGs), GZMA, GSDMB, NLRP1, IL18, and CHMP4A in epidermal than in normal skin. Pyroptosis, a new frontier in cancer, affects the tumor microenvironment and tumor immunotherapy. Nevertheless, the role of pyroptosis remains controversial, which reason is partly due to the heterogeneity of the cellular composition in melanoma. In this study, we present a comprehensive analysis of the single-cell transcriptome landscape of pyroptosis in melanoma specimens. Our findings reveal dysregulation in the expression of PRGs, particularly in immune cells, such as CD8+ cells (representing CD8+ T cells) and CD57+ cells (representing NK cells). Additionally, the immunohistochemical and multiplex immunofluorescence staining experiments results further confirmed GZMA+ cells and GSDMB+ cells were predominantly expressed in immune cells, especially in CD8 + T cells and NK cells. Melanoma specimens secreted a minimal presence of GZMA+ merged CD8+ T cells (0.11%) and GSDMB+ merged CD57+ cells (0.08%), compared to the control groups exhibiting proportions of 4.02% and 0.62%, respectively. The aforementioned findings indicate that a reduced presence of immune cells within tumors may play a role in diminishing the ability of pyroptosis, consequently posing a potential risk to the anti-melanoma properties. To quantify clinical relevance, we constructed a prognostic risk model and an individualized nomogram (C-index=0.58, P = 0.002), suggesting a potential role of PRGs in malignant melanoma prevention. In conclusion, our integrated single-cell and bulk RNA-seq analysis identified immune cell clusters and immune gene modules with experiment validation, contributing to our better understanding of pyroptosis in melanoma.
Collapse
Grants
- This study was supported by Shanghai Clinical Key Specialty Construction Project (shslczdzk05001), Shanghai Science and Technology Committee (21Y21920101,21Y21920102), the Shanghai Development Office of TCM (ZY(2021-2023)-0302, ZY(2021-2023)-0209-13).
- the Key Project of Clinical Research from Shanghai Hospital Development Center (SHDC2020CR4020), and Funding from Shanghai Skin Disease Hospital (2018KYQD01).
- Shanghai Municipal Commission of Economy and Information Technology, Shanghai Artificial Intelligence Innovation and Development Project-Intelligent Dermatology Clinic Based on Modern TCM Diagnostic Technology, No. 2020-RGZN-02038.
- the Youth Talent Promotion Project of China Association of Traditional Chinese Medicine (2021-2023) Category A (CACM-2021-QNRC2-A10), the “Chen Guang” project supported by Shanghai Municipal Education Commission and Shanghai Education Development Foundation (22CGA50), the Health Young Talents of Shanghai Municipal Health Commission (2022YQ026), the Xinglin Youth Scholar of Shanghai University of Traditional Chinese Medicine (No. RY411.33.10).
Collapse
Affiliation(s)
- Ying Zhang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yun Bai
- Shanghai Skin Disease Hospital, Tongji University, Shanghai, 200443, China
| | - Xiao-Xuan Ma
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jian-Kun Song
- Shanghai Skin Disease Hospital, Tongji University, Shanghai, 200443, China
| | - Yue Luo
- Shanghai Skin Disease Hospital, Tongji University, Shanghai, 200443, China
| | - Xiao-Ya Fei
- Shanghai Skin Disease Hospital, Tongji University, Shanghai, 200443, China
| | - Yi Ru
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ying Luo
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jing-Si Jiang
- Shanghai Skin Disease Hospital, Tongji University, Shanghai, 200443, China
| | - Zhan Zhang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Dan Yang
- Shanghai Skin Disease Hospital, Tongji University, Shanghai, 200443, China
| | - Ting-Ting Xue
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hui-Ping Zhang
- Shanghai Applied Protein Technology Co., Ltd., 58 Yuanmei Road, Shanghai, 200233, China
| | - Tai-Yi Liu
- Shanghai Applied Protein Technology Co., Ltd., 58 Yuanmei Road, Shanghai, 200233, China
| | - Yan-Wei Xiang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Le Kuai
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Ye-Qiang Liu
- Shanghai Skin Disease Hospital, Tongji University, Shanghai, 200443, China.
| | - Bin Li
- Shanghai Skin Disease Hospital, Tongji University, Shanghai, 200443, China.
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
70
|
Wu C, Wang L, Chen S, Shi L, Liu M, Tu P, Sun J, Zhao R, Zhang Y, Wang J, Pan Y, Ma Y, Guo Y. Iron induces B cell pyroptosis through Tom20-Bax-caspase-gasdermin E signaling to promote inflammation post-spinal cord injury. J Neuroinflammation 2023; 20:171. [PMID: 37480037 PMCID: PMC10362643 DOI: 10.1186/s12974-023-02848-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 07/05/2023] [Indexed: 07/23/2023] Open
Abstract
BACKGROUND Immune inflammatory responses play an important role in spinal cord injury (SCI); however, the beneficial and detrimental effects remain controversial. Many studies have described the role of neutrophils, macrophages, and T lymphocytes in immune inflammatory responses after SCI, although little is known about the role of B lymphocytes, and immunosuppression can easily occur after SCI. METHODS A mouse model of SCI was established, and HE staining and Nissl staining were performed to observe the pathological changes. The size and morphology of the spleen were examined, and the effects of SCI on spleen function and B cell levels were detected by flow cytometry and ELISA. To explore the specific mechanism of immunosuppression after SCI, B cells from the spleens of SCI model mice were isolated using magnetic beads and analyzed by 4D label-free quantitative proteomics. The level of inflammatory cytokines and iron ions were measured, and the expression of proteins related to the Tom20 pathway was quantified by western blotting. To clarify the relationship between iron ions and B cell pyroptosis after SCI, we used FeSO4 and CCCP, which induce oxidative stress to stimulate SCI, to interfere with B cell processes. siRNA transfection to knock down Tom20 (Tom20-KD) in B cells and human B lymphocytoma cell was used to verify the key role of Tom20. To further explore the effect of iron ions on SCI, we used deferoxamine (DFO) and iron dextran (ID) to interfere with SCI processes in mice. The level of iron ions in splenic B cells and the expression of proteins related to the Tom20-Bax-caspase-gasdermin E (GSDME) pathway were analyzed. RESULTS SCI could damage spleen function and lead to a decrease in B cell levels; SCI upregulated the expression of Tom20 protein in the mitochondria of B cells; SCI could regulate the concentration of iron ions and activate the Tom20-Bax-caspase-GSDME pathway to induce B cell pyroptosis. Iron ions aggravated CCCP-induced B cell pyroptosis and human B lymphocytoma pyroptosis by activating the Tom20-Bax-caspase-GSDME pathway. DFO could reduce inflammation and promote repair after SCI by inhibiting Tom20-Bax-caspase-GSDME-induced B cell pyroptosis. CONCLUSIONS Iron overload activates the Tom20-Bax-caspase-GSDME pathway after SCI, induces B cell pyroptosis, promotes inflammation, and aggravates the changes caused by SCI. This may represent a novel mechanism through which the immune inflammatory response is induced after SCI and may provide a new key target for the treatment of SCI.
Collapse
Affiliation(s)
- Chengjie Wu
- Department of Traumatology and Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Laboratory of New Techniques of Restoration and Reconstruction, Institute of Traumatology and Orthopedics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lining Wang
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Sixian Chen
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lei Shi
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mengmin Liu
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Pengcheng Tu
- Department of Traumatology and Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Laboratory of New Techniques of Restoration and Reconstruction, Institute of Traumatology and Orthopedics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jie Sun
- Department of Traumatology and Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Laboratory of New Techniques of Restoration and Reconstruction, Institute of Traumatology and Orthopedics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ruihua Zhao
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yafeng Zhang
- Jiangsu CM Clinical Innovation Center of Degenerative Bone and Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
| | - Jianwei Wang
- Jiangsu CM Clinical Innovation Center of Degenerative Bone and Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
| | - Yalan Pan
- Laboratory of Chinese Medicine Nursing Intervention for Chronic Diseases, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Yong Ma
- Department of Traumatology and Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
- Laboratory of New Techniques of Restoration and Reconstruction, Institute of Traumatology and Orthopedics, Nanjing University of Chinese Medicine, Nanjing, China.
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
- Jiangsu CM Clinical Innovation Center of Degenerative Bone and Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China.
| | - Yang Guo
- Department of Traumatology and Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
- Laboratory of New Techniques of Restoration and Reconstruction, Institute of Traumatology and Orthopedics, Nanjing University of Chinese Medicine, Nanjing, China.
- Jiangsu CM Clinical Innovation Center of Degenerative Bone and Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China.
| |
Collapse
|
71
|
Huang L, Lu S, Bian M, Wang J, Yu J, Ge J, Zhang J, Xu Q. Punicalagin attenuates TNF-α-induced oxidative damage and promotes osteogenic differentiation of bone mesenchymal stem cells by activating the Nrf2/HO-1 pathway. Exp Cell Res 2023:113717. [PMID: 37429372 DOI: 10.1016/j.yexcr.2023.113717] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023]
Abstract
Oxidative stress is one of the most important factors in changing bone homeostasis. Redox homeostasis plays a key role in the osteogenic differentiation of bone mesenchymal stem cells (BMSCs) and the angiogenesis ability of human umbilical vein endothelial cells (HUVECs) for bone regeneration. Currently, this study assessed the effects of punicalagin (PUN) on BMSCs and HUVECs. Cell viability was determined by CCK-8 assay. A flow cytometry analysis was adopted to detect macrophage polarization. The production of reactive oxygen stress (ROS), glutathione (GSH), malonaldehyde (MDA) and superoxide dismutase (SOD) activities were evaluated by using commercially-available kits. Osteogenic capacity of BMSCs was evaluated by ALP activity, ALP staining and ARS staining. The expression of osteogenic-related proteins (OCN, Runx-2, OPN) and Nrf/HO-1 levles were evaluated by Western blotting. Osteogenic-related genes (Osterix, COL-1, BMP-4, ALP) were evaluated by RT-PCR. Migration ability and invasion ability of HUVECs were evaluated by wound healing assay and Transwell assay. Angiogenic ability was detected by tube formation assay and the expression of angiogenic-related genes (VEGF, vWF, CD31) were evaluated by RT-PCR. Results showed that PUN alleviated oxidative stress by TNF-α, enhanced osteogenic differentiation in BMSCs and angiogenesis in HUVECs. Moreover, PUN regulate immune microenvironment by promoting the polarization of M2 macrophages and reduce the oxidative stress related products by activating Nrf2/HO-1 pathway. Altogether, these results suggested that PUN can promote osteogenic capacity of BMSCs, angiogenesis of HUVECs, alleviate oxidative stress via Nrf2/HO-1 pathway, offering PUN as a novel antioxidant agent for treating bone loss diseases.
