51
|
Tüz HH, Karaca Ç, Özcan C. Effect of suprahyoid muscles on mouth opening with and without lateral pterygoid muscle: 3D inverse dynamic model analysis. Cranio 2020; 40:239-248. [PMID: 32223399 DOI: 10.1080/08869634.2020.1745498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Objective: To evaluate the contribution of suprahyoid muscles to mouth opening in different hyoid bone positions.Methods: The jaw-opening and closing movements were imposed on the 3D inverse dynamic jaw model with and without the lateral pterygoid muscle (LPM). The activation of the muscles was evaluated for eight different positions of the hyoid bone.Results: The muscles with 100% activation provided maximum mouth opening (MMO). When the hyoid bone was replaced, the muscles could achieve MMO at the 135º, 180º, and 225º points with the LPM. Mouth opening was estimated to be 36.8 mm in the absence of the LPM. A jaw opening greater than 36.8 mm was seen when the hyoid bone was repositioned at the 90º, 180º, and 135º points.Discussion: The contribution of suprahyoid muscles to mouth opening varies in different hyoid bone positions, with the inferior and anterior positions having a positive impact.
Collapse
Affiliation(s)
- Hakan H Tüz
- Hacettepe University, Faculty of Dentistry, Department of Oral and Maxillofacial Surgery, Ankara, Turkey
| | - Çiğdem Karaca
- Hacettepe University, Faculty of Dentistry, Department of Oral and Maxillofacial Surgery, Ankara, Turkey
| | - Can Özcan
- Boğaziçi University, Faculty of Engineering, Department of Biomedical Engineering, İstanbul, Turkey
| |
Collapse
|
52
|
3D-printed poly(Ɛ-caprolactone) scaffold with gradient mechanical properties according to force distribution in the mandible for mandibular bone tissue engineering. J Mech Behav Biomed Mater 2020; 104:103638. [PMID: 32174396 DOI: 10.1016/j.jmbbm.2020.103638] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 01/23/2023]
Abstract
In bone tissue engineering, prediction of forces induced to the native bone during normal functioning is important in the design, fabrication, and integration of a scaffold with the host. The aim of this study was to customize the mechanical properties of a layer-by-layer 3D-printed poly(ϵ-caprolactone) (PCL) scaffold estimated by finite element (FE) modeling in order to match the requirements of the defect, to prevent mechanical failure, and ensure optimal integration with the surrounding tissue. Forces and torques induced on the mandibular symphysis during jaw opening and closing were predicted by FE modeling. Based on the predicted forces, homogeneous-structured PCL scaffolds with 3 different void sizes (0.3, 0.6, and 0.9 mm) were designed and 3D-printed using an extrusion based 3D-bioprinter. In addition, 2 gradient-structured scaffolds were designed and 3D-printed. The first gradient scaffold contained 2 regions (0.3 mm and 0.6 mm void size in the upper and lower half, respectively), whereas the second gradient scaffold contained 3 regions (void sizes of 0.3, 0.6, and 0.9 mm in the upper, middle and lower third, respectively). Scaffolds were tested for their compressive and tensile strength in the upper and lower halves. The actual void size of the homogeneous scaffolds with designed void size of 0.3, 0.6, and 0.9 mm was 0.20, 0.59, and 0.95 mm, respectively. FE modeling showed that during opening and closing of the jaw, the highest force induced on the symphysis was a compressive force in the transverse direction. The compressive force was induced throughout the symphyseal line and reduced from top (362.5 N, compressive force) to bottom (107.5 N, tensile force) of the symphysis. Compressive and tensile strength of homogeneous scaffolds decreased by 1.4-fold to 3-fold with increasing scaffold void size. Both gradient scaffolds had higher compressive strength in the upper half (2 region-gradient scaffold: 4.9 MPa; 3 region-gradient scaffold: 4.1 MPa) compared with the lower half (2 region-gradient scaffold: 2.5 MPa; 3 region-gradient scaffold: 2.7 MPa) of the scaffold. 3D-printed PCL scaffolds had higher compressive strength in the scaffold layer-by-layer building direction compared with the side direction, and a very low tensile strength in the scaffold layer-by-layer building direction. Fluid shear stress and fluid pressure distribution in the gradient scaffolds were more homogeneous than in the 0.3 mm void size scaffold and similar to the 0.6 mm and 0.9 mm void size scaffolds. In conclusion, these data show that the mechanical properties of 3D-printed PCL scaffolds can be tailored based on the predicted forces on the mandibular symphysis. These 3D-printed PCL scaffolds had different mechanical properties in scaffold building direction compared with the side direction, which should be taken into account when placing the scaffold in the defect site. Our findings might have implications for improved performance and integration of scaffolds with native tissue.
Collapse
|
53
|
Sagl B, Schmid-Schwap M, Piehslinger E, Kundi M, Stavness I. A Dynamic Jaw Model With a Finite-Element Temporomandibular Joint. Front Physiol 2019; 10:1156. [PMID: 31607939 PMCID: PMC6757193 DOI: 10.3389/fphys.2019.01156] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 08/28/2019] [Indexed: 12/22/2022] Open
Abstract
The masticatory region is an important human motion system that is essential for basic human tasks like mastication, speech or swallowing. An association between temporomandibular disorders (TMDs) and high temporomandibular joint (TMJ) stress has been suggested, but in vivo joint force measurements are not feasible to directly test this assumption. Consequently, biomechanical computer simulation remains as one of a few means to investigate this complex system. To thoroughly examine orofacial biomechanics, we developed a novel, dynamic computer model of the masticatory system. The model combines a muscle driven rigid body model of the jaw region with a detailed finite element model (FEM) disk and elastic foundation (EF) articular cartilage. The model is validated using high-resolution MRI data for protrusion and opening that were collected from the same volunteer. Joint stresses for a clenching task as well as protrusive and opening movements are computed. Simulations resulted in mandibular positions as well as disk positions and shapes that agree well with the MRI data. The model computes reasonable disk stress patterns for dynamic tasks. Moreover, to the best of our knowledge this model presents the first ever contact model using a combination of EF layers and a FEM body, which results in a clear decrease in computation time. In conclusion, the presented model is a valuable tool for the investigation of the human TMJ and can potentially help in the future to increase the understanding of the masticatory system and the relationship between TMD and joint stress and to highlight potential therapeutic approaches for the restoration of orofacial function.
Collapse
Affiliation(s)
- Benedikt Sagl
- Department of Prosthodontics, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Martina Schmid-Schwap
- Department of Prosthodontics, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Eva Piehslinger
- Department of Prosthodontics, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Michael Kundi
- Institute of Environmental Health, Medical University of Vienna, Vienna, Austria
| | - Ian Stavness
- Department of Computer Science, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
54
|
Gholampour S, Gholampour H, Khanmohammadi H. Finite element analysis of occlusal splint therapy in patients with bruxism. BMC Oral Health 2019; 19:205. [PMID: 31484524 PMCID: PMC6727492 DOI: 10.1186/s12903-019-0897-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 08/21/2019] [Indexed: 11/22/2022] Open
Abstract
Background Bruxism is among the habits considered generally as contributory factors for temporomandibular joint (TMJ) disorders and its etiology is still controversial. Methods Three-dimensional models of maxilla and mandible and teeth of 37 patients and 36 control subjects were created using in-vivo image data. The maximum values of stress and deformation were calculated in 21 patients six months after using a splint and compared with those in the initial conditions. Results The maximum stresses in the jaw bone and head of mandible were respectively 4.4 and 4.1 times higher in patients than in control subjects. Similar values for deformation were 5.8 and 4.9, respectively. The maximum stress in the jaw bone and head of mandible decreased six months after splint application by up to 71.0 and 72.8%, respectively. Similar values for the maximum deformation were 80.7 and 78.7%, respectively. Following the occlusal splint therapy, the approximation of maximum deformation to the relevant values in control subjects was about 2.6 times the approximation of maximum stress to the relevant values in control subjects. The maximum stress and maximum deformation occurred in all cases in the head of the mandible and the splint had the highest effectiveness in jaw bone adjacent to the molar teeth. Conclusions Splint acts as a stress relaxer and dissipates the extra stresses generated as well as the TMJ deformation and deviations due to bruxism. The splint also makes the bilateral and simultaneous loading possible and helps with the treatment of this disorder through regulation of bruxism by creating a biomechanical equilibrium between the physiological loading and the generated stress.
Collapse
Affiliation(s)
- Seifollah Gholampour
- Department of Biomedical Engineering, North Tehran Branch, Islamic Azad University, Tehran, Iran.
| | - Hanie Gholampour
- Department of Electrical and Computer Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hamed Khanmohammadi
- Department of Biomedical Engineering, North Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
55
|
Wu Y, Cisewski SE, Coombs MC, Brown MH, Wei F, She X, Kern MJ, Gonzalez YM, Gallo LM, Colombo V, Iwasaki LR, Nickel JC, Yao H. Effect of Sustained Joint Loading on TMJ Disc Nutrient Environment. J Dent Res 2019; 98:888-895. [PMID: 31126205 DOI: 10.1177/0022034519851044] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The temporomandibular joint (TMJ) disc nutrient environment profoundly affects cell energy metabolism, proliferation, and biosynthesis. Due to technical challenges of in vivo measurements, the human TMJ disc extracellular nutrient environment under load, which depends on metabolic rates, solute diffusion, and disc morphometry, remains unknown. Therefore, the study objective was to predict the TMJ disc nutrient environment under loading conditions using combined experimental and computational modeling approaches. Specifically, glucose consumption and lactate production rates of porcine TMJ discs were measured under varying tissue culture conditions (n = 40 discs), and mechanical strain-dependent glucose and lactate diffusivities were measured using a custom diffusion chamber (n = 6 discs). TMJ anatomy and loading area were obtained from magnetic resonance imaging of healthy human volunteers (n = 11, male, 30 ± 9 y). Using experimentally determined nutrient metabolic rates, solute diffusivities, TMJ anatomy, and loading areas, subject-specific finite element (FE) models were developed to predict the 3-dimensional nutrient profiles in unloaded and loaded TMJ discs (unloaded, 0% strain, 20% strain). From the FE models, glucose, lactate, and oxygen concentration ranges for unloaded healthy human TMJ discs were 0.6 to 4.0 mM, 0.9 to 5.0 mM, and 0% to 6%, respectively, with steep gradients in the anterior and posterior bands. Sustained mechanical loading significantly reduced nutrient levels (P < 0.001), with a critical zone in which cells may die representing approximately 13.5% of the total disc volume. In conclusion, this study experimentally determined TMJ disc metabolic rates, solute diffusivities, and disc morphometry, and through subject-specific FE modeling, revealed critical interactions between mechanical loading and nutrient supply and metabolism for the in vivo human TMJ disc. The results suggest that TMJ disc homeostasis may be vulnerable to pathological loading (e.g., clenching, bruxism), which impedes nutrient supply. Given difficulties associated with direct in vivo measurements, this study provides a new approach to systematically investigate homeostatic and degenerative mechanisms associated with the TMJ disc.
Collapse
Affiliation(s)
- Y Wu
- 1 Department of Bioengineering, Clemson University, Clemson, SC, USA.,2 Department of Orthopaedics and Physical Medicine, Medical University of South Carolina (MUSC), Charleston, SC, USA
| | - S E Cisewski
- 1 Department of Bioengineering, Clemson University, Clemson, SC, USA.,3 Department of Oral Health Sciences, College of Dental Medicine, MUSC, Charleston, SC, USA
| | - M C Coombs
- 1 Department of Bioengineering, Clemson University, Clemson, SC, USA.,3 Department of Oral Health Sciences, College of Dental Medicine, MUSC, Charleston, SC, USA
| | - M H Brown
- 3 Department of Oral Health Sciences, College of Dental Medicine, MUSC, Charleston, SC, USA
| | - F Wei
- 1 Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - X She
- 1 Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - M J Kern
- 3 Department of Oral Health Sciences, College of Dental Medicine, MUSC, Charleston, SC, USA
| | - Y M Gonzalez
- 4 Department of Oral Diagnostic Sciences, School of Dental Medicine, University at Buffalo, Buffalo, NY, USA
| | - L M Gallo
- 5 Clinic of Masticatory Disorders, University of Zurich, School of Dental Medicine, Zurich, Switzerland
| | - V Colombo
- 5 Clinic of Masticatory Disorders, University of Zurich, School of Dental Medicine, Zurich, Switzerland
| | - L R Iwasaki
- 6 Department of Orthodontics, School of Dentistry, Oregon Health & Science University, Portland, OR, USA
| | - J C Nickel
- 6 Department of Orthodontics, School of Dentistry, Oregon Health & Science University, Portland, OR, USA
| | - H Yao
- 1 Department of Bioengineering, Clemson University, Clemson, SC, USA.,2 Department of Orthopaedics and Physical Medicine, Medical University of South Carolina (MUSC), Charleston, SC, USA.,3 Department of Oral Health Sciences, College of Dental Medicine, MUSC, Charleston, SC, USA
| |
Collapse
|
56
|
Middendorf J, Albahrani S, Bonassar LJ. Stribeck Curve Analysis of Temporomandibular Joint Condylar Cartilage and Disc. J Biomech Eng 2019; 141:1066041. [PMID: 31654071 DOI: 10.1115/1.4045283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Indexed: 12/29/2022]
Abstract
Temporomandibular joint (TMJ) diseases such as osteoarthritis and disc displacement have no permanent treatment options, but lubrication therapies, used in other joints, could be an effective alternative. However, the healthy TMJ contains fibrocartilage, not hyaline cartilage as is found in other joints. As such, the effect of lubrication therapies in the TMJ is unknown. Additionally, only a few studies have characterized the friction coefficient of the healthy TMJ. Like other cartilaginous tissues, the TMJ condyles and discs are subject to changes in friction coefficient due to fluid pressurization. In addition, the friction coefficient of the TMJ is affected by the sliding direction and anatomic location. However, these previous findings have not been able to identify how all 3 of these parameters (anatomic location, sliding direction, and fluid pressurization) influence changes in friction coefficient. This study used Stribeck curves to identify differences in the friction coefficients of TMJ condyles and discs based on anatomic location, sliding direction, and amount of fluid pressurization (friction mode). Friction coefficients were measured using a cartilage on glass tribometer. Both TMJ condyle and disc friction coefficients were well described by Stribeck curves. These curves changed based on anatomic location, but very few differences in friction coefficients were observed based on sliding direction. TMJ condyles had similar boundary mode and elastoviscous mode friction coefficients to the TMJ disc, and both were lower than hyaline cartilage in other joints. The observed differences here indicate that the surface characteristics of each anatomic region cause differences in friction coefficients.
Collapse
Affiliation(s)
- Jill Middendorf
- Sibley School of Mechanical and Aerospace Engineering Cornell University, Ithaca, NY
| | - Shaden Albahrani
- Department of Chemical Engineering, Virginia Polytechnic Institute and University, Blacksburg, VA
| | - Lawrence J Bonassar
- Sibley School of Mechanical and Aerospace Engineering Cornell University, Ithaca, NY; Meinig School of Biomedical Engineering Cornell University, Ithaca, NY
| |
Collapse
|
57
|
Sagl B, Schmid-Schwap M, Piehslinger E, Kronnerwetter C, Kundi M, Trattnig S, Stavness I. In vivo prediction of temporomandibular joint disc thickness and position changes for different jaw positions. J Anat 2019; 234:718-727. [PMID: 30786005 DOI: 10.1111/joa.12951] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2019] [Indexed: 12/31/2022] Open
Abstract
Temporomandibular joint disorders (TMD) are common dysfunctions of the masticatory region and are often linked to dislocation or changes of the temporomandibular joint (TMJ) disc. Magnetic resonance imaging (MRI) is the gold standard for TMJ imaging but standard clinical sequences do not deliver a sufficient resolution and contrast for the creation of detailed meshes of the TMJ disc. Additionally, bony structures cannot be captured appropriately using standard MRI sequences due to their low signal intensity. The objective of this study was to enable researchers to create high resolution representations of all structures of the TMJ and consequently investigate morphological as well as positional changes of the masticatory system. To create meshes of the bony structures, a single computed tomography (CT) scan was acquired. In addition, a high-resolution MRI sequence was produced, which is used to collect the thickness and position change of the disc for various static postures using bite blocks. Changes in thickness of the TMJ disc as well as disc translation were measured. The newly developed workflow successfully allows researchers to create high resolution models of all structures of the TMJ for various static positions, enabling the investigation of TMJ disc translation and deformation. Discs were thinnest in the lateral part and moved mainly anteriorly and slightly medially. The procedure offers the most comprehensive picture of disc positioning and thickness changes reported to date. The presented data can be used for the development of a biomechanical computer model of TMJ anatomy and to investigate dynamic and static loads on the components of the system, which could be useful for the prediction of TMD onset.
Collapse
Affiliation(s)
- Benedikt Sagl
- Department of Prosthodontics, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Martina Schmid-Schwap
- Department of Prosthodontics, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Eva Piehslinger
- Department of Prosthodontics, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Claudia Kronnerwetter
- Department of Biomedical Imaging and Image-guided Therapy, High Field MR Centre, Medical University of Vienna, Vienna, Austria
| | - Michael Kundi
- Institute of Environmental Health, Medical University of Vienna, Vienna, Austria
| | - Siegfried Trattnig
- Department of Biomedical Imaging and Image-guided Therapy, High Field MR Centre, Medical University of Vienna, Vienna, Austria.,CD Laboratory for Clinical Molecular MR Imaging, Medical University of Vienna, Vienna, Austria
| | - Ian Stavness
- Department of Computer Science, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
58
|
Ravera EP, Crespo MJ, Catalfamo Formento PA. A subject-specific integrative biomechanical framework of the pelvis for gait analysis. Proc Inst Mech Eng H 2018; 232:1083-1097. [PMID: 30280643 DOI: 10.1177/0954411918803125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Analysis of the human locomotor system using rigid-body musculoskeletal models has increased in the biomechanical community with the objective of studying muscle activations of different movements. Simultaneously, the finite element method has emerged as a complementary approach for analyzing the mechanical behavior of tissues. This study presents an integrative biomechanical framework for gait analysis by linking a musculoskeletal model and a subject-specific finite element model of the pelvis. To investigate its performance, a convergence study was performed and its sensitivity to the use of non-subject-specific material properties was studied. The total hip joint force estimated by the rigid musculoskeletal model and by the finite element model showed good agreement, suggesting that the integrative approach estimates adequately (in shape and magnitude) the hip total contact force. Previous studies found movements of up to 1.4 mm in the anterior-posterior direction, for single leg stance. These results are comparable with the displacement values found in this study: 0-0.5 mm in the sagittal axis. Maximum von Mises stress values of approximately 17 MPa were found in the pelvic bone. Comparing this results with a previous study of our group, the new findings show that the introduction of muscular boundary conditions and the flexion-extension movement of the hip reduce the regions of high stress and distributes more uniformly the stress across the pelvic bone. Thus, it is thought that muscle force has a relevant impact in reducing stresses in pelvic bone during walking of the finite element model proposed in this study. Future work will focus on including other deformable structures, such as the femur and the tibia, and subject-specific material properties.
Collapse
Affiliation(s)
- Emiliano P Ravera
- 1 Group of Analysis, Modeling, Processing and Clinician Implementation of Biomechanical Signals and Systems, Bioengineering and Bioinformatics Institute, CONICET-UNER, Oro Verde, Argentina.,2 Human Movement Research Laboratory, School of Engineering, National University of Entre Ríos (UNER), Oro Verde, Argentina
| | - Marcos J Crespo
- 3 Gait and Motion Analysis Laboratory, FLENI Institute for Neurological Research, Escobar, Argentina
| | - Paola A Catalfamo Formento
- 1 Group of Analysis, Modeling, Processing and Clinician Implementation of Biomechanical Signals and Systems, Bioengineering and Bioinformatics Institute, CONICET-UNER, Oro Verde, Argentina.,2 Human Movement Research Laboratory, School of Engineering, National University of Entre Ríos (UNER), Oro Verde, Argentina
| |
Collapse
|
59
|
Ferreira FM, Cézar Simamoto-Júnior P, Soares CJ, Ramos AMDAM, Fernandes-Neto AJ. Effect of Occlusal Splints on the Stress Distribution on the Temporomandibular Joint Disc. Braz Dent J 2018; 28:324-329. [PMID: 29297553 DOI: 10.1590/0103-6440201601459] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 02/23/2017] [Indexed: 01/10/2023] Open
Abstract
Conservative approach, including occlusal splint therapy, is the first option to treat temporomandibular disorders (TMD), because of its reversibility. The present study analyzed the effect of the articular disc position and occlusal splints use on the stress distribution on this disc. A two-dimensional (2D) finite element (FE) model of the temporomandibular joint with the articular disc at its physiologic position was constructed based on cone-beam computed tomography. Three other FE models were created changing the disc position, according to occlusal splint use and anterior disc displacement condition. Structural stress distribution analysis was performed using Marc-Mentat package. The equivalent von Mises stress was used to compare the study factor. Higher stress concentration was observed on the intermediate to anterior zone of the disc, with maximum values over 2MPa. No relevant difference was verified on the stress distribution and magnitude comparing disc positions and occlusal splint use. However, there was stress reduction arising from the use of the occlusal splints in cases of anterior disc displacement. In conclusion, based on the generated FE models and established boundary conditions, the stress increased at the intermediate zone of the TMJ disc during physiological mandible closure. The stress magnitude was similar in all tested situations.
Collapse
Affiliation(s)
- Fabiane Maria Ferreira
- Department of Occlusion, Dental School, UFU - Universidade Federal de Uberlândia, Uberlândia, MG, Brazil.,Department of Oral Rehabilitation, Dental School, University of Rio Verde, Rio verde, GO, Brazil
| | | | - Carlos José Soares
- Department of Operative Dentistry, UFU - Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | | | | |
Collapse
|
60
|
Zhou ZH, Chen XZ, Chen XW, Wang YX, Zhang SY, Sun SF, Zhen JZ. Improved anchoring nails: design and analysis of resistance ability : Tensile test and finite element analysis (FEA) of improved anchoring nails used in temporomandibular joint (TMJ) disc anchor. BMC Oral Health 2018; 18:150. [PMID: 30144810 PMCID: PMC6109334 DOI: 10.1186/s12903-018-0606-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 08/08/2018] [Indexed: 11/10/2022] Open
Abstract
Background Anchorage is one of the most important treatments for severe temporomandibular joint disorder (TMD). Anchoring nails have shown great success in clinical trials; however, they can break under pressure and are difficult to remove. In this study, we aimed to evaluate an improved anchoring nail and its mechanical stability. Methods The experiment consisted of two parts: a tensile test and finite element analysis (FEA). First, traditional and improved anchoring nails were implanted into the condylar cortical bone and their tensile strength was measured using a tension meter. Second, a three-dimensional finite element model of the condyles with implants was established and FEA was performed with forces from three different directions. Results The FEA results showed that the total force of the traditional and improved anchoring nails is 48.2 N and 200 N, respectively. The mean (±s.d.) maximum tensile strength of the traditional anchoring nail with a 3–0 suture was 27.53 ± 5.47 N. For the improved anchoring nail with a 3–0 suture it was 25.89 ± 2.64 N and with a 2–0 suture it was above 50 N. The tensile strengths of the traditional and improved anchoring nails with a 3–0 suture was significantly different (P = 0.033–< 0.05). Furthermore, the difference between the traditional anchoring nail with a 3–0 suture and the improved anchoring nail with a 2–0 suture was also significantly different (P = 0.000–< 0.01). Conclusion The improved anchoring nail, especially when combined with a 2–0 suture, showed better resistance ability compared with the traditional anchoring nail.
Collapse
Affiliation(s)
- Z H Zhou
- Department of Oral and Maxillofacial Surgery, School of Medicine, Ninth People's Hospital, Shanghai Jiao Tong University, 639 Zhi Zao Ju Road, Shanghai, 200011, People's Republic of China
| | - X Z Chen
- Department of Oral and Maxillofacial Surgery, School of Medicine, Ninth People's Hospital, Shanghai Jiao Tong University, 639 Zhi Zao Ju Road, Shanghai, 200011, People's Republic of China
| | - X W Chen
- Department of Oral and Maxillofacial Surgery, School of Medicine, Ninth People's Hospital, Shanghai Jiao Tong University, 639 Zhi Zao Ju Road, Shanghai, 200011, People's Republic of China
| | - Y X Wang
- Department of Oral and Maxillofacial Surgery, School of Medicine, Ninth People's Hospital, Shanghai Jiao Tong University, 639 Zhi Zao Ju Road, Shanghai, 200011, People's Republic of China
| | - S Y Zhang
- Department of Oral and Maxillofacial Surgery, School of Medicine, Ninth People's Hospital, Shanghai Jiao Tong University, 639 Zhi Zao Ju Road, Shanghai, 200011, People's Republic of China. .,Department of Oral Surgery, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, College of Stomatology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhi-Zao-Ju Road, 200011, Shanghai, People's Republic of China.
| | - S F Sun
- Department of Stomatology, Tongren Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, People's Republic of China.
| | - J Z Zhen
- Department of Oral and Maxillofacial Surgery, School of Medicine, Ninth People's Hospital, Shanghai Jiao Tong University, 639 Zhi Zao Ju Road, Shanghai, 200011, People's Republic of China.
| |
Collapse
|
61
|
She X, Wei F, Damon BJ, Coombs MC, Lee DG, Lecholop MK, Bacro TH, Steed MB, Zheng N, Chen X, Yao H. Three-dimensional temporomandibular joint muscle attachment morphometry and its impacts on musculoskeletal modeling. J Biomech 2018; 79:119-128. [PMID: 30166225 DOI: 10.1016/j.jbiomech.2018.08.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 07/26/2018] [Accepted: 08/10/2018] [Indexed: 01/03/2023]
Abstract
In musculoskeletal models of the human temporomandibular joint (TMJ), muscles are typically represented by force vectors that connect approximate muscle origin and insertion centroids (centroid-to-centroid force vectors). This simplification assumes equivalent moment arms and muscle lengths for all fibers within a muscle even with complex geometry and may result in inaccurate estimations of muscle force and joint loading. The objectives of this study were to quantify the three-dimensional (3D) human TMJ muscle attachment morphometry and examine its impact on TMJ mechanics. 3D muscle attachment surfaces of temporalis, masseter, lateral pterygoid, and medial pterygoid muscles of human cadaveric heads were generated by co-registering measured attachment boundaries with underlying skull models created from cone-beam computerized tomography (CBCT) images. A bounding box technique was used to quantify 3D muscle attachment size, shape, location, and orientation. Musculoskeletal models of the mandible were then developed and validated to assess the impact of 3D muscle attachment morphometry on joint loading during jaw maximal open-close. The 3D morphometry revealed that muscle lengths and moment arms of temporalis and masseter muscles varied substantially among muscle fibers. The values calculated from the centroid-to-centroid model were significantly different from those calculated using the 'Distributed model', which considered crucial 3D muscle attachment morphometry. Consequently, joint loading was underestimated by more than 50% in the centroid-to-centroid model. Therefore, it is necessary to consider 3D muscle attachment morphometry, especially for muscles with broad attachments, in TMJ musculoskeletal models to precisely quantify the joint mechanical environment critical for understanding TMJ function and mechanobiology.
Collapse
Affiliation(s)
- Xin She
- Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - Feng Wei
- Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - Brooke J Damon
- Department of Bioengineering, Clemson University, Clemson, SC, USA; Department of Oral Health Sciences, Medical University of South Carolina (MUSC), Charleston, SC, USA
| | - Matthew C Coombs
- Department of Bioengineering, Clemson University, Clemson, SC, USA; Department of Oral Health Sciences, Medical University of South Carolina (MUSC), Charleston, SC, USA
| | - Daniel G Lee
- Department of Oral and Maxillofacial Surgery, MUSC, Charleston, SC, USA
| | | | - Thierry H Bacro
- Center for Anatomical Studies and Education, MUSC, Charleston, SC, USA
| | - Martin B Steed
- Department of Oral and Maxillofacial Surgery, MUSC, Charleston, SC, USA
| | - Naiquan Zheng
- Department of Mechanical Engineering and Center for Biomedical Engineering and Science, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Xiaojing Chen
- Xiangya School of Stomatology, Central South University, Changsha, China
| | - Hai Yao
- Department of Bioengineering, Clemson University, Clemson, SC, USA; Department of Oral Health Sciences, Medical University of South Carolina (MUSC), Charleston, SC, USA.
| |
Collapse
|
62
|
Stróżyk P, Bałchanowski J. Modelling of the forces acting on the human stomatognathic system during dynamic symmetric incisal biting of foodstuffs. J Biomech 2018; 79:58-66. [PMID: 30173934 DOI: 10.1016/j.jbiomech.2018.07.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 07/31/2018] [Accepted: 07/31/2018] [Indexed: 10/28/2022]
Abstract
A major stage in the preparation of a computational model of the human stomatognathic system is the determination of the values of the forces for the adopted loading configuration. In physiological conditions, food is a factor having a significant effect on the values of the loads acting on the stomatognathic system. Considering that the act of mastication is a complex process, this research undertook to determine the forces (bite forces, muscular forces and temporomandibular joint reaction forces) acting on the stomatognathic system during the dynamic symmetric incisal biting of selected foodstuffs. The investigations were divided into two stages: (1) experimental tests and (2) numerical simulations. In the first stage, classic force-displacement characteristic curves (Fi-Δh) were determined for the food while in the second stage, the curves were used as a dynamic stomatognathic system model load function. One of the most important results of this research is that the food characteristic in the form of a force-displacement function has been shown to have a significant effect not only on the values of the muscular forces and the temporomandibular joint reaction forces, but also on their curves during the dynamic loading of the stomatognathic system. The analysis of the results indicates that Fi-Δh has an effect on not only the (active and passive) forces, but also on other parameters, such as stress, deformation, displacement, and probably the rigidity of the muscles.
Collapse
Affiliation(s)
- Przemysław Stróżyk
- Department of Materials Science, Strength and Welding Engineering, Faculty of Mechanical Engineering, Wrocław University of Science and Technology, Łukasiewicza 5, 50-371 Wrocław, Poland.
| | - Jacek Bałchanowski
- Department of Biomedical Engineering, Mechatronics and Theory of Mechanisms, Faculty of Mechanical Engineering, Wrocław University of Science and Technology, Łukasiewicza 5, 50-371 Wrocław, Poland.
| |
Collapse
|
63
|
Tuijt M, Parsa A, Koutris M, Berkhout E, Koolstra JH, Lobbezoo F. Human jaw joint hypermobility: Diagnosis and biomechanical modelling. J Oral Rehabil 2018; 45:783-789. [PMID: 29972704 DOI: 10.1111/joor.12689] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 02/27/2018] [Accepted: 06/30/2018] [Indexed: 11/29/2022]
Abstract
Patients with hypermobility disorders of the jaw joint experience joint sounds and jerky movements of the jaw. In severe cases, a subluxation or luxation can occur. Clinically, hypermobility disorders should be differentiated from disc displacements. With biomechanical modelling, we previously identified the anterior slope angle of the eminence and the orientation of the jaw closers to potentially contribute to hypermobility disorders. Using cone-beam computed tomography (CBCT), we constructed patient-specific models of the masticatory system to incorporate these aspects. It is not known whether the clinical diagnosis of hypermobility disorders is associated with the prediction of hypermobility by a patient-specific biomechanical model. Fifteen patients and eleven controls, matched for gender and age, were enrolled in the study. Clinical diagnosis was performed according to the Diagnostic Criteria for Temporomandibular Disorders (DC/TMD) and additional testing to differentiate hypermobility from disc displacements. Forward simulations with patient-specific biomechanical models were performed for maximum opening and subsequent closing of the jaw. This predicted a hypermobility disorder (luxation) or a control (normal closing). We found no association between the clinical diagnosis and predictions of hypermobility disorders. The biomechanical models overestimated the number of patients, yielding a low specificity. The role of the collagenous structures remains unclear; therefore, the articular disc and the ligaments should be modelled in greater detail. This also holds for the fanned shape of the temporalis muscle. However, for the osseous structures, we determined post hoc that the anterior slope angle of the articular eminence is steeper in patients than in controls.
Collapse
Affiliation(s)
- Matthijs Tuijt
- Department of Oral Cell Biology and Functional Anatomy, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands.,Department of Oral Kinesiology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands
| | - Azin Parsa
- Department of Oral Radiology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands
| | - Michail Koutris
- Department of Oral Kinesiology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands
| | - Erwin Berkhout
- Department of Oral Radiology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands
| | - Jan Harm Koolstra
- Department of Oral Cell Biology and Functional Anatomy, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands
| | - Frank Lobbezoo
- Department of Oral Kinesiology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
64
|
Nickel JC, Iwasaki LR, Gonzalez YM, Gallo LM, Yao H. Mechanobehavior and Ontogenesis of the Temporomandibular Joint. J Dent Res 2018; 97:1185-1192. [PMID: 30004817 DOI: 10.1177/0022034518786469] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Craniofacial secondary cartilages of the mandibular condyle and temporomandibular joint (TMJ) eminence grow in response to the local mechanical environment. The intervening TMJ disc distributes normal loads over the cartilage surfaces and provides lubrication. A better understanding of the mechanical environment and its effects on growth, development, and degeneration of the TMJ may improve treatments aimed at modifying jaw growth and preventing or reversing degenerative joint disease (DJD). This review highlights data recorded in human subjects and from computer modeling that elucidate the role of mechanics in TMJ ontogeny. Presented data provide an approximation of the age-related changes in jaw-loading behaviors and TMJ contact mechanics. The cells of the mandibular condyle, eminence, and disc respond to the mechanical environment associated with behaviors and ultimately determine the TMJ components' mature morphologies and susceptibility to precocious development of DJD compared to postcranial joints. The TMJ disc may be especially prone to degenerative change due to its avascularity and steep oxygen and glucose gradients consequent to high cell density and rate of nutrient consumption, as well as low solute diffusivities. The combined effects of strain-related hypoxia and limited glucose concentrations dramatically affect synthesis of the extracellular matrix (ECM), which limit repair capabilities. Magnitude and frequency of jaw loading influence this localized in situ environment, including stem and fibrocartilage cell chemistry, as well as the rate of ECM mechanical fatigue. Key in vivo measurements to characterize the mechanical environment include the concentration of work input to articulating tissues, known as energy density, and the percentage of time that muscles are used to load the jaws out of a total recording time, known as duty factor. Combining these measurements into a mechanobehavioral score and linking these to results of computer models of strain-regulated biochemical events may elucidate the mechanisms responsible for growth, maintenance, and deterioration of TMJ tissues.
Collapse
Affiliation(s)
- J C Nickel
- 1 Department of Orthodontics, School of Dentistry, Oregon Health & Science University, Portland, OR, USA.,2 Department of Oral Diagnostic Sciences, School of Dental Medicine, University at Buffalo, Buffalo, NY, USA
| | - L R Iwasaki
- 1 Department of Orthodontics, School of Dentistry, Oregon Health & Science University, Portland, OR, USA.,2 Department of Oral Diagnostic Sciences, School of Dental Medicine, University at Buffalo, Buffalo, NY, USA
| | - Y M Gonzalez
- 2 Department of Oral Diagnostic Sciences, School of Dental Medicine, University at Buffalo, Buffalo, NY, USA
| | - L M Gallo
- 3 Department of Masticatory Disorders, University of Zurich School of Dental Medicine, Zurich, Switzerland
| | - H Yao
- 4 Department of Bioengineering, Clemson University, Clemson, SC, USA.,5 Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
65
|
Matuska AM, McFetridge PS. Laser micro-ablation of fibrocartilage tissue: Effects of tissue processing on porosity modification and mechanics. J Biomed Mater Res B Appl Biomater 2018; 106:1858-1868. [PMID: 28922555 PMCID: PMC5857432 DOI: 10.1002/jbm.b.33997] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/26/2017] [Accepted: 08/30/2017] [Indexed: 11/09/2022]
Abstract
The temporomandibular joint disk (TMJd) is an extremely dense and avascular fibrocartilaginous extracellular matrix (ECM) resulting in a limited regenerative capacity. The use of decellularized TMJd as a biocompatible scaffold to guide tissue regeneration is restricted by innate subcellular porosity of the ECM that hinders cellular infiltration and regenerative events. Incorporation of an artificial microporosity through laser micro-ablation (LMA) can alleviate these cell and diffusion based limitations. In this study, LMA was performed either before or after decellularization to assess to effect of surfactant treatment on porosity modification as well as the resultant mechanical and physical scaffold properties. Under convective flow or agitation schemes, pristine and laser ablated disks were decellularized using either low (0.1% w/v) or high (1% w/v) concentrations of sodium dodecyl sulfate (SDS). Results show that lower concentrations of SDS minimized collagen degradation and tissue swelling while retaining its capacity to solubilize cellular content. Regardless of processing scheme, laser ablated channels incorporated after SDS treatment were relatively smaller and more uniform than those incorporated before SDS treatment, indicating an altered laser interaction with surfactant treated tissues. Smaller channels correlated with less disruption of native biomechanical properties indicating surfactant pre-treatment is an important consideration when using LMA to produce artificial porosity in ex vivo derived tissues. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1858-1868, 2018.
Collapse
Affiliation(s)
- AM Matuska
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Biomedical Science Building JG56, P.O. Box 116131, 1275 Center Drive, Gainesville, FL 32611-6131, USA
| | - PS McFetridge
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Biomedical Science Building JG56, P.O. Box 116131, 1275 Center Drive, Gainesville, FL 32611-6131, USA
| |
Collapse
|
66
|
Chang Y, Tambe AA, Maeda Y, Wada M, Gonda T. Finite element analysis of dental implants with validation: to what extent can we expect the model to predict biological phenomena? A literature review and proposal for classification of a validation process. Int J Implant Dent 2018. [PMID: 29516219 PMCID: PMC5842167 DOI: 10.1186/s40729-018-0119-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A literature review of finite element analysis (FEA) studies of dental implants with their model validation process was performed to establish the criteria for evaluating validation methods with respect to their similarity to biological behavior. An electronic literature search of PubMed was conducted up to January 2017 using the Medical Subject Headings “dental implants” and “finite element analysis.” After accessing the full texts, the context of each article was searched using the words “valid” and “validation” and articles in which these words appeared were read to determine whether they met the inclusion criteria for the review. Of 601 articles published from 1997 to 2016, 48 that met the eligibility criteria were selected. The articles were categorized according to their validation method as follows: in vivo experiments in humans (n = 1) and other animals (n = 3), model experiments (n = 32), others’ clinical data and past literature (n = 9), and other software (n = 2). Validation techniques with a high level of sufficiency and efficiency are still rare in FEA studies of dental implants. High-level validation, especially using in vivo experiments tied to an accurate finite element method, needs to become an established part of FEA studies. The recognition of a validation process should be considered when judging the practicality of an FEA study.
Collapse
Affiliation(s)
- Yuanhan Chang
- Department of Prosthodontics, Gerodontology and Oral Rehabilitation, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Abhijit Anil Tambe
- Mahatma Gandhi Vidyamandir's Karmaveer Bhausaheb Hiray Dental College & Hospital, Mumbai Agra Road, Panchwati, Nashik, Maharashtra, India
| | - Yoshinobu Maeda
- Department of Prosthodontics, Gerodontology and Oral Rehabilitation, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Masahiro Wada
- Department of Prosthodontics, Gerodontology and Oral Rehabilitation, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tomoya Gonda
- Department of Prosthodontics, Gerodontology and Oral Rehabilitation, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
67
|
DOGRU SUZANCANSEL, CANSIZ EROL, ARSLAN YUNUSZIYA. A REVIEW OF FINITE ELEMENT APPLICATIONS IN ORAL AND MAXILLOFACIAL BIOMECHANICS. J MECH MED BIOL 2018; 18:1830002. [DOI: 10.1142/s0219519418300028] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Finite element method (FEM) is preferred to carry out mechanical analyses for many complex biomechanical structures. For most of the biomechanical models such as oral and maxillofacial structures or patient-specific dental instruments, including nonlinearities, complicated geometries, complex material properties, or loading/boundary conditions, it is not possible to accomplish an analytical solution. The FEM is the most widely used numerical approach for such cases and found a wide range of application fields for investigating the biomechanical characteristics of oral and maxillofacial structures that are exposed to external forces or torques. The numerical results such as stress or strain distributions obtained from finite element analysis (FEA) enable dental researchers to evaluate the bone tissues subjected to the implant or prosthesis fixation from the viewpoint of (i) mechanical strength, (ii) material properties, (iii) geometry and dimensions, (iv) structural properties, (v) loading or boundary conditions, and (vi) quantity of implants or prostheses. This review paper evaluates the process of the FEA of the oral and maxillofacial structures step by step as followings: (i) a general perspective on the techniques for creating oral and maxillofacial models, (ii) definitions of material properties assigned to oral and maxillofacial tissues and related dental materials, (iii) definitions of contact types between tissue and dental instruments, (iv) details on loading and boundary conditions, and (v) meshing process.
Collapse
Affiliation(s)
- SUZAN CANSEL DOGRU
- Department of Mechanical Engineering, Faculty of Engineering, Istanbul University, Avcilar, Istanbul 34320, Turkey
| | - EROL CANSIZ
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Istanbul University, Capa, Istanbul 34093, Turkey
| | - YUNUS ZIYA ARSLAN
- Department of Mechanical Engineering, Faculty of Engineering, Istanbul University, Avcilar, Istanbul 34320, Turkey
| |
Collapse
|
68
|
Marom A, Rak Y. Mechanical implications of the mandibular coronoid process morphology in Neandertals. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2018; 166:401-407. [PMID: 29446440 DOI: 10.1002/ajpa.23440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 12/17/2017] [Accepted: 02/01/2018] [Indexed: 11/10/2022]
Abstract
OBJECTIVES Among the diagnostic features of the Neandertal mandible are the broad base of the coronoid process and its straight posterior margin. The adaptive value of these (and other) anatomical features has been linked to the Neandertal's need to cope with a large gape. The present study aims to test this hypothesis with regard to the morphology of the coronoid process. MATERIALS AND METHODS This admittedly simple, intuitive hypothesis was tested here via a comparative finite-element study of the primitive versus modified state of the coronoid process, using two-dimensional models of the mandible. RESULTS Our simulations demonstrate that a large gape has an unfavorable effect on the primitive state of the coronoid process: the diagonal, almost horizontal, component of the temporalis muscle resultant (relative to the long axis of the coronoid process) bends the process in the sagittal plane. Furthermore, we show that the modification of the coronoid process morphology alone reduces the process' bending in a wide gape increasing the compression to tension ratio. DISCUSSION These results provide indirect evidence in support of the hypothesis that the modification of the coronoid process in Neandertals is necessary for enabling their mandible to cope with a large gape.
Collapse
Affiliation(s)
- Assaf Marom
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Ramat-Aviv 69978, Israel
| | - Yoel Rak
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Ramat-Aviv 69978, Israel
| |
Collapse
|
69
|
Biomechanical effects of a mandibular advancement device on the temporomandibular joint. J Craniomaxillofac Surg 2018; 46:288-292. [DOI: 10.1016/j.jcms.2017.11.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 10/23/2017] [Accepted: 11/13/2017] [Indexed: 11/22/2022] Open
|
70
|
Skipper Andersen M, de Zee M, Damsgaard M, Nolte D, Rasmussen J. Introduction to Force-Dependent Kinematics: Theory and Application to Mandible Modeling. J Biomech Eng 2017. [DOI: 10.1115/1.4037100] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Knowledge of the muscle, ligament, and joint forces is important when planning orthopedic surgeries. Since these quantities cannot be measured in vivo under normal circumstances, the best alternative is to estimate them using musculoskeletal models. These models typically assume idealized joints, which are sufficient for general investigations but insufficient if the joint in focus is far from an idealized joint. The purpose of this study was to provide the mathematical details of a novel musculoskeletal modeling approach, called force-dependent kinematics (FDK), capable of simultaneously computing muscle, ligament, and joint forces as well as internal joint displacements governed by contact surfaces and ligament structures. The method was implemented into the anybody modeling system and used to develop a subject-specific mandible model, which was compared to a point-on-plane (POP) model and validated against joint kinematics measured with a custom-built brace during unloaded emulated chewing, open and close, and protrusion movements. Generally, both joint models estimated the joint kinematics well with the POP model performing slightly better (root-mean-square-deviation (RMSD) of less than 0.75 mm for the POP model and 1.7 mm for the FDK model). However, substantial differences were observed when comparing the estimated joint forces (RMSD up to 24.7 N), demonstrating the dependency on the joint model. Although the presented mandible model still contains room for improvements, this study shows the capabilities of the FDK methodology for creating joint models that take the geometry and joint elasticity into account.
Collapse
Affiliation(s)
- Michael Skipper Andersen
- Department of Materials and Production, Aalborg University, Fibigerstraede 16, Aalborg East, Aalborg DK-9220, Denmark e-mail:
| | - Mark de Zee
- Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 7, Aalborg East, Aalborg DK-9220, Denmark e-mail:
| | - Michael Damsgaard
- AnyBody Technology A/S, Niels Jernes Vej 10, Aalborg East, Aalborg DK-9220, Denmark e-mail:
| | - Daniel Nolte
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK e-mail:
| | - John Rasmussen
- Department of Materials and Production, Aalborg University, Fibigerstraede 16, Aalborg East, Aalborg DK-9220, Denmark e-mail:
| |
Collapse
|
71
|
Effect of freezing storage time on the elastic and viscous properties of the porcine TMJ disc. J Mech Behav Biomed Mater 2017; 71:314-319. [DOI: 10.1016/j.jmbbm.2017.03.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 03/21/2017] [Accepted: 03/31/2017] [Indexed: 11/17/2022]
|
72
|
Martinez Choy SE, Lenz J, Schweizerhof K, Schmitter M, Schindler HJ. Realistic kinetic loading of the jaw system during single chewing cycles: a finite element study. J Oral Rehabil 2017; 44:375-384. [DOI: 10.1111/joor.12501] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2017] [Indexed: 11/29/2022]
Affiliation(s)
- S. E. Martinez Choy
- Research Group Biomechanics; Institute for Mechanics; Karlsruhe Institute of Technology (KIT); Karlsruhe Germany
| | - J. Lenz
- Research Group Biomechanics; Institute for Mechanics; Karlsruhe Institute of Technology (KIT); Karlsruhe Germany
| | - K. Schweizerhof
- Research Group Biomechanics; Institute for Mechanics; Karlsruhe Institute of Technology (KIT); Karlsruhe Germany
| | - M. Schmitter
- Department of Prosthodontics; Dental School; University of Würzburg; Würzburg Germany
| | - H. J. Schindler
- Research Group Biomechanics; Institute for Mechanics; Karlsruhe Institute of Technology (KIT); Karlsruhe Germany
| |
Collapse
|
73
|
van Eijden TMGJ, van der Helm PN, van Ruijven LJ, Mulder L. Structural and Mechanical Properties of Mandibular Condylar Bone. J Dent Res 2016; 85:33-7. [PMID: 16373677 DOI: 10.1177/154405910608500105] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The trabecular bone of the mandibular condyle is structurally anisotropic and heterogeneous. We hypothesized that its apparent elastic moduli are also anisotropic and heterogeneous, and depend on trabecular density and orientation. Eleven condyles were scanned with a micro-CT system. Volumes of interest were selected for the construction of finite element models. We simulated compressive and shear tests to determine the principal mechanical directions and the apparent elastic moduli. Compressive moduli were relatively large in directions acting in the sagittal plane, and small in the mediolateral direction. The degree of mechanical anisotropy ranged from 4.7 to 10.8. Shear moduli were largest in the sagittal plane and smallest in the transverse plane. The magnitudes of the moduli varied with the condylar region and were proportional to the bone volume fraction. Furthermore, principal mechanical direction correlated significantly with principal structural direction. It was concluded that variation in trabecular structure coincides with variation in apparent mechanical properties.
Collapse
Affiliation(s)
- T M G J van Eijden
- Department of Functional Anatomy, Academic Centre for Dentistry Amsterdam, Universiteit van Amsterdam and Vrije Universiteit, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
74
|
Koolstra J, van Eijden T. Consequences of Viscoelastic Behavior in the Human Temporomandibular Joint Disc. J Dent Res 2016; 86:1198-202. [DOI: 10.1177/154405910708601211] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The consequences of the viscoelastic behavior of the temporomandibular joint disc were analyzed in simulated jaw open-close cycles. It was hypothesized that viscoelasticity helps protect the underlying bone, while augmenting the smoothness of articular movements. Simulations were performed with a dynamic model of the masticatory system, incorporating the joints’ cartilaginous structures as Finite Element Models. A non-linear viscoelastic material model was applied for the disc. The apparent stiffness of the disc to principal stress was largest when the jaw was closed, whereas, with the Von Mises’ stress, it appeared largest when the jaw was open. The apparent stiffnesses appeared to be dependent on both the speed of the movements and the presence of a resistance between the teeth. It was concluded that the disc becomes stiffer when load concentrations can be expected. During continued cyclic motion, it softens, which favors smoothness of joint movement at the cost of damage prevention.
Collapse
Affiliation(s)
- J.H. Koolstra
- Department of Functional Anatomy, Academic Centre for Dentistry Amsterdam -ACTA-, Meibergdreef 15, 1105 AZ Amsterdam, the Netherlands
| | - T.M.G.J. van Eijden
- Department of Functional Anatomy, Academic Centre for Dentistry Amsterdam -ACTA-, Meibergdreef 15, 1105 AZ Amsterdam, the Netherlands
| |
Collapse
|
75
|
Wright GJ, Coombs MC, Hepfer RG, Damon BJ, Bacro TH, Lecholop MK, Slate EH, Yao H. Tensile biomechanical properties of human temporomandibular joint disc: Effects of direction, region and sex. J Biomech 2016; 49:3762-3769. [PMID: 27743627 DOI: 10.1016/j.jbiomech.2016.09.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 09/23/2016] [Accepted: 09/30/2016] [Indexed: 11/18/2022]
Abstract
Approximately 30% of temporomandibular joint (TMJ) disorders include degenerative changes to the articular disc, with sex-specific differences in prevalence and severity. Limited tensile biomechanical properties of human TMJ discs have been reported. Stress relaxation tests were conducted on TMJ disc specimens harvested bilaterally from six males and six females (68.9±7.9 years), with step-strain increments of 5%, 10%, 15%, 20% and 30%, at 1% strain-per-second. Stress versus strain plots were constructed, and Young׳s Modulus, Instantaneous Modulus and Relaxed Modulus were determined. The effects of direction, region, and sex were examined. Regional effects were significant (p<0.01) for Young׳s Modulus and Instantaneous Modulus. Anteroposteriorly, the central region was significantly stiffer than medial and lateral regions. Mediolaterally, the posterior region was significantly stiffer than central and anterior regions. In the central region, anteroposteriorly directed specimens were significantly stiffer compared to mediolateral specimens (p<0.04). TMJ disc stiffness, indicated by Young׳s Modulus and Instantaneous Modulus, was higher in directions corresponding to high fiber alignment. Additionally, human TMJ discs were stiffer for females compared to males, with higher Young׳s Modulus and Instantaneous Modulus, and female TMJ discs relaxed less. However, sex effects were not statistically significant. Using second-harmonic generation microscopy, regional collagen fiber organization was identified as a potentially significant factor in determining the biomechanical properties for any combination of direction and region. These findings establish structure-function relationships between collagen fiber direction and organization with biomechanical response to tensile loading, and may provide insights into the prevalence of TMJ disorders among women.
Collapse
Affiliation(s)
- Gregory J Wright
- Department of Bioengineering, Clemson University, Clemson, SC, United States
| | - Matthew C Coombs
- Department of Bioengineering, Clemson University, Clemson, SC, United States; Department of Oral Health Sciences, Medical University of South Carolina (MUSC), Charleston, SC, United States
| | - R Glenn Hepfer
- Department of Bioengineering, Clemson University, Clemson, SC, United States
| | - Brooke J Damon
- Department of Bioengineering, Clemson University, Clemson, SC, United States; Department of Oral Health Sciences, Medical University of South Carolina (MUSC), Charleston, SC, United States
| | - Thierry H Bacro
- Center for Anatomical Studies and Education, MUSC, Charleston, SC, United States
| | - Michael K Lecholop
- Department of Oral & Maxillofacial Surgery, MUSC, Charleston, SC, United States
| | - Elizabeth H Slate
- Department of Statistics, Florida State University, Tallahassee, FL, United States
| | - Hai Yao
- Department of Bioengineering, Clemson University, Clemson, SC, United States; Department of Oral Health Sciences, Medical University of South Carolina (MUSC), Charleston, SC, United States.
| |
Collapse
|
76
|
Marková M, Gallo LM. The influence of the human TMJ eminence inclination on predicted masticatory muscle forces. Hum Mov Sci 2016; 49:132-40. [PMID: 27376178 DOI: 10.1016/j.humov.2016.06.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 05/09/2016] [Accepted: 06/23/2016] [Indexed: 12/19/2022]
Abstract
Aim of this paper was to investigate the change in masticatory muscle forces and temporomandibular joint (TMJ) reaction forces simulated by inverse dynamics when thesteepness of the anterior fossa slope was varied. We used the model by de Zee et al. (2007) created in AnyBody™. The model was equipped with 24musculotendon actuators. Mandibular movement was governed by thetrajectory of theincisal point. The TMJ was modelled as a planar constraint canted 5°medially and thecaudal inclination relative to the occlusal plane was varied from 10° to 70°. Our models showed that for the two simulated movements (empty chewing and unilateral clenching) the joint reaction forces were smallest for the eminence inclination of 30° and 40° and highest for 70°. The muscle forces were relatively insensitive to change of the eminence inclination for the angles between 20° and 50°. This did not hold for the pterygoid muscle, for which the muscle forces increased continually with increasing fossa inclination. For empty chewing the muscle force reached smaller values than for clenching. During clenching, the muscle forces changed by up to 200N.
Collapse
Affiliation(s)
- Michala Marková
- Clinic of Masticatory Disorders, Removable Prosthodontics, Geriatric and Special Care Dentistry, University of Zürich, Plattenstrasse 11, 8032 Zürich, Switzerland; Laboratory of Biomechanics, Department of Mechanics, Biomechanics and Mechatronics, Faculty of Mechanical Engineering, Czech Technical University in Prague, Technická 4, 16607 Prague 6, Czech Republic.
| | - Luigi M Gallo
- Clinic of Masticatory Disorders, Removable Prosthodontics, Geriatric and Special Care Dentistry, University of Zürich, Plattenstrasse 11, 8032 Zürich, Switzerland.
| |
Collapse
|
77
|
Toro-Ibacache V, O'Higgins P. The Effect of Varying Jaw-elevator Muscle Forces on a Finite Element Model of a Human Cranium. Anat Rec (Hoboken) 2016; 299:828-39. [PMID: 27111484 DOI: 10.1002/ar.23358] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 02/22/2016] [Accepted: 03/08/2016] [Indexed: 11/07/2022]
Abstract
Finite element analyses simulating masticatory system loading are increasingly undertaken in primates, hominin fossils and modern humans. Simplifications of models and loadcases are often required given the limits of data and technology. One such area of uncertainty concerns the forces applied to cranial models and their sensitivity to variations in these forces. We assessed the effect of varying force magnitudes among jaw-elevator muscles applied to a finite element model of a human cranium. The model was loaded to simulate incisor and molar bites using different combinations of muscle forces. Symmetric, asymmetric, homogeneous, and heterogeneous muscle activations were simulated by scaling maximal forces. The effects were compared with respect to strain distribution (i.e., modes of deformation) and magnitudes; bite forces and temporomandibular joint (TMJ) reaction forces. Predicted modes of deformation, strain magnitudes and bite forces were directly proportional to total applied muscle force and relatively insensitive to the degree of heterogeneity of muscle activation. However, TMJ reaction forces and mandibular fossa strains decrease and increase on the balancing and working sides according to the degree of asymmetry of loading. These results indicate that when modes, rather than magnitudes, of facial deformation are of interest, errors in applied muscle forces have limited effects. However the degree of asymmetric loading does impact on TMJ reaction forces and mandibular fossa strains. These findings are of particular interest in relation to studies of skeletal and fossil material, where muscle data are not available and estimation of muscle forces from skeletal proxies is prone to error. Anat Rec, 299:828-839, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Viviana Toro-Ibacache
- Centre for Anatomical and Human Sciences, Department of Archaeology and Hull York Medical School, University of York, Heslington, York, YO10 5DD, UK
- Facultad De Odontología, Universidad De Chile, Sergio Livingstone Pohlhammer 943, Independencia, Región Metropolitana, Chile
| | - Paul O'Higgins
- Centre for Anatomical and Human Sciences, Department of Archaeology and Hull York Medical School, University of York, Heslington, York, YO10 5DD, UK
| |
Collapse
|
78
|
Watson PJ, Gröning F, Curtis N, Fitton LC, Herrel A, McCormack SW, Fagan MJ. Masticatory biomechanics in the rabbit: a multi-body dynamics analysis. J R Soc Interface 2015; 11:rsif.2014.0564. [PMID: 25121650 PMCID: PMC4233732 DOI: 10.1098/rsif.2014.0564] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Multi-body dynamics is a powerful engineering tool which is becoming increasingly popular for the simulation and analysis of skull biomechanics. This paper presents the first application of multi-body dynamics to analyse the biomechanics of the rabbit skull. A model has been constructed through the combination of manual dissection and three-dimensional imaging techniques (magnetic resonance imaging and micro-computed tomography). Individual muscles are represented with multiple layers, thus more accurately modelling muscle fibres with complex lines of action. Model validity was sought through comparing experimentally measured maximum incisor bite forces with those predicted by the model. Simulations of molar biting highlighted the ability of the masticatory system to alter recruitment of two muscle groups, in order to generate shearing or crushing movements. Molar shearing is capable of processing a food bolus in all three orthogonal directions, whereas molar crushing and incisor biting are predominately directed vertically. Simulations also show that the masticatory system is adapted to process foods through several cycles with low muscle activations, presumably in order to prevent rapidly fatiguing fast fibres during repeated chewing cycles. Our study demonstrates the usefulness of a validated multi-body dynamics model for investigating feeding biomechanics in the rabbit, and shows the potential for complementing and eventually reducing in vivo experiments.
Collapse
Affiliation(s)
- Peter J Watson
- Medical and Biological Engineering Research Group, School of Engineering, University of Hull, Hull HU6 7RX, UK
| | - Flora Gröning
- Musculoskeletal Research Programme, School of Medicine and Dentistry, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Neil Curtis
- Medical and Biological Engineering Research Group, School of Engineering, University of Hull, Hull HU6 7RX, UK
| | - Laura C Fitton
- Centre for Anatomical and Human Sciences, Hull York Medical School, University of York, York YO10 5DD, UK
| | - Anthony Herrel
- Département d'Ecologie et de Gestion de la Biodiversité, Muséum National d'Histoire Naturelle, Case postale 55, Paris Cedex 5 75231, France Evolutionary Morphology of Vertebrates, Ghent University, K.L. Ledeganckstraat 35, 9000 Gent, Belgium
| | - Steven W McCormack
- Medical and Biological Engineering Research Group, School of Engineering, University of Hull, Hull HU6 7RX, UK
| | - Michael J Fagan
- Medical and Biological Engineering Research Group, School of Engineering, University of Hull, Hull HU6 7RX, UK
| |
Collapse
|
79
|
Ackland DC, Moskaljuk A, Hart C, Vee Sin Lee P, Dimitroulis G. Prosthesis Loading After Temporomandibular Joint Replacement Surgery: A Musculoskeletal Modeling Study. J Biomech Eng 2015; 137:041001. [DOI: 10.1115/1.4029503] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Indexed: 11/08/2022]
Abstract
One of the most widely reported complications associated with temporomandibular joint (TMJ) prosthetic total joint replacement (TJR) surgery is condylar component screw loosening and instability. The objective of this study was to develop a musculoskeletal model of the human jaw to assess the influence of prosthetic condylar component orientation and screw placement on condylar component loading during mastication. A three-dimensional model of the jaw comprising the maxilla, mandible, masticatory muscles, articular cartilage, and articular disks was developed. Simulations of mastication and a maximum force bite were performed for the natural TMJ and the TMJ after prosthetic TJR surgery, including cases for mastication where the condylar component was rotated anteriorly by 0 deg, 5 deg, 10 deg, and 15 deg. Three clinically significant screw configurations were investigated: a complete, posterior, and minimal-posterior screw (MPS) configuration. Increases in condylar anterior rotation led to an increase in prosthetic condylar component contact stresses and substantial increases in condylar component screw stresses. The use of more screws in condylar fixation reduced screw stress magnitudes and maximum condylar component stresses. Screws placed superiorly experienced higher stresses than those of all other condylar fixation screws. The results of the present study have important implication for the way in which prosthetic components are placed during TMJ prosthetic TJR surgery.
Collapse
Affiliation(s)
- David C. Ackland
- Department of Mechanical Engineering, University of Melbourne, Building 170, Victoria 3010, Australia e-mail:
| | - Adrian Moskaljuk
- Department of Mechanical Engineering, University of Melbourne, Building 170, Victoria 3010, Australia e-mail:
| | - Chris Hart
- St Vincent's Hospital, Suite 3, Level 10, 20 Collins Street, Victoria 3000, Australia e-mail:
| | - Peter Vee Sin Lee
- Department of Mechanical Engineering, University of Melbourne, Building 170, Victoria 3010, Australia e-mail:
| | - George Dimitroulis
- St Vincent's Hospital, Suite 5, Level 10, 20 Collins Street, Victoria 3000, Australia e-mail:
| |
Collapse
|
80
|
Abel EW, Hilgers A, McLoughlin PM. Finite element analysis of a condylar support prosthesis to replace the temporomandibular joint. Br J Oral Maxillofac Surg 2015; 53:352-7. [PMID: 25703687 DOI: 10.1016/j.bjoms.2015.01.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 01/21/2015] [Indexed: 12/01/2022]
Abstract
This paper presents a finite element study of a temporomandibular joint (TMJ) prosthesis in which the mandibular component sits on the condyle after removal of only the diseased articular surface and minimal amount of condylar bone. The condylar support prosthesis (CSP) is customised to fit the patient and allows a large part of the joint force to be transmitted through the condyle to the ramus, rather than relying only on transfer of the load by the screws that fix the prosthesis to the ramus. The 3-dimensional structural finite element analysis compared a design of CSP with a standard commercial prosthesis and one that was modified to fit the ramus, to relate the findings to the different designs and geometrical features. The models simulated an incisal bite under high loading. In the CSP and in its fixation screws, the stresses were much lower than those in the other 2 prostheses and the bone strains were at physiological levels. The CSP gives a more physiological form of load transfer than is possible without the condylar contact, and considerably reduces the amount of strain on the bone around the screws.
