51
|
Han Z, Wang AJ, Zhang L, Wang ZG, Fang KM, Yin ZZ, Feng JJ. 3D highly branched PtCoRh nanoassemblies: Glycine-assisted solvothermal synthesis and superior catalytic activity for alcohol oxidation. J Colloid Interface Sci 2019; 554:512-519. [PMID: 31326784 DOI: 10.1016/j.jcis.2019.07.030] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 07/12/2019] [Accepted: 07/12/2019] [Indexed: 11/20/2022]
Abstract
Advanced Pt-based ternary nanocatalysts display dramatically enhanced utilization efficiency of Pt alternative to mono- and bi-counterparts, owing to the synergistic effects of the tri-metals. Herein, multicomponent uniform 3D PtCoRh highly branched nanoassemblies (HBNAs) were prepared by glycine-assisted one-pot solvothermal method in oleylamine (OAm). The effects of the precursor types, reaction time and amount of glycine were critically investigated in this synthesis. The as-prepared PtCoRh HBNAs displayed outstanding electrocatalytic activity and improved stability towards ethanol oxidation reaction (EOR) and methanol oxidation reaction (MOR) in 1 M KOH electrolyte, whose mass/specific activities were 1.75 A mg-1/4.03 mA cm-2 and 0.98 A mg-1/2.34 mA cm-2, respectively, which were remarkably higher than commercial Pt/C (0.85 A mg-1/4.03 mA cm-2 and 0.47 A mg-1/0.89 mA cm-2). This study provides some novel guidelines to fabricate advanced multimetallic electrocatalysts for practical applications in direct alcohol fuel cells (DAFCs).
Collapse
Affiliation(s)
- Zhu Han
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Ai-Jun Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Lu Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Zhi-Gang Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Ke-Ming Fang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Zheng-Zhi Yin
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China.
| | - Jiu-Ju Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
52
|
Jyoti Borah B, Saikia H, Goswami C, Kashyap Hazarika K, Yamada Y, Bharali P. Unique Half Embedded/Exposed PdFeCu/C Interfacial Nanoalloy as High‐Performance Electrocatalyst for Oxygen Reduction Reaction. ChemCatChem 2019. [DOI: 10.1002/cctc.201900469] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Biraj Jyoti Borah
- Department of Chemical SciencesTezpur University Tezpur, Assam- 784 028 India
| | - Himadri Saikia
- Department of Chemical SciencesTezpur University Tezpur, Assam- 784 028 India
| | - Chiranjita Goswami
- Department of Chemical SciencesTezpur University Tezpur, Assam- 784 028 India
| | | | - Yusuke Yamada
- Department of Applied Chemistry & Bioengineering Graduate School of EngineeringOsaka City University 3-3-138 Sugimoto Sumiyoshi-ku, Osaka 558-8585 Japan
| | - Pankaj Bharali
- Department of Chemical SciencesTezpur University Tezpur, Assam- 784 028 India
| |
Collapse
|
53
|
Zhang X, Ossufo IGA, Ye H, Huang Y, Ge S, Xiang Z, Cui Y, Wang R. Efficient Synthesis of Bimetallic Pt
3
Zn Alloy Nanocrystals with Different Shapes and their Enhanced Electrocatalytic Activity. ChemCatChem 2019. [DOI: 10.1002/cctc.201900649] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Xinran Zhang
- Beijing Advanced Innovation Center of Materials Genome Engineering Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science School of Mathematics and PhysicsUniversity of Science and Technology Beijing Beijing 100083 P.R. China
- Key Laboratory of Micro-nano Measurement-Manipulation and Physics Ministry of Education Department of PhysicsBeihang University Beijing 100191 P.R. China
| | - Iahaia Gomes Ali Ossufo
- Key Laboratory of Micro-nano Measurement-Manipulation and Physics Ministry of Education Department of PhysicsBeihang University Beijing 100191 P.R. China
| | - Huanyu Ye
- Beijing Advanced Innovation Center of Materials Genome Engineering Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science School of Mathematics and PhysicsUniversity of Science and Technology Beijing Beijing 100083 P.R. China
| | - Yunxia Huang
- Key Laboratory of Micro-nano Measurement-Manipulation and Physics Ministry of Education Department of PhysicsBeihang University Beijing 100191 P.R. China
| | - Shuaipeng Ge
- Key Laboratory of Micro-nano Measurement-Manipulation and Physics Ministry of Education Department of PhysicsBeihang University Beijing 100191 P.R. China
| | - Zhongcheng Xiang
- Key Laboratory of Micro-nano Measurement-Manipulation and Physics Ministry of Education Department of PhysicsBeihang University Beijing 100191 P.R. China
| | - Yimin Cui
- Key Laboratory of Micro-nano Measurement-Manipulation and Physics Ministry of Education Department of PhysicsBeihang University Beijing 100191 P.R. China
| | - Rongming Wang
- Beijing Advanced Innovation Center of Materials Genome Engineering Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science School of Mathematics and PhysicsUniversity of Science and Technology Beijing Beijing 100083 P.R. China
| |
Collapse
|
54
|
Zhang H, Xu L, Tian Y, Jiao A, Li S, Liu X, Chen M, Chen F. Convenient Synthesis of 3D Fluffy PtPd Nanocorals Loaded on 2D h-BN Supports as Highly Efficient and Stable Electrocatalysts for Alcohol Oxidation Reaction. ACS OMEGA 2019; 4:11163-11172. [PMID: 31460216 PMCID: PMC6648133 DOI: 10.1021/acsomega.9b01296] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 06/14/2019] [Indexed: 06/10/2023]
Abstract
Fuel cells hold great promise for clean and sustainable energy, whereas their widespread commercialization strongly depends on the development of highly efficient and stable electrocatalysts. Herein, three-dimensional fluffy PtPd nanocorals (NCs) loaded on two-dimensional (2D) hexagonal boron nitride (h-BN) supports were successfully achieved by a simple one-step strategy based on ultraviolet (UV) laser-excited photochemical reaction. As for alcohol oxidation reaction, the h-BN/PtPd NCs with unique nanoporous surface provide more enhanced electrocatalytic performances than many previous nanocatalysts, owing to abundant active sites and plentiful charge-transfer channels formed on high electrode-electrolyte contact area. Especially, the mass activity of h-BN/PtPd NCs is about 962.8 mA mgPtPd -1 in methanol oxidation reaction in alkaline solution, which can be maintained at ∼274.9 mA mgPtPd -1 (28.6% of the initial one) even after a 5 × 104 s durability test. The present work not only offers an advanced electrocatalyst for long-term fuel cells but also provides a versatile route for construction of complex metallic nanocomposites on 2D supports, holding great potential for diverse energy-related applications.
Collapse
Affiliation(s)
- Hua Zhang
- School
of Physics, Shandong University, Jinan 250100, Shandong, P. R. China
| | - Linlin Xu
- School
of Physics, Shandong University, Jinan 250100, Shandong, P. R. China
| | - Yue Tian
- School
of Physics, Shandong University, Jinan 250100, Shandong, P. R. China
| | - Anxin Jiao
- School
of Physics, Shandong University, Jinan 250100, Shandong, P. R. China
| | - Shuang Li
- School
of Science, Shandong Jianzhu University, Jinan 250100, P. R. China
| | - Xiangdong Liu
- School
of Physics, Shandong University, Jinan 250100, Shandong, P. R. China
| | - Ming Chen
- School
of Physics, Shandong University, Jinan 250100, Shandong, P. R. China
| | - Feng Chen
- School
of Physics, Shandong University, Jinan 250100, Shandong, P. R. China
| |
Collapse
|
55
|
Kamali M, Samari F, Sedaghati F. Low-temperature phyto-synthesis of copper oxide nanosheets: Its catalytic effect and application for colorimetric sensing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109744. [PMID: 31349425 DOI: 10.1016/j.msec.2019.109744] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 05/09/2019] [Accepted: 05/12/2019] [Indexed: 02/06/2023]
Abstract
The last decade has seen a remarkable detonation in modifying chemical processes for nanomaterial synthesis to make them 'green'. Owing to the unique properties of nanomaterial and with regard to environmental issues, in this study, a new alternative and fast eco-friendly approach for the synthesis of copper oxide nanosheets (CuO-NSs) using Terminalia catappa (Indian almond) leaf extract as a renewable and non-toxic reducing agent and efficient stabilizer was reported. It is noteworthy to mention that the present fabrication process can open up the possibility of fast, low cost and high efficiency synthesis of CuO nanostructures with an interesting morphology of nanosheets at ambient temperature and pressure. Optimization of important factors such as pH, the quantity of leaf extract, copper precursor concentration, incubation time and temperature on the formation of CuO-NSs were investigated. The formation of bioreduced CuO-NSs was certified by UV-Vis spectroscopy, XRD, TEM analysis and FT-IR spectroscopy. Due to good stability, and excellent catalytic activity of the synthesized CuO-NSs, they are exerted to degrade of MB dye in water as a model color pollutant in the presence of NaBH4 at room temperature. Furthermore, color properties of CuO nanostructures aid us to apply these biosynthesized nanomaterials in the design of optical sensors for detection of Fe2+ and Fe3+ ions. In view of many advantages of the current optical sensors based on CuO-NSs, such as eco-friendly, cost-effective, and straightforward design, the sensing system presents a potential application in environmental science.
Collapse
Affiliation(s)
- Mojgan Kamali
- Department of Chemistry, Faculty of Sciences, University of Hormozgan, Bandar Abbas, Iran
| | - Fayezeh Samari
- Department of Chemistry, Faculty of Sciences, University of Hormozgan, Bandar Abbas, Iran.
| | - Fatemeh Sedaghati
- Department of Chemistry, Estahban Higher Education Center, Estahban, Iran
| |
Collapse
|
56
|
Ramakrishnan S, Karuppannan M, Vinothkannan M, Ramachandran K, Kwon OJ, Yoo DJ. Ultrafine Pt Nanoparticles Stabilized by MoS 2/N-Doped Reduced Graphene Oxide as a Durable Electrocatalyst for Alcohol Oxidation and Oxygen Reduction Reactions. ACS APPLIED MATERIALS & INTERFACES 2019; 11:12504-12515. [PMID: 30848889 DOI: 10.1021/acsami.9b00192] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Direct alcohol fuel cells play a pivotal role in the synthesis of catalysts because of their low cost, high catalytic activity, and long durability in half-cell reactions, which include anode (alcohol oxidation) and cathode (oxygen reduction) reactions. However, platinum catalysts suffer from CO tolerance, which affects their stability. The present study focuses on ultrafine Pt nanoparticles stabilized by flowerlike MoS2/N-doped reduced graphene oxide (Pt@MoS2/NrGO) architecture, developed via a facile and cost-competitive approach that was performed through the hydrothermal method followed by the wet-reflux strategy. Fourier transform infrared spectra, X-ray diffraction patterns, Raman spectra, X-ray photoelectron spectra, field-emission scanning electron microscopy, and transmission electron microscopy verified the conversion to Pt@MoS2/NrGO. Pt@MoS2/NrGO was applied as a potential electrocatalyst toward the anode reaction (liquid fuel oxidation) and the cathode reaction (oxygen reduction). In the anode reaction, Pt@MoS2/NrGO showed superior activity toward electro-oxidation of methanol, ethylene glycol, and glycerol with mass activities of 448.0, 158.0, and 147.0 mA/mgPt, respectively, approximately 4.14, 2.82, and 3.34 times that of a commercial Pt-C (20%) catalyst. The durability of the Pt@MoS2/NrGO catalyst was tested via 500 potential cycles, demonstrating less than 20% of catalytic activity loss for alcohol fuels. In the cathode reaction, oxygen reduction reaction results showed excellent catalytic activity with higher half-wave potential at 0.895 V versus a reversible hydrogen electrode for Pt@MoS2/NrGO. The durability of the Pt@MoS2/NrGO catalyst was tested via 30 000 potential cycles and showed only 15 mV reduction in the half-wave potential, whereas the Pt@NrGO and Pt-C catalysts experienced a much greater shift (Pt@NrGO, ∼23 mV; Pt-C, ∼20 mV).
Collapse
Affiliation(s)
| | - Mohanraju Karuppannan
- Department of Energy and Chemical Engineering , Incheon National University , 119 Academy-ro , Yeonsu-Gu, Incheon 22012 , Republic of Korea
| | | | | | - Oh Joong Kwon
- Department of Energy and Chemical Engineering , Incheon National University , 119 Academy-ro , Yeonsu-Gu, Incheon 22012 , Republic of Korea
| | | |
Collapse
|
57
|
Structure dependent activity and durability towards oxygen reduction reaction on Pt modified nanoporous gold. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.12.146] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
58
|
Meng HB, Zhang XF, Pu YL, Chen XL, Feng JJ, Han DM, Wang AJ. One-pot solvothermal synthesis of reduced graphene oxide-supported uniform PtCo nanocrystals for efficient and robust electrocatalysis. J Colloid Interface Sci 2019; 543:17-24. [PMID: 30772535 DOI: 10.1016/j.jcis.2019.01.110] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 11/30/2022]
Abstract
Pt-based nanocomposites with low Pt utilization and high-activity by incorporating with other transition metals have received significant interest in catalysis. Meanwhile, loading Pt-based catalysts on graphene has great research value for improved stability and dispersity of the catalysts. Herein, a facile l-proline-mediated solvothermal strategy was reported to construct reduced graphene oxide (rGO) supported sheet-like PtCo nanocrystals (Pt78Co22 NCs/rGO) in ethylene glycol (EG). The as-synthesized nanocomposite manifested remarkably improved catalytic properties and chemical stability for oxygen reduction reaction (ORR) and hydrogen evolution reaction (HER), surpassing home-made Pt29Co71 nanoparticles (NPs)/rGO, Pt83Co17 NPs/rGO, Pt52Co48 NPs, commercial Pt/C and Pt black catalysts. These scenarios demonstrated an improved catalytic performances by tailoring the feeding ratio of Pt:Co and introducing rGO as a support. This work provides some new insights to design rGO-supported Pt-based catalysts by engