51
|
Hori T, Akuzawa M, Haruta S, Ueno Y, Ogata A, Ishii M, Igarashi Y. Involvement of a novel fermentative bacterium in acidification in a thermophilic anaerobic digester. FEMS Microbiol Lett 2014; 361:62-67. [PMID: 25273502 DOI: 10.1111/1574-6968.12611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/26/2014] [Accepted: 09/26/2014] [Indexed: 11/28/2022] Open
Abstract
Acidification results from the excessive accumulation of volatile fatty acids and the breakthrough of buffering capacity in anaerobic digesters. However, little is known about the identity of the acidogenic bacteria involved. Here, we identified an active fermentative bacterium during acidification in a thermophilic anaerobic digester by sequencing and phylogenetic analysis of isotopically labeled rRNA. The digestion sludge retrieved from the beginning of pH drop in the laboratory-scale anaerobic digester was incubated anaerobically at 55 °C for 4 h during which 13C-labeled glucose was supplemented repeatedly. 13CH4 and 13CO2 were produced after substrate addition. RNA extracts from the incubated sludge was density-separated by ultracentrifugation, and then bacterial communities in the density fractions were screened by terminal restriction fragment length polymorphism and clone library analyses based on 16S rRNA transcripts. Remarkably, a novel lineage within the genus Thermoanaerobacterium became abundant with increasing the buoyant density and predominated in the heaviest fraction of RNA. The results in this study indicate that a thermoacidophilic bacterium exclusively fermented the simple carbohydrate glucose, thereby playing key roles in acidification in the thermophilic anaerobic digester.
Collapse
Affiliation(s)
- Tomoyuki Hori
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan .,Research Institute for Environmental Management Technology, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Masateru Akuzawa
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Shin Haruta
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.,Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, Hachioji-shi, Tokyo, Japan
| | - Yoshiyuki Ueno
- Kajima Technical Research Institute, Chofu-shi, Tokyo, Japan
| | - Atsushi Ogata
- Research Institute for Environmental Management Technology, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Masaharu Ishii
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yasuo Igarashi
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.,Research Center of Bioenergy and Bioremediation, Southwest University, BeiBei District, Chongqing, China
| |
Collapse
|
52
|
Kallistova AY, Goel G, Nozhevnikova AN. Microbial diversity of methanogenic communities in the systems for anaerobic treatment of organic waste. Microbiology (Reading) 2014. [DOI: 10.1134/s0026261714050142] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
53
|
Comparison of the microbial communities in solid-state anaerobic digestion (SS-AD) reactors operated at mesophilic and thermophilic temperatures. Appl Microbiol Biotechnol 2014; 99:969-80. [DOI: 10.1007/s00253-014-6036-5] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 08/11/2014] [Accepted: 08/15/2014] [Indexed: 10/24/2022]
|
54
|
Rivera-Salvador V, López-Cruz IL, Espinosa-Solares T, Aranda-Barradas JS, Huber DH, Sharma D, Toledo JU. Application of Anaerobic Digestion Model No. 1 to describe the syntrophic acetate oxidation of poultry litter in thermophilic anaerobic digestion. BIORESOURCE TECHNOLOGY 2014; 167:495-502. [PMID: 25011081 DOI: 10.1016/j.biortech.2014.06.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 06/02/2014] [Accepted: 06/04/2014] [Indexed: 06/03/2023]
Abstract
A molecular analysis found that poultry litter anaerobic digestion was dominated by hydrogenotrophic methanogens which suggests that bacterial acetate oxidation is the primary pathway in the thermophilic digestion of poultry litter. IWA Anaerobic Digestion Model No. 1 (ADM1) was modified to include the bacterial acetate oxidation process in the thermophilic anaerobic digestion (TAD). Two methods for ADM1 parameter estimation were applied: manual calibration with non-linear least squares (MC-NLLS) and an automatic calibration using differential evolution algorithms (DEA). In terms of kinetic parameters for acetate oxidizing bacteria, estimation by MC-NLLS and DEA were, respectively, km 1.12 and 3.25 ± 0.56 kg COD kg COD(-1)d(-1), KS 0.20 and 0.29 ± 0.018 kg COD m(-3) and Yac-st 0.14 and 0.10 ± 0.016 kg COD kg COD(-1). Experimental and predicted volatile fatty acids and biogas composition were in good agreement. Values of BIAS, MSE or INDEX demonstrate that both methods (MC-NLLS and DEA) increased ADM1 accuracy.
Collapse
Affiliation(s)
- Víctor Rivera-Salvador
- Departamento de Ingeniería Agroindustrial, Universidad Autónoma Chapingo, Chapingo, Estado de México 56230, Mexico
| | - Irineo L López-Cruz
- Posgrado en Ingeniería Agrícola y Uso Integral del Agua, Universidad Autónoma Chapingo, Chapingo, Estado de México 56230, Mexico
| | - Teodoro Espinosa-Solares
- Departamento de Ingeniería Agroindustrial, Universidad Autónoma Chapingo, Chapingo, Estado de México 56230, Mexico; Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112-1000, USA.
| | - Juan S Aranda-Barradas
- Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Mexico City, DF 07340, Mexico
| | - David H Huber
- Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112-1000, USA; Department of Biology, West Virginia State University, Institute, WV 25112-1000, USA
| | - Deepak Sharma
- Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112-1000, USA; Department of Biology, West Virginia State University, Institute, WV 25112-1000, USA
| | - J Ulises Toledo
- Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112-1000, USA
| |
Collapse
|
55
|
Gagliano MC, Braguglia CM, Rossetti S. In situidentification of the synthrophic protein fermentativeCoprothermobacterspp. involved in the thermophilic anaerobic digestion process. FEMS Microbiol Lett 2014; 358:55-63. [DOI: 10.1111/1574-6968.12528] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 06/29/2014] [Accepted: 07/02/2014] [Indexed: 11/30/2022] Open
|
56
|
Tukacs-Hájos A, Pap B, Maróti G, Szendefy J, Szabó P, Rétfalvi T. Monitoring of thermophilic adaptation of mesophilic anaerobe fermentation of sugar beet pressed pulp. BIORESOURCE TECHNOLOGY 2014; 166:288-94. [PMID: 24926601 DOI: 10.1016/j.biortech.2014.05.059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 05/16/2014] [Accepted: 05/17/2014] [Indexed: 05/06/2023]
Abstract
Anaerobe fermentation of sugar beet pressed pulp was investigated in pilot-scale digesters. Thermophilic adaptation of mesophilic culture was monitored using chemical analysis and metagenomic characterization of the sludge. Temperature adaptation was achieved by increasing the temperature gradually (2 °C day(-1)) and by greatly decreasing the OLR. During stable run, the OLR was increased gradually to 11.29 kg VS m(-3)d(-1) and biogas yield was 5% higher in the thermophilic reactor. VFA levels increased in the thermophilic reactor with increased OLR (acetic acid 646 mg L(-1), propionic acid 596 mg L(-1)), then VFA decreased and the operation was manageable beside the relative high tVFA (1300-2000 mg L(-1)). The effect of thermophilic adaptation on the microbial communities was studied using a sequencing-based metagenomic approach. Connections between physico-chemical parameters and populations of bacteria and methanogen archaea were revealed.
Collapse
Affiliation(s)
| | - Bernadett Pap
- Seqomics Biotechnology Ltd., H-6782 Mórahalom, Vállalkozók útja 7., Hungary
| | - Gergely Maróti
- Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, H-6726 Szeged, Temesvári krt. 62., Hungary
| | - Judit Szendefy
- Biogáz Fejlesztő Ltd., H-7400 Kaposvár, Pécsi út 8-10., Hungary
| | - Piroska Szabó
- Institute of Chemistry, Faculty for Forestry, University of West Hungary, H-9400 Sopron, Bajcsy-Zs. u. 4., Hungary
| | - Tamás Rétfalvi
- Institute of Chemistry, Faculty for Forestry, University of West Hungary, H-9400 Sopron, Bajcsy-Zs. u. 4., Hungary.
| |
Collapse
|
57
|
Ho D, Jensen P, Batstone D. Effects of temperature and hydraulic retention time on acetotrophic pathways and performance in high-rate sludge digestion. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:6468-76. [PMID: 24797677 DOI: 10.1021/es500074j] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
High-rate anaerobic digestion of organic solids requires rapid hydrolysis and enhanced methanogenic growth rates, which can be achieved through elevated temperature (>55 °C) at short hydraulic retention times (HRT). This study assesses the effect of temperatures between 55 °C and 65 °C and HRTs between 2 and 4 days on process performance, microbial community structure, microbial capability, and acetotrophic pathways in thermophilic anaerobic reactors. Increasing the temperature did not enhance volatile solids (VS) destruction above the base value of 37% achieved at 55 °C and 4 days HRT. Stable isotopic signatures (δ13C) revealed that elevated temperature promoted syntrophic acetate oxidation, which accounted for 60% of the methane formation at 55 °C, and increasing substantially to 100% at 65 °C. The acetate consumption capacity dropped with increasing temperature (from 0.69-0.81 gCOD gVS(-1) d(-1) at 55 °C to 0.21-0.35 gCOD gVS(-1) d(-1) at 65 °C), based on specific activity testing of reactor contents. Community analysis using 16S rRNA pyrosequencing revealed the dominance of Methanosarcina at 55-60 °C. However, a further increase to 65 °C resulted in loss of Methanosarcina, with an accumulation of organic acids and reduced methane production. Similar issues were observed when reducing the HRT to 2 days, indicating that temperature<60 °C and HRT>3 days are critical to operate these systems stably.
Collapse
Affiliation(s)
- Dang Ho
- Advanced Water Management Centre, The University of Queensland , St Lucia, Queensland 4072, Australia
| | | | | |
Collapse
|
58
|
Yamada C, Kato S, Ueno Y, Ishii M, Igarashi Y. Inhibitory effects of ferrihydrite on a thermophilic methanogenic community. Microbes Environ 2014; 29:227-30. [PMID: 24859310 PMCID: PMC4103531 DOI: 10.1264/jsme2.me14026] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 03/08/2014] [Indexed: 11/12/2022] Open
Abstract
The addition of ferrihydrite to methanogenic microbial communities obtained from a thermophilic anaerobic digester suppressed methanogenesis in a dose-dependent manner. The amount of reducing equivalents consumed by the reduction of iron was significantly smaller than that expected from the decrease in the production of CH4, which suggested that competition between iron-reducing microorganisms and methanogens was not the most significant cause for the suppression of methanogenesis. Microbial community analyses revealed that the presence of ferrihydrite markedly affected the bacterial composition, but not the archaeal composition. These results indicate that the presence of ferrihydrite directly and indirectly suppresses thermophilic methanogenesis.
Collapse
MESH Headings
- Anaerobiosis
- Archaea/drug effects
- Archaea/genetics
- Bacteria/drug effects
- Bacteria/genetics
- Bacteria/metabolism
- Base Sequence
- DNA, Archaeal/chemistry
- DNA, Archaeal/genetics
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- Ferric Compounds/pharmacology
- Hot Temperature
- Iron/metabolism
- Methane/metabolism
- Methanobacteriaceae/drug effects
- Methanobacteriaceae/genetics
- Methanobacteriaceae/metabolism
- Methanosarcina/drug effects
- Methanosarcina/genetics
- Methanosarcina/metabolism
- Polymorphism, Restriction Fragment Length
- RNA, Archaeal/chemistry
- RNA, Archaeal/genetics
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Ribosomal, 16S/genetics
- Sequence Analysis, DNA
- Sewage/microbiology
Collapse
Affiliation(s)
- Chihaya Yamada
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1–1–1, Bunkyo-ku, Tokyo 113–8657, Japan
| | - Souichiro Kato
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukisamu-Higashi 2–17–2–1, Toyohira, Sapporo, Hokkaido 062–8517, Japan
- Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Kita-9 Nishi-9, Kita-ku, Sapporo, Hokkaido 060–8589, Japan
- Research Center for Advanced Science and Technology, The University of Tokyo, Komaba 4–6–1, Meguro-ku, Tokyo 153–8904, Japan
| | - Yoshiyuki Ueno
- Kajima Technical Research Institute, Tobitakyu 2–19–1, Chofu-shi, Tokyo 182–0036, Japan
| | - Masaharu Ishii
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1–1–1, Bunkyo-ku, Tokyo 113–8657, Japan
| | - Yasuo Igarashi
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1–1–1, Bunkyo-ku, Tokyo 113–8657, Japan
| |
Collapse
|
59
|
Comparison of operating strategies for increased biogas production from thin stillage. J Biotechnol 2014; 175:22-30. [DOI: 10.1016/j.jbiotec.2014.01.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 01/27/2014] [Accepted: 01/29/2014] [Indexed: 11/19/2022]
|
60
|
Microbial ecology of anaerobic digesters: the key players of anaerobiosis. ScientificWorldJournal 2014; 2014:183752. [PMID: 24701142 PMCID: PMC3950365 DOI: 10.1155/2014/183752] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Accepted: 12/10/2013] [Indexed: 11/17/2022] Open
Abstract
Anaerobic digestion is the method of wastes treatment aimed at a reduction of their hazardous effects on the biosphere. The mutualistic behavior of various anaerobic microorganisms results in the decomposition of complex organic substances into simple, chemically stabilized compounds, mainly methane and CO2. The conversions of complex organic compounds to CH4 and CO2 are possible due to the cooperation of four different groups of microorganisms, that is, fermentative, syntrophic, acetogenic, and methanogenic bacteria. Microbes adopt various pathways to evade from the unfavorable conditions in the anaerobic digester like competition between sulfate reducing bacteria (SRB) and methane forming bacteria for the same substrate. Methanosarcina are able to use both acetoclastic and hydrogenotrophic pathways for methane production. This review highlights the cellulosic microorganisms, structure of cellulose, inoculum to substrate ratio, and source of inoculum and its effect on methanogenesis. The molecular techniques such as DGGE (denaturing gradient gel electrophoresis) utilized for dynamic changes in microbial communities and FISH (fluorescent in situ hybridization) that deal with taxonomy and interaction and distribution of tropic groups used are also discussed.
Collapse
|
61
|
Mulat DG, Ward AJ, Adamsen APS, Voigt NV, Nielsen JL, Feilberg A. Quantifying contribution of synthrophic acetate oxidation to methane production in thermophilic anaerobic reactors by membrane inlet mass spectrometry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:2505-2511. [PMID: 24437339 DOI: 10.1021/es403144e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A unique method was developed and applied for monitoring methanogenesis pathways based on isotope labeled substrates combined with online membrane inlet quadrupole mass spectrometry (MIMS). In our study, a fermentation sample from a full-scale biogas plant fed with pig and cattle manure, maize silage, and deep litter was incubated with 100 mM of [2-(13)C] sodium acetate under thermophilic anaerobic conditions. MIMS was used to measure the isotopic distribution of dissolved CO2 and CH4 during the degradation of acetate, while excluding interference from water by applying a cold trap. After 6 days of incubation, the proportion of methane derived from reduction of CO2 had increased significantly and reached up to 87% of total methane, suggesting that synthrophic acetate oxidation coupled to hydrogenotrophic methanogenesis (SAO-HM) played an important role in the degradation of acetate. This study provided a new approach for online quantification of the relative contribution of methanogenesis pathways to methane production with a time resolution shorter than one minute. The observed contribution of SAO-HM to methane production under the tested conditions challenges the current widely accepted anaerobic digestion model (ADM1), which strongly emphasizes the importance of the acetoclastic methanogenesis.
Collapse
Affiliation(s)
- Daniel Girma Mulat
- Department of Engineering, Aarhus University , Hangøvej 2, DK-8200 Aarhus N, Denmark
| | | | | | | | | | | |
Collapse
|
62
|
Martínez MA, Romero H, Perotti NI. Two amplicon sequencing strategies revealed different facets of the prokaryotic community associated with the anaerobic treatment of vinasses from ethanol distilleries. BIORESOURCE TECHNOLOGY 2014; 153:388-392. [PMID: 24382487 DOI: 10.1016/j.biortech.2013.12.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Revised: 12/04/2013] [Accepted: 12/07/2013] [Indexed: 06/03/2023]
Abstract
The prokaryotic consortium from a pilot-scale UASB reactor fed with vinasses from ethanol distilleries was evaluated by means of amplicon sequencing of the 16S rRNA gene. Two different sets of primers targeted to overlapping regions of the V4-16S region were used to gain a broad picture of such community and to perform a comparative analysis. From the two datasets obtained, prevalent phyla were Firmicutes, Verrucomicrobia and Thermotogae. Interestingly, one set of primers captured variability in both the bacterial and archaeal portions of the community, whilst the other one revealed a more diverse community structure, but only in the Bacteria domain. Although a certain level of agreement between the two strategies was observed, sharp differences indicate that different facets of the community were disclosed by each approach.
Collapse
Affiliation(s)
- M A Martínez
- PROIMI-CONICET, Av. Belgrano y Pje. Caseros, SM de Tucumán 4000, Tucumán, Argentina; Facultad de Ciencias Exactas y Tecnología, Universidad Nacional de Tucumán, Av. Independencia 1800, SM de Tucumán 4000, Tucumán, Argentina.
| | - H Romero
- Laboratorio de Organización y Evolución del Genoma, Dpto. Ecología y Evolución, Facultad de Ciencias/CURE, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay.
| | - N I Perotti
- PROIMI-CONICET, Av. Belgrano y Pje. Caseros, SM de Tucumán 4000, Tucumán, Argentina; Facultad de Ciencias Exactas y Tecnología, Universidad Nacional de Tucumán, Av. Independencia 1800, SM de Tucumán 4000, Tucumán, Argentina.
| |
Collapse
|
63
|
Kobayashi T, Tang Y, Urakami T, Morimura S, Kida K. Digestion performance and microbial community in full-scale methane fermentation of stillage from sweet potato-shochu production. J Environ Sci (China) 2014; 26:423-431. [PMID: 25076534 DOI: 10.1016/s1001-0742(13)60423-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Sweet potato shochu is a traditional Japanese spirit produced mainly in the South Kyushu area in Japan. The amount of stillage reaches approximately 8 x 10(5) tons per year. Wastewater mainly containing stillage from the production of sweet potato-shochu was treated thermophilically in a full-scale treatment plant using fixed-bed reactors (8 reactors x 283 m3). Following the addition of Ni2+ and Co2+, the reactors have been stably operated for six years at a high chemical oxygen demand (COD) loading rate of 14 kg/(m3 x day). Analysis of coenzyme content and microbial communities indicated that similar microbial communities were present in the liquid phase and on the fiber carriers installed in reactors. Bacteria in the phyla Firmicutes as well as Bacteroidetes were dominant bacteria, and Methanosarcina thermophila as well as Methanothermobacter crinale were dominant methanogens in the reactors. This study reveals that stillage from sweet potato-shochu production can be treated effectively in a full-scale fixed-bed reactor under thermophilic conditions with the help of Ni2+ and Co2+. The high diversity of bacterial community and the coexistence of both aceticlastic and hydrogenotrophic methanogens contributed to the excellent fermentation performance.
Collapse
|
64
|
Jang HM, Cho HU, Park SK, Ha JH, Park JM. Influence of thermophilic aerobic digestion as a sludge pre-treatment and solids retention time of mesophilic anaerobic digestion on the methane production, sludge digestion and microbial communities in a sequential digestion process. WATER RESEARCH 2014; 48:1-14. [PMID: 23871253 DOI: 10.1016/j.watres.2013.06.041] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 06/15/2013] [Accepted: 06/20/2013] [Indexed: 05/16/2023]
Abstract
In this study, the changes in sludge reduction, methane production and microbial community structures in a process involving two-stage thermophilic aerobic digestion (TAD) and mesophilic anaerobic digestion (MAD) under different solid retention times (SRTs) between 10 and 40 days were investigated. The TAD reactor (RTAD) was operated with a 1-day SRT and the MAD reactor (RMAD) was operated at three different SRTs: 39, 19 and 9 days. For a comparison, control MAD (RCONTROL) was operated at three different SRTs of 40, 20 and 10 days. Our results reveal that the sequential TAD-MAD process has about 42% higher methane production rate (MPR) and 15% higher TCOD removal than those of RCONTROL when the SRT decreased from 40 to 20 days. Denaturing gradient gel electrophoresis (DGGE) and real-time PCR results indicate that RMAD maintained a more diverse bacteria and archaea population compared to RCONTROL, due to the application of the biological TAD pre-treatment process. In RTAD, Ureibacillus thermophiles and Bacterium thermus were the major contributors to the increase in soluble organic matter. In contrast, Methanosaeta concilii, a strictly aceticlastic methanogen, showed the highest population during the operation of overall SRTs in RMAD. Interestingly, as the SRT decreased to 20 days, syntrophic VFA oxidizing bacteria, Clostridium ultunense sp., and a hydrogenotrophic methanogen, Methanobacterium beijingense were detected in RMAD and RCONTROL. Meanwhile, the proportion of archaea to total microbe in RMAD and RCONTROL shows highest values of 10.5 and 6.5% at 20-d SRT operation, respectively. Collectively, these results demonstrate that the increased COD removal and methane production at different SRTs in RMAD might be attributed to the increased synergism among microbial species by improving the hydrolysis of the rate limiting step in sludge with the help of the biological TAD pre-treatment.
Collapse
Affiliation(s)
- Hyun Min Jang
- School of Environmental Science and Engineering, San 31, Hyoja-dong, Pohang 790-784, South Korea
| | | | | | | | | |
Collapse
|
65
|
Sun L, Müller B, Westerholm M, Schnürer A. Syntrophic acetate oxidation in industrial CSTR biogas digesters. J Biotechnol 2013; 171:39-44. [PMID: 24333792 DOI: 10.1016/j.jbiotec.2013.11.016] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 11/21/2013] [Accepted: 11/25/2013] [Indexed: 10/25/2022]
Abstract
The extent of syntrophic acetate oxidation (SAO) and the levels of known SAO bacteria and acetate- and hydrogen-consuming methanogens were determined in sludge from 13 commercial biogas production plants. Results from these measurements were statistically related to the prevailing operating conditions, through partial least squares (PLS) analysis. This revealed that high abundance of microorganisms involved in SAO was positively correlated with relatively low abundance of aceticlastic methanogens and high concentrations of free ammonia (>160 mg/L) and volatile fatty acids (VFA). Temperature was identified as another influencing factor for the population structure of the syntrophic acetate oxidising bacteria (SAOB). Overall, there was a high abundance of SAOB in the different digesters despite differences in their operating parameters, indicating that SAOB are an enduring and important component of biogas-producing consortia.
Collapse
Affiliation(s)
- Li Sun
- Uppsala Biocenter, Department of Microbiology, Swedish University of Agricultural Sciences, Box 7025, SE 750 07 Uppsala, Sweden.
| | - Bettina Müller
- Uppsala Biocenter, Department of Microbiology, Swedish University of Agricultural Sciences, Box 7025, SE 750 07 Uppsala, Sweden.
| | - Maria Westerholm
- Uppsala Biocenter, Department of Microbiology, Swedish University of Agricultural Sciences, Box 7025, SE 750 07 Uppsala, Sweden.
| | - Anna Schnürer
- Uppsala Biocenter, Department of Microbiology, Swedish University of Agricultural Sciences, Box 7025, SE 750 07 Uppsala, Sweden.
| |
Collapse
|
66
|
Polag D, Krapf LC, Heuwinkel H, Laukenmann S, Lelieveld J, Keppler F. Stable carbon isotopes of methane for real-time process monitoring in anaerobic digesters. Eng Life Sci 2013. [DOI: 10.1002/elsc.201200201] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
| | - Lutz Christian Krapf
- Bavarian State Research Center for Agriculture; Institute for Agricultural Engineering and Animal Husbandry; Freising Germany
| | - Hauke Heuwinkel
- Bavarian State Research Center for Agriculture; Institute for Agricultural Engineering and Animal Husbandry; Freising Germany
| | | | | | | |
Collapse
|
67
|
Ghanimeh SA, Saikaly PE, Li D, El-Fadel M. Population dynamics during startup of thermophilic anaerobic digesters: the mixing factor. WASTE MANAGEMENT (NEW YORK, N.Y.) 2013; 33:2211-2218. [PMID: 23830181 DOI: 10.1016/j.wasman.2013.06.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 05/27/2013] [Accepted: 06/06/2013] [Indexed: 06/02/2023]
Abstract
Two thermophilic digesters were inoculated with manure and started-up under mixed and stagnant conditions. The Archaea in the mixed digester (A) were dominated by hydrogenotrophic Methanobateriaceae (61%) with most of the methane being produced via syntrophic pathways. Methanosarcinales (35%) were the only acetoclastic methanogens present. Acetate dissipation seems to depend on balanced hydrogenotrophic-to-acetotrophic abundance, which in turn was statistically correlated to free ammonia levels. Relative abundance of bacterial community was associated with the loading rate. However, in the absence of mixing (digester B), the relationship between microbial composition and operating parameters was not discernible. This was attributed to the development of microenvironments where environmental conditions are significantly different from average measured parameters. The impact of microenvironments was accentuated by the use of a non-acclimated seed that lacks adequate propionate degraders. Failure to disperse the accumulated propionate, and other organics, created high concentration niches where competitive and inhibiting conditions developed and favored undesired genera, such as Halobacteria (65% in B). As a result, digester B experienced higher acid levels and lower allowable loading rate. Mixing was found necessary to dissipate potential inhibitors, and improve stability and loading capacity, particularly when a non-acclimated seed, often lacking balanced thermophilic microflora, is used.
Collapse
Affiliation(s)
- Sophia A Ghanimeh
- Department of Civil and Environmental Engineering, American University of Beirut, Lebanon
| | | | | | | |
Collapse
|
68
|
Bareither CA, Wolfe GL, McMahon KD, Benson CH. Microbial diversity and dynamics during methane production from municipal solid waste. WASTE MANAGEMENT (NEW YORK, N.Y.) 2013; 33:1982-1992. [PMID: 23318155 DOI: 10.1016/j.wasman.2012.12.013] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 12/13/2012] [Accepted: 12/14/2012] [Indexed: 06/01/2023]
Abstract
The objectives of this study were to characterize development of bacterial and archaeal populations during biodegradation of municipal solid waste (MSW) and to link specific methanogens to methane generation. Experiments were conducted in three 0.61-m-diameter by 0.90-m-tall laboratory reactors to simulate MSW bioreactor landfills. Pyrosequencing of 16S rRNA genes was used to characterize microbial communities in both leachate and solid waste. Microbial assemblages in effluent leachate were similar between reactors during peak methane generation. Specific groups within the Bacteroidetes and Thermatogae phyla were present in all samples and were particularly abundant during peak methane generation. Microbial communities were not similar in leachate and solid fractions assayed at the end of reactor operation; solid waste contained a more abundant bacterial community of cellulose-degrading organisms (e.g., Firmicutes). Specific methanogen populations were assessed using quantitative polymerase chain reaction. Methanomicrobiales, Methanosarcinaceae, and Methanobacteriales were the predominant methanogens in all reactors, with Methanomicrobiales consistently the most abundant. Methanogen growth phases coincided with accelerated methane production, and cumulative methane yield increased with increasing total methanogen abundance. The difference in methanogen populations and corresponding methane yield is attributed to different initial cellulose and hemicellulose contents of the MSW. Higher initial cellulose and hemicellulose contents supported growth of larger methanogen populations that resulted in higher methane yield.
Collapse
Affiliation(s)
- Christopher A Bareither
- Civil & Environmental Engineering, Colorado State University, Ft. Collins, CO 80532, USA; Geological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | | | | | | |
Collapse
|
69
|
Cho K, Lee J, Kim W, Hwang S. Behavior of methanogens during start-up of farm-scale anaerobic digester treating swine wastewater. Process Biochem 2013. [DOI: 10.1016/j.procbio.2013.04.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
70
|
Microbial community structure of a pilot-scale thermophilic anaerobic digester treating poultry litter. Appl Microbiol Biotechnol 2013; 98:2321-34. [PMID: 23989973 DOI: 10.1007/s00253-013-5144-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 07/17/2013] [Accepted: 07/19/2013] [Indexed: 10/26/2022]
Abstract
The microbial community structure of a stable pilot-scale thermophilic continuous stirred tank reactor digester stabilized on poultry litter was investigated. This 40-m(3) digester produced biogas with 57% methane, and chemical oxygen demand removal of 54%. Bacterial and archaeal diversity were examined using both cloning and pyrosequencing that targeted 16S rRNA genes. The bacterial community was dominated by phylum Firmicutes, constituting 93% of the clones and 76% of the pyrotags. Of the Firmicutes, class Clostridia (52% pyrotags) was most abundant followed by class Bacilli (13% pyrotags). The bacterial libraries identified 94 operational taxonomic units (OTUs) and pyrosequencing identified 577 OTUs at the 97% minimum similarity level. Fifteen OTUs were dominant (≥2% abundance), and nine of these were novel unclassified Firmicutes. Several of the dominant OTUs could not be classified more specifically than Clostridiales, but were most similar to plant biomass degraders, including Clostridium thermocellum. Of the rare pyrotag OTUs (<0.5% abundance), 75% were Firmicutes. The dominant methanogen was Methanothermobacter which has hydrogenotrophic metabolism, and accounted for >99% of the archaeal clones. Based on the primary methanogen, as well as digester chemistry (high VA and ammonia levels), we propose that bacterial acetate oxidation is the primary pathway in this digester for the control of acetate levels.
Collapse
|
71
|
Methanosarcinaceae and acetate-oxidizing pathways dominate in high-rate thermophilic anaerobic digestion of waste-activated sludge. Appl Environ Microbiol 2013; 79:6491-500. [PMID: 23956388 DOI: 10.1128/aem.01730-13] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study investigated the process of high-rate, high-temperature methanogenesis to enable very-high-volume loading during anaerobic digestion of waste-activated sludge. Reducing the hydraulic retention time (HRT) from 15 to 20 days in mesophilic digestion down to 3 days was achievable at a thermophilic temperature (55°C) with stable digester performance and methanogenic activity. A volatile solids (VS) destruction efficiency of 33 to 35% was achieved on waste-activated sludge, comparable to that obtained via mesophilic processes with low organic acid levels (<200 mg/liter chemical oxygen demand [COD]). Methane yield (VS basis) was 150 to 180 liters of CH4/kg of VS(added). According to 16S rRNA pyrotag sequencing and fluorescence in situ hybridization (FISH), the methanogenic community was dominated by members of the Methanosarcinaceae, which have a high level of metabolic capability, including acetoclastic and hydrogenotrophic methanogenesis. Loss of function at an HRT of 2 days was accompanied by a loss of the methanogens, according to pyrotag sequencing. The two acetate conversion pathways, namely, acetoclastic methanogenesis and syntrophic acetate oxidation, were quantified by stable carbon isotope ratio mass spectrometry. The results showed that the majority of methane was generated by nonacetoclastic pathways, both in the reactors and in off-line batch tests, confirming that syntrophic acetate oxidation is a key pathway at elevated temperatures. The proportion of methane due to acetate cleavage increased later in the batch, and it is likely that stable oxidation in the continuous reactor was maintained by application of the consistently low retention time.
Collapse
|
72
|
Lü F, Li T, Wang T, Shao L, He P. Improvement of sludge digestate biodegradability by thermophilic bioaugmentation. Appl Microbiol Biotechnol 2013; 98:969-77. [DOI: 10.1007/s00253-013-4977-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 04/29/2013] [Accepted: 05/01/2013] [Indexed: 11/30/2022]
|
73
|
Lü F, Hao L, Guan D, Qi Y, Shao L, He P. Synergetic stress of acids and ammonium on the shift in the methanogenic pathways during thermophilic anaerobic digestion of organics. WATER RESEARCH 2013; 47:2297-306. [PMID: 23434042 DOI: 10.1016/j.watres.2013.01.049] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 01/26/2013] [Accepted: 01/29/2013] [Indexed: 05/13/2023]
Abstract
Combined effects of acids and ammonium on functional pathway and microbial structure during organics methanization were investigated by stable isotopic method and quantitative PCR. The results showed that the stress from acids and ammonium was synergetic, resulted in different inhibition for acetoclastic and hydrogenotrophic methanogenesis and syntrophic acetate oxidation, leading to pathway shift. Methane production from acetate was affected more by acetate than by ammonium until the ammonium concentration reached 6-7 g-N/L. When the ammonium concentration exceeded 6 g-N/L, ammonium inhibition was strengthened by the increased concentration of acetate. At a low acetate concentration (50 mmol/L), acetoclastic methanogenesis dominated, regardless of ammonium concentration. At higher acetate concentrations (150 and 250 mmol/L) and at low-medium ammonium levels (1-4 g-N/L), acetate was mainly degraded by acetoclastic methanogenesis, while residual acetate was degraded by a combination of acetoclastic methanogenesis and the syntrophic reaction of syntrophic acetate oxidization and hydrogenotrophic methanogenesis with the latter dominating at 250 mmol/L acetate. At high ammonium levels (6-7 g-N/L), the degradation of acetate in the 150 mmol/L treatment was firstly through a combination of acetoclastic methanogenesis and the syntrophic pathway and then gradually shifted to the syntrophic pathway, while the degradation of acetate in the 250 mmol/L treatment was completely by the syntrophic pathway.
Collapse
Affiliation(s)
- Fan Lü
- Institute of Waste Treatment & Reclamation, Tongji University, Shanghai 200092, China
| | | | | | | | | | | |
Collapse
|
74
|
Merlino G, Rizzi A, Schievano A, Tenca A, Scaglia B, Oberti R, Adani F, Daffonchio D. Microbial community structure and dynamics in two-stage vs single-stage thermophilic anaerobic digestion of mixed swine slurry and market bio-waste. WATER RESEARCH 2013; 47:1983-1995. [PMID: 23399080 DOI: 10.1016/j.watres.2013.01.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2012] [Revised: 11/27/2012] [Accepted: 01/04/2013] [Indexed: 06/01/2023]
Abstract
The microbial community of a thermophilic two-stage process was monitored during two-months operation and compared to a conventional single-stage process. Qualitative and quantitative microbial dynamics were analysed by Denaturing Gradient Gel Electrophoresis (DGGE) and real-time PCR techniques, respectively. The bacterial community was dominated by heat-shock resistant, spore-forming clostridia in the two-stage process, whereas a more diverse and dynamic community (Firmicutes, Bacteroidetes, Synergistes) was observed in the single-stage process. A significant evolution of bacterial community occurred over time in the acidogenic phase of the two-phase process with the selection of few dominant species associated to stable hydrogen production. The archaeal community, dominated by the acetoclastic Methanosarcinales in both methanogen reactors, showed a significant diversity change in the single-stage process after a period of adaptation to the feeding conditions, compared to a constant stability in the methanogenic reactor of the two-stage process. The more diverse and dynamic bacterial and archaeal community of single-stage process compared to the two-stage process accounted for the best degradation activity, and consequently the best performance, in this reactor. The microbiological perspective proved a useful tool for a better understanding and comparison of anaerobic digestion processes.
Collapse
Affiliation(s)
- Giuseppe Merlino
- Department of Food Environmental and Nutritional Sciences (DEFENS), University of Milan, Celoria 2, 20133 Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
75
|
Iino T, Tamaki H, Tamazawa S, Ueno Y, Ohkuma M, Suzuki KI, Igarashi Y, Haruta S. Candidatus Methanogranum caenicola: a novel methanogen from the anaerobic digested sludge, and proposal of Methanomassiliicoccaceae fam. nov. and Methanomassiliicoccales ord. nov., for a methanogenic lineage of the class Thermoplasmata. Microbes Environ 2013; 28:244-50. [PMID: 23524372 PMCID: PMC4070666 DOI: 10.1264/jsme2.me12189] [Citation(s) in RCA: 193] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The class Thermoplasmata harbors huge uncultured archaeal lineages at the order level, so-called Groups E2 and E3. A novel archaeon Kjm51a affiliated with Group E2 was enriched from anaerobic sludge in the present study. Clone library analysis of the archaeal 16S rRNA and mcrA genes confirmed a unique archaeal population in the enrichment culture. The 16S rRNA gene-based phylogeny revealed that the enriched archaeon Kjm51a formed a distinct cluster within Group E2 in the class Thermoplasmata together with Methanomassiliicoccus luminyensis B10T and environmental clone sequences derived from anaerobic digesters, bovine rumen, and landfill leachate. Archaeon Kjm51a showed 87.7% 16S rRNA gene sequence identity to the closest cultured species, M. luminyensis B10T, indicating that archaeon Kjm51a might be phylogenetically novel at least at the genus level. In fluorescence in situ hybridization analysis, archaeon Kjm51a was observed as coccoid cells completely corresponding to the archaeal cells detected, although bacterial rod cells still coexisted. The growth of archaeon Kjm51a was dependent on the presence of methanol and yeast extract, and hydrogen and methane were produced in the enrichment culture. The addition of 2-bromo ethanesulfonate to the enrichment culture completely inhibited methane production and increased hydrogen concentration, which suggested that archaeon Kjm51a is a methanol-reducing hydrogenotrophic methanogen. Taken together, we propose the provisional taxonomic assignment, named Candidatus Methanogranum caenicola, for the enriched archaeon Kjm51a belonging to Group E2. We also propose to place the methanogenic lineage of the class Thermoplasmata in a novel order, Methanomassiliicoccales ord. nov.
Collapse
Affiliation(s)
- Takao Iino
- Japan Collection of Microorganisms, RIKEN BioResource Center, 3–1–1 Koyadai, Tsukuba, Ibaraki 305–0074, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
76
|
Sasaki D, Sasaki K, Watanabe A, Morita M, Igarashi Y, Ohmura N. Efficient production of methane from artificial garbage waste by a cylindrical bioelectrochemical reactor containing carbon fiber textiles. AMB Express 2013; 3:17. [PMID: 23497472 PMCID: PMC3608157 DOI: 10.1186/2191-0855-3-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 03/01/2013] [Indexed: 11/30/2022] Open
Abstract
A cylindrical bioelectrochemical reactor (BER) containing carbon fiber textiles (CFT; BER + CFT) has characteristics of bioelectrochemical and packed-bed systems. In this study, utility of a cylindrical BER + CFT for degradation of a garbage slurry and recovery of biogas was investigated by applying 10% dog food slurry. The working electrode potential was electrochemically regulated at −0.8 V (vs. Ag/AgCl). Stable methane production of 9.37 L-CH4 · L−1 · day−1 and dichromate chemical oxygen demand (CODcr) removal of 62.5% were observed, even at a high organic loading rate (OLR) of 89.3 g-CODcr · L−1 · day−1. Given energy as methane (372.6 kJ · L−1 · day−1) was much higher than input electric energy to the working electrode (0.6 kJ · L−1 · day−1) at this OLR. Methanogens were highly retained in CFT by direct attachment to the cathodic working electrodes (52.3%; ratio of methanogens to prokaryotes), compared with the suspended fraction (31.2%), probably contributing to the acceleration of organic material degradation and removal of organic acids. These results provide insight into the application of cylindrical BER + CFT in efficient methane production from garbage waste including a high percentage of solid fraction.
Collapse
|
77
|
Sasaki D, Sasaki K, Watanabe A, Morita M, Matsumoto N, Igarashi Y, Ohmura N. Operation of a cylindrical bioelectrochemical reactor containing carbon fiber fabric for efficient methane fermentation from thickened sewage sludge. BIORESOURCE TECHNOLOGY 2013; 129:366-373. [PMID: 23262013 DOI: 10.1016/j.biortech.2012.11.048] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2012] [Revised: 11/09/2012] [Accepted: 11/12/2012] [Indexed: 06/01/2023]
Abstract
A bioelectrochemical reactor (BER) containing carbon fiber fabric (CFF) (BER+CFF) enabled efficient methane fermentation from thickened sewage sludge. A cylindrical BER+CFF was proposed and scaled-up to a volume of 4.0-L. Thickened sewage sludge was treated using three types of methanogenic reactors. The working electrode potential in the BER+CFF was regulated at -0.8 V (vs. Ag/AgCl). BER+CFF showed gas production of 3.57 L L(-1) day(-1) at a hydraulic retention time (HRT) of 4.0 days; however, non-BER+CFF showed a lower gas production rate (0.83 L L(-1) day(-1)) at this HRT, suggesting positive effects of electrochemical regulation. A stirred tank reactor (without CFF) deteriorated at an HRT of 10 days, suggesting positive effects of CFF. 16S rRNA gene analysis showed that the BER+CFF included 3 kinds of hydrogenotrophic methanogens and 1 aceticlastic methanogen. These results demonstrate the effectiveness of the BER+CFF for scale-up and flexibility of this technology.
Collapse
Affiliation(s)
- Daisuke Sasaki
- Biotechnology Sector, Environmental Science Research Laboratory, Central Research Institute of Electric Power Industry, 1646 Abiko, Abiko-shi, Chiba-ken 270-1194, Japan
| | | | | | | | | | | | | |
Collapse
|
78
|
Tian Z, Chauliac D, Pullammanappallil P. Comparison of non-agitated and agitated batch, thermophilic anaerobic digestion of sugarbeet tailings. BIORESOURCE TECHNOLOGY 2013; 129:411-420. [PMID: 23262019 DOI: 10.1016/j.biortech.2012.11.056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 11/06/2012] [Accepted: 11/11/2012] [Indexed: 06/01/2023]
Abstract
Sugar beet tailings were anaerobically digested at non-agitated and agitated conditions in identical thermophilic batch reactors. The average methane yield in the agitated digester was only 74% of that in the non-agitated digester. Ninety percent of the ultimate methane yield was produced in approximately 5 days in the non-agitated digester whereas it took 12 days in agitated digester. Even upon using an active inoculum from non-agitated digester the methane rate and yield was low in the agitated digester. On the other hand when the poorly performing inoculum from the agitated digester was transferred to the non-agitated digester, its activity was immediately enhanced. The non-agitated digester harbored a diverse microbial community with phylotypes Methanoculleus and Methanosarcina being dominant methanogens. Methanosaeta was the only methanogen detected in the agitated digester. It also contained a hydrogen-producing bacterial phylotype Petrotoga in high proportion which was not detected in the other digester.
Collapse
Affiliation(s)
- Zhuoli Tian
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, United States
| | | | | |
Collapse
|
79
|
Polag D, Heuwinkel H, Laukenmann S, Greule M, Keppler F. Evidence of anaerobic syntrophic acetate oxidation in biogas batch reactors by analysis of 13C carbon isotopes. ISOTOPES IN ENVIRONMENTAL AND HEALTH STUDIES 2013; 49:365-77. [PMID: 23781862 DOI: 10.1080/10256016.2013.805758] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Between 2008 and 2010 various batch experiments were carried out to study the stable carbon isotopic composition of biogas (CH4 and CO2) produced from (i) pure sludge and (ii) sludge including maize. From the evolution of the natural isotopic signature, a temporal change of methanogenic pathways could be detected for the treatment with maize showing that a dominance in acetotrophic methanogenesis was replaced by a mixture of hydrogenotrophic and acetotrophic methanogenesis. For pure sludge, hydrogenotrophic methanogenesis was the dominant or probably exclusive pathway. Experiments with isotopically labelled acetate (99% (13)CH3COONa and 99% CH3(13)COONa) indicated a significant contribution of syntrophic acetate oxidation (SAO) for all the investigated treatments. In the case of pure sludge, experiments from 2008 showed that acetate was almost entirely oxidised to CO2, i.e. acetotrophic methanogenesis was negligible. However, in 2010, the sludge showed a clear dominance in acetotrophic methanogenesis with a minor contribution by SAO indicating a significant change in the metabolic character. Our results indicate that SAO during anaerobic degradation of maize might be a significant process that needs to be considered in biogas research.
Collapse
Affiliation(s)
- Daniela Polag
- a Max-Planck-Institute for Chemistry , Mainz , Germany
| | | | | | | | | |
Collapse
|
80
|
Lo HM, Chiu HY, Lo SW, Lo FC. Effects of different SRT on anaerobic digestion of MSW dosed with various MSWI ashes. BIORESOURCE TECHNOLOGY 2012; 125:233-238. [PMID: 23026339 DOI: 10.1016/j.biortech.2012.08.084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Revised: 08/08/2012] [Accepted: 08/10/2012] [Indexed: 06/01/2023]
Abstract
This study investigated different solid retention time (SRT) on municipal solid waste (MSW) anaerobic digestion with various MSW incinerator fly ash (FA) and bottom ash (BA) addition. Results showed that biogas production rates (BPRs, ≈ 200 to ≈ 400 mL/gVS) with organic loading rate of ≈ 0.053 gVS/gVS(reactor) (Day 1-435, SRT 20 days, SRT20) at FA 1g/d (FA1), BA 12 g/d (BA12) and BA 24 g/d (BA24) dosed bioreactors increased after adaptation. BPRs with SRT10 and SRT5 decreased while BPRs with SRT40 showed to increase compared to initial BPRs (≈ 200 mL/gVS) with SRT20. SRT5 operation reduced the BPRs (≈ 10 - ≈ 90 mL/gVS) significantly and only BA12 and BA24 dosed bioreactors could recover the BPRs (≈ 100 - ≈ 200 mL/gVS) after SRT20 operation (Day 613-617) compared to FA1 and FA3 and control. Released levels of Co, Mo and W at BA12 and BA24 dosed bioreactors showed most potential to improve MSW anaerobic digestion.
Collapse
Affiliation(s)
- H M Lo
- Department of Environmental Engineering and Management, Chaoyang University of Technology, 168, Gifeng E. Rd., Wufeng District, Taichung 41349, Taiwan, ROC.
| | | | | | | |
Collapse
|
81
|
Distribution and role of Coprothermobacter spp. in anaerobic digesters. J Biosci Bioeng 2012; 114:518-20. [DOI: 10.1016/j.jbiosc.2012.05.023] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2011] [Revised: 05/07/2012] [Accepted: 05/29/2012] [Indexed: 11/23/2022]
|
82
|
Sasaki K, Morita M, Sasaki D, Ohmura N, Igarashi Y. The membraneless bioelectrochemical reactor stimulates hydrogen fermentation by inhibiting methanogenic archaea. Appl Microbiol Biotechnol 2012; 97:7005-13. [DOI: 10.1007/s00253-012-4465-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 09/17/2012] [Accepted: 09/20/2012] [Indexed: 10/27/2022]
|
83
|
Sasaki D, Morita M, Sasaki K, Watanabe A, Ohmura N. Acceleration of cellulose degradation and shift of product via methanogenic co-culture of a cellulolytic bacterium with a hydrogenotrophic methanogen. J Biosci Bioeng 2012; 114:435-9. [DOI: 10.1016/j.jbiosc.2012.05.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 04/20/2012] [Accepted: 05/04/2012] [Indexed: 11/17/2022]
|
84
|
Walter A, Knapp BA, Farbmacher T, Ebner C, Insam H, Franke-Whittle IH. Searching for links in the biotic characteristics and abiotic parameters of nine different biogas plants. Microb Biotechnol 2012; 5:717-30. [PMID: 22950603 PMCID: PMC3532602 DOI: 10.1111/j.1751-7915.2012.00361.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 07/23/2012] [Indexed: 11/29/2022] Open
Abstract
To find links between the biotic characteristics and abiotic process parameters in anaerobic digestion systems, the microbial communities of nine full‐scale biogas plants in South Tyrol (Italy) and Vorarlberg (Austria) were investigated using molecular techniques and the physical and chemical properties were monitored. DNA from sludge samples was subjected to microarray hybridization with the ANAEROCHIP microarray and results indicated that sludge samples grouped into two main clusters, dominated either by Methanosarcina or by Methanosaeta, both aceticlastic methanogens. Hydrogenotrophic methanogens were hardly detected or if detected, gave low hybridization signals. Results obtained using denaturing gradient gel electrophoresis (DGGE) supported the findings of microarray hybridization. Real‐time PCR targeting Methanosarcina and Methanosaeta was conducted to provide quantitative data on the dominating methanogens. Correlation analysis to determine any links between the microbial communities found by microarray analysis, and the physicochemical parameters investigated was conducted. It was shown that the sludge samples dominated by the genus Methanosarcina were positively correlated with higher concentrations of acetate, whereas sludge samples dominated by representatives of the genus Methanosaeta had lower acetate concentrations. No other correlations between biotic characteristics and abiotic parameters were found. Methanogenic communities in each reactor were highly stable and resilient over the whole year.
Collapse
Affiliation(s)
- Andreas Walter
- University of Innsbruck, Institute of Microbiology, Technikerstraße 25d, 6020 Innsbruck, Austria.
| | | | | | | | | | | |
Collapse
|
85
|
Cardinali-Rezende J, Colturato LFDB, Colturato TDB, Chartone-Souza E, Nascimento AMA, Sanz JL. Prokaryotic diversity and dynamics in a full-scale municipal solid waste anaerobic reactor from start-up to steady-state conditions. BIORESOURCE TECHNOLOGY 2012; 119:373-83. [PMID: 22750748 DOI: 10.1016/j.biortech.2012.05.136] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 05/27/2012] [Accepted: 05/28/2012] [Indexed: 05/16/2023]
Abstract
The prokaryotic diversity of an anaerobic reactor for the treatment of municipal solid waste was investigated over the course of 2 years with the use of 16S rDNA-targeted molecular approaches. The fermentative Bacteroidetes and Firmicutes predominated, and Proteobacteria, Actinobacteria, Tenericutes and the candidate division WWE1 were also identified. Methane production was dominated by the hydrogenotrophic Methanomicrobiales (Methanoculleus sp.) and their syntrophic association with acetate-utilizing and propionate-oxidizing bacteria. qPCR demonstrated the predominance of the hydrogenotrophic over aceticlastic Methanosarcinaceae (Methanosarcina sp. and Methanimicrococcus sp.), and Methanosaetaceae (Methanosaeta sp.) were measured in low numbers in the reactor. According to the FISH and CARD-FISH analyses, Bacteria and Archaea accounted for 85% and 15% of the cells, respectively. Different cell counts for these domains were obtained by qPCR versus FISH analyses. The use of several molecular tools increases our knowledge of the prokaryotic community dynamics from start-up to steady-state conditions in a full-scale MSW reactor.
Collapse
Affiliation(s)
- Juliana Cardinali-Rezende
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, MG 31.270-901, Brazil
| | | | | | | | | | | |
Collapse
|
86
|
Bacterial communities in different sections of a municipal wastewater treatment plant revealed by 16S rDNA 454 pyrosequencing. Appl Microbiol Biotechnol 2012; 97:2681-90. [PMID: 22555912 PMCID: PMC3586070 DOI: 10.1007/s00253-012-4082-4] [Citation(s) in RCA: 194] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2012] [Accepted: 04/02/2012] [Indexed: 01/27/2023]
Abstract
In this study, we successfully demonstrated that 454 pyrosequencing was a powerful approach for investigating the bacterial communities in the activated sludge, digestion sludge, influent, and effluent samples of a full scale wastewater treatment plant treating saline sewage. For each sample, 18,808 effective sequences were selected and utilized to do the bacterial diversity and abundance analysis. In total, 2,455, 794, 1,667, and 1,932 operational taxonomic units were obtained at 3 % distance cutoff in the activated sludge, digestion sludge, influent, and effluent samples, respectively. The corresponding most dominant classes in the four samples are Alphaproteobacteria, Thermotogae, Deltaproteobacteria, and Gammaproteobacteria. About 67 % sequences in the digestion sludge sample were found to be affiliated with the Thermotogales order. Also, these sequences were assigned into a recently proposed genus Kosmotoga by the Ribosomal Database Project classifier. In the effluent sample, we found high abundance of Mycobacterium and Vibrio, which are genera containing pathogenic bacteria. Moreover, in this study, we proposed a method to differentiate the "gene percentage" and "cell percentage" by using Ribosomal RNA Operon Copy Number Database.
Collapse
|
87
|
De Vrieze J, Hennebel T, Boon N, Verstraete W. Methanosarcina: the rediscovered methanogen for heavy duty biomethanation. BIORESOURCE TECHNOLOGY 2012; 112:1-9. [PMID: 22418081 DOI: 10.1016/j.biortech.2012.02.079] [Citation(s) in RCA: 448] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 02/13/2012] [Accepted: 02/16/2012] [Indexed: 05/07/2023]
Abstract
Anaerobic digestion is an important technology in the framework of renewable energy production. The anaerobic digestion system is susceptible to perturbations due to the sensitivity of the methanogens towards environmental factors. Currently, technology is evolving from conventional waste treatment, i.e. the removal of pollutants, to very intensive biogas production from concentrated wastes, in the framework of bio-energy production. In the latter configuration Methanosarcina species appear to be of crucial importance. Methanosarcina sp. are, compared to other methanogens, quite robust towards different impairments. They are reported to be tolerant to total ammonium concentrations up to 7000 mg L(-1), salt concentrations up to 18,000 mg Na(+)L(-1), a pH shock of 0.8-1.0 units and acetate concentrations up to 15,000 mg CODL(-1). The possibilities of Methanosarcina sp. as key organisms in specific types of anaerobic digestion systems are demonstrated in this review.
Collapse
Affiliation(s)
- Jo De Vrieze
- Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Coupure Links 653, B-9000 Gent, Belgium
| | | | | | | |
Collapse
|
88
|
Lin J, Zuo J, Ji R, Chen X, Liu F, Wang K, Yang Y. Methanogenic community dynamics in anaerobic co-digestion of fruit and vegetable waste and food waste. J Environ Sci (China) 2012; 24:1288-94. [PMID: 23513450 DOI: 10.1016/s1001-0742(11)60927-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
A lab-scale continuously-stirred tank reactor (CSTR), used for anaerobic co-digestion of fruit and vegetable waste (FVW) and food waste (FW) at different mixture ratios, was operated for 178 days at the organic loading rate of 3 kg VS (volatile solids)/(m3 x day). The dynamics of the Archaeal community and the correlations between environmental variables and methanogenic community structure were analyzed by polymerase chain reactions--denaturing gradient gel electrophoresis (PCR-DGGE) and redundancy analysis (RDA), respectively. PCR-DGGE results demonstrated that the mixture ratio of FVW to FW altered the community composition of Archaea. As the FVW/FW ratio increased, Methanoculleus, Methanosaeta and Methanosarcina became the predominant methanogens in the community. Redundancy analysis results indicated that the shift of the methanogenic community was significantly correlated with the composition of acidogenic products and methane production yield. Different mixture ratios of substrates led to different compositions of intermediate metabolites, which may affect the methanogenic community. These results suggested that the analysis of microbial communities could be used to diagnose anaerobic processes.
Collapse
Affiliation(s)
- Jia Lin
- State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), School ofEnvironment, Tsinghua University, Beijing 100084, China.
| | | | | | | | | | | | | |
Collapse
|
89
|
Tang YQ, Ji P, Hayashi J, Koike Y, Wu XL, Kida K. Characteristic microbial community of a dry thermophilic methanogenic digester: its long-term stability and change with feeding. Appl Microbiol Biotechnol 2011; 91:1447-61. [DOI: 10.1007/s00253-011-3479-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 06/28/2011] [Accepted: 07/13/2011] [Indexed: 11/28/2022]
|