51
|
Tarkistani MAM, Komalla V, Kayser V. Recent Advances in the Use of Iron-Gold Hybrid Nanoparticles for Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1227. [PMID: 34066549 PMCID: PMC8148580 DOI: 10.3390/nano11051227] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 12/26/2022]
Abstract
Recently, there has been an increased interest in iron-gold-based hybrid nanostructures, due to their combined outstanding optical and magnetic properties resulting from the usage of two separate metals. The synthesis of these nanoparticles involves thermal decomposition and modification of their surfaces using a variety of different methods, which are discussed in this review. In addition, different forms such as core-shell, dumbbell, flower, octahedral, star, rod, and Janus-shaped hybrids are discussed, and their unique properties are highlighted. Studies on combining optical response in the near-infrared window and magnetic properties of iron-gold-based hybrid nanoparticles as multifunctional nanoprobes for drug delivery, magnetic-photothermal heating as well as contrast agents during magnetic and optical imaging and magnetically-assisted optical biosensing to detect traces of targeted analytes inside the body has been reviewed.
Collapse
Affiliation(s)
| | | | - Veysel Kayser
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia; (M.A.M.T.); (V.K.)
| |
Collapse
|
52
|
Jain P, Kathuria H, Momin M. Clinical therapies and nano drug delivery systems for urinary bladder cancer. Pharmacol Ther 2021; 226:107871. [PMID: 33915179 DOI: 10.1016/j.pharmthera.2021.107871] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 04/09/2021] [Accepted: 04/20/2021] [Indexed: 02/07/2023]
Abstract
Bladder cancer is the 10th most commonly occurring malignancy worldwide with a 75% of 5-year survival rate, while it ranks 13th among the deaths occurring due to cancer. The majority of bladder cancer cases are diagnosed at an early stage and 70% are of non-invasive grade. However, 70% of these cases develop chemoresistance and progress to the muscle invasive stage. Conventional chemotherapy treatments are unsuccessful in curbing chemoresistance, bladder cancer progression while having an adverse side effect, which is mainly due to off-target drug distribution. Therefore, new drug delivery strategies, new therapeutics and therapies or their combination are being explored to develop better treatments. In this regard, nanotechnology has shown promise in the targeted delivery of therapeutics to bladder cancer cells. This review discusses the recent discovery of new therapeutics (chemotherapeutics, immunotherapeutic, and gene therapies), recent developments in the delivery of therapeutics using nano drug delivery systems, and the combination treatments with FDA-approved therapies, i.e., hyperthermia and photodynamic therapy. We also discussed the potential of other novel drug delivery systems that are minimally explored in bladder cancer. Lastly, we discussed the clinical status of therapeutics and therapies for bladder cancer. Overall, this review can provide a summary of available treatments for bladder cancer, and also provide opportunities for further development of drug delivery systems for better management of bladder cancer.
Collapse
Affiliation(s)
- Pooja Jain
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, Maharashtra, India.
| | - Himanshu Kathuria
- Department of Pharmacy, National University of Singapore, Singapore 117543, Republic of Singapore; Nusmetic Pvt Ltd, Makerspace, i4 building, 3 Research Link Singapore, 117602, Republic of Singapore.
| | - Munira Momin
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, Maharashtra, India.
| |
Collapse
|
53
|
Enhanced photophysical properties of silica-methylene blue@amorphous carbon as fluorochromes with modulated Raman-active vibration modes. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2020.112987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
54
|
de Medeiros AMZ, Khan LU, da Silva GH, Ospina CA, Alves OL, de Castro VL, Martinez DST. Graphene oxide-silver nanoparticle hybrid material: an integrated nanosafety study in zebrafish embryos. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 209:111776. [PMID: 33341698 DOI: 10.1016/j.ecoenv.2020.111776] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/04/2020] [Accepted: 12/05/2020] [Indexed: 05/24/2023]
Abstract
This work reports an integrated nanosafety study including the synthesis and characterization of the graphene oxide-silver nanoparticle hybrid material (GO-AgNPs) and its nano-ecotoxicity evaluation in the zebrafish embryo model. The influences of natural organic matter (NOM) and a chorion embryo membrane were considered in this study, looking towards more environmentally realistic scenarios and standardized nanotoxicity testing. The nanohybrid was successfully synthesized using the NaBH4 aqueous method, and AgNPs (~ 5.8 nm) were evenly distributed over the GO surface. GO-AgNPs showed a dose-response acute toxicity: the LC50 was 1.5 mg L-1 for chorionated embryos. The removal of chorion, however, increased this toxic effect by 50%. Furthermore, the presence of NOM mitigated mortality, and LC50 for GO-AgNPs changed respectively from 2.3 to 1.2 mg L-1 for chorionated and de-chorionated embryos. Raman spectroscopy confirmed the ingestion of GO by embryos; but without displaying acute toxicity up to 100 mg L-1, indicating that the silver drove toxicity down. Additionally, it was observed that silver nanoparticle dissolution has a minimal effect on these observed toxicity results. Finally, understanding the influence of chorion membranes and NOM is a critical step towards the standardization of testing for zebrafish embryo toxicity in safety assessments and regulatory issues.
Collapse
Affiliation(s)
- Aline M Z de Medeiros
- Brazilian Nanotechnology National Laboratoy (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo State, Brazil; Center of Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Piracicaba, São Paulo State, Brazil; Brazilian Agricultural Research Corporation (Embrapa Environment), Jaguariúna, São Paulo State, Brazil
| | - Latif U Khan
- Brazilian Nanotechnology National Laboratoy (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo State, Brazil
| | - Gabriela H da Silva
- Brazilian Nanotechnology National Laboratoy (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo State, Brazil
| | - Carlos A Ospina
- Brazilian Nanotechnology National Laboratoy (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo State, Brazil
| | - Oswaldo L Alves
- Laboratory of Solid State Chemistry (LQES) and NanoBioss Laboratory, University of Campinas (Unicamp), Campinas, São Paulo State, Brazil
| | - Vera Lúcia de Castro
- Brazilian Agricultural Research Corporation (Embrapa Environment), Jaguariúna, São Paulo State, Brazil
| | - Diego Stéfani T Martinez
- Brazilian Nanotechnology National Laboratoy (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo State, Brazil; Center of Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Piracicaba, São Paulo State, Brazil; Laboratory of Solid State Chemistry (LQES) and NanoBioss Laboratory, University of Campinas (Unicamp), Campinas, São Paulo State, Brazil.
| |
Collapse
|
55
|
Nayeem J, Al-Bari MAA, Mahiuddin M, Rahman MA, Mefford OT, Ahmad H, Rahman MM. Silica coating of iron oxide magnetic nanoparticles by reverse microemulsion method and their functionalization with cationic polymer P(NIPAm-co-AMPTMA) for antibacterial vancomycin immobilization. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125857] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
56
|
Kaabipour S, Hemmati S. A review on the green and sustainable synthesis of silver nanoparticles and one-dimensional silver nanostructures. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2021; 12:102-136. [PMID: 33564607 PMCID: PMC7849236 DOI: 10.3762/bjnano.12.9] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/14/2020] [Indexed: 05/08/2023]
Abstract
The significance of silver nanostructures has been growing considerably, thanks to their ubiquitous presence in numerous applications, including but not limited to renewable energy, electronics, biosensors, wastewater treatment, medicine, and clinical equipment. The properties of silver nanostructures, such as size, size distribution, and morphology, are strongly dependent on synthesis process conditions such as the process type, equipment type, reagent type, precursor concentration, temperature, process duration, and pH. Physical and chemical methods have been among the most common methods to synthesize silver nanostructures; however, they possess substantial disadvantages and short-comings, especially compared to green synthesis methods. On the contrary, the number of green synthesis techniques has been increasing during the last decade and they have emerged as alternative routes towards facile and effective synthesis of silver nanostructures with different morphologies. In this review, we have initially outlined the most common and popular chemical and physical methodologies and reviewed their advantages and disadvantages. Green synthesis methodologies are then discussed in detail and their advantages over chemical and physical methods have been noted. Recent studies are then reviewed in detail and the effects of essential reaction parameters, such as temperature, pH, precursor, and reagent concentration, on silver nanostructure size and morphology are discussed. Also, green synthesis techniques used for the synthesis of one-dimensional (1D) silver nanostructures have been reviewed, and the potential of alternative green reagents for their synthesis has been discussed. Furthermore, current challenges regarding the green synthesis of 1D silver nanostructures and future direction are outlined. To sum up, we aim to show the real potential of green nanotechnology towards the synthesis of silver nanostructures with various morphologies (especially 1D ones) and the possibility of altering current techniques towards more environmentally friendly, more energy-efficient, less hazardous, simpler, and cheaper procedures.
Collapse
Affiliation(s)
- Sina Kaabipour
- School of Chemical Engineering, Oklahoma State University, Stillwater, Oklahoma, 74078, USA
| | - Shohreh Hemmati
- School of Chemical Engineering, Oklahoma State University, Stillwater, Oklahoma, 74078, USA
| |
Collapse
|
57
|
Picco AS, Mondo GB, Ferreira LF, de Souza EE, Peroni LA, Cardoso MB. Protein corona meets freeze-drying: overcoming the challenges of colloidal stability, toxicity, and opsonin adsorption. NANOSCALE 2021; 13:753-762. [PMID: 33232428 DOI: 10.1039/d0nr06040b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Freeze-drying of nanoparticle suspensions is capable of generating stable nanoformulations with improved storage times and easier transportation. Nonetheless, nanoparticle aggregation is likely induced during freeze-drying, which reduces its redispersibility upon reconstitution and leads to undesirable effects such as non-specific toxicity and impaired efficacy. In this work, bovine serum albumin (BSA) is described as a suitable protectant for silica nanoparticles (SNPs), which result in solid structures with excellent redispersibility and negligible signs of aggregation even when longer storage times are considered. We experimentally demonstrated that massive system aggregation can be prevented when a saturated BSA corona around the nanoparticle is formed before the lyophilization process. Furthermore, the BSA corona is able to suppress non-specific interactions between these nanoparticles and biological systems, as evidenced by the lack of residual cytotoxicity, hemolytic activity and opsonin adsorption. Hence, BSA can be seriously considered for industry as an additive for nanoparticle freeze-drying since it generates solid and redispersible nanoformulations with improved biocompatibility.