Collapse
Affiliation(s)
- Lei Huang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Shunyi Lu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Mengxuan Bian
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jiayi Wang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jieqin Yu
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jun Ge
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Jian Zhang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Qintong Xu
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
72
|
Li Y, Liu C, Wang G, Wang H, Liu X, Huang C, Chen Y, Fan L, Zhou L, Tong A. HDAC3 inhibitor (BRD3308) modulates microglial pyroptosis and neuroinflammation through PPARγ/NLRP3/GSDMD to improve neurological function after intraventricular hemorrhage in mice. Neuropharmacology 2023:109633. [PMID: 37327970 DOI: 10.1016/j.neuropharm.2023.109633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 05/01/2023] [Accepted: 06/06/2023] [Indexed: 06/18/2023]
Abstract
Neuroinflammation plays a vital role in intraventricular hemorrhage (IVH). Excessive neuroinflammation after IVH can activate the inflammasome in the cell and accelerate the occurrence of pyroptosis in cells, produce more inflammatory mediators, increase cell death, and lead to neurological deficits. Previous studies have reported that BRD3308 (BRD), an inhibitor of histone deacetylation by histone deacetylase 3 (HDAC3), suppresses inflammation-induced apoptosis and exhibits anti-inflammatory properties. However, it is unclear how BRD reduces the occurrence of the inflammatory cascade. In this study, we stereotactically punctured the ventricles of male C57BL/6J mice and injected autologous blood via the tail vein to simulate ventricular hemorrhage. Magnetic resonance imaging was used to detect ventricular hemorrhage and enlargement. Our findings demonstrated that BRD treatment significantly improved neurobehavioral performance and decreased neuronal loss, microglial activation, and pyroptosis in the hippocampus after IVH. At the molecular level, this treatment upregulated the expression of peroxisome proliferator-activated receptor γ (PPARγ) and inhibited NLRP3-mediated pyroptosis and inflammatory cytokines. Therefore, we concluded that BRD reduced pyroptosis and neuroinflammation and improve nerve function in part by activating the PPARγ/NLRP3/GSDMD signaling pathway. Our findings suggest a potential preventive role for BRD in IVH.
Collapse
Affiliation(s)
- Yuanyou Li
- Department of Neurosurgery, West China Medical School, West China Hospital, Sichuan University, Chengdu, China
| | - Chang Liu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guoqing Wang
- Department of Neurosurgery, West China Medical School, West China Hospital, Sichuan University, Chengdu, China
| | - Haoxiang Wang
- Department of Neurosurgery, West China Medical School, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoyin Liu
- Department of Neurosurgery, West China Medical School, West China Hospital, Sichuan University, Chengdu, China
| | - Cheng Huang
- State Key Laboratory of Biotherapy, West China Medical School, Sichuan University, Chengdu, China
| | - Yaxing Chen
- Department of Neurosurgery, West China Medical School, West China Hospital, Sichuan University, Chengdu, China
| | - Lingjie Fan
- College of Computer Science, Sichuan University, Chengdu, China
| | - Liangxue Zhou
- Department of Neurosurgery, West China Medical School, West China Hospital, Sichuan University, Chengdu, China.
| | - Aiping Tong
- State Key Laboratory of Biotherapy, West China Medical School, Sichuan University, Chengdu, China.
| |
Collapse
|
73
|
Zheng JH, Yuan N, Zhang P, Liu DF, Lin W, Miao J. Acupuncture combined with moxibustion mitigates spinal cord injury-induced motor dysfunction in mice by NLRP3-IL-18 signaling pathway inhibition. J Orthop Surg Res 2023; 18:419. [PMID: 37296436 DOI: 10.1186/s13018-023-03902-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND Spinal cord injury (SCI), which reportedly induces severe motor dysfunction, imposes a significant social and financial burden on affected individuals, families, communities, and nations. Acupuncture combined with moxibustion (AM) therapy has been widely used for motor dysfunction treatment, but the underlying mechanisms remain unknown. In this work, we aimed to determine whether AM therapy could alleviate motor impairment post-SCI and, if so, the potential mechanism. METHODS A SCI model was established in mice through impact methods. AM treatment was performed in SCI model mice at Dazhui (GV14) and Jiaji points (T7-T12), Mingmen (GV4), Zusanli (ST36), and Ciliao (BL32) on both sides for 30 min once per day for 28 days. The Basso-Beattie-Bresnahan score was used to assess motor function in mice. A series of experiments including astrocytes activation detected by immunofluorescence, the roles of NOD-like receptor pyrin domain-containing-3 (NLRP3)-IL-18 signaling pathway with the application of astrocyte-specific NLRP3 knockout mice, and western blot were performed to explore the specific mechanism of AM treatment in SCI. RESULTS Our data indicated that mice with SCI exposure exhibited motor dysfunction, a significant decrease of neuronal cells, a remarkable activation of astrocytes and microglia, an increase of IL-6, TNF-α, IL-18 expression, and an elevation of IL-18 colocalized with astrocytes, while astrocytes-specific NLRP3 knockout heavily reversed these changes. Besides, AM treatment simulated the neuroprotective effects of astrocyte-specific NLRP3 knockout, whereas an activator of NLRP3 nigericin partially reversed the AM neuroprotective effects. CONCLUSION AM treatment mitigates SCI-induced motor dysfunction in mice; this protective mechanism may be related to the NLRP3-IL18 signaling pathway inhibition in astrocytes.
Collapse
Affiliation(s)
- Ji-Hui Zheng
- Department of OrthopaedicsThe Graduate School, Tianjin Medical University, Tianjin, China
- Hebei Key Laboratory of Integrated Traditional and Western Medicine in Osteoarthrosis Research (Preparing), Cangzhou, China
| | - Na Yuan
- Department of Orthopaedics, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China
| | - Peng Zhang
- Department of Orthopaedics, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China
| | - De-Feng Liu
- Department of Orthopaedics, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China
| | - Wei Lin
- Department of Orthopaedics, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China
| | - Jun Miao
- Department of OrthopaedicsTianjin Hospital, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
74
|
Jin X, Ma Y, Liu D, Huang Y. Role of pyroptosis in the pathogenesis and treatment of diseases. MedComm (Beijing) 2023; 4:e249. [PMID: 37125240 PMCID: PMC10130418 DOI: 10.1002/mco2.249] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 02/16/2023] [Accepted: 03/07/2023] [Indexed: 05/02/2023] Open
Abstract
Programmed cell death (PCD) is regarded as a pathological form of cell death with an intracellular program mediated, which plays a pivotal role in maintaining homeostasis and embryonic development. Pyroptosis is a new paradigm of PCD, which has received increasing attention due to its close association with immunity and disease. Pyroptosis is a form of inflammatory cell death mediated by gasdermin that promotes the release of proinflammatory cytokines and contents induced by inflammasome activation. Recently, increasing evidence in studies shows that pyroptosis has a crucial role in inflammatory conditions like cardiovascular diseases (CVDs), cancer, neurological diseases (NDs), and metabolic diseases (MDs), suggesting that targeting cell death is a potential intervention for the treatment of these inflammatory diseases. Based on this, the review aims to identify the molecular mechanisms and signaling pathways related to pyroptosis activation and summarizes the current insights into the complicated relationship between pyroptosis and multiple human inflammatory diseases (CVDs, cancer, NDs, and MDs). We also discuss a promising novel strategy and method for treating these inflammatory diseases by targeting pyroptosis and focus on the pyroptosis pathway application in clinics.
Collapse
Affiliation(s)
- Xiangyu Jin
- Wuxi School of MedicineJiangnan UniversityJiangsuChina
| | - Yinchu Ma
- Wuxi School of MedicineJiangnan UniversityJiangsuChina
| | - Didi Liu
- Wuxi School of MedicineJiangnan UniversityJiangsuChina
| | - Yi Huang
- Wuxi School of MedicineJiangnan UniversityJiangsuChina
| |
Collapse
|
75
|
Xu Y, Geng Y, Wang H, Zhang H, Qi J, Li F, Hu X, Chen Y, Si H, Li Y, Wang X, Xu H, Kong J, Cai Y, Wu A, Ni W, Xiao J, Zhou K. Cyclic helix B peptide alleviates proinflammatory cell death and improves functional recovery after traumatic spinal cord injury. Redox Biol 2023; 64:102767. [PMID: 37290302 DOI: 10.1016/j.redox.2023.102767] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/23/2023] [Accepted: 05/29/2023] [Indexed: 06/10/2023] Open
Abstract
BACKGROUND Necroptosis and pyroptosis, two types of proinflammatory programmed cell death, were recently found to play important roles in spinal cord injury (SCI). Moreover, cyclic helix B peptide (CHBP) was designed to maintain erythropoietin (EPO) activity and protect tissue against the adverse effects of EPO. However, the protective mechanism of CHBP following SCI is still unknown. This research explored the necroptosis- and pyroptosis-related mechanism underlying the neuroprotective effect of CHBP after SCI. METHODS Gene Expression Omnibus (GEO) datasets and RNA sequencing were used to identify the molecular mechanisms of CHBP for SCI. A mouse model of contusion SCI was constructed, and HE staining, Nissl staining, Masson staining, footprint analysis and the Basso Mouse Scale (BMS) were applied for histological and behavioural analyses. qPCR, Western blot analysis, immunoprecipitation and immunofluorescence were utilized to analyse the levels of necroptosis, pyroptosis, autophagy and molecules associated with the AMPK signalling pathway. RESULTS The results revealed that CHBP significantly improved functional restoration, elevated autophagy, suppressed pyroptosis, and mitigated necroptosis after SCI. 3-Methyladenine (3-MA), an autophagy inhibitor, attenuated these beneficial effects of CHBP. Furthermore, CHBP-triggered elevation of autophagy was mediated by the dephosphorylation and nuclear translocation of TFEB, and this effect was due to stimulation of the AMPK-FOXO3a-SPK2-CARM1 and AMPK-mTOR signalling pathways. CONCLUSION CHBP acts as a powerful regulator of autophagy that improves functional recovery by alleviating proinflammatory cell death after SCI and thus might be a prospective therapeutic agent for clinical application.
Collapse
Affiliation(s)
- Yu Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China; Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Yibo Geng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
| | - Hui Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
| | - Haojie Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
| | - Jianjun Qi
- Department of Clinical Laboratory, The First Affiliated Hospital of Wannan Medical College (Yi jishan Hospital of Wannan Medical College), Wuhu, 241001, China
| | - Feida Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
| | - Xinli Hu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
| | - Yituo Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
| | - Haipeng Si
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Yao Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
| | - Xiangyang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
| | - Huazi Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
| | - Jianzhong Kong
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
| | - Yuepiao Cai
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, China
| | - Aimin Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
| | - Wenfei Ni
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China.
| | - Jian Xiao
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, China.
| | - Kailiang Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China.
| |
Collapse
|
76
|
Zhang P, Zhang J, Kou W, Gu G, Zhang Y, Shi W, Chu P, Liang D, Sun G, Shang J. Comprehensive analysis of a pyroptosis-related gene signature of clinical and biological values in spinal cord injury. Front Neurol 2023; 14:1141939. [PMID: 37273699 PMCID: PMC10237016 DOI: 10.3389/fneur.2023.1141939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/27/2023] [Indexed: 06/06/2023] Open
Abstract
Background Since some of the clinical examinations are not suitable for patients with severe spinal cord injury (SCI), blood biomarkers have been reported to reflect the severity of SCI. The objective of this study was to screen out the potential biomarkers associated with the diagnosis of SCI by bioinformatics analysis. Methods The microarray expression profiles of SCI were obtained from the Gene Expression Omnibus (GEO) database. Core genes correlated to pyroptosis were obtained by crossing the differential genes, and module genes were obtained by WGCNA analysis and lasso regression. The immune infiltration analysis and GSEA analysis revealed the essential effect of immune cells in the progression of SCI. In addition, the accuracy of the biomarkers in diagnosing SCI was subsequently evaluated and verified using the receiver operating characteristic curve (ROC) and qRT-PCR. Results A total of 423 DEGs were identified, among which 319 genes were upregulated and 104 genes were downregulated. Based on the WGCNA analysis, six potential biomarkers were screened out, including LIN7A, FCGR1A, FGD4, GPR27, BLOC1S1, and GALNT4. The results of ROC curves demonstrated the accurate value of biomarkers related to SCI. The immune infiltration analysis and GSEA analysis revealed the essential effect of immune cells in the progression of SCI, including macrophages, natural killer cells, and neutrophils. The qRT-PCR results verified that FGD4, FCAR1A, LIN7A, BLOC1S1, and GPR27 were significantly upregulated in SCI patients. Conclusion In this study, we identified and verified five immune pyroptosis-related hub genes by WGCNA and biological experiments. It is expected that the five identified potential biomarkers in peripheral white blood cells may provide a novel strategy for early diagnosis.
Collapse
Affiliation(s)
- Pingping Zhang
- Department of Orthopedics, Seventh Affiliated Hospital of Shanxi Medical University, Linfen People's Hospital, Linfen, Shanxi, China
| | - Jianping Zhang
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Wenjuan Kou
- School of Pharmaceutical Sciences and Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Department of Disinfection Monitoring, Yongji Disease Control and Prevention Center, Yongji, Shanxi, China
| | - Guangjin Gu
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Yaning Zhang
- Department of Orthopedics, Seventh Affiliated Hospital of Shanxi Medical University, Linfen People's Hospital, Linfen, Shanxi, China
| | - Weihan Shi
- Department of Orthopedics, Seventh Affiliated Hospital of Shanxi Medical University, Linfen People's Hospital, Linfen, Shanxi, China
| | - Pengcheng Chu
- Department of Orthopedics, Seventh Affiliated Hospital of Shanxi Medical University, Linfen People's Hospital, Linfen, Shanxi, China
| | - Dachuan Liang
- Department of Scientific Research Management, Shanxi Medical College Seventh Affiliated Hospital, Linfen People's Hospital, Linfen, Shanxi, China
| | - Guangwei Sun
- Department of Orthopedics, Seventh Affiliated Hospital of Shanxi Medical University, Linfen People's Hospital, Linfen, Shanxi, China
| | - Jun Shang
- Department of Orthopedics, Seventh Affiliated Hospital of Shanxi Medical University, Linfen People's Hospital, Linfen, Shanxi, China
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
77
|
Shan W, Li S, Yin Z. Identification of canonical pyroptosis-related genes, associated regulation axis, and related traditional Chinese medicine in spinal cord injury. Front Aging Neurosci 2023; 15:1152297. [PMID: 37273650 PMCID: PMC10232751 DOI: 10.3389/fnagi.2023.1152297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/02/2023] [Indexed: 06/06/2023] Open
Abstract
Neuroinflammation plays an important role in spinal cord injury (SCI), and pyroptosis is inflammatory-related programmed cell death. Although neuroinflammation induced by pyroptosis has been reported in SCI, there is a lack of systematic research on SCI pyroptosis and its regulation mechanism. The purpose of this study was to systematically analyze the expression of pyroptosis-related genes (PRGs) in different SCI models and associated regulation axis by bioinformatics methods. We downloaded raw counts data of seven high-throughput sequencings and two microarray datasets from the GEO database, classified by species (rat and mouse) and SCI modes (moderate contusive model, aneurysm clip impact-compression model, and hemisection model), including mRNAs, miRNAs, lncRNAs, and circRNAs, basically covering the acute, subacute and chronic stages of SCI. We performed differential analysis by R (DEseq2) or GEO2R and found that the AIM2/NLRC4/NLRP3 inflammasome-related genes, GSDMD, IL1B, and IL18, were highly expressed in SCI. Based on the canonical NLRP3 inflammasome-mediated pyroptosis-related genes (NLRP3/PRGs), we constructed transcription factors (TFs)-NLRP3/PRGs, miRNAs- Nlrp3/PRGs and lncRNAs/circRNAs/mRNAs-miRNA- Nlrp3/PRGs (ceRNA) networks. In addition, we also predicted Traditional Chinese medicine (TCM) and small, drug-like molecules with NLRP3/PRGs as potential targets. Finally, 39 up-regulated TFs were identified, which may regulate at least two of NLRP3/PRGs. A total of 7 down-regulated miRNAs were identified which could regulate Nlrp3/PRGs. ceRNA networks were constructed including 23 lncRNAs, 3 cicrRNAs, 6 mRNAs, and 44 miRNAs. A total of 24 herbs were identified which may with two NLRP3/PRGs as potential targets. It is expected to provide new ideas and therapeutic targets for the treatment of SCI.
Collapse
Affiliation(s)
- Wenshan Shan
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Shuang Li
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, Anhui Medical University, Hefei, Anhui, China
| | - Zongsheng Yin
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
78
|
Chen H, Peng H, Wang PC, Zou T, Feng XM, Wan BW. Role of regulatory T cells in spinal cord injury. Eur J Med Res 2023; 28:163. [PMID: 37161548 PMCID: PMC10169350 DOI: 10.1186/s40001-023-01122-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 04/17/2023] [Indexed: 05/11/2023] Open
Abstract
Spinal cord injury is an intricate process involving a series of multi-temporal and multi-component pathological events, among which inflammatory response is the core. Thus, it is crucial to find a way to prevent the damaging effects of the inflammatory response. The research has found that Treg cells can suppress the activation, proliferation, and effector functions of many parenchymal cells by multiple mechanisms. This review discusses how Treg cells regulate the inflammatory cells to promote spinal cord recovery. These parenchymal cells include macrophages/microglia, oligodendrocytes, astrocytes, and others. In addition, we discuss the adverse role of Treg cells, the status of treatment, and the prospects of cell-based therapies after spinal cord injury. In conclusion, this review provides an overview of the regulatory role of Treg cells in spinal cord injury. We hope to offer new insights into the treatment of spinal cord injury.
Collapse
Affiliation(s)
- Hao Chen
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, 225000, China
| | - Hao Peng
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, 225000, China
| | - Ping-Chuan Wang
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, 225000, China
| | - Tao Zou
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, 225000, China
| | - Xin-Min Feng
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, 225000, China
| | - Bo-Wen Wan
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, 225000, China.
| |
Collapse
|
79
|
Xu T, Gao P, Huang Y, Wu M, Yi J, Zhou Z, Zhao X, Jiang T, Liu H, Qin T, Yang Z, Wang X, Bao T, Chen J, Zhao S, Yin G. Git1-PGK1 interaction achieves self-protection against spinal cord ischemia-reperfusion injury by modulating Keap1/Nrf2 signaling. Redox Biol 2023; 62:102682. [PMID: 36963288 PMCID: PMC10053403 DOI: 10.1016/j.redox.2023.102682] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 03/22/2023] Open
Abstract
Spinal cord ischemia-reperfusion (IR) injury (SCIRI) is a significant secondary injury that causes damage to spinal cord neurons, leading to the impairment of spinal cord sensory and motor functions. Excessive reactive oxygen species (ROS) production is considered one critical mechanism of neuron damage in SCIRI. Nonetheless, the molecular mechanisms underlying the resistance of neurons to ROS remain elusive. Our study revealed that the deletion of Git1 in mice led to poor recovery of spinal cord motor function after SCIRI. Furthermore, we discovered that Git1 has a beneficial effect on neuron resistance to ROS production. Mechanistically, Git1 interacted with PGK1, regulated PGK1 phosphorylation at S203, and affected the intermediate products of glycolysis in neurons. The influence of Git1 on glycolysis regulates the dimerization of Keap1, which leads to changes in Nrf2 ubiquitination and plays a role in resisting ROS. Collectively, we show that Git1 regulates the Keap1/Nrf2 axis to resist ROS in a PGK1-dependent manner and thus is a potential therapeutic target for SCIRI.
Collapse
Affiliation(s)
- Tao Xu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School Nanjing, 210008, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China
| | - Peng Gao
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China
| | - Yifan Huang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China
| | - Mengyuan Wu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China
| | - Jiang Yi
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China
| | - Zheng Zhou
- Department of Emergency Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China
| | - Xuan Zhao
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China
| | - Tao Jiang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China
| | - Hao Liu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China
| | - Tao Qin
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China
| | - Zhenqi Yang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China
| | - Xiaowei Wang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China
| | - Tianyi Bao
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China
| | - Jian Chen
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China.
| | - Shujie Zhao
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China.
| | - Guoyong Yin
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China.
| |
Collapse
|
80
|
Jin X, Zhao X. A new immune checkpoint-associated nine-gene signature for prognostic prediction of glioblastoma. Medicine (Baltimore) 2023; 102:e33150. [PMID: 36862886 PMCID: PMC9981394 DOI: 10.1097/md.0000000000033150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 02/10/2023] [Indexed: 03/04/2023] Open
Abstract
Glioblastoma (GBM) is a highly malignant neurological tumor that has a poor prognosis. While pyroptosis affects cancer cell proliferation, invasion and migration, function of pyroptosis-related genes (PRGs) in GBM as well as the prognostic significance of PRGs remain obscure. By analyzing the mechanisms involved in the association between pyroptosis and GBM, our study hopes to provide new insights into the treatment of GBM. Here, 32 out of 52 PRGs were identified as the differentially expressed genes between GBM tumor versus normal tissues. And all GBM cases were assigned to 2 groups according to the expression of the differentially expressed genes using comprehensive bioinformatics analysis. The least absolute shrinkage and selection operator analysis led to the construction of a 9-gene signature, and the cancer genome atlas cohort of GBM patients were categorized into high risk and low risk subgroups. A significant increase in the survival possibility was found in low risk patients in comparison with the high risk ones. Consistently, low risk patients of a gene expression omnibus cohort displayed a markedly longer overall survival than the high risk counterparts. The risk score calculated using the gene signature was found to be an independent predictor of survival of GBM cases. Besides, we observed significant differences in the expression levels of immune checkpoints between the high risk versus low risk GBM cases, providing instructive suggestions for immunotherapy of GBM. Overall, the present study developed a new multigene signature for prognostic prediction of GBM.
Collapse
Affiliation(s)
- Xiao Jin
- The Personnel Department, Dongfang Hospital Affiliated to Beijing University of Chinese Medicine, Fengtai District, Beijing, China
| | - Xiang Zhao
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
81
|
Upregulation of RAB7 is related to neuronal pyroptosis after spinal cord injury in rats. J Chem Neuroanat 2023; 128:102229. [PMID: 36592695 DOI: 10.1016/j.jchemneu.2022.102229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/19/2022] [Accepted: 12/29/2022] [Indexed: 12/31/2022]
Abstract
Rab7 belongs to the Ras small GTPase superfamily, and abnormal expression of Rab7 can cause neuropathy and lipid metabolism diseases. Studies have shown that Rab7 plays a crucial role in the inner membrane translocase. However, the role of Rab7 in the regulatory mechanisms of cell survival in spinal cord injury remains unknown. We used a rat spinal cord injury (SCI) model to explore the cellular localization and expression of Rab7 after SCI in this study. Western blot analysis showed that Rab7 was expressed in the spinal cord tissue. On the first day, it significantly increased and peaked after SCI on the third day. Furthermore, western blotting also demonstrated that pyroptosis-related protein Gasdermin D (GSDMD), Caspase-1, apoptosis-associated speck-like protein (ASC) expression peaked after the third-day post-injury. Importantly, the immunohistochemistry analysis revealed that Rab7 was completely colocalized with ASC in neurons after SCI. These results suggested that Rab7 was colocalized with NeuN and ASC, involved in the pyroptosis of neurons, and closely related to the spinal cord after injury.
Collapse
|
82
|
Zhang H, Wu C, Yu DD, Su H, Chen Y, Ni W. Piperine attenuates the inflammation, oxidative stress, and pyroptosis to facilitate recovery from spinal cord injury via autophagy enhancement. Phytother Res 2023; 37:438-451. [PMID: 36114802 DOI: 10.1002/ptr.7625] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 08/26/2022] [Accepted: 09/02/2022] [Indexed: 11/08/2022]
Abstract
Spinal cord injury (SCI) is a serious injury that can lead to irreversible motor dysfunction. Due to its complicated pathogenic mechanism, there are no effective drug treatments. Piperine, a natural active alkaloid extracted from black pepper, has been reported to influence neurogenesis and exert a neuroprotective effect in traumatic brain injury. The aim of this study was to investigate the therapeutic effect of piperine in an SCI model. SCI was induced in mice by clamping the spinal cord with a vascular clip for 1 min. Before SCI and every 2 days post-SCI, evaluations using the Basso mouse scale and inclined plane tests were performed. On day 28 after SCI, footprint analyses, and HE/Masson staining of tissues were performed. On a postoperative Day 3, the spinal cord was harvested to assess the levels of pyroptosis, reactive oxygen species (ROS), inflammation, and autophagy. Piperine enhanced functional recovery after SCI. Additionally, piperine reduced inflammation, oxidative stress, pyroptosis, and activated autophagy. However, the effects of piperine on functional recovery after SCI were reversed by autophagy inhibition. The study demonstrated that piperine facilitated functional recovery after SCI by inhibiting inflammatory, oxidative stress, and pyroptosis, mediated by the activation of autophagy.
Collapse
Affiliation(s)
- Haojie Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, People's Republic of China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Chenyu Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, People's Republic of China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Dong-Dong Yu
- Department of Urology, Huzhou Central Hospital, Huzhou, People's Republic of China
| | - Haohan Su
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, People's Republic of China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Yanlin Chen
- Spinal Surgery Department, The Central Hospital of Lishui City, Lishui, People's Republic of China
| | - Wenfei Ni
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, People's Republic of China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou Medical University, Wenzhou, People's Republic of China
| |
Collapse
|
83
|
Song Y, Guo F, Zhao Y, Ma X, Wu L, Yu J, Ji H, Shao M, Huang F, Zhao L, Fan X, Xu Y, Wang Q, Qin G. Novel lncRNA-prader willi/angelman region RNA, SNRPN neighbour (PWARSN) aggravates tubular epithelial cell pyroptosis by regulating TXNIP via dual way in diabetic kidney disease. Cell Prolif 2023; 56:e13349. [PMID: 36316968 PMCID: PMC9890532 DOI: 10.1111/cpr.13349] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/16/2022] [Accepted: 09/30/2022] [Indexed: 02/02/2023] Open
Abstract
OBJECTIVES Elevated thioredoxin-interacting protein (TXNIP)-induced pyroptosis contributes to the pathology of diabetic kidney disease (DKD). However, the molecular mechanisms in dysregulated TXNIP in DKD remain largely unclear. MATERIALS AND METHODS Transcriptomic analysis identified a novel long noncoding RNA-Prader Willi/Angelman region RNA, SNRPN neighbour (PWARSN)-which was highly expressed in a proximal tubular epithelial cell (PTEC) under high glucose conditions. We focused on revealing the functions of PWARSN in regulating TXNIP-mediated pyroptosis in PTECs by targeting PWARSN expression via lentivirus-mediated overexpression and CRISPR-Cas9-based knockout in vitro and overexpressing PWARSN in the renal cortex by AAV-9 targeted injection in vivo. A number of molecular techniques disclosed the mechanisms of PWARSN in regulating TXNIP induced-pyroptosis in DKD. RESULTS TXNIP-NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome and PTEC pyroptosis were activated in the renal tubules of patients with DKD and in diabetic mice. Then we explored that PWARSN enhanced TXNIP-driven PTECs pyroptosis in vitro and in vivo. Mechanistically, cytoplasmic PWARSN sponged miR-372-3p to promote TXNIP expression. Moreover, nuclear PWARSN interacted and facilitated RNA binding motif protein X-linked (RBMX) degradation through ubiquitination, resulting in the initiation of TXNIP transcription by reducing H3K9me3-enrichment at the TXNIP promoter. Further analysis indicated that PWARSN might be a potential biomarker for DKD. CONCLUSIONS These findings illustrate distinct dual molecular mechanisms for PWARSN-modulated TXNIP and PTECs pyroptosis in DKD, presenting PWARSN as a promising therapeutic target for DKD.
Collapse
Affiliation(s)
- Yi Song
- Department of Endocrinology and MetabolismThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Academy of Medical SciencesZhengzhou UniversityZhengzhouChina
- Institute of Clinical MedicineThe First Affiliated Hospital of Zhengzhou universityZhengzhouChina
| | - Feng Guo
- Department of Endocrinology and MetabolismThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Academy of Medical SciencesZhengzhou UniversityZhengzhouChina
- Institute of Clinical MedicineThe First Affiliated Hospital of Zhengzhou universityZhengzhouChina
| | - Yan‐yan Zhao
- Department of Endocrinology and MetabolismThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Xiao‐jun Ma
- Department of Endocrinology and MetabolismThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Li‐na Wu
- Department of Endocrinology and MetabolismThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Ji‐feng Yu
- Department of HematologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Hong‐fei Ji
- Department of Endocrinology and MetabolismThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Ming‐wei Shao
- Department of Endocrinology and MetabolismThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Feng‐juan Huang
- Department of Endocrinology and MetabolismThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Lin Zhao
- Department of Endocrinology and MetabolismThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Xun‐jie Fan
- Department of Endocrinology and MetabolismThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Academy of Medical SciencesZhengzhou UniversityZhengzhouChina
- Institute of Clinical MedicineThe First Affiliated Hospital of Zhengzhou universityZhengzhouChina
| | - Ya‐nan Xu
- Department of Endocrinology and MetabolismThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Institute of Clinical MedicineThe First Affiliated Hospital of Zhengzhou universityZhengzhouChina
| | - Qing‐zhu Wang
- Department of Nuclear MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Gui‐jun Qin
- Department of Endocrinology and MetabolismThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| |
Collapse
|
84
|
Custódio L, Vizetto‐Duarte C, Cebeci F, Özçelik B, Sharopov F, Gürer ES, Kumar M, Iriti M, Sharifi‐Rad J, Calina D. Natural products of relevance in the management of attention deficit hyperactivity disorder. EFOOD 2023. [DOI: 10.1002/efd2.57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Luísa Custódio
- Centre of Marine Sciences, Faculty of Sciences and Technology University of Algarve Faro Portugal
| | - Catarina Vizetto‐Duarte
- School of Material Sciences and Engineering Nanyang Technological University Singapore Singapore
| | - Fatma Cebeci
- Department of Nutrition and Dietetics Bayburt University Bayburt Turkey
| | - Beraat Özçelik
- Department Food Engineering, Faculty of Chemical and Metallurgical Engineering Istanbul Technical University, Maslak Istanbul Turkey
- BIOACTIVE Research & Innovation Food Manufacturing Industry Trade LTD Co., Maslak Istanbul Turkey
| | - Farukh Sharopov
- Department of Pharmaceutical Technology Avicenna Tajik State Medical University Dushanbe Tajikistan
| | - Eda Sönmez Gürer
- Department of Pharmacognosy, Faculty of Pharmacy Sivas Cumhuriyet University Sivas Turkey
| | - Manoj Kumar
- Chemical and Biochemical Processing Division ICAR—Central Institute for Research on Cotton Technology Mumbai India
| | - Marcello Iriti
- Department of Agricultural and Environmental Sciences Università degli Studi di Milano Milan Italy
| | | | - Daniela Calina
- Department of Clinical Pharmacy University of Medicine and Pharmacy of Craiova Craiova Romania
| |
Collapse
|
85
|
Wang L, Yan H, Chen X, Han L, Liu G, Yang H, Lu D, Liu W, Che C. Thymol Ameliorates Aspergillus fumigatus Keratitis by Downregulating the TLR4/ MyD88/ NF-kB/ IL-1β Signal Expression and Reducing Necroptosis and Pyroptosis. J Microbiol Biotechnol 2023; 33:43-50. [PMID: 36517045 PMCID: PMC9895997 DOI: 10.4014/jmb.2207.07017] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/11/2022] [Accepted: 11/26/2022] [Indexed: 12/23/2022]
Abstract
Fungal keratitis is a refractory kind of keratopathy. We attempted to investigate the anti-inflammatory role of thymol on Aspergillus fumigatus (A. fumigatus) keratitis. Wound healing and fluorescein staining of the cornea were applied to verify thymol's safety. Mice models of A. fumigatus keratitis underwent subconjunctival injection of thymol. The anti-inflammatory roles of thymol were verified by hematoxylin-eosin (HE) staining, slit lamp observation, quantitative real-time polymerase chain reaction (qRT-PCR), and Western blotting. In contrast with the DMSO group, more transparent corneas and less inflammatory cells infiltration were detected in mice treated with 50 μg/ml thymol. Thymol downregulated the synthesis of TLR4, MyD88, NF-kB, IL-1β, NLRP3, caspase 1, caspase 8, GSDMD, RIPK3 and MLKL. In summary, we proved that thymol played a protective part in A. fumigatus keratitis by cutting down inflammatory cells aggregation, downregulating the TLR4/ MyD88/ NF-kB/ IL-1β signal expression and reducing necroptosis and pyroptosis.
Collapse
Affiliation(s)
- Limei Wang
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province 266003, P.R. China,Department of Ophthalmology, Qingdao Women and Children’s Hospital, Qingdao, Shandong Province 266034, P.R. China
| | - Haijing Yan
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province 266003, P.R. China
| | - Xiaomeng Chen
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province 266003, P.R. China
| | - Lin Han
- Gout Laboratory, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province 266003, P.R. China
| | - Guibo Liu
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province 266003, P.R. China
| | - Hua Yang
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province 266003, P.R. China
| | - Danli Lu
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province 266003, P.R. China
| | - Wenting Liu
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province 266003, P.R. China
| | - Chengye Che
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province 266003, P.R. China,Corresponding author Phone: +86-17853290318 E-mail:
| |
Collapse
|
86
|
Chen J, Wu J, Mu J, Li L, Hu J, Lin H, Cao J, Gao J. An antioxidative sophora exosome-encapsulated hydrogel promotes spinal cord repair by regulating oxidative stress microenvironment. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 47:102625. [PMID: 36334896 DOI: 10.1016/j.nano.2022.102625] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 10/16/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022]
Abstract
Spinal cord injury (SCI) is a severe traumatic disease because of its complications and multi-organ dysfunction. After the injury, the disruption of microenvironment homeostasis in the lesion demolishes the surrounding healthy tissues via various pathways. The microenvironment regulation is beneficial for neural and functional recovery. Sustained release, cellular uptake, and long-term retention of therapeutic molecules at the impaired sites are important for continuous microenvironment improvement. In our study, a local-implantation system was constructed for SCI treatment by encapsulating exosomes derived from Flos Sophorae Immaturus (so-exos) in a polydopamine-modified hydrogel (pDA-Gel). So-exos are used as nanoscale natural vehicles of rutin, a flavonoid phytochemical that is effective in microenvironment improvement and nerve regeneration. Our study showed that the pDA-Gel-encapsulated so-exos allowed rapid improvement of the impaired motor function and alleviation of urination dysfunction by modulating the spinal inflammatory and oxidative conditions, thus illustrating a potential SCI treatment through a combinational delivery of so-exos.
Collapse
Affiliation(s)
- Jiachen Chen
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Jiahe Wu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China; Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, PR China.
| | - Jiafu Mu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Liming Li
- Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266071, PR China
| | - Jingyi Hu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Hangjuan Lin
- Department of Pharmacy, Ningbo Municipal Hospital of TCM, Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo 315010, PR China
| | - Jian Cao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Jianqing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
87
|
Jin Y, Song Y, Lin J, Liu T, Li G, Lai B, Gu Y, Chen G, Xing L. Role of inflammation in neurological damage and regeneration following spinal cord injury and its therapeutic implications. BURNS & TRAUMA 2023; 11:tkac054. [PMID: 36873284 PMCID: PMC9976751 DOI: 10.1093/burnst/tkac054] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/07/2022] [Accepted: 12/01/2022] [Indexed: 03/06/2023]
Abstract
Spinal cord injury (SCI) is an incurable trauma that frequently results in partial or complete loss of motor and sensory function. Massive neurons are damaged after the initial mechanical insult. Secondary injuries, which are triggered by immunological and inflammatory responses, also result in neuronal loss and axon retraction. This results in defects in the neural circuit and a deficiency in the processing of information. Although inflammatory responses are necessary for spinal cord recovery, conflicting evidence of their contributions to specific biological processes have made it difficult to define the specific role of inflammation in SCI. This review summarizes our understanding of the complex role of inflammation in neural circuit events following SCI, such as cell death, axon regeneration and neural remodeling. We also review the drugs that regulate immune responses and inflammation in the treatment of SCI and discuss the roles of these drugs in the modulation of neural circuits. Finally, we provide evidence about the critical role of inflammation in facilitating spinal cord neural circuit regeneration in zebrafish, an animal model with robust regenerative capacity, to provide insights into the regeneration of the mammalian central nervous system.
Collapse
Affiliation(s)
- Yan Jin
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products,Nantong University, Nantong 226006, China.,School of Life Sciences, Nantong University, Nantong 226019, China
| | - Yixing Song
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products,Nantong University, Nantong 226006, China
| | - Jiaqi Lin
- School of Medicine, Nantong University, Nantong 226006, China
| | - Tianqing Liu
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia
| | - Guicai Li
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products,Nantong University, Nantong 226006, China
| | - Biqin Lai
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou 510275, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226006, China
| | - Yun Gu
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products,Nantong University, Nantong 226006, China
| | - Gang Chen
- School of Medicine, Nantong University, Nantong 226006, China
| | - Lingyan Xing
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products,Nantong University, Nantong 226006, China
| |
Collapse
|
88
|
Dong H, Zhang C, Shi D, Xiao X, Chen X, Zeng Y, Li X, Xie R. Ferroptosis related genes participate in the pathogenesis of spinal cord injury via HIF-1 signaling pathway. Brain Res Bull 2023; 192:192-202. [PMID: 36414158 DOI: 10.1016/j.brainresbull.2022.11.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 10/29/2022] [Accepted: 11/17/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND Spinal cord injury (SCI) is a crushing disease without a effective and specific therapeutic strategy. Therefore, it is crucial to uncover underlying mechanism in order to identify potential treatments for SCI. Current studies show ferroptosis might pay important role in SCI. METHODS In this study, we aimed to identify the key ferroptosis-related genes providing therapeutic targets for SCI. GSE45006, GSE19890 and GSE156999 from Gene Expression Omnibus (GEO) database were analyzed. RESULTS A total of 61 ferroptosis-related DEGs were identified, followed by bioinformatics enrichment analyses and PPI network construction. Ten key ferroptosis-related genes were identified by Cytoscape (Cytohubba), most of which were enriched in the HIF-1 signaling pathway. Then we constructed a clip SCI rat model and qPCR was performed to assess the expressions of five genes enriched in HIF-1 signaling pathway (Stat3, Tlr4, Hmox1, Hif1a and Cybb). Finally, a ceRNA network, Stat3, Tlr4, Hmox1/miR127, miR383, miR485/rno-Mut_0003, rno-Pwwp2a_0002 was constructed and expression of mentioned molecules were validated by chip data. CONCLUSIONS Five hub genes from HIF-1 signaling pathway were identified and might play a central role in SCI, which indicated that ferroptosis was correlated with HIF-1 signaling pathway. These results can provide a new insight into molecular mechanisms and identify potential therapeutic targets for SCI.
Collapse
Affiliation(s)
- Haoru Dong
- Department of Neurosurgery; National Center for Neurological Disorders; Neurosurgical Institute of Fudan University; Shanghai Clinical Medical Center of Neurosurgery; Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Chi Zhang
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| | - Donglei Shi
- Department of Nursing, Huashan Hospital, Fudan University, Shanghai 200032, China.
| | - Xiao Xiao
- Department of Neurosurgery; National Center for Neurological Disorders; Neurosurgical Institute of Fudan University; Shanghai Clinical Medical Center of Neurosurgery; Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Xingyu Chen
- Department of Neurosurgery; National Center for Neurological Disorders; Neurosurgical Institute of Fudan University; Shanghai Clinical Medical Center of Neurosurgery; Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Yuanxiao Zeng
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| | - Xiaomu Li
- Department of Endocrinology, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Rong Xie
- Department of Neurosurgery; National Center for Neurological Disorders; Neurosurgical Institute of Fudan University; Shanghai Clinical Medical Center of Neurosurgery; Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Huashan Hospital, Fudan University, Shanghai 200040, China; Department of Neurosurgery, National Regional Medical Center; Huashan Hospital Fujian Campus, Fudan University; The First Affiliated Hospital of Fujian Medical University, Fuzhou 350209, Fujian Province, China.
| |
Collapse
|
89
|
Role of Transcription Factor Nrf2 in Pyroptosis in Spinal Cord Injury by Regulating GSDMD. Neurochem Res 2023; 48:172-187. [PMID: 36040608 DOI: 10.1007/s11064-022-03719-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 07/26/2022] [Accepted: 08/01/2022] [Indexed: 02/07/2023]
Abstract
Spinal cord injury (SCI) is a prevalent disease that debilitates millions of people. Nuclear factor E2-related factor 2 (Nrf2) is an important regulator of SCI. The current study sought to elaborate on the effects of Nrf2 on gasdermin D (GSDMD)-mediated microglia pyroptosis to repair SCI. The SCI rat model was established via the percussion of the T10 spinal cord and in vitro SCI model was established on BV-2 cells via lipopolysaccharide (LPS)/adenosine triphosphate (ATP) treatment. Nrf2 expression in SCI rats and BV-2 cells was overexpressed via pcDNA3.1-Nrf2 injection. Functional assays were carried out to evaluate SCI rat pathological injury, BV-2 cell viability, the release of lactate dehydrogenase (LDH), and pyroptotic factors. The binding relations of Nrf2 and microRNA (miR)-146a and miR-146a and GSDMD were verified. BV-2 pyroptosis was analyzed after the combined experiment of miR-146a-inhibitor and pcDNA3.1-GSDMD. Our experiments revealed that Nrf2 was downregulated in SCI, and Nrf2 overexpression relieved SCI pathological injury, promoted BV-2 cell viability, inhibited the release of LDH, and repressed pyroptosis. Mechanically, Nrf2 bound to the miR-146a promoter and promoted miR-146a expression, and miR-146a targeted GSDMD transcription. Rescue experiments revealed that miR-146a knockdown or GSDMD overexpression annulled the inhibitory function of Nrf2 overexpression in LPS/ATP-induced microglia pyroptosis. Overall, our findings initially highlighted that Nrf2 inhibited GSDMD-mediated microglia pyroptosis and accelerated SCI repair by repressing miR-146a.
Collapse
|
90
|
Xiong W, Li C, Kong G, Zeng Q, Wang S, Yin G, Gu J, Fan J. Treg cell-derived exosomes miR-709 attenuates microglia pyroptosis and promotes motor function recovery after spinal cord injury. J Nanobiotechnology 2022; 20:529. [PMID: 36514078 PMCID: PMC9745961 DOI: 10.1186/s12951-022-01724-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 11/26/2022] [Indexed: 12/15/2022] Open
Abstract
Neuroinflammation is an important cause of poor prognosis in patients with spinal cord injury. pyroptosis is a new type of inflammatory cell death. Treg cells has been shown to play an anti-inflammatory role in a variety of inflammatory diseases, including inflammatory bowel disease, amyotrophic lateral sclerosis, and arthritis. However, little is known about Treg cells' potential role in pyroptosis following spinal cord injury. The aim of this research was to look into the effect of Treg cells to motor function recovery, pyroptosis and the mechanism behind it after SCI. Here, we found that pyroptosis mainly occurred in microglia on the seventh day after spinal cord injury. Konckout Treg cells resulted in widely pyroptosis and poor motor recovery after SCI. In conversely, over-infiltration of Treg cell in mice by tail vein injection had beneficial effects following SCI.Treg cell-derived exosomes promote functional recovery by inhibiting microglia pyroptosis in vivo. Bioinformatic analysis revealed that miRNA-709 was significantly enriched in Treg cells and Treg cell-secreted exosomes. NKAP has been identified as a miRNA-709 target gene. Moreover, experiments confirmed that Treg cells targeted the NKAP via exosomal miR-709 to reduce microglia pyroptosis and promote motor function recovery after SCI. More importantly, The miR-709 overexpressed exosomes we constructed significantly reduced the inflammatory response and improved motor recovery after spinal cord injury. In brief, our findings indicate a possible mechanism for communication between Treg cells and microglia, which opens up a new perspective for alleviating neuroinflammation after SCI.
Collapse
Affiliation(s)
- Wu Xiong
- grid.412676.00000 0004 1799 0784The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu China ,grid.89957.3a0000 0000 9255 8984Nanjing Medical University, 101 Longmian Road, Nanjing, Jiangsu China
| | - Cong Li
- grid.412676.00000 0004 1799 0784The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu China ,grid.89957.3a0000 0000 9255 8984Nanjing Medical University, 101 Longmian Road, Nanjing, Jiangsu China
| | - Guang Kong
- grid.89957.3a0000 0000 9255 8984Nanjing Medical University, 101 Longmian Road, Nanjing, Jiangsu China
| | - Qiang Zeng
- grid.89957.3a0000 0000 9255 8984Nanjing Medical University, 101 Longmian Road, Nanjing, Jiangsu China
| | - Siming Wang
- grid.412676.00000 0004 1799 0784The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu China ,grid.89957.3a0000 0000 9255 8984Nanjing Medical University, 101 Longmian Road, Nanjing, Jiangsu China
| | - Guoyong Yin
- grid.412676.00000 0004 1799 0784The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu China
| | - Jun Gu
- Department of Orthopedics, Xishan People’s Hospital, Wuxi, 214000 China
| | - Jin Fan
- grid.412676.00000 0004 1799 0784The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu China ,grid.89957.3a0000 0000 9255 8984Nanjing Medical University, 101 Longmian Road, Nanjing, Jiangsu China
| |
Collapse
|
91
|
Wu D, Zhang Y, Zhao C, Li Q, Zhang J, Han J, Xu Z, Li J, Ma Y, Wang P, Xu H. Disruption of C/EBPβ-Clec7a axis exacerbates neuroinflammatory injury via NLRP3 inflammasome-mediated pyroptosis in experimental neuropathic pain. J Transl Med 2022; 20:583. [PMID: 36503542 PMCID: PMC9743596 DOI: 10.1186/s12967-022-03779-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 11/17/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Growing evidence shows that C-Type Lectin Domain Containing 7A (Clec7a) may be involved into neuroinflammatory injury of various neurological diseases. However, its roles in neuropathic pain remain unclear. METHODS A chronic constriction injury (CCI) rat model was constructed, and gene expression profilings in spinal cord tissues of CCI-insulted rats were detected by both microarray and RNA-seq studies. A series of bioinformatics analyses identified C/EBPβ-Clec7a to be a candidate axis involved into neuropathic pain. Then, its roles in mechanical allodynia, and pathological and molecular changes during CCI progression were determined by various gain-of-function and loss-of-function experiments in vivo and in vitro. RESULTS Significant upregulation of Clec7a at both mRNA and protein levels were verified in spinal cord tissues of CCI-insulted rats. Clec7a knockdown markedly attenuated CCI-induced mechanical allodynia, obstructed Syk, ERK and JNK phosphorylation, inhibited NLRP3 inflammasome and caspase-1 activation, GSDMD cleavage, and consequently reduced the release of pro-inflammatory cytokines (all P < 0.05). Mechanically, the rat Clec7a promoter was predicted to bind with transcription factor C/EBPβ, confirmed by Luciferase assay and ChIP-qPCR. Both in vivo and in vitro assays demonstrated that C/EBPβ knockdown significantly suppressed CCI- or LPS/ATP-induced Clec7a upregulation, and subsequently reduced Syk, ERK and JNK phosphorylation, NLRP3 oligomerization, caspase-1 activation, GSDMD expression and pyroptosis, which were markedly reversed by the co-transfection of Clec7a expression vector. CONCLUSIONS This pre-clinical investigation reveals that C/EBPβ-Clec7a axis may be a potential target for relieving neuropathic pain through alleviating neuroinflammation, paving its way for clinical translation as a promising approach for neuropathic pain therapy.
Collapse
Affiliation(s)
- Dan Wu
- grid.410318.f0000 0004 0632 3409Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 China
| | - Yanqiong Zhang
- grid.410318.f0000 0004 0632 3409Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 China
| | - Chunhui Zhao
- grid.410318.f0000 0004 0632 3409Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 China
| | - Qiuyue Li
- grid.410318.f0000 0004 0632 3409Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 China
| | - Junhong Zhang
- grid.410318.f0000 0004 0632 3409Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 China
| | - Jiaxin Han
- grid.419093.60000 0004 0619 8396Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Zhijian Xu
- grid.419093.60000 0004 0619 8396Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Junfang Li
- grid.410318.f0000 0004 0632 3409Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 China
| | - Yan Ma
- grid.410318.f0000 0004 0632 3409Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 China
| | - Ping Wang
- grid.410318.f0000 0004 0632 3409Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 China ,grid.419093.60000 0004 0619 8396Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Haiyu Xu
- grid.410318.f0000 0004 0632 3409Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 China ,grid.410318.f0000 0004 0632 3409Key Laboratory for Research and Evaluation of Traditional Chinese Medicine, National Medical Products Administration, China Academy of Chinese Medical Sciences, Beijing, 100700 China
| |
Collapse
|
92
|
Iron Metabolism and Ferroptosis in Peripheral Nerve Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5918218. [PMID: 36506935 PMCID: PMC9733998 DOI: 10.1155/2022/5918218] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 11/07/2022] [Accepted: 11/21/2022] [Indexed: 12/04/2022]
Abstract
Peripheral nerve injury (PNI) is a major clinical problem that may lead to different levels of sensory and motor dysfunction including paralysis. Due to the high disability rate and unsatisfactory prognosis, the exploration and revealment of the mechanisms involved in the PNI are urgently required. Ferroptosis, a recently identified novel form of cell death, is an iron-dependent process. It is a unique modality of cell death, closely associated with iron concentrations, generation of reactive oxygen species, and accumulation of the lipid reactive oxygen species. These processes are regulated by multiple cellular metabolic pathways, including iron overloading, lipid peroxidation, and the glutathione/glutathione peroxidase 4 pathway. Furthermore, ferroptosis is accompanied by morphological changes in the mitochondria, such as increased membrane density and shrunken mitochondria; this association between ferroptosis and mitochondrial damage has been detected in various diseases, including spinal cord injury and PNI. The inhibition of ferroptosis can promote the repair of damaged peripheral nerves, reduce mitochondrial damage, and promote the recovery of neurological function. In this review, we intend to discuss the detailed mechanisms of ferroptosis and summarize the current researches on ferroptosis with respect to nerve injury. This review also aims at providing new insights on targeting ferroptosis for PNI treatment.
Collapse
|
93
|
Xia M, Li X, Ye S, Zhang Q, Zhao T, Li R, Zhang Y, Xian M, Li T, Li H, Hong X, Zheng S, Qian Z, Yang L. FANCC deficiency mediates microglial pyroptosis and secondary neuronal apoptosis in spinal cord contusion. Cell Biosci 2022; 12:82. [PMID: 35659106 PMCID: PMC9164466 DOI: 10.1186/s13578-022-00816-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 05/15/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Traumatic spinal cord injury (SCI)-induced neuroinflammation results in secondary neurological destruction and functional disorder. Previous findings showed that microglial pyroptosis plays a crucial role in neuroinflammation. Thus, it is necessary to conduct a comprehensive investigation of the mechanisms associated with post-SCI microglial pyroptosis. The Fanconi Anemia Group C complementation group gene (FANCC) has been previously reported to have an anti-inflammation effect; however, whether it can regulate microglial pyroptosis remains unknown. Therefore, we probed the mechanism associated with FANCC-mediated microglial pyroptosis and neuroinflammation in vitro and in vivo in SCI mice.
Methods
Microglial pyroptosis was assessed by western blotting (WB) and immunofluorescence (IF), whereas microglial-induced neuroinflammation was evaluated by WB, Enzyme-linked immunosorbent assays and IF. Besides, flow cytometry, TdT-mediated dUTP Nick-End Labeling staining and WB were employed to examine the level of neuronal apoptosis. Morphological changes in neurons were assessed by hematoxylin–eosin and Luxol Fast Blue staining. Finally, locomotor function rehabilitation was analyzed using the Basso Mouse Scale and Louisville Swim Scale.
Results
Overexpression of FANCC suppressed microglial pyroptosis via inhibiting p38/NLRP3 expression, which in turn reduced neuronal apoptosis. By contrast, knockdown of FANCC increased the degree of neuronal apoptosis by aggravating microglial pyroptosis. Besides, increased glial scar formation, severe myelin sheath destruction and poor axon outgrowth were observed in the mice transfected with short hairpin RNA of FANCC post SCI, which caused reduced locomotor function recovery.
Conclusions
Taken together, a previously unknown role of FANCC was identified in SCI, where its deficiency led to microglia pyroptosis, neuronal apoptosis and neurological damage. Mechanistically, FANCC mediated microglia pyroptosis and the inflammatory response via regulating the p38/NLRP3 pathway.
Collapse
|
94
|
Guo R, Gao S, Feng Y, Mao C, Sheng W. Ulinastatin attenuates spinal cord injury by targeting AMPK/NLRP3 signaling pathway. J Chem Neuroanat 2022; 125:102145. [PMID: 35998795 DOI: 10.1016/j.jchemneu.2022.102145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 10/31/2022]
Abstract
The AMPK and NLRP3 inflammasome signaling pathways are reported to participant in the inflammatory responses following spinal cord injury (SCI). Ulinastatin (ULI) is a urinary trypsin inhibitor with excellent anti-inflammatory effects, but the functions of ULI on SCI are rarely reported. Hence, this study was designed to investigate whether ULI could modulate SCI through regulating the AMPK/NLRP3 signaling pathway. Cell Counting Kit-8 (CCK-8) assays were used to investigate whether ULI had cytotoxic effects on BV-2 cells. Basso-Beattie-Bresnahan (BBB) scale, spinal cord water content detection, hematoxylin-eosin (HE) and Nissl stainings were used to investigate the protective effects of ULI on rat SCI. The expressions of inflammatory cytokines were detected by ELISA and RT-qPCR. The expressions of key proteins of AMPK and NLRP3 inflammasome were analyzed by western blot. The CCK-8 assays indicated that ULI did not significantly influence the viability of BV-2 cells at various concentrations below 10,000 U/ml. It was witnessed that ULI could dramatically inhibit the activation of NLRP3 inflammasome via activating the AMPK signaling pathway, thus relieving inflammatory responses. Besides, the in vivo experiment suggested that treatment with ULI remarkably relieve spinal cord edema, ameliorated spinal cord tissue architecture, and improved neurological function following SCI. The findings indicate that ULI significantly ameliorates neurological function following SCI by regulating the AMPK/NLRP3 inflammasome signaling pathway.
Collapse
Affiliation(s)
- Rui Guo
- Department of Spine Surgery, Xinjiang Medical University Affiliated First Hospital, Urumqi, Xinjiang 830054, China.
| | - Shutao Gao
- Department of Spine Surgery, Xinjiang Medical University Affiliated First Hospital, Urumqi, Xinjiang 830054, China.
| | - Ying Feng
- College of Public Health, Xinjiang Medical University, China.
| | - Chao Mao
- Department of Spine Surgery, Xinjiang Medical University Affiliated First Hospital, Urumqi, Xinjiang 830054, China.
| | - Weibin Sheng
- Department of Spine Surgery, Xinjiang Medical University Affiliated First Hospital, Urumqi, Xinjiang 830054, China.
| |
Collapse
|
95
|
Li E, Yan R, Yan K, Zhang R, Zhang Q, Zou P, Wang H, Qiao H, Li S, Ma Q, Liao B. Single-cell RNA sequencing reveals the role of immune-related autophagy in spinal cord injury in rats. Front Immunol 2022; 13:987344. [PMID: 36211348 PMCID: PMC9535363 DOI: 10.3389/fimmu.2022.987344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Spinal cord injury refers to damage to the spinal cord due to trauma, disease, or degeneration; and the number of new cases is increasing yearly. Significant cellular changes are known to occur in the area of spinal cord injury. However, changes in cellular composition, trajectory of cell development, and intercellular communication in the injured area remain unclear. Here, we used single-cell RNA sequencing to evaluate almost all the cell types that constitute the site of spinal cord injury in rats. In addition to mapping the cells of the injured area, we screened the expression of immune autophagy-related factors in cells and identified signaling pathways by the measuring the expression of the receptor−ligand pairs to regulate specific cell interactions during autophagy after spinal cord injury. Our data set is a valuable resource that provides new insights into the pathobiology of spinal cord injury and other traumatic diseases of the central nervous system.
Collapse
Affiliation(s)
- Erliang Li
- Department of Orthopaedics, The Second Affiliated Hospital of Air Force Military Medical University, Xi’an, China
| | - Rongbao Yan
- Department of Orthopaedics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Kang Yan
- Department of Orthopaedics, The Second Affiliated Hospital of Air Force Military Medical University, Xi’an, China
| | - Rui Zhang
- Department of Orthopaedics, The Second Affiliated Hospital of Air Force Military Medical University, Xi’an, China
| | - Qian Zhang
- Department of Orthopaedics, The Second Affiliated Hospital of Air Force Military Medical University, Xi’an, China
| | - Peng Zou
- Department of Orthopaedics, The Second Affiliated Hospital of Air Force Military Medical University, Xi’an, China
| | - Huimei Wang
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Huan Qiao
- Department of Orthopaedics, The Second Affiliated Hospital of Air Force Military Medical University, Xi’an, China
| | - Shuang Li
- Department of Orthopaedics, The Second Affiliated Hospital of Air Force Military Medical University, Xi’an, China
| | - Qiong Ma
- Department of Orthopaedics, The Second Affiliated Hospital of Air Force Military Medical University, Xi’an, China
- *Correspondence: Bo Liao, ; Qiong Ma,
| | - Bo Liao
- Department of Orthopaedics, The Second Affiliated Hospital of Air Force Military Medical University, Xi’an, China
- *Correspondence: Bo Liao, ; Qiong Ma,
| |
Collapse
|
96
|
Melatonin Attenuates Spinal Cord Injury in Mice by Activating the Nrf2/ARE Signaling Pathway to Inhibit the NLRP3 Inflammasome. Cells 2022; 11:cells11182809. [PMID: 36139384 PMCID: PMC9496911 DOI: 10.3390/cells11182809] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 12/03/2022] Open
Abstract
Background: Spinal cord injury (SCI) is a central nervous system (CNS) trauma involving inflammation and oxidative stress, which play important roles in this trauma’s pathogenesis. Therefore, controlling inflammation is an effective strategy for SCI treatment. As a hormone, melatonin is capable of producing antioxidation and anti-inflammation effects. In the meantime, it also causes a neuroprotective effect in various neurological diseases. Nrf2/ARE/NLRP3 is a well-known pathway in anti-inflammation and antioxidation, and Nrf2 can be positively regulated by melatonin. However, how melatonin regulates inflammation during SCI is poorly explored. Therefore, it was investigated in this study whether melatonin can inhibit the NLRP3 inflammasome through the Nrf2/ARE signaling pathway in a mouse SCI model. Methods: A model of SCI was established in C57BL/6 mice and PC12 cells. The motor function of mice was detected by performing an open field test, and Nissl staining and terminal deoxynucleotidyl transferase dUTP nick end labeling were carried out to evaluate the survival of neurons. Mitochondrial dysfunction was detected by transmission electron microscopy (TEM) and by assessing the mitochondrial membrane potential. In addition, the expression of NLRP3 inflammasome and oxidative-stress-related proteins were detected through Western blot and immunofluorescence double staining. Results: By inhibiting neuroinflammation and reducing neuronal death, melatonin promotes the recovery of neuromotor function. Besides this, melatonin is able to reduce the damage that causes neuronal mitochondrial dysfunction, reduce the level of reactive oxygen species (ROS) and malondialdehyde, and enhance the activity of superoxide dismutase and the production of glutathione peroxidase. Mechanically, melatonin inhibits the activation of NLRP3 inflammasomes and reduces the secretion of pro-inflammatory factors through the Nrf2/ARE signaling. Conclusions: In conclusion, melatonin inhibits the NLRP3 inflammasome through stimulation of the Nrf2/ARE pathway, thereby suppressing neuroinflammation, reducing mitochondrial dysfunction, and improving the recovery of nerve function after SCI.
Collapse
|
97
|
Song D, Yeh CT, Wang J, Guo F. Perspectives on the mechanism of pyroptosis after intracerebral hemorrhage. Front Immunol 2022; 13:989503. [PMID: 36131917 PMCID: PMC9484305 DOI: 10.3389/fimmu.2022.989503] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/17/2022] [Indexed: 12/18/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a highly harmful neurological disorder with high rates of mortality, disability, and recurrence. However, effective therapies are not currently available. Secondary immune injury and cell death are the leading causes of brain injury and a poor prognosis. Pyroptosis is a recently discovered form of programmed cell death that differs from apoptosis and necrosis and is mediated by gasdermin proteins. Pyroptosis is caused by multiple pathways that eventually form pores in the cell membrane, facilitating the release of inflammatory substances and causing the cell to rupture and die. Pyroptosis occurs in neurons, glial cells, and endothelial cells after ICH. Furthermore, pyroptosis causes cell death and releases inflammatory factors such as interleukin (IL)-1β and IL-18, leading to a secondary immune-inflammatory response and further brain damage. The NOD-like receptor protein 3 (NLRP3)/caspase-1/gasdermin D (GSDMD) pathway plays the most critical role in pyroptosis after ICH. Pyroptosis can be inhibited by directly targeting NLRP3 or its upstream molecules, or directly interfering with caspase-1 expression and GSDMD formation, thus significantly improving the prognosis of ICH. The present review discusses key pathological pathways and regulatory mechanisms of pyroptosis after ICH and suggests possible intervention strategies to mitigate pyroptosis and brain dysfunction after ICH.
Collapse
Affiliation(s)
- Dengpan Song
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chi-Tai Yeh
- Department of Medical Research and Education, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- *Correspondence: Fuyou Guo, ; Jian Wang, ; Chi-Tai Yeh,
| | - Jian Wang
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- *Correspondence: Fuyou Guo, ; Jian Wang, ; Chi-Tai Yeh,
| | - Fuyou Guo
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Fuyou Guo, ; Jian Wang, ; Chi-Tai Yeh,
| |
Collapse
|
98
|
Zhao Y, Chen Y, Wang Z, Xu C, Qiao S, Liu T, Qi K, Tong D, Li C. Bone Marrow Mesenchymal Stem Cell Exosome Attenuates Inflammasome-Related Pyroptosis via Delivering circ_003564 to Improve the Recovery of Spinal Cord Injury. Mol Neurobiol 2022; 59:6771-6789. [PMID: 36038697 DOI: 10.1007/s12035-022-03006-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/16/2022] [Indexed: 10/15/2022]
Abstract
Bone marrow mesenchymal stem cell (BMSC) is previously reported to present a certain effect on treating spinal cord injury (SCI), while the underlying mechanism is largely uncovered. Therefore, the current study aimed to investigate the involvement of exosome-delivered circRNA profile in the BMSC's effect on pyroptosis for SCI treatment. H2O2 treated rat primary neurons were cultured with normal medium, BMSC, BMSC plus GW4869, and BMSC-derived exosome, respectively, then inflammasome-related pyroptosis markers, and circRNA profiles were detected. Subsequently, circ_003564-knockdown BMSC exosome was transfected into H2O2 treated rat primary neurons and NGF-stimulated PC-12 cells. Furthermore, in vivo validation was conducted. BMSC and BMSC-derived exosome both decreased inflammasome-related pyroptosis markers including cleaved caspase-1, GSDMD, NLRP3, IL-1β, and IL-18 in H2O2-treated neurons, while exosome-free BMSC (BMSC plus GW4869) did not obviously reduce these factors. Microarray assay revealed that BMSC (vs. exosome-free BMSC) and BMSC-derived exosome (vs. normal medium) greatly regulated circRNA profiles, which were enriched in neuroinflammation pathways (such as neurotrophin, apoptosis, and TNF). Among three functional candidate circRNAs (circ_015525, circ_008876, and circ_003564), circ_003564 was most effective to regulate inflammasome-related pyroptosis. Interestingly, circ_003564-knockdown BMSC exosome showed higher expression of inflammasome-related pyroptosis markers compared to negative-control-knockdown BMSC exosome in H2O2 treated primary neurons/NGF-stimulated PC-12 cells. In vivo, BMSC exosome improved the function recovery and decreased tissue injury and inflammasome-related pyroptosis in SCI rats, whose effect was attenuated by circ_003564 knockdown transfection. BMSC exosome attenuates inflammasome-related pyroptosis via delivering circ_003564, contributing to its treatment efficacy for SCI.
Collapse
Affiliation(s)
- Yanyin Zhao
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yu Chen
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhiwei Wang
- Department of Orthopedics, Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai, 200433, China
| | - Changli Xu
- Department of Orthopedics, Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai, 200433, China
| | - Suchi Qiao
- Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Tianze Liu
- Department of Orthopedics, Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai, 200433, China
| | - Ke Qi
- Department of Orthopedics, Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai, 200433, China
| | - Dake Tong
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China.
| | - Cheng Li
- Department of Orthopedics, Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai, 200433, China.
| |
Collapse
|
99
|
Liu P, Li X, Liu J, Zhang H, You Z, Zhang J. TXNIP Participated in NLRP3-Mediated Inflammation in a Rat Model of Cervical Spondylotic Myelopathy. J Inflamm Res 2022; 15:4547-4559. [PMID: 35971339 PMCID: PMC9375583 DOI: 10.2147/jir.s373614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/30/2022] [Indexed: 12/02/2022] Open
Abstract
Background Cervical spondylotic myelopathy (CSM) is a spinal cord disease caused by cervical disc degeneration and related pathological changes. Cervical spondylotic myelopathy may result from inflammation responses and neuronal damage. Thioredoxin-interacting protein (TXNIP)/NOD-like receptor protein 3 (NLRP3) signaling promotes inflammation. However, the effects of TXNIP/NLRP3 on the pathogenesis of CSM have not been reported. Methods A rat model of chronic cervical cord compression was established to observe changes in the levels of of TNXIP/NeuN and NLRP3/NeuN expression in the damaged anterior horn of the spinal cord following progression of CSM. Rats were injected with TXNIP small interfering RNA (siRNA) and scrambled control to determine the effects of TXNIP inhibition on NLRP3-mediated inflammation in rats with CSM. Behaviors effects and the expression of NLRP3 and pro-caspase-1 in the damaged spinal cord were evaluated. Results The expression levels of TXNIP and NLRP3 were significantly increased in the damaged anterior horn of the spinal cord following CSM. Injection of TXNIP siRNA significantly improved behavioral measures and decreased apoptosis in the damaged anterior horn of spinal cord. Furthermore, the levels of NLRP3 and pro-caspase-1 in the lesioned area were reduced by the TXNIP siRNA injection. Conclusion Thioredoxin-interacting protein participated in NLRP3 mediated inflammation in a rat model of CSM, which indicated that TXNIP may be a potential therapeutic target in improving CSM.
Collapse
Affiliation(s)
- Peisheng Liu
- Department of Spinal Surgery, Yantaishan Hospital, Yantai, People's Republic of China
| | - Xiaofeng Li
- Department of Spinal Surgery, Yantaishan Hospital, Yantai, People's Republic of China
| | - Jing Liu
- Basic Department, Yantai Vocational College, Yantai, People's Republic of China
| | - Hengjia Zhang
- Department of Spinal Surgery, Yantaishan Hospital, Yantai, People's Republic of China
| | - Zhitao You
- Department of Spinal Surgery, Yantaishan Hospital, Yantai, People's Republic of China
| | - Jianfeng Zhang
- Department of Spinal Surgery, Yantaishan Hospital, Yantai, People's Republic of China
| |
Collapse
|
100
|
Recent Advances Regarding the Molecular Mechanisms of Triterpenic Acids: A Review (Part II). Int J Mol Sci 2022; 23:ijms23168896. [PMID: 36012159 PMCID: PMC9408012 DOI: 10.3390/ijms23168896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 12/18/2022] Open
Abstract
Triterpenic acids are a widespread class of phytocompounds which have been found to possess valuable therapeutic properties such as anticancer, anti-inflammatory, hepatoprotective, cardioprotective, antidiabetic, neuroprotective, lipolytic, antiviral, and antiparasitic effects. They are a subclass of triterpenes bearing a characteristic lipophilic structure that imprints unfavorable in vivo properties which subsequently limit their applications. The early investigation of the mechanism of action (MOA) of a drug candidate can provide valuable information regarding the possible side effects and drug interactions that may occur after administration. The current paper aimed to summarize the most recent (last 5 years) studies regarding the MOA of betulinic acid, boswellic acid, glycyrrhetinic acid, madecassic acid, moronic acid, and pomolic acid in order to provide scientists with updated and accessible material on the topic that could contribute to the development of future studies; the paper stands as the sequel of our previously published paper regarding the MOA of triterpenic acids with therapeutic value. The recent literature published on the topic has highlighted the role of triterpenic acids in several signaling pathways including PI3/AKT/mTOR, TNF-alpha/NF-kappa B, JNK-p38, HIF-α/AMPK, and Grb2/Sos/Ras/MAPK, which trigger their various biological activities.
Collapse
|