Collapse
Affiliation(s)
- Eric W Abel
- School of Engineering, Physics and Mathematics, University of Dundee, Dundee DD1 4HN, United Kingdom.
| | - André Hilgers
- School of Engineering, Physics and Mathematics, University of Dundee, Dundee DD1 4HN, United Kingdom.
| | | |
Collapse
|
81
|
Liu Z, Qian Y, Zhang Y, Fan Y. Effects of several temporomandibular disorders on the stress distributions of temporomandibular joint: a finite element analysis. Comput Methods Biomech Biomed Engin 2015; 19:137-43. [DOI: 10.1080/10255842.2014.996876] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
82
|
Hattori-Hara E, Mitsui SN, Mori H, Arafurue K, Kawaoka T, Ueda K, Yasue A, Kuroda S, Koolstra JH, Tanaka E. The influence of unilateral disc displacement on stress in the contralateral joint with a normally positioned disc in a human temporomandibular joint: An analytic approach using the finite element method. J Craniomaxillofac Surg 2014; 42:2018-24. [DOI: 10.1016/j.jcms.2014.09.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Revised: 07/11/2014] [Accepted: 09/25/2014] [Indexed: 10/24/2022] Open
|
83
|
Weber GW. Virtual Anthropology. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2014; 156 Suppl 59:22-42. [DOI: 10.1002/ajpa.22658] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Gerhard W. Weber
- Department of Anthropology; University of Vienna; A-1090 Vienna Austria
- Core Facility for Micro-Computed Tomography; University of Vienna; A-1090 Vienna Austria
| |
Collapse
|
84
|
Commisso MS, Martínez-Reina J, Ojeda J, Mayo J. Finite element analysis of the human mastication cycle. J Mech Behav Biomed Mater 2014; 41:23-35. [PMID: 25460400 DOI: 10.1016/j.jmbbm.2014.09.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 09/18/2014] [Accepted: 09/23/2014] [Indexed: 12/27/2022]
Abstract
The aim of this paper is to propose a biomechanical model that could serve as a tool to overcome some difficulties encountered in experimental studies of the mandible. One of these difficulties is the inaccessibility of the temporomandibular joint (TMJ) and the lateral pterygoid muscle. The focus of this model is to study the stresses in the joint and the influence of the lateral pterygoid muscle on the mandible movement. A finite element model of the mandible, including the TMJ, was built to simulate the process of unilateral mastication. Different activation patterns of the left and right pterygoid muscles were tried. The maximum stresses in the articular disc and in the whole mandible during a complete mastication cycle were reached during the instant of centric occlusion. The simulations show a great influence of the coordination of the right and left lateral pterygoid muscles on the movement of the jaw during mastication. An asynchronous activation of the lateral pterygoid muscles is needed to achieve a normal movement of the jaw during mastication.
Collapse
Affiliation(s)
- Maria S Commisso
- Department of Mechanical Engineering, University of Seville, Camino de los Descubrimientos s/n, E-41092 Seville, Spain.
| | - Javier Martínez-Reina
- Department of Mechanical Engineering, University of Seville, Camino de los Descubrimientos s/n, E-41092 Seville, Spain
| | - Joaquín Ojeda
- Department of Mechanical Engineering, University of Seville, Camino de los Descubrimientos s/n, E-41092 Seville, Spain
| | - Juana Mayo
- Department of Mechanical Engineering, University of Seville, Camino de los Descubrimientos s/n, E-41092 Seville, Spain
| |
Collapse
|
85
|
Koolstra JH, Kommers SC, Forouzanfar T. Biomechanical analysis of fractures in the mandibular neck (collum mandibulae). J Craniomaxillofac Surg 2014; 42:1789-94. [PMID: 25028068 DOI: 10.1016/j.jcms.2014.06.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/16/2014] [Accepted: 06/06/2014] [Indexed: 11/16/2022] Open
Abstract
After treatment of fractures in the neck of the mandible by means of immobilization of the dentition, often more or less severe manifestations of malocclusion remain. It was hypothesized that this is caused by an altered articulation in the jaw joint on the affected side. Furthermore, it was hypothesized that an anteriorly displaced condyle, as observed frequently as a side effect of the treatment, is caused by pull of the lateral pterygoid muscle, despite maxillomandibular fixation. Intervention experiments were performed in silico to test these hypotheses. With a biomechanical model of the human masticatory system alterations were applied mimicking a fractured mandibular neck and configurations that had been observed after healing. It was predicted that the altered articulation in the jaw joint caused asymmetrical jaw movements despite symmetrical muscle activation. The jaw was predicted to close with an open bite similar to clinical observations. The predicted laterodeviations, however, were not in accordance with clinical observations. Despite maxillo-mandibular fixation the lateral pterygoid muscle was able to pull the mandibular condyle out of its fossa in anterior direction. Consequently, despite some methodological limitations, in general the predictions corroborated the hypotheses.
Collapse
Affiliation(s)
- Jan Harm Koolstra
- Department of Oral Cell Biology and Functional Anatomy, Academic Centre for Dentistry Amsterdam (ACTA), MOVE Research Institute Amsterdam, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands.
| | - Sofie C Kommers
- Department of Oral and Maxillofacial Surgery/Oral Pathology, VU University Medical Center/Academic Centre for Dentistry Amsterdam, Amsterdam, The Netherlands
| | - Tymour Forouzanfar
- Department of Oral and Maxillofacial Surgery/Oral Pathology, VU University Medical Center/Academic Centre for Dentistry Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
86
|
Li Q, Ren S, Ge C, Sun H, Lu H, Duan Y, Rong Q. Effect of jaw opening on the stress pattern in a normal human articular disc: finite element analysis based on MRI images. Head Face Med 2014; 10:24. [PMID: 24943463 PMCID: PMC4082420 DOI: 10.1186/1746-160x-10-24] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 06/13/2014] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION Excessive compressive and shear stresses are likely related to condylar resorption and disc perforation. Few studies have reported the disc displacement and deformation during jaw opening. The aim of this study was to analyze stress distribution in a normal articular disc during the jaw opening movement. METHODS Bilateral MRI images were obtained from the temporomandibular joint of a healthy subject for the jaw opening displacement from 6 to 24 mm with 1 mm increments. The disc contour for the jaw opening at 6 mm was defined as the reference state, and was used to establish a two dimensional finite element model of the disc. The contours of the disc at other degrees of jaw opening were used as the displacement loading. Hyperelastic material models were applied to the anterior, intermediate and posterior parts of the disc. Stress and strain trajectories were calculated to characterize the stress/strain patterns in the disc. RESULTS Both the maximum and minimum principal stresses were negative in the intermediate zone, therefore, the intermediate zone withstood mainly compressive stress. On the contrary, the maximum and minimum principal stresses were most positive in the anterior and posterior zones, which meant that the anterior and posterior bands suffered higher tensile stresses. The different patterns of stress trajectories between the intermediate zone and the anterior and posterior bands might be attributed to the effect of fiber orientation. The compression of the intermediate zone and stretching of the anterior and posterior bands caused high shear deformation in the transition region, especially at the disc surfaces. CONCLUSIONS The stress and strain remained at a reasonable level during jaw opening, indicating that the disc experiences no injury during functional opening movements in a healthy temporomandibular joint.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qiguo Rong
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
87
|
Aoun M, Mesnard M, Monède-Hocquard L, Ramos A. Stress Analysis of Temporomandibular Joint Disc During Maintained Clenching Using a Viscohyperelastic Finite Element Model. J Oral Maxillofac Surg 2014; 72:1070-7. [DOI: 10.1016/j.joms.2013.11.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 11/19/2013] [Accepted: 11/29/2013] [Indexed: 10/25/2022]
|
88
|
Creuillot V, Areiza DA, de Brosses ES, Bonnet AS, Lipinski P. Finite element analysis of temporomandibular joints during opening-closing motion: asynchronous case report. Comput Methods Biomech Biomed Engin 2014; 16 Suppl 1:300-1. [PMID: 23923950 DOI: 10.1080/10255842.2013.815910] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- V Creuillot
- Laboratoire de mécanique Biomécanique Polymère Structures, Ecole Nationale d'Ingénieurs de Metz, Université de Lorraine, 1 Route d'Ars Laquenexy, CS 65820, 57078, Metz Cedex 3, France
| | | | | | | | | |
Collapse
|
89
|
Harrison SM, Eyres G, Cleary PW, Sinnott MD, Delahunty C, Lundin L. Computational Modeling of Food Oral Breakdown Using Smoothed Particle Hydrodynamics. J Texture Stud 2014. [DOI: 10.1111/jtxs.12062] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
| | - Graham Eyres
- CSIRO Animal, Food and Health Sciences; North Ryde NSW Australia
| | - Paul W. Cleary
- CSIRO Computational Informatics; Clayton South Vic Australia
| | | | - Conor Delahunty
- CSIRO Animal, Food and Health Sciences; Adelaide SA Australia
| | - Leif Lundin
- CSIRO Animal, Food and Health Sciences; Werribee Vic Australia
| |
Collapse
|
90
|
Biomechanical Evaluation of a New MatrixMandible Plating System on Cadaver Mandibles. J Oral Maxillofac Surg 2013; 71:1900-14. [DOI: 10.1016/j.joms.2013.06.218] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 05/28/2013] [Accepted: 06/23/2013] [Indexed: 11/21/2022]
|
91
|
Comparative Study of Two Different Types of Human Mandible Boundary Conditions Used in Finite Element Calculations. ACTA ACUST UNITED AC 2013. [DOI: 10.4028/www.scientific.net/amm.436.255] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The aim of the presented work is compare a two different way of prescribing muscles and chewing force boundary condition. First variant of boundary condition consider muscle forces and their direction taken from literatures. Second variant of boundary condition consider muscles modeled as finite elements connecting lower jaw and skull together. At second variant a muscles material characteristic of Young ́s modulus was changed in range from 1e4 MPa to 2,1e5 MPa. Models of living tissues were created on base of CT images and modeled in 3D CAD software SolidWorks. Calculations were computed in the finite element software ANSYS. Material models were considered as homogenous, isotropic and linearly elastic for all parts. First, both variants of boundary condition were analyzed separately and after that, selected variables (as muscle forces and muscle direction scale factors) from both variant were compared together.
Collapse
|
92
|
Harrison SM, Cleary PW. Towards modelling of fluid flow and food breakage by the teeth in the oral cavity using smoothed particle hydrodynamics (SPH). Eur Food Res Technol 2013. [DOI: 10.1007/s00217-013-2077-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
93
|
Wright GJ, Kuo J, Shi C, Bacro TRH, Slate EH, Yao H. Effect of mechanical strain on solute diffusion in human TMJ discs: an electrical conductivity study. Ann Biomed Eng 2013; 41:2349-57. [PMID: 23771300 DOI: 10.1007/s10439-013-0840-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 06/04/2013] [Indexed: 11/26/2022]
Abstract
This study investigated the effect of mechanical strain on solute diffusion in human TMJ discs (mean cadaver age 77.8) using the electrical conductivity method. The electrical conductivity, as well as small ion diffusivity, of male and female TMJ discs was determined under three compressive strains. In the male group, the average disc electrical conductivity (mean ± SD) at 0% strain was 5.14 ± 0.97 mS/cm, decreased to 4.50 ± 0.91 mS/cm (-12.3%) at 10% strain, and 3.93 ± 0.81 mS/cm (-23.5%) at 20% compressive strain. Correspondingly, the average disc relative ion diffusivity at 0% strain was 0.44 ± 0.08, decreased to 0.40 ± 0.08 (-8.9%) at 10% strain, and 0.36 ± 0.08 (-16.7%) at 20% compressive strain. In the female group, the average disc electrical conductivity at 0% strain was 5.84 ± 0.59 mS/cm, decreased to 5.01 ± 0.50 mS/cm (-14.2%) at 10% strain, and 4.33 ± 0.46 mS/cm (-25.8%) at 20% compressive strain. Correspondingly, the average disc relative ion diffusivity at 0% strain was 0.49 ± 0.05, decreased to 0.43 ± 0.04 (-11.3%) at 10% strain, and 0.39 ± 0.04 (-19.9%) at 20% compressive strain. The results indicated that mechanical strain significantly impeded solute diffusion through the disc. This mechanical strain effect was larger in the female than in the male human TMJ disc. This study may provide new insights into TMJ pathophysiology.
Collapse
Affiliation(s)
- Gregory J Wright
- Clemson-MUSC Bioengineering Program, Department of Bioengineering, Clemson University, 173 Ashley Avenue, P.O. Box 250508, Charleston, SC, 29425, USA
| | | | | | | | | | | |
Collapse
|
94
|
Gröning F, Jones MEH, Curtis N, Herrel A, O'Higgins P, Evans SE, Fagan MJ. The importance of accurate muscle modelling for biomechanical analyses: a case study with a lizard skull. J R Soc Interface 2013; 10:20130216. [PMID: 23614944 PMCID: PMC3673157 DOI: 10.1098/rsif.2013.0216] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Computer-based simulation techniques such as multi-body dynamics analysis are becoming increasingly popular in the field of skull mechanics. Multi-body models can be used for studying the relationships between skull architecture, muscle morphology and feeding performance. However, to be confident in the modelling results, models need to be validated against experimental data, and the effects of uncertainties or inaccuracies in the chosen model attributes need to be assessed with sensitivity analyses. Here, we compare the bite forces predicted by a multi-body model of a lizard (Tupinambis merianae) with in vivo measurements, using anatomical data collected from the same specimen. This subject-specific model predicts bite forces that are very close to the in vivo measurements and also shows a consistent increase in bite force as the bite position is moved posteriorly on the jaw. However, the model is very sensitive to changes in muscle attributes such as fibre length, intrinsic muscle strength and force orientation, with bite force predictions varying considerably when these three variables are altered. We conclude that accurate muscle measurements are crucial to building realistic multi-body models and that subject-specific data should be used whenever possible.
Collapse
Affiliation(s)
- Flora Gröning
- Department of Engineering, Medical and Biological Engineering Research Group, University of Hull, Hull, UK.
| | | | | | | | | | | | | |
Collapse
|
95
|
Lamela MJ, Fernández P, Ramos A, Fernández-Canteli A, Tanaka E. Dynamic compressive properties of articular cartilages in the porcine temporomandibular joint. J Mech Behav Biomed Mater 2013; 23:62-70. [PMID: 23660305 DOI: 10.1016/j.jmbbm.2013.04.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 03/27/2013] [Accepted: 04/02/2013] [Indexed: 10/26/2022]
Abstract
The mandibular condylar and temporal cartilages in the temporomandibular joint (TMJ) play an important role as a stress absorber during function. However, relatively little information is available on its viscoelastic properties in dynamic compression, particularly in a physiological range of frequencies. We hypothesized that these properties are region-specific and depend on loading frequency. To characterize the viscoelastic properties of both cartilages, we performed dynamic indentation tests over a wide range of loading frequencies. Nine porcine TMJs were used; the articular surface was divided into five regions: anterior; central; posterior; medial and lateral. Sinusoidal compressive strain was applied with an amplitude of 1.0% and a frequency range between 0.01 and 10 Hz. In both cartilages, the dynamic storage modulus increased with frequency, and the value was the highest in the lateral region. These values of E' in the temporal cartilage were smaller than those in the mandibular condylar cartilage in all five regions except the lateral region. The Loss tangent values were higher in the temporal cartilage (0.35-0.65) than in the mandibular condylar one (0.2-0.45), which means that the temporal cartilage presents higher viscosity. The present results suggest that the dynamic compressive moduli in both cartilages are region-specific and dependent on the loading frequency, which might have important implications for the transmission of load in the TMJ.
Collapse
Affiliation(s)
- María Jesús Lamela
- Department of Construction and Manufacturing Engineering, University of Oviedo, Spain
| | | | | | | | | |
Collapse
|
96
|
Abe S, Kawano F, Kohge K, Kawaoka T, Ueda K, Hattori-Hara E, Mori H, Kuroda S, Tanaka E. Stress analysis in human temporomandibular joint affected by anterior disc displacement during prolonged clenching. J Oral Rehabil 2013; 40:239-46. [DOI: 10.1111/joor.12036] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2013] [Indexed: 11/28/2022]
Affiliation(s)
- S. Abe
- Department of Oral Care and Clinical Education; The Tokushima University Hospital; Tokushima Japan
| | - F. Kawano
- Department of Oral Care and Clinical Education; The Tokushima University Hospital; Tokushima Japan
- Department of Comprehensive Dentistry; Institute of Health Biosciences; The University of Tokushima Graduate School; Tokushima Japan
| | - K. Kohge
- Digital Solution Inc.; Hiroshima Japan
| | | | - K. Ueda
- Digital Solution Inc.; Hiroshima Japan
| | - E. Hattori-Hara
- Department of Orthodontics and Dentofacial Orthopedics; Institute of Health Biosciences; The University of Tokushima Graduate School; Tokushima Japan
| | - H. Mori
- Department of Orthodontics and Dentofacial Orthopedics; Institute of Health Biosciences; The University of Tokushima Graduate School; Tokushima Japan
| | - S. Kuroda
- Department of Orthodontics and Dentofacial Orthopedics; Institute of Health Biosciences; The University of Tokushima Graduate School; Tokushima Japan
| | - E. Tanaka
- Department of Orthodontics and Dentofacial Orthopedics; Institute of Health Biosciences; The University of Tokushima Graduate School; Tokushima Japan
| |
Collapse
|
97
|
Illustrated surgical techniques for management of impingements of the temporomandibular joint. Int J Oral Maxillofac Surg 2012; 42:229-36. [PMID: 23219712 DOI: 10.1016/j.ijom.2012.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 09/18/2012] [Accepted: 11/02/2012] [Indexed: 11/22/2022]
Abstract
When clinically significant impingements of the temporomandibular joint (TMJ) exist, simple introduction of an arthroscope into the superior compartment can be difficult. Bone mass and volume of lateral fossa, lateral eminence, and tubercle impingements can be too large for micro-arthroscopic shaving rotors to manage efficiently. This paper presents examples of Types I-III impingements with pictorial modifications of open arthroplasty techniques for management.
Collapse
|
98
|
Kirk WS. Lateral impingements of the temporomandibular joint: a classification system and MRI imaging characteristics. Int J Oral Maxillofac Surg 2012; 42:223-8. [PMID: 23218512 DOI: 10.1016/j.ijom.2012.10.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 08/15/2012] [Accepted: 10/19/2012] [Indexed: 11/15/2022]
Abstract
Finite element analysis of dynamic temporomandibular joint (TMJ) loading reveals a predominance of localization of loading laterally towards the collateral ligament regions and disc/capsule attachments to the mandibular condyle. A previous publication (Kirk, Kirk. OMS Clin North Am 2006;18:345-68) introduced biomechanical principles for surgeons to consider in the diagnostic phase of management as well as initial surgical procedure selection. The concept of impingements and their impact with development of derangement is presented in this paper with an expanded collection of imaging characteristics. Diagnostic coronal imaging using a dual photon imaging technique is presented. This technique is superior to traditional T1 and T2 weighted imaging sequences when sagittal imaging is employed. Coronal imaging using this technique adds a new dimension to preoperative imaging. Impingement presence and the discernment of early lateral disc/capsule rupture from the condyle of the mandible is superior with the dual photon technique. Images and a classification of degrees of impingement are presented. The biomechanical importance of diagnosis of impingement is discussed.
Collapse
Affiliation(s)
- W S Kirk
- Oral and Maxillofacial Surgery, 1700 Abbey Place, Charlotte, NC 28209, USA.
| |
Collapse
|
99
|
Fitton LC, Shi JF, Fagan MJ, O'Higgins P. Masticatory loadings and cranial deformation in Macaca fascicularis: a finite element analysis sensitivity study. J Anat 2012; 221:55-68. [PMID: 22690885 DOI: 10.1111/j.1469-7580.2012.01516.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Biomechanical analyses are commonly conducted to investigate how craniofacial form relates to function, particularly in relation to dietary adaptations. However, in the absence of corresponding muscle activation patterns, incomplete muscle data recorded experimentally for different individuals during different feeding tasks are frequently substituted. This study uses finite element analysis (FEA) to examine the sensitivity of the mechanical response of a Macaca fascicularis cranium to varying muscle activation patterns predicted via multibody dynamic analysis. Relative to the effects of varying bite location, the consequences of simulated variations in muscle activation patterns and of the inclusion/exclusion of whole muscle groups were investigated. The resulting cranial deformations were compared using two approaches; strain maps and geometric morphometric analyses. The results indicate that, with bite force magnitude controlled, the variations among the mechanical responses of the cranium to bite location far outweigh those observed as a consequence of varying muscle activations. However, zygomatic deformation was an exception, with the activation levels of superficial masseter being most influential in this regard. The anterior portion of temporalis deforms the cranial vault, but the remaining muscles have less profound effects. This study for the first time systematically quantifies the sensitivity of an FEA model of a primate skull to widely varying masticatory muscle activations and finds that, with the exception of the zygomatic arch, reasonable variants of muscle loading for a second molar bite have considerably less effect on cranial deformation and the resulting strain map than does varying molar bite point. The implication is that FEA models of biting crania will generally produce acceptable estimates of deformation under load as long as muscle activations and forces are reasonably approximated. In any one FEA study, the biological significance of the error in applied muscle forces is best judged against the magnitude of the effect that is being investigated.
Collapse
Affiliation(s)
- L C Fitton
- Centre for Anatomical and Human Sciences, Hull York Medical School, University of York, UK.
| | | | | | | |
Collapse
|
100
|
The influence of the closing and opening muscle groups of jaw condyle biomechanics after mandible bilateral sagittal split ramus osteotomy. J Craniomaxillofac Surg 2012; 40:e159-64. [DOI: 10.1016/j.jcms.2011.07.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2010] [Revised: 07/18/2011] [Accepted: 07/23/2011] [Indexed: 11/20/2022] Open
|