Collapse
Affiliation(s)
- Agustin S Picco
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970, Campinas, Brazil.
| | | | | | | | | | | |
Collapse
|
58
|
Understanding structural and molecular properties of complexes of nucleobases and Au13 golden nanocluster by DFT calculations and DFT-MD simulation. Sci Rep 2021; 11:435. [PMID: 33432001 PMCID: PMC7801688 DOI: 10.1038/s41598-020-80161-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/10/2020] [Indexed: 01/29/2023] Open
Abstract
The characterization of the complexes of biomolecules and nanostructures is highly interesting and benefits the rational development and design of nano-materials and nano-devices in nano-biotechnology. In this work, we have used dispersion corrected density functional theory (DFT-D) as well as DFT based molecular dynamics simulations to provide an atomistic understanding of interaction properties of DNA nucleobases and Au13 nanocluster. Various active sites of interacting molecules considering their relative orientation and distance are explored. Our goal is to stimulate the binding characteristics between two entities and evaluate this through the interaction energy, the charge transfer, the electronic structure, and the specific role of the molecular properties of the nucleobase-Au13 system. The primary outcomes of this comprehensive research illuminated that nucleic bases have potent affinity for binding to the Au cluster being chemisorption type and following the trend: Adenine > Cytosine > Guanine > Thymine. The AIM analysis indicated that the binding nature of the interacting species was predominantly partial covalent and high polar. We discuss the bearing of our findings in view of gene-nanocarrier, biosensing applications as well as nanodevices for sequencing of DNA.
Collapse
|
59
|
Chen F, Bian M, Nahmou M, Myung D, Goldberg JL. Fusogenic liposome-enhanced cytosolic delivery of magnetic nanoparticles. RSC Adv 2021; 11:35796-35805. [PMID: 35492766 PMCID: PMC9043121 DOI: 10.1039/d1ra03094a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 09/16/2021] [Indexed: 12/19/2022] Open
Abstract
Fusogenic liposomes facilitate MNPs passage into the cytosol and enable direct contact between MNPs and organelles other than endosomes.
Collapse
Affiliation(s)
- Fang Chen
- Department of Ophthalmology, Spencer Center for Vision Research, Byers Eye Institute at Stanford University, Palo Alto, CA, 94304, USA
- VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA
| | - Minjuan Bian
- Department of Ophthalmology, Spencer Center for Vision Research, Byers Eye Institute at Stanford University, Palo Alto, CA, 94304, USA
| | - Michael Nahmou
- Department of Ophthalmology, Spencer Center for Vision Research, Byers Eye Institute at Stanford University, Palo Alto, CA, 94304, USA
| | - David Myung
- Department of Ophthalmology, Spencer Center for Vision Research, Byers Eye Institute at Stanford University, Palo Alto, CA, 94304, USA
- VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Jeffrey L. Goldberg
- Department of Ophthalmology, Spencer Center for Vision Research, Byers Eye Institute at Stanford University, Palo Alto, CA, 94304, USA
- VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA
| |
Collapse
|
60
|
Zhang J, Wang RJ, Chen M, Liu XY, Ma K, Xu HY, Deng WS, Ye YC, Li WX, Chen XY, Sun HT. Collagen/heparan sulfate porous scaffolds loaded with neural stem cells improve neurological function in a rat model of traumatic brain injury. Neural Regen Res 2021; 16:1068-1077. [PMID: 33269752 PMCID: PMC8224125 DOI: 10.4103/1673-5374.300458] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
One reason for the poor therapeutic effects of stem cell transplantation in traumatic brain injury is that exogenous neural stem cells cannot effectively migrate to the local injury site, resulting in poor adhesion and proliferation of neural stem cells at the injured area. To enhance the targeted delivery of exogenous stem cells to the injury site, cell therapy combined with neural tissue engineering technology is expected to become a new strategy for treating traumatic brain injury. Collagen/heparan sulfate porous scaffolds, prepared using a freeze-drying method, have stable physical and chemical properties. These scaffolds also have good cell biocompatibility because of their high porosity, which is suitable for the proliferation and migration of neural stem cells. In the present study, collagen/heparan sulfate porous scaffolds loaded with neural stem cells were used to treat a rat model of traumatic brain injury, which was established using the controlled cortical impact method. At 2 months after the implantation of collagen/heparan sulfate porous scaffolds loaded with neural stem cells, there was significantly improved regeneration of neurons, nerve fibers, synapses, and myelin sheaths in the injured brain tissue. Furthermore, brain edema and cell apoptosis were significantly reduced, and rat motor and cognitive functions were markedly recovered. These findings suggest that the novel collagen/heparan sulfate porous scaffold loaded with neural stem cells can improve neurological function in a rat model of traumatic brain injury. This study was approved by the Institutional Ethics Committee of Characteristic Medical Center of Chinese People’s Armed Police Force, China (approval No. 2017-0007.2) on February 10, 2019.
Collapse
Affiliation(s)
- Jian Zhang
- Tianjin Key Laboratory of Neurotrauma Repair, Institute of Traumatic Brain Injury and Neuroscience, Characteristic Medical Center of Chinese People's Armed Police Force; Graduate School, Logistics University of People's Armed Police Force, Tianjin, China
| | - Ren-Jie Wang
- Tianjin Key Laboratory of Neurotrauma Repair, Institute of Traumatic Brain Injury and Neuroscience, Characteristic Medical Center of Chinese People's Armed Police Force, Tianjin, China
| | - Miao Chen
- Graduate School, Affiliated Hospital of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Xiao-Yin Liu
- Graduate School, Tianjin Medical University, Tianjin, China
| | - Ke Ma
- Tianjin Key Laboratory of Neurotrauma Repair, Institute of Traumatic Brain Injury and Neuroscience, Characteristic Medical Center of Chinese People's Armed Police Force; Graduate School, Logistics University of People's Armed Police Force, Tianjin, China
| | - Hui-You Xu
- Tianjin Key Laboratory of Neurotrauma Repair, Institute of Traumatic Brain Injury and Neuroscience, Characteristic Medical Center of Chinese People's Armed Police Force; Graduate School, Logistics University of People's Armed Police Force, Tianjin, China
| | - Wu-Sheng Deng
- Tianjin Key Laboratory of Neurotrauma Repair, Institute of Traumatic Brain Injury and Neuroscience, Characteristic Medical Center of Chinese People's Armed Police Force, Tianjin, China
| | - Yi-Chao Ye
- Tianjin Key Laboratory of Neurotrauma Repair, Institute of Traumatic Brain Injury and Neuroscience, Characteristic Medical Center of Chinese People's Armed Police Force; Graduate School, Logistics University of People's Armed Police Force, Tianjin, China
| | - Wei-Xin Li
- Graduate School, Logistics University of People's Armed Police Force, Tianjin, China
| | - Xu-Yi Chen
- Tianjin Key Laboratory of Neurotrauma Repair, Institute of Traumatic Brain Injury and Neuroscience, Characteristic Medical Center of Chinese People's Armed Police Force, Tianjin, China
| | - Hong-Tao Sun
- Tianjin Key Laboratory of Neurotrauma Repair, Institute of Traumatic Brain Injury and Neuroscience, Characteristic Medical Center of Chinese People's Armed Police Force, Tianjin, China
| |
Collapse
|
61
|
Gold nanoclusters modified mesoporous silica coated gold nanorods: Enhanced photothermal properties and fluorescence imaging. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 215:112111. [PMID: 33373860 DOI: 10.1016/j.jphotobiol.2020.112111] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/22/2020] [Accepted: 12/18/2020] [Indexed: 12/28/2022]
Abstract
Photothermal therapy (PTT) is a non-invasive therapy that is widely used in cancer treatment. Gold nanorods (AuNRs) are particularly suitable as a photothermal reagent due to their unique localized surface plasmon resonance (LSPR) properties. However, bare gold nanorods are not stable enough during radiation to collect enough energy to kill tumor cells. In addition, they showed some biologically toxic originated from the poor colloidal stability and surfactants cetyltrimethyl ammonium bromide (CTAB), making it difficult to apply them directly to clinical research. To solve these problems, a novel nanocomposite was structured by coating silica shell and gold nanocluster on the outer layer of the gold nanorod (AuNRs@SiO2@AuNCs). Compared with the bare gold nanorod, the nanocomposite with the core-shell structure showed superior photothermal effect. The photothermal conversion temperature reached 63 °C under a lower irradiation power. The photothermal conversion efficiency was enhanced to 77.6%. Its photothermal performance remained constant after five cycles of near-infrared laser irradiation, indicating excellent photothermal stability. In vitro cell imaging experiments show that AuNRs@SiO2@ AuNCs can effectively enter tumor cells. By 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) analysis, cancer cells can be effectively killed when exposed to a near-infrared laser. During the synthesis process, the silica and gold nanoclusters replaced the toxic CTAB molecular layer on the surface of AuNRs. Therefore, AuNRs@SiO2@AuNCs has good biocompatibility and fluorescence characteristics. These results suggest that such AuNRs@SiO2@AuNCs nanocomposite shows great potential in imaging guided photothermal therapy for cancer.
Collapse
|
62
|
Behera US, Sangwai JS. Nanofluids of Kaolinite and Silica in Low Saline Seawater (LowSal) with and without Surfactant: Interfacial Tension and Wettability Alteration of Oil–Water–Rock System for Low Salinity-Enhanced Oil Recovery. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c04853] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Uma Sankar Behera
- Enhanced Oil Recovery Laboratory, Petroleum Engineering Programme, Department of Ocean Engineering, Indian Institute of Technology Madras, Chennai 600 036, India
| | - Jitendra S. Sangwai
- Enhanced Oil Recovery Laboratory, Petroleum Engineering Programme, Department of Ocean Engineering, Indian Institute of Technology Madras, Chennai 600 036, India
| |
Collapse
|
63
|
Weinstain R, Slanina T, Kand D, Klán P. Visible-to-NIR-Light Activated Release: From Small Molecules to Nanomaterials. Chem Rev 2020; 120:13135-13272. [PMID: 33125209 PMCID: PMC7833475 DOI: 10.1021/acs.chemrev.0c00663] [Citation(s) in RCA: 278] [Impact Index Per Article: 69.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Indexed: 02/08/2023]
Abstract
Photoactivatable (alternatively, photoremovable, photoreleasable, or photocleavable) protecting groups (PPGs), also known as caged or photocaged compounds, are used to enable non-invasive spatiotemporal photochemical control over the release of species of interest. Recent years have seen the development of PPGs activatable by biologically and chemically benign visible and near-infrared (NIR) light. These long-wavelength-absorbing moieties expand the applicability of this powerful method and its accessibility to non-specialist users. This review comprehensively covers organic and transition metal-containing photoactivatable compounds (complexes) that absorb in the visible- and NIR-range to release various leaving groups and gasotransmitters (carbon monoxide, nitric oxide, and hydrogen sulfide). The text also covers visible- and NIR-light-induced photosensitized release using molecular sensitizers, quantum dots, and upconversion and second-harmonic nanoparticles, as well as release via photodynamic (photooxygenation by singlet oxygen) and photothermal effects. Release from photoactivatable polymers, micelles, vesicles, and photoswitches, along with the related emerging field of photopharmacology, is discussed at the end of the review.
Collapse
Affiliation(s)
- Roy Weinstain
- School
of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Tomáš Slanina
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Dnyaneshwar Kand
- School
of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Petr Klán
- Department
of Chemistry and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
64
|
Almeida JMFD, Damasceno Júnior E, Silva EMF, Veríssimo LM, Fernandes NS. pH-responsive release system of topiramate transported on silica nanoparticles by melting method. Drug Dev Ind Pharm 2020; 47:126-145. [PMID: 33295812 DOI: 10.1080/03639045.2020.1862171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Incorporating drugs into silica matrices by the melting method can be applied to obtain drug delivery systems because they are governed by electrostatic type interactions, hydrogen bonding and hydrophilic-hydrophobic interactions between the drug and the silica surface. the melting method is an environmentally correct tool since it is free of organic solvent, low cost and with easy execution for the incorporation of drugs in silicas. Drugs delivery systems are very important for improving the treatment of chronic diseases. Topiramate (TPM) is a potent antiepileptic used in high daily doses as it has low bioavailability. In this context, silica nanoparticles (NPS) were used as an inorganic matrix for TPM transport in (in vitro) release studies. The TPM was incorporated into the NPS by hot melt loading employing a new carrier preparation methodology (NPS/TPM) using a thermobalance (by Thermogravimetry-TG) with high temperature control system. The release study using dissolution media simulating gastrointestinal at pH 1.2 (stomach) and 7.4 (intestine), showed that NPS release TPM in a prolonged and pH-responsive manner. The drug was released at intestinal pH ensuring greater absorption, allowing fewer daily doses and less adverse effects. The kinetic study demonstrated the best fit to the zero-order model proving the pH-responsive profile of the developed system.
Collapse
Affiliation(s)
- Janiele Mayara Ferreira de Almeida
- Laboratório de Química Analítica e Meio Ambiente, Instituto de Química, Universidade Federal do Rio Grande do Norte, Campus Universitário Lagoa Nova, Natal-RN, Brasil
| | - Elmar Damasceno Júnior
- Laboratório de Química Analítica e Meio Ambiente, Instituto de Química, Universidade Federal do Rio Grande do Norte, Campus Universitário Lagoa Nova, Natal-RN, Brasil
| | - Elania Maria Fernandes Silva
- Laboratório de Química Analítica e Meio Ambiente, Instituto de Química, Universidade Federal do Rio Grande do Norte, Campus Universitário Lagoa Nova, Natal-RN, Brasil
| | - Lourena Mafra Veríssimo
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal do Rio Grande do Norte, Natal-RN, Brasil
| | - Nedja Suely Fernandes
- Laboratório de Química Analítica e Meio Ambiente, Instituto de Química, Universidade Federal do Rio Grande do Norte, Campus Universitário Lagoa Nova, Natal-RN, Brasil
| |
Collapse
|
65
|
Tiburcius S, Krishnan K, Yang JH, Hashemi F, Singh G, Radhakrishnan D, Trinh HT, Verrills NM, Karakoti A, Vinu A. Silica-Based Nanoparticles as Drug Delivery Vehicles for Prostate Cancer Treatment. CHEM REC 2020; 21:1535-1568. [PMID: 33320438 DOI: 10.1002/tcr.202000104] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/21/2020] [Indexed: 12/24/2022]
Abstract
Prostate cancer (PCa) is one of the most commonly diagnosed cancers and is the fifth common cause of cancer-related mortality in men. Current methods for PCa treatment are insufficient owing to the challenges related to the non-specificity, instability and side effects caused by the drugs and therapy agents. These drawbacks can be mitigated by the design of a suitable drug delivery system that can ensure targeted delivery and minimise side effects. Silica based nanoparticles (SBNPs) have emerged as one of the most versatile materials for drug delivery due to their tunable porosities, high surface area and tremendous capacity to load various sizes and chemistry of drugs. This review gives a brief overview of the diagnosis and current treatment strategies for PCa outlining their existing challenges. It critically analyzes the design, development and application of pure, modified and hybrid SBNPs based drug delivery systems in the treatment of PCa, their advantages and limitations.
Collapse
Affiliation(s)
- Steffi Tiburcius
- Global Innovative Centre for Advanced Nanomaterials, Faculty of Engineering and Built Environment
| | - Kannan Krishnan
- Global Innovative Centre for Advanced Nanomaterials, Faculty of Engineering and Built Environment
| | - Jae-Hun Yang
- Global Innovative Centre for Advanced Nanomaterials, Faculty of Engineering and Built Environment
| | - Fatemeh Hashemi
- Global Innovative Centre for Advanced Nanomaterials, Faculty of Engineering and Built Environment
| | - Gurwinder Singh
- Global Innovative Centre for Advanced Nanomaterials, Faculty of Engineering and Built Environment
| | - Deepika Radhakrishnan
- Global Innovative Centre for Advanced Nanomaterials, Faculty of Engineering and Built Environment
| | - Hoang Trung Trinh
- Global Innovative Centre for Advanced Nanomaterials, Faculty of Engineering and Built Environment
| | - Nicole M Verrills
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan, 2308, NSW, Australia
| | - Ajay Karakoti
- Global Innovative Centre for Advanced Nanomaterials, Faculty of Engineering and Built Environment
| | - Ajayan Vinu
- Global Innovative Centre for Advanced Nanomaterials, Faculty of Engineering and Built Environment
| |
Collapse
|
66
|
Tong Y, Zhang L, Gong R, Shi J, Zhong L, Duan X, Zhu Y. A ROS-scavenging multifunctional nanoparticle for combinational therapy of diabetic nephropathy. NANOSCALE 2020; 12:23607-23619. [PMID: 33210670 DOI: 10.1039/d0nr06098d] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Although synergistic therapy for diabetes mellitus has displayed significant promise for the effective treatment of diabetic nephropathy (DN), developing a simple and effective strategy to construct multifunctional nanoparticles is still a huge challenge. Moreover, the complicated pathological mechanism of DN involves various pathway dysfunctions that limit the effectiveness of a single therapeutic approach. Herein, hollow mesoporous silica nanocomposite (HMSN) particles doped with trace cerium oxide that exhibit renoprotective activity have been designed, which not only have the ability to prevent ROS-associated DN pathogenesis but also have high drug loading capacity. Interestingly, the metformin (MET) loaded multifunctional nanoparticles (MET-HMSN-CeO2) with a special size exhibited significantly increased kidney accumulation over free MET. Moreover, the cyclic conversion between Ce3+ and Ce4+ of mixed-valence ceria in our system provides the possibility for long-term ROS-scavenging activity to achieve the antioxidative effect. Then, we investigated the renoprotective effect of these nanoparticles on the streptozotocin (STZ)-induced renal injury rat model and high-glucose induced NRK-52E cell damage model. As a result, our findings demonstrated that the nanoparticles could alleviate the DN symptoms by mitigating oxidative stress, suppressing cellular apoptosis and protecting renal injury both in vitro and in vivo. The kidney deficits of DN are significantly improved after treatment with MET-HMSN-CeO2. Overall, our studies indicated that the MET-HMSN-CeO2 multifunctional nanoparticles would be a promising therapeutic candidate for DN.
Collapse
Affiliation(s)
- Yuna Tong
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China.
| | | | | | | | | | | | | |
Collapse
|
67
|
Production of MCM-41 Nanoparticles with Control of Particle Size and Structural Properties: Optimizing Operational Conditions during Scale-Up. Int J Mol Sci 2020; 21:ijms21217899. [PMID: 33114330 PMCID: PMC7662541 DOI: 10.3390/ijms21217899] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/19/2020] [Accepted: 10/22/2020] [Indexed: 12/20/2022] Open
Abstract
The synthesis of Mobil Composition of Matter 41 (MCM-41) mesoporous silica nanoparticles (MSNs) of controlled sizes and porous structure has been performed at laboratory and pilot plant scales. Firstly, the effects of the main operating conditions (TEOS –Tetraethyl ortosilicate– addition rate, nanoparticle maturation time, temperature, and CTAB –Cetrimonium bromide– concentration) on the synthesis at laboratory scale (1 L round-bottom flask) were studied via a Taguchi experimental design. Subsequently, a profound one-by-one study of operating conditions was permitted to upscale the process without significant particle enlargement and pore deformation. To achieve this, the temperature was set to 60 °C and the CTAB to TEOS molar ratio to 8. The final runs were performed at pilot plant scale (5 L cylindrical reactor with temperature and stirring speed control) to analyze stirring speed, type of impeller, TEOS addition rate, and nanoparticle maturation time effects, confirming results at laboratory scale. Despite slight variations on the morphology of the nanoparticles, this methodology provided MSNs with adequate sizes and porosities for biomedical applications, regardless of the reactor/scale. The process was shown to be robust and reproducible using mild synthesis conditions (2 mL⋅min−1 TEOS addition rate, 400 rpm stirred by a Rushton turbine, 60 min maturation time, 60 °C, 2 g⋅L−1 CTAB, molar ratio TEOS/CTAB = 8), providing ca. 13 g of prismatic short mesoporous 100–200 nm nanorods with non-connected 3 nm parallel mesopores.
Collapse
|
68
|
Seljak KB, Kocbek P, Gašperlin M. Mesoporous silica nanoparticles as delivery carriers: An overview of drug loading techniques. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101906] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
69
|
Siddique S, Chow JCL. Application of Nanomaterials in Biomedical Imaging and Cancer Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1700. [PMID: 32872399 PMCID: PMC7559738 DOI: 10.3390/nano10091700] [Citation(s) in RCA: 155] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 12/11/2022]
Abstract
Nanomaterials, such as nanoparticles, nanorods, nanosphere, nanoshells, and nanostars, are very commonly used in biomedical imaging and cancer therapy. They make excellent drug carriers, imaging contrast agents, photothermal agents, photoacoustic agents, and radiation dose enhancers, among other applications. Recent advances in nanotechnology have led to the use of nanomaterials in many areas of functional imaging, cancer therapy, and synergistic combinational platforms. This review will systematically explore various applications of nanomaterials in biomedical imaging and cancer therapy. The medical imaging modalities include magnetic resonance imaging, computed tomography, positron emission tomography, single photon emission computerized tomography, optical imaging, ultrasound, and photoacoustic imaging. Various cancer therapeutic methods will also be included, including photothermal therapy, photodynamic therapy, chemotherapy, and immunotherapy. This review also covers theranostics, which use the same agent in diagnosis and therapy. This includes recent advances in multimodality imaging, image-guided therapy, and combination therapy. We found that the continuous advances of synthesis and design of novel nanomaterials will enhance the future development of medical imaging and cancer therapy. However, more resources should be available to examine side effects and cell toxicity when using nanomaterials in humans.
Collapse
Affiliation(s)
- Sarkar Siddique
- Department of Physics, Ryerson University, Toronto, ON M5B 2K3, Canada;
| | - James C. L. Chow
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1X6, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON M5T 1P5, Canada
| |
Collapse
|
70
|
Yao M, Shi X, Zuo C, Ma M, Zhang L, Zhang H, Li X, Yang GY, Tang Y, Wu R. Engineering of SPECT/Photoacoustic Imaging/Antioxidative Stress Triple-Function Nanoprobe for Advanced Mesenchymal Stem Cell Therapy of Cerebral Ischemia. ACS APPLIED MATERIALS & INTERFACES 2020; 12:37885-37895. [PMID: 32806884 DOI: 10.1021/acsami.0c10500] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The precise transplantation, long-term tracking, and maintenance of stem cells with maximizing therapeutic effect are significant challenges in stem cell-based therapy for stroke treatment. In this study, a unique core-shell labeling nanoagent was prepared by encapsulating a cobalt protoporphyrin IX (CoPP)-loaded mesoporous silica nanoparticle (CPMSN) into a 125I-conjugated/spermine-modified dextran polymer (125I-SD) by microfluidics for mesenchymal stem cell (MSC) tracking and activity maintenance. The CPMSN core not only exhibits excellent photoacoustic (PA) imaging performance induced by the intermolecular aggregation of CoPP within the mesopores but also protects the MSCs against oxidative stress by sustained release of CoPP. Meanwhile, the addition of a 125I-SD shell can increase the uptake efficiency in MSCs without inducing cell variability and enable the single-photon-emission computed tomography (SPECT) nuclear imaging. In vivo results indicated that CPMSN@125I-SD labeling could allow for an optimal combination of instant imaging of MSCs, with PA to guide intracerebral injection, followed by multiple time point SPECT imaging to consecutively track the cell homing. Importantly, the sustained release of CoPP from CPMSN@125I-SD significantly increased the survival of MSCs after injection into an ischemic mouse brain and promoted neurobehavioral recovery in ischemic mice. Thus, CPMSN@125I-SD represents a robust theranostic probe for both MSC tracking and maintaining their therapeutic effect in the treatment of brain ischemia.
Collapse
Affiliation(s)
- Minghua Yao
- Department of Medical Ultrasound, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080, China
| | - Xiaojing Shi
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiaotong University, Shanghai 200030, China
| | - Changjing Zuo
- Department of Nuclear Medicine, Changhai Hospital, The Second Military Medical University, Shanghai 200433, China
| | - Ming Ma
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Lu Zhang
- Department of Nuclear Medicine, Changhai Hospital, The Second Military Medical University, Shanghai 200433, China
| | - Hongbo Zhang
- Pharmaceutical Sciences Laboratory and Turku Bioscience Centre, Åbo Akademi University, FI-20520 Turku, Finland
| | - Xin Li
- Department of Medical Ultrasound, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080, China
| | - Guo-Yuan Yang
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiaotong University, Shanghai 200030, China
| | - Yaohui Tang
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiaotong University, Shanghai 200030, China
| | - Rong Wu
- Department of Medical Ultrasound, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080, China
| |
Collapse
|
71
|
Mohammadpour R, Cheney DL, Grunberger JW, Yazdimamaghani M, Jedrzkiewicz J, Isaacson KJ, Dobrovolskaia MA, Ghandehari H. One-year chronic toxicity evaluation of single dose intravenously administered silica nanoparticles in mice and their Ex vivo human hemocompatibility. J Control Release 2020; 324:471-481. [PMID: 32464151 PMCID: PMC7429347 DOI: 10.1016/j.jconrel.2020.05.027] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 05/14/2020] [Accepted: 05/16/2020] [Indexed: 02/06/2023]
Abstract
Chronic toxicity evaluations of nanotechnology-based drugs are essential to support initiation of clinical trials. Ideally such evaluations should address the dosing strategy in human applications and provide sufficient information for long-term usage. Herein, we investigated one-year toxicity of non-surface modified silica nanoparticles (SNPs) with variations in size and porosity (Stöber SNPs 46 ± 4.9 and 432.0 ± 18.7 nm and mesoporous SNPs 466.0 ± 86.0 nm) upon single dose intravenous administration to female and male BALB/c mice (10 animal/sex/group) along with their human blood compatibility. Our evidence of clinical observation and blood parameters showed no significant changes in body weight, cell blood count, nor plasma biomarker indices. No significant changes were noted in post necropsy examination of internal organs and organ-to-body weight ratio. However, microscopic examination revealed significant amount of liver inflammation and aggregates of histocytes with neutrophils within the spleen suggesting an ongoing or resolving injury. The fast accumulation of these plain SNPs in the liver and spleen upon IV administration and the duration needed for their clearance caused these injuries. There were also subtle changes which were attributed to prior infarctions or resolved intravascular thrombosis and included calcifications in pulmonary vessels, focal cardiac fibrosis with calcifications, and focal renal injury. Most of the pathologic lesions were observed when large, non-porous SNPs were administered. Statistically significant chronic toxicity was not observed for the small non-porous particles and for the mesoporous particles. This one-year post-exposure evaluation indicate that female and male BALB/c mice need up to one year to recover from acute tissue toxic effects of silica nanoparticles upon single dose intravenous administration at their 10-day maximum tolerated dose. Further, ex vivo testing with human blood and plasma revealed no hemolysis or complement activation following incubation with these silica nanoparticles. These results can inform the potential utility of silica nanoparticles in biomedical applications such as controlled drug delivery where intravenous injection of the particles is intended.
Collapse
Affiliation(s)
- Raziye Mohammadpour
- Utah Center for Nanomedicine, Nano Institute of Utah, and University of Utah, Salt Lake City, Utah, United States
| | - Darwin L Cheney
- Utah Center for Nanomedicine, Nano Institute of Utah, and University of Utah, Salt Lake City, Utah, United States
| | - Jason W Grunberger
- Utah Center for Nanomedicine, Nano Institute of Utah, and University of Utah, Salt Lake City, Utah, United States; Department of Pharmaceutics and Pharmaceutical Chemistry, Nano Institute of Utah, and University of Utah, Salt Lake City, Utah, United States
| | - Mostafa Yazdimamaghani
- Utah Center for Nanomedicine, Nano Institute of Utah, and University of Utah, Salt Lake City, Utah, United States; Department of Pharmaceutics and Pharmaceutical Chemistry, Nano Institute of Utah, and University of Utah, Salt Lake City, Utah, United States
| | - Jolanta Jedrzkiewicz
- Department of Pathology, Nano Institute of Utah, and University of Utah, Salt Lake City, Utah, United States
| | - Kyle J Isaacson
- Utah Center for Nanomedicine, Nano Institute of Utah, and University of Utah, Salt Lake City, Utah, United States; Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, United States
| | - Marina A Dobrovolskaia
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD, United States
| | - Hamidreza Ghandehari
- Utah Center for Nanomedicine, Nano Institute of Utah, and University of Utah, Salt Lake City, Utah, United States; Department of Pharmaceutics and Pharmaceutical Chemistry, Nano Institute of Utah, and University of Utah, Salt Lake City, Utah, United States; Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, United States.
| |
Collapse
|
72
|
Barui S, Cauda V. Multimodal Decorations of Mesoporous Silica Nanoparticles for Improved Cancer Therapy. Pharmaceutics 2020; 12:E527. [PMID: 32521802 PMCID: PMC7355899 DOI: 10.3390/pharmaceutics12060527] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 02/06/2023] Open
Abstract
The presence of leaky vasculature and the lack of lymphatic drainage of small structures by the solid tumors formulate nanoparticles as promising delivery vehicles in cancer therapy. In particular, among various nanoparticles, the mesoporous silica nanoparticles (MSN) exhibit numerous outstanding features, including mechanical thermal and chemical stability, huge surface area and ordered porous interior to store different anti-cancer therapeutics with high loading capacity and tunable release mechanisms. Furthermore, one can easily decorate the surface of MSN by attaching ligands for active targeting specifically to the cancer region exploiting overexpressed receptors. The controlled release of drugs to the disease site without any leakage to healthy tissues can be achieved by employing environment responsive gatekeepers for the end-capping of MSN. To achieve precise cancer chemotherapy, the most desired delivery system should possess high loading efficiency, site-specificity and capacity of controlled release. In this review we will focus on multimodal decorations of MSN, which is the most demanding ongoing approach related to MSN application in cancer therapy. Herein, we will report about the recently tried efforts for multimodal modifications of MSN, exploiting both the active targeting and stimuli responsive behavior simultaneously, along with individual targeted delivery and stimuli responsive cancer therapy using MSN.
Collapse
Affiliation(s)
| | - Valentina Cauda
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy;
| |
Collapse
|
73
|
Dement’eva OV, Senchikhin IN, Rudoy VM. Sodium Oleate as a Templating Agent for the Synthesis of Mesoporous SiO2 Containers: from Capsules to “Monolithic” Particles. COLLOID JOURNAL 2020. [DOI: 10.1134/s1061933x20030023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
74
|
Yetisgin AA, Cetinel S, Zuvin M, Kosar A, Kutlu O. Therapeutic Nanoparticles and Their Targeted Delivery Applications. Molecules 2020; 25:E2193. [PMID: 32397080 PMCID: PMC7248934 DOI: 10.3390/molecules25092193] [Citation(s) in RCA: 339] [Impact Index Per Article: 84.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/24/2020] [Accepted: 04/26/2020] [Indexed: 12/12/2022] Open
Abstract
Nanotechnology offers many advantages in various fields of science. In this regard, nanoparticles are the essential building blocks of nanotechnology. Recent advances in nanotechnology have proven that nanoparticles acquire a great potential in medical applications. Formation of stable interactions with ligands, variability in size and shape, high carrier capacity, and convenience of binding of both hydrophilic and hydrophobic substances make nanoparticles favorable platforms for the target-specific and controlled delivery of micro- and macromolecules in disease therapy. Nanoparticles combined with the therapeutic agents overcome problems associated with conventional therapy; however, some issues like side effects and toxicity are still debated and should be well concerned before their utilization in biological systems. It is therefore important to understand the specific properties of therapeutic nanoparticles and their delivery strategies. Here, we provide an overview on the unique features of nanoparticles in the biological systems. We emphasize on the type of clinically used nanoparticles and their specificity for therapeutic applications, as well as on their current delivery strategies for specific diseases such as cancer, infectious, autoimmune, cardiovascular, neurodegenerative, ocular, and pulmonary diseases. Understanding of the characteristics of nanoparticles and their interactions with the biological environment will enable us to establish novel strategies for the treatment, prevention, and diagnosis in many diseases, particularly untreatable ones.
Collapse
Affiliation(s)
- Abuzer Alp Yetisgin
- Materials Science and Nano-Engineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey;
| | - Sibel Cetinel
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey;
| | - Merve Zuvin
- Mechatronics Engineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey; (M.Z.); (A.K.)
| | - Ali Kosar
- Mechatronics Engineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey; (M.Z.); (A.K.)
- Center of Excellence for Functional Surfaces and Interfaces for Nano Diagnostics (EFSUN), Sabanci University, Istanbul 34956, Turkey
| | - Ozlem Kutlu
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey;
- Center of Excellence for Functional Surfaces and Interfaces for Nano Diagnostics (EFSUN), Sabanci University, Istanbul 34956, Turkey
| |
Collapse
|
75
|
Schunk HC, Hernandez DS, Austin MJ, Dhada KS, Rosales AM, Suggs LJ. Assessing the range of enzymatic and oxidative tunability for biosensor design. J Mater Chem B 2020; 8:3460-3487. [PMID: 32159202 PMCID: PMC7219111 DOI: 10.1039/c9tb02666e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Development of multi-functional materials and biosensors that can achieve an in situ response designed by the user is a current need in the biomaterials field, especially in complex biological environments, such as inflammation, where multiple enzymatic and oxidative signals are present. In the past decade, there has been extensive research and development of materials chemistries for detecting and monitoring enzymatic activity, as well as for releasing therapeutic and diagnostic agents in regions undergoing oxidative stress. However, there has been limited development of materials in the context of enzymatic and oxidative triggers together, despite their closely tied and overlapping mechanisms. With research focusing on enzymatically and oxidatively triggered materials separately, these systems may be inadequate in monitoring the complexity of inflammatory environments, thus limiting in vivo translatability and diagnostic accuracy. The intention of this review is to highlight a variety of enzymatically and oxidatively triggered materials chemistries to draw attention to the range of synthetic tunability available for the construction of novel biosensors with a spectrum of programmed responses. We focus our discussion on several types of macromolecular sensors, generally classified by the causative material response driving ultimate signal detection. This includes sensing based on degradative processes, conformational changes, supramolecular assembly/disassembly, and nanomaterial interactions, among others. We see each of these classes providing valuable tools toward coalescing current gaps in the biosensing field regarding specificity, selectivity, sensitivity, and flexibility in application. Additionally, by considering the materials chemistry of enzymatically and oxidatively triggered biomaterials in tandem, we hope to encourage synthesis of new biosensors that capitalize on their synergistic roles and overlapping mechanisms in inflammatory environments for applications in disease diagnosis and monitoring.
Collapse
Affiliation(s)
- Hattie C Schunk
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712, USA.
| | | | | | | | | | | |
Collapse
|
76
|
Poon C, Patel AA. Organic and inorganic nanoparticle vaccines for prevention of infectious diseases. NANO EXPRESS 2020. [DOI: 10.1088/2632-959x/ab8075] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
77
|
Wang DP, Wang ZJ, Zhao R, Lin CX, Sun QY, Yan CP, Zhou X, Cao JM. Silica nanomaterials induce organ injuries by Ca 2+-ROS-initiated disruption of the endothelial barrier and triggering intravascular coagulation. Part Fibre Toxicol 2020; 17:12. [PMID: 32293491 PMCID: PMC7087393 DOI: 10.1186/s12989-020-00340-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 02/06/2020] [Indexed: 11/23/2022] Open
Abstract
Background The growing use of silica nanoparticles (SiNPs) in many fields raises human toxicity concerns. We studied the toxicity of SiNP-20 (particle diameter 20 nm) and SiNP-100 (100 nm) and the underlying mechanisms with a focus on the endothelium both in vitro and in vivo. Methods The study was conducted in cultured human umbilical vein endothelial cells (HUVECs) and adult female Balb/c mice using several techniques. Results In vitro, both SiNP-20 and SiNP-100 decreased the viability and damaged the plasma membrane of cultured HUVECs. The nanoparticles also inhibited HUVECs migration and tube formation in a concentration-dependent manner. Both SiNPs induced significant calcium mobilization and generation of reactive oxygen species (ROS), increased the phosphorylation of vascular endothelial (VE)-cadherin at the site of tyrosine 731 residue (pY731-VEC), decreased the expression of VE-cadherin expression, disrupted the junctional VE-cadherin continuity and induced F-actin re-assembly in HUVECs. The injuries were reversed by blocking Ca2+ release activated Ca2+ (CRAC) channels with YM58483 or by eliminating ROS with N-acetyl cysteine (NAC). In vivo, both SiNP-20 and SiNP-100 (i.v.) induced multiple organ injuries of Balb/c mice in a dose (range 7–35 mg/kg), particle size, and exposure time (4–72 h)-dependent manner. Heart injuries included coronary endothelial damage, erythrocyte adhesion to coronary intima and coronary coagulation. Abdominal aorta injury exhibited intimal neoplasm formation. Lung injuries were smaller pulmonary vein coagulation, bronchiolar epithelial edema and lumen oozing and narrowing. Liver injuries included multifocal necrosis and smaller hepatic vein congestion and coagulation. Kidney injuries involved glomerular congestion and swelling. Macrophage infiltration occurred in all of the observed organ tissues after SiNPs exposure. SiNPs also decreased VE-cadherin expression and altered VE-cadherin spatial distribution in multiple organ tissues in vivo. The largest SiNP (SiNP-100) and longest exposure time exerted the greatest toxicity both in vitro and in vivo. Conclusions SiNPs, administrated in vivo, induced multiple organ injuries, including endothelial damage, intravascular coagulation, and secondary inflammation. The injuries are likely caused by upstream Ca2+-ROS signaling and downstream VE-cadherin phosphorylation and destruction and F-actin remodeling. These changes led to endothelial barrier disruption and triggering of the contact coagulation pathway.
Collapse
Affiliation(s)
- De-Ping Wang
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Zhao-Jun Wang
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Rong Zhao
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Cai-Xia Lin
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Qian-Yu Sun
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Cai-Ping Yan
- Center of Translational Medicine, Shanxi Medical University, Taiyuan, China
| | - Xin Zhou
- Department of Medical Imaging, Shanxi Medical University, Taiyuan, China.
| | - Ji-Min Cao
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
78
|
Akhtar MJ, Ahamed M, Alrokayan SA, Ramamoorthy MM, Alaizeri ZM. High Surface Reactivity and Biocompatibility of Y 2O 3 NPs in Human MCF-7 Epithelial and HT-1080 FibroBlast Cells. Molecules 2020; 25:molecules25051137. [PMID: 32138335 PMCID: PMC7179248 DOI: 10.3390/molecules25051137] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/24/2020] [Accepted: 03/03/2020] [Indexed: 01/16/2023] Open
Abstract
This study aimed to generate a comparative data on biological response of yttrium oxide nanoparticles (Y2O3 NPs) with the antioxidant CeO2 NPs and pro-oxidant ZnO NPs. Sizes of Y2O3 NPs were found to be in the range of 35±10 nm as measured by TEM and were larger from its hydrodynamic sizes in water (1004 ± 134 nm), PBS (3373 ± 249 nm), serum free culture media (1735 ± 305 nm) and complete culture media (542 ± 108 nm). Surface reactivity of Y2O3 NPs with bovine serum albumin (BSA) was found significantly higher than for CeO2 and ZnO NPs. The displacement studies clearly suggested that adsorption to either BSA, filtered serum or serum free media was quite stable, and was dependent on whichever component interacted first with the Y2O3 NPs. Enzyme mimetic activity, like that of CeO2 NPs, was not detected for the NPs of Y2O3 or ZnO. Cell viability measured by MTT and neutral red uptake (NRU) assays suggested Y2O3 NPs were not toxic in human breast carcinoma MCF-7 and fibroblast HT-1080 cells up to the concentration of 200 μg/mL for a 24 h treatment period. Oxidative stress markers suggested Y2O3 NPs to be tolerably non-oxidative and biocompatible. Moreover, mitochondrial potential determined by JC-1 as well as lysosomal activity determined by lysotracker (LTR) remained un-affected and intact due to Y2O3 and CeO2 NPs whereas, as expected, were significantly induced by ZnO NPs. Hoechst-PI dual staining clearly suggested apoptotic potential of only ZnO NPs. With high surface reactivity and biocompatibility, NPs of Y2O3 could be a promising agent in the field of nanomedicine.
Collapse
Affiliation(s)
- Mohd Javed Akhtar
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia (M.M.R.)
- Correspondence: ; Tel.: +966-146-96075
| | - Maqusood Ahamed
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia (M.M.R.)
| | - Salman A. Alrokayan
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | | | - ZabnAllah M. Alaizeri
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
79
|
Colloidal synthesis of tunably luminescent AgInS-based/ZnS core/shell quantum dots as biocompatible nano-probe for high-contrast fluorescence bioimaging. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 111:110807. [PMID: 32279757 DOI: 10.1016/j.msec.2020.110807] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/22/2020] [Accepted: 03/02/2020] [Indexed: 02/07/2023]
Abstract
Tremendous demands for simultaneous imaging of biological entities, along with the drawback of photobleaching in fluorescent dyes, have encouraged scientists to apply novel and non-toxic colloidal quantum dots (QDs) in biomedical researches. Herein, a novel aqueous-phase approach for the preparation of multicomponent In-based QDs is reported. Absorption and photoluminescence emission spectra of the as-prepared QDs were tuned by alteration of QDs' composition as Zn-Ag-In-S/ZnS, Ag-In-S/ZnS and Cu-Ag-In-S/ZnS core/shell QDs. In order to reach reproducibly intense and tunable light-emissive colloidal QDs with green, amber, and red color, various optimization steps were carefully performed. The structural characterizations such as EDX, ICP-AES, XRD, TEM and FT-IR measurements were also carried out to demonstrate the success of the present method to prepare extremely quantum-confined QDs capped with functional groups. Then, to ensure their promising biomedical applications, the generated intracellular reactive oxygen species (ROS) by QDs were quantitatively and qualitatively measured in dark conditions and under 405 nm laser irradiation. Our results verified an enhancement in the generation of reactive oxygen species (ROS) and cytotoxic effects in the presence of laser irradiation while their muted toxic effects in dark conditions confirmed biocompatible properties of un-excited In-based QDs. Moreover, bioimaging analysis revealed strong merits of the suggested synthetic route to achieve ideal fluorescent QDs as bright/multi-color optical nano-probes in imaging and transporting pumps in the cell membrane. This further emphasized the potential ability of the present AgInS-based/ZnS QDs in obtaining required results as theranostic agents for simultaneous treatment and imaging of cancer. The harmonized advantages in simplicity and effectiveness of synthesis procedure, excellent structural/optical properties enriched with confirmed biomedical merits in high contrast imaging and potential treatment highlight the present work.
Collapse
|
80
|
Madav Y, Barve K, Prabhakar B. Current trends in theranostics for rheumatoid arthritis. Eur J Pharm Sci 2020; 145:105240. [DOI: 10.1016/j.ejps.2020.105240] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/23/2020] [Accepted: 01/23/2020] [Indexed: 01/08/2023]
|
81
|
Mujeeb AA, Khan NA, Jamal F, Badre Alam KF, Saeed H, Kazmi S, Alshameri AWF, Kashif M, Ghazi I, Owais M. Olax scandens Mediated Biogenic Synthesis of Ag-Cu Nanocomposites: Potential Against Inhibition of Drug-Resistant Microbes. Front Chem 2020; 8:103. [PMID: 32185160 PMCID: PMC7058794 DOI: 10.3389/fchem.2020.00103] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 02/04/2020] [Indexed: 01/12/2023] Open
Abstract
In the present study, we have synthesized silver-copper nanocomposites (Ag-Cu NCs) using an Olax scandens leaf extract (green synthesis method) and evaluated their antimicrobial potential against less susceptible pathogens. The kinetics of Ag-Cu NCs synthesis was followed by UV-VIS and fluorescence spectroscopy. The physicochemical characterization of as-synthesized Ag-Cu NCs was executed using electron microscopy, Energy Dispersive X-Ray, Fourier Transform Infrared Spectroscopy, and a Differential Light Scattering method. As-synthesized Ag-Cu NCs induced the formation of Reactive Oxygen Species (ROS), thereby causing alteration and decrementation of cellular proteins, DNA, lipids, etc., and eventually leading to cell death, as determined by a Live/Dead assay. Next, we assessed the anti-biofilm potential of as-synthesized Ag-Cu NCs against biofilm forming bacteria. The as-synthesized Ag-Cu NCs, when compared to monometallic silver nanoparticles, exhibited significantly higher anti-microbial activity against both sensitive as well as drug resistant microbial isolates.
Collapse
Affiliation(s)
- Anzar Abdul Mujeeb
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Nuha Abeer Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Fauzia Jamal
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | | | - Haris Saeed
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Shadab Kazmi
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | | | - Mohammad Kashif
- Plant Molecular Biology and Genetic Engineering Division, The National Botanical Research Institute, Council of Scientific and Industrial Research, Lucknow, India
| | - Irfan Ghazi
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Mohammad Owais
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
82
|
Putz AM, Ianăși C, Dudás Z, Coricovac D, Watz C(F, Len A, Almásy L, Sacarescu L, Dehelean C. SiO 2-PVA-Fe(acac) 3 Hybrid Based Superparamagnetic Nanocomposites for Nanomedicine: Morpho-textural Evaluation and In Vitro Cytotoxicity Assay. Molecules 2020; 25:molecules25030653. [PMID: 32033018 PMCID: PMC7038086 DOI: 10.3390/molecules25030653] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/31/2020] [Accepted: 02/01/2020] [Indexed: 12/29/2022] Open
Abstract
A facile sol-gel route has been applied to synthesize hybrid silica-PVA-iron oxide nanocomposite materials. A step-by-step calcination (processing temperatures up to 400 °C) was applied in order to oxidize the organics together with the iron precursor. Transmission electron microscopy, X-ray diffraction, small angle neutron scattering, and nitrogen porosimetry were used to determine the temperature-induced morpho-textural modifications. In vitro cytotoxicity assay was conducted by monitoring the cell viability by the means of MTT assay to qualify the materials as MRI contrast agents or as drug carriers. Two cell lines were considered: the HaCaT (human keratinocyte cell line) and the A375 tumour cell line of human melanoma. Five concentrations of 10 µg/mL, 30 µg/mL, 50 µg/mL, 100 µg/mL, and 200 µg/mL were tested, while using DMSO (dimethylsulfoxid) and PBS (phosphate saline buffer) as solvents. The HaCaT and A375 cell lines were exposed to the prepared agent suspensions for 24 h. In the case of DMSO (dimethyl sulfoxide) suspensions, the effect on human keratinocytes migration and proliferation were also evaluated. The results indicate that only the concentrations of 100 μg/mL and 200 μg/mL of the nanocomposite in DMSO induced a slight decrease in the HaCaT cell viability. The PBS based in vitro assay showed that the nanocomposite did not present toxicity on the HaCaT cells, even at high doses (200 μg/mL agent).
Collapse
Affiliation(s)
- Ana-Maria Putz
- ”Coriolan Dragulescu” Institute of Chemistry, Romanian Academy, Mihai Viteazul Bd., No. 24, 300223 Timişoara, Romania; (A.-M.P.); (C.I.)
| | - Cătălin Ianăși
- ”Coriolan Dragulescu” Institute of Chemistry, Romanian Academy, Mihai Viteazul Bd., No. 24, 300223 Timişoara, Romania; (A.-M.P.); (C.I.)
| | - Zoltán Dudás
- Wigner Research Centre for Physics, POB 49 1525 Budapest, Hungary
- Correspondence:
| | - Dorina Coricovac
- Pharmacy II Department, Faculty of Pharmacy, “Victor Babes ¸” University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania; (D.C.)
| | - Claudia (Farcas) Watz
- Pharmacy II Department, Faculty of Pharmacy, “Victor Babes ¸” University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania; (D.C.)
| | - Adél Len
- Centre for Energy Research, Konkoly-Thege 29-33, 1121 Budapest, Hungary;
- University of Pécs, Faculty of Engineering and Information technology, Boszorkány St. 2, 7624 Pécs, Hungary
| | - László Almásy
- Wigner Research Centre for Physics, POB 49 1525 Budapest, Hungary
| | - Liviu Sacarescu
- Institute of Macromolecular Chemistry “Petru Poni”, Aleea Grigore Ghica Voda, nr. 41A 700487 Iasi, Romania;
| | - Cristina Dehelean
- Pharmacy II Department, Faculty of Pharmacy, “Victor Babes ¸” University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania; (D.C.)
| |
Collapse
|
83
|
Abstract
Cell therapy is revolutionizing modern medicine. To promote this emerging therapy, the ability to image and track therapeutic cells is critical to monitor the progress of the treatment. Ultrasound imaging is promising in tracking therapeutic cells but suffers from poor contrast against local tissues. Therefore, it is critical to increase the ultrasound contrast of therapeutic cells over local tissue at the injection site. Here, we describe a method to increase the ultrasound intensity of therapeutic cells with nanoparticles to make the injected therapeutic cells more visible.
Collapse
Affiliation(s)
- Fang Chen
- Department of Nanoengineering, Materials Science and Engineering Program, University of California, San Diego, CA, USA.
- Department of Ophthalmology, Stanford University, Stanford, CA, USA.
| | - Jesse V Jokerst
- Department of Nanoengineering, Materials Science and Engineering Program, University of California, San Diego, CA, USA
- Department of Radiology, University of California, San Diego, CA, USA
| |
Collapse
|
84
|
Cheng Y, Zhang Y, Deng W, Hu J. Antibacterial and anticancer activities of asymmetric lollipop-like mesoporous silica nanoparticles loaded with curcumin and gentamicin sulfate. Colloids Surf B Biointerfaces 2019; 186:110744. [PMID: 31874345 DOI: 10.1016/j.colsurfb.2019.110744] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 11/16/2022]
Abstract
Asymmetric mesoporous silica nanoparticles with anisotropic geometry and dual-compartments are highly desired for loading and release of dual-drugs in separated storage spaces. In this study, an asymmetric lollipop-like mesoporous silica nanoparticle Fe3O4@SiO2&EPMO (EPMO = ethane bridged periodic mesoporous organosilica) was successfully developed via an anisotropic epitaxial growth strategy. The asymmetric nanoparticles show a uniform lollipop shape with a head of spherical Fe3O4@SiO2 core-shell that is 200 nm in diameter and a tail of EPMO nanorods with a length of ∼90 nm, and a specific surface area of ∼650.3 m2 g-1. Most importantly, the asymmetric nanoparticles possess the unique dual independent (hydrophilic/hydrophobic) spaces with good loading capacities and are significantly more efficient for cancer cell killing than pure drug based on in vitro studies. Additionally, the dual-drug-loaded nanoparticles exhibited excellent antibacterial activity.
Collapse
Affiliation(s)
- Yajun Cheng
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Yudi Zhang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Weijun Deng
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Jing Hu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, 201418, China.
| |
Collapse
|
85
|
Mathieu P, Coppel Y, Respaud M, Nguyen QT, Boutry S, Laurent S, Stanicki D, Henoumont C, Novio F, Lorenzo J, Montpeyó D, Amiens C. Silica Coated Iron/Iron Oxide Nanoparticles as a Nano-Platform for T 2 Weighted Magnetic Resonance Imaging. Molecules 2019; 24:E4629. [PMID: 31861222 PMCID: PMC6943426 DOI: 10.3390/molecules24244629] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/13/2019] [Accepted: 12/13/2019] [Indexed: 11/16/2022] Open
Abstract
The growing concern over the toxicity of Gd-based contrast agents used in magnetic resonance imaging (MRI) motivates the search for less toxic and more effective alternatives. Among these alternatives, iron-iron oxide (Fe@FeOx) core-shell architectures have been long recognized as promising MRI contrast agents while limited information on their engineering is available. Here we report the synthesis of 10 nm large Fe@FeOx nanoparticles, their coating with a 11 nm thick layer of dense silica and functionalization by 5 kDa PEG chains to improve their biocompatibility. The nanomaterials obtained have been characterized by a set of complementary techniques such as infra-red and nuclear magnetic resonance spectroscopies, transmission electron microscopy, dynamic light scattering and zetametry, and magnetometry. They display hydrodynamic diameters in the 100 nm range, zetapotential values around -30 mV, and magnetization values higher than the reference contrast agent RESOVIST®. They display no cytotoxicity against 1BR3G and HCT116 cell lines and no hemolytic activity against human red blood cells. Their nuclear magnetic relaxation dispersion (NMRD) profiles are typical for nanomaterials of this size and magnetization. They display high r2 relaxivity values and low r1 leading to enhanced r2/r1 ratios in comparison with RESOVIST®. All these data make them promising contrast agents to detect early stage tumors.
Collapse
Affiliation(s)
- Paul Mathieu
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP 44099, CEDEX 4, F-31077 Toulouse, France; (P.M.); (Y.C.); (Q.T.N.)
- Université de Toulouse, UPS, INPT, CEDEX 4, F-31077 Toulouse, France
| | - Yannick Coppel
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP 44099, CEDEX 4, F-31077 Toulouse, France; (P.M.); (Y.C.); (Q.T.N.)
- Université de Toulouse, UPS, INPT, CEDEX 4, F-31077 Toulouse, France
| | - Marc Respaud
- LPCNO, INSA, 135 Avenue de Rangueil, CEDEX 4, 31077 Toulouse, France
| | - Quyen T. Nguyen
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP 44099, CEDEX 4, F-31077 Toulouse, France; (P.M.); (Y.C.); (Q.T.N.)
- Université de Toulouse, UPS, INPT, CEDEX 4, F-31077 Toulouse, France
| | - Sébastien Boutry
- Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, 19 Avenue Maistriau, B-7000 Mons, Belgium; (S.B.); (S.L.); (D.S.); (C.H.)
- Center for Microscopy and Molecular Imaging (CMMI), Université de Mons (UMONS), B-6041 Charleroi, Belgium
| | - Sophie Laurent
- Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, 19 Avenue Maistriau, B-7000 Mons, Belgium; (S.B.); (S.L.); (D.S.); (C.H.)
- Center for Microscopy and Molecular Imaging (CMMI), Université de Mons (UMONS), B-6041 Charleroi, Belgium
| | - Dimitri Stanicki
- Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, 19 Avenue Maistriau, B-7000 Mons, Belgium; (S.B.); (S.L.); (D.S.); (C.H.)
| | - Céline Henoumont
- Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, 19 Avenue Maistriau, B-7000 Mons, Belgium; (S.B.); (S.L.); (D.S.); (C.H.)
| | - Fernando Novio
- Departament de Química, Universitat Autònoma de Barcelona (UAB), Campus UAB, 08193 Cerdanyola del Vallès, Barcelona, Spain;
| | - Julia Lorenzo
- Institut de Biotecnologia i Biomedicina, Departament de Bioquimica i de Biologia Molecular, Universitat Autonoma de Barcelona, 08193 Bellaterra, Spain (D.M.)
| | - David Montpeyó
- Institut de Biotecnologia i Biomedicina, Departament de Bioquimica i de Biologia Molecular, Universitat Autonoma de Barcelona, 08193 Bellaterra, Spain (D.M.)
| | - Catherine Amiens
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP 44099, CEDEX 4, F-31077 Toulouse, France; (P.M.); (Y.C.); (Q.T.N.)
- Université de Toulouse, UPS, INPT, CEDEX 4, F-31077 Toulouse, France
| |
Collapse
|
86
|
Shanmugapriya K, Kang HW. Engineering pharmaceutical nanocarriers for photodynamic therapy on wound healing: Review. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:110110. [DOI: 10.1016/j.msec.2019.110110] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 07/25/2019] [Accepted: 08/20/2019] [Indexed: 12/25/2022]
|
87
|
Recent advances of upconversion nanoparticles in theranostics and bioimaging applications. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.115646] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
88
|
Xie Y, Ma Q, Qi H, Song Y, Tian J, Yu W, Dong X, Li D, Liu G, Wang J. Utilizing modules of different functions to construct a Janus-type membrane and derivative 3D Janus-type tube displaying synchronous trifunction of conductive aeolotropism, magnetism and luminescence. NANOTECHNOLOGY 2019; 30:435602. [PMID: 31402792 DOI: 10.1088/1361-6528/ab3386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The microstructures and macrostructures play a crucial role in the properties and applications of multifunctional materials. Herein, microscopic partition and macroscopic partition are combined by devising and preparing different modules that can be elaborately devised to possess specific performances. A two-dimensional (2D) 3-module Janus-type membrane multifunctionalized by conductive aeolotropism, magnetism and luminescence (defined as 3M-CML Janus-type membrane) is constructed via electro-spinning. The modular structure of 3M-CML Janus-type membrane is obtained by devising and constructing three different modules, including luminescence module (denoted as L module), conductive aeolotropism-luminescence module (marked as C-L module) and magnetism-luminescence module (named as M-L module). The results prove that almost no mutual detrimental influences exist among different modules owing to the macroscopic modular structure and Janus-type structure, which effectively avoids the negative interactions among different materials. Tb(BA)3phen/PVP nanofiber, [PMMA/Eu(BA)3phen]//[PMMA/PANI] Janus-type nanoribbon and [PMMA/Tb(BA)3phen]//[PMMA/Fe3O4] Janus-type nanoribbon are, respectively, selected as building units of the three modules, which further prevents the negative interactions among different materials and improves the versatility of 3M-CML Janus-type membrane. The luminescence, adjustable conductive aeolotropism and variable magnetism of 3M-CML Janus-type membrane are systematically discussed. Meanwhile, novel flexible four types of brand-new three-dimensional (3D) Janus-type tubes are obtained by rolling modularly devised 2D 3M-CML Janus-type membrane with different rolling schemes. As derivatives of the 2D 3M-CML Janus-type membranes, macroscopic 3D Janus-types tubes exhibit similar performances to 2D 3M-CML Janus-type membranes. The 2D Janus-type membrane and 3D Janus-type tube will have momentous applications in flexible electronics and nanodevices in the future.
Collapse
Affiliation(s)
- Yunrui Xie
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, 130022 Changchun, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Cristian RE, Mohammad IJ, Mernea M, Sbarcea BG, Trica B, Stan MS, Dinischiotu A. Analyzing the Interaction between Two Different Types of Nanoparticles and Serum Albumin. MATERIALS 2019; 12:ma12193183. [PMID: 31569341 PMCID: PMC6804176 DOI: 10.3390/ma12193183] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 09/25/2019] [Accepted: 09/27/2019] [Indexed: 01/11/2023]
Abstract
Two different types of nanoparticles (silicon dioxide and titanium dioxide) were selected within this study in order to analyze the interaction with bovine and human serum albumin. These particles were characterized by transmission and scanning electron microscopy (TEM and SEM), X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDXS). In addition, the hydrodynamic size and the zeta potential were measured for all these nanoparticles. The serum proteins were incubated with the nanoparticles for up to one hour, and the albumin adsorption on the particle surface was investigated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The effect induced on the secondary structure of proteins was analyzed by Fourier transform infrared spectroscopy (FTIR). The results showed that albumin adsorbed on the surface of both types of nanoparticles, but in different quantities. In addition, we noticed different changes in the structure of albumin depending on the physicochemical properties of each type of particle tested. In conclusion, our study provides a comparative analysis between the different characteristics of nanoparticles and the protein corona formed on the particle surface and effects induced on protein structure in order to direct the development of “safe-by-design” nanoparticles, as their demands for research and applications continue to increase.
Collapse
Affiliation(s)
- Roxana E Cristian
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Spl. Independentei, 050095 Bucharest, Romania.
| | - Israa J Mohammad
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Spl. Independentei, 050095 Bucharest, Romania.
| | - Maria Mernea
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Spl. Independentei, 050095 Bucharest, Romania.
| | - Beatrice G Sbarcea
- Materials Characterization Department, National Institute for Research & Development in Electrical Engineering (ICPE-CA), 313 Splaiul Unirii, 030138 Bucharest, Romania.
| | - Bogdan Trica
- National Institute for Research & Development in Chemistry and Petrochemistry (INCDCP-ICECHIM), 202 Spl. Independentei, 060021 Bucharest, Romania.
| | - Miruna S Stan
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Spl. Independentei, 050095 Bucharest, Romania.
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Str., 011061 Bucharest, Romania.
| | - Anca Dinischiotu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Spl. Independentei, 050095 Bucharest, Romania.
| |
Collapse
|
90
|
Wang D, Zhao C, Gao G, Xu L, Wang G, Zhu P. Multifunctional NaLnF 4@MOF-Ln Nanocomposites with Dual-Mode Luminescence for Drug Delivery and Cell Imaging. NANOMATERIALS 2019; 9:nano9091274. [PMID: 31500216 PMCID: PMC6781070 DOI: 10.3390/nano9091274] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 08/31/2019] [Accepted: 09/03/2019] [Indexed: 12/18/2022]
Abstract
Multifunctional nanomaterials for bioprobe and drug carrier have drawn great attention for their applications in the early monitoring the progression and treatment of cancers. In this work, we have developed new multifunctional water-soluble NaLnF4@MOF-Ln nanocomposites with dual-mode luminescence, which is based on stokes luminescent mesoporous lanthanide metal-organic frameworks (MOFs-Y:Eu3+) and anti-stokes luminescent NaYF4:Tm3+/Yb3+ nanoparticles. The fluorescence mechanism and dynamics are investigated and the applications of these nanocomposites as bioprobes and drug carriers in the cancer imaging and treatment are explored. Our results demonstrate that these nanocomposites with the excellent two-color emission show great potential in drug delivery, cancer cell imaging, and treatment, which are attributed to the unique spatial structure and good biocompatibility characteristics of NaLnF4@MOF-Ln nanocomposites.
Collapse
Affiliation(s)
- Dan Wang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China; (D.W.); (C.Z.); (G.G.); (L.X.)
| | - Chen Zhao
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China; (D.W.); (C.Z.); (G.G.); (L.X.)
| | - Guoyang Gao
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China; (D.W.); (C.Z.); (G.G.); (L.X.)
| | - Linna Xu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China; (D.W.); (C.Z.); (G.G.); (L.X.)
| | - Guofeng Wang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China; (D.W.); (C.Z.); (G.G.); (L.X.)
- Correspondence: (G.W.); (P.Z.); Tel.: +1-918-631-5125 (P.Z.)
| | - Peifen Zhu
- Department of Physics and Engineering Physics, The University of Tulsa, Tulsa, OK 74104, USA
- Correspondence: (G.W.); (P.Z.); Tel.: +1-918-631-5125 (P.Z.)
| |
Collapse
|
91
|
Anokhin EO, Trusov LA, Kozlov DA, Chumakov RG, Sleptsova AE, Uvarov OV, Kozlov MI, Petukhov DI, Eliseev AA, Kazin PE. Silica coated hard-magnetic strontium hexaferrite nanoparticles. ADV POWDER TECHNOL 2019. [DOI: 10.1016/j.apt.2019.06.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
92
|
Shimba K, Chang CH, Asahina T, Moriya F, Kotani K, Jimbo Y, Gladkov A, Antipova O, Pigareva Y, Kolpakov V, Mukhina I, Kazantsev V, Pimashkin A. Functional Scaffolding for Brain Implants: Engineered Neuronal Network by Microfabrication and iPSC Technology. Front Neurosci 2019; 13:890. [PMID: 31555074 PMCID: PMC6727854 DOI: 10.3389/fnins.2019.00890] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 08/08/2019] [Indexed: 01/10/2023] Open
Abstract
Neuroengineering methods can be effectively used in the design of new approaches to treat central nervous system and brain injury caused by neurotrauma, ischemia, or neurodegenerative disorders. During the last decade, significant results were achieved in the field of implant (scaffold) development using various biocompatible and biodegradable materials carrying neuronal cells for implantation into the injury site of the brain to repair its function. Neurons derived from animal or human induced pluripotent stem (iPS) cells are expected to be an ideal cell source, and induction methods for specific cell types have been actively studied to improve efficacy and specificity. A critical goal of neuro-regeneration is structural and functional restoration of the injury site. The target treatment area has heterogeneous and complex network topology with various types of cells that need to be restored with similar neuronal network structure to recover correct functionality. However, current scaffold-based technology for brain implants operates with homogeneous neuronal cell distribution, which limits recovery in the damaged area of the brain and prevents a return to fully functional biological tissue. In this study, we present a neuroengineering concept for designing a neural circuit with a pre-defined unidirectional network architecture that provides a balance of excitation/inhibition in the scaffold to form tissue similar to that in the injured area using various types of iPS cells. Such tissue will mimic the surrounding niche in the injured site and will morphologically and topologically integrate into the brain, recovering lost function.
Collapse
Affiliation(s)
- Kenta Shimba
- Department of Precision Engineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Chih-Hsiang Chang
- Department of Precision Engineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Takahiro Asahina
- Department of Precision Engineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Fumika Moriya
- Department of Precision Engineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Kiyoshi Kotani
- Department of Precision Engineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Yasuhiko Jimbo
- Department of Precision Engineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Arseniy Gladkov
- Department of Neuroengineering, Center of Translational Technologies, N. I. Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia.,Department of Molecular and Cellular Technologies, Central Research Laboratory, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Oksana Antipova
- Department of Neuroengineering, Center of Translational Technologies, N. I. Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Yana Pigareva
- Department of Neuroengineering, Center of Translational Technologies, N. I. Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Vladimir Kolpakov
- Department of Neuroengineering, Center of Translational Technologies, N. I. Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Irina Mukhina
- Department of Neuroengineering, Center of Translational Technologies, N. I. Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia.,Department of Molecular and Cellular Technologies, Central Research Laboratory, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Victor Kazantsev
- Department of Neurotechnology, N. I. Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Alexey Pimashkin
- Department of Neuroengineering, Center of Translational Technologies, N. I. Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia.,Department of Neurotechnology, N. I. Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| |
Collapse
|
93
|
Fabrication and dual-modal imaging properties of quantum dot/silica core-shell particles with immobilized single-nanometer-sized gold nanoparticles. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.04.055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
94
|
Jiang W, Fang H, Liu F, Zhou X, Zhao H, He X, Guo D. PEG-coated and Gd-loaded fluorescent silica nanoparticles for targeted prostate cancer magnetic resonance imaging and fluorescence imaging. Int J Nanomedicine 2019; 14:5611-5622. [PMID: 31413566 PMCID: PMC6662520 DOI: 10.2147/ijn.s207098] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/17/2019] [Indexed: 01/01/2023] Open
Abstract
Background: Multimodal imaging probes have become a powerful tool for improving detection sensitivity and accuracy, which are important in disease diagnosis and treatment. Methods: In this study, novel bifunctional magnetic resonance imaging (MRI)/fluorescence probes were prepared by loading gadodiamide into fluorescent silica nanoparticles (NPs) (Gd@Cy5.5@SiO2-PEG-Ab NPs) for targeting of prostate cancer (PCa). The physicochemical characteristics, biosafety and PCa cell targeting ability of the Gd@Cy5.5@SiO2-PEG-Ab NPs were studied in vitro and in vivo. Results: The Gd@Cy5.5@SiO2-PEG-Ab NPs had a spherical morphology with a relatively uniform size distribution and demonstrated high efficiency for Gd loading. In vitro and in vivo cell-targeting experiments demonstrated a high potential for the synthesized NPs to target prostate-specific membrane antigen (PSMA) receptor-positive PCa cells, enabling MRI and fluorescence imaging. In vitro cytotoxicity assays and in vivo hematological and pathological assays showed that the prepared NPs exhibited good biological safety. Conclusion: Our study demonstrates that the synthesized Gd@Cy5.5@SiO2-PEG-Ab NPs have great potential as MRI/fluorescence contrast agents for specific identification of PSMA receptor-positive PCa cells.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Huiying Fang
- Department of Breast Diseases, Chongqing University Cancer Hospital, Chongqing Cancer Institute and Chongqing Cancer Hospital, Chongqing 400030, People's Republic of China
| | - Fengqiu Liu
- Institute of Ultrasound Imaging, Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Xue Zhou
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Hongyun Zhao
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Xiaojing He
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Dajing Guo
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
| |
Collapse
|
95
|
Wang X, Lin W, Zhang W, Li C, Sun T, Chen G, Xie Z. Amphiphilic redox-sensitive NIR BODIPY nanoparticles for dual-mode imaging and photothermal therapy. J Colloid Interface Sci 2019; 536:208-214. [DOI: 10.1016/j.jcis.2018.10.051] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/12/2018] [Accepted: 10/17/2018] [Indexed: 02/05/2023]
|
96
|
Nanotheranostics Approaches in Antimicrobial Drug Resistance. Nanotheranostics 2019. [DOI: 10.1007/978-3-030-29768-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
97
|
Azcona PL, Montiel Schneider MG, Grünhut M, Lassalle VL. Stimuli-responsive nanotheranostics intended for oncological diseases: in vitro evaluation of their target, diagnostic and drug release capabilities. NEW J CHEM 2019. [DOI: 10.1039/c8nj05289a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work reports an overview of required in vitro assays to evaluate nanotheranostics applications.
Collapse
Affiliation(s)
- Pamela Liliana Azcona
- INQUISUR
- Departamento de Química
- Universidad Nacional del Sur (UNS)-CONICET
- 8000 Bahía Blanca
- Argentina
| | | | - Marcos Grünhut
- INQUISUR
- Departamento de Química
- Universidad Nacional del Sur (UNS)-CONICET
- 8000 Bahía Blanca
- Argentina
| | | |
Collapse
|
98
|
Goodilin E, Semenova A, Eremina O, Brazhe N, Goodilinа E, Danzanova T, Maksimov G, Veselova I. Promising methods for noninvasive medical diagnosis based on the use of nanoparticles: surface-enhanced raman spectroscopy in the study of cells, cell organelles and neurotransmitter metabolism markers. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2018. [DOI: 10.24075/brsmu.2018.077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Application of advances in nanomedicine and materials science to medical diagnostics is a promising area of research. Surface-enhanced Raman spectroscopy (SERS) is an innovative analytical method that exploits noble metal nanoparticles to noninvasively study cells, cell organelles and protein molecules. Below, we summarize the literature on the methods for early clinical diagnosis of some neurodegenerative and neuroendocrine diseases. We discuss the specifics, advantages and limitations of different diagnostic techniques based on the use of low- and high molecular weight biomarkers. We talk about the prospects of optical methods for rapid diagnosis of neurotransmitter metabolism disorders. Special attention is paid to new approaches to devising optical systems that expand the analytical potential of SERS, the tool that demonstrates remarkable sensitivity, selectivity and reproducibility of the results in determining target analytes in complex biological matrices.
Collapse
Affiliation(s)
- E.A. Goodilin
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow; Faculty of Materials Science, Lomonosov Moscow State University, Moscow
| | - A.A. Semenova
- Faculty of Materials Science, Lomonosov Moscow State University, Moscow
| | - O.E. Eremina
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow
| | - N.A. Brazhe
- Faculty of Biology, Lomonosov Moscow State University, Moscow
| | | | | | - G.V. Maksimov
- Faculty of Biology, Lomonosov Moscow State University, Moscow
| | - I.A. Veselova
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow
| |
Collapse
|
99
|
Khanna L, Gupta G, Tripathi SK. Effect of size and silica coating on structural, magnetic as well as cytotoxicity properties of copper ferrite nanoparticles. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 97:552-566. [PMID: 30678942 DOI: 10.1016/j.msec.2018.12.051] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 09/05/2018] [Accepted: 12/17/2018] [Indexed: 12/20/2022]
Abstract
Copper ferrite nanoparticles, synthesized by conventional sol-gel method were calcined at different temperatures. The magnetic, structural, morphological and cytotoxicity analyses of the uncalcined and calcined nanoparticles (NPs) were investigated and compared. Formation of tetragonal structure of CuFe2O4 NPs was observed in XRD patterns. On increasing the temperature, better crystallinity and increased crystallite size were also observed. In the FTIR spectra, bonds corresponding to CH, OH and carboxylate groups gradually disappeared with increasing temperature, while peak corresponding to FeO existed more prominently. NPs calcined at 300 °C (Cu3) exhibited the highest magnetic saturation and lowest retentivity, thereby indicating its superparamagnetic behaviour. Concentration-dependent cytotoxicity values were obtained by invitro MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide, a tetrazole) assay, Cell Titer assay and Cell Flow Cytometry with Propidium Iodide. NPs calcined at 300 °C, 500 °C and 700 °C exhibited non-toxicity at all the concentrations. Based on magnetic and biocompatibility analyses, Cu3 NPs were found to be the most suitable one to investigate the influence of silica coating on its surface. Presence of silica was confirmed by XRD pattern, FTIR spectrum, SEM and HRTEM micrographs as well as SAED pattern. In M-H curve, superparamagnetic behaviour of the CuFe2O4 core was retained but with reduced magnetic saturation due to magnetically dead layer of silica. An increase in cellular viability was witnessed in case of silica coated CuFe2O4 NPs as compared to uncoated NPs, thus reflecting on its enhanced biocompatibility. Nanosized, superparamagnetic and highly biocompatible characteristics make silica coated CuFe2O4 NPs a potential claimant for biomedical applications.
Collapse
Affiliation(s)
- Lavanya Khanna
- Department of Physics, Panjab University, Chandigarh 160014, India
| | - Garima Gupta
- Department of Physics, Panjab University, Chandigarh 160014, India
| | - S K Tripathi
- Department of Physics, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
100
|
Hameed S, Chen H, Irfan M, Bajwa SZ, Khan WS, Baig SM, Dai Z. Fluorescence Guided Sentinel Lymph Node Mapping: From Current Molecular Probes to Future Multimodal Nanoprobes. Bioconjug Chem 2018; 30:13-28. [DOI: 10.1021/acs.bioconjchem.8b00812] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Sadaf Hameed
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Hong Chen
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Muhammad Irfan
- Department of Medicines, Gujranwala Medical College, Gujranwala 52250, Pakistan
| | - Sadia Zafar Bajwa
- National Institute of Biotechnology and Genetic Engineering, Faisalabad 38000, Pakistan
| | - Waheed S Khan
- National Institute of Biotechnology and Genetic Engineering, Faisalabad 38000, Pakistan
| | - Shahid Mahmood Baig
- National Institute of Biotechnology and Genetic Engineering, Faisalabad 38000, Pakistan
| | - Zhifei Dai
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| |
Collapse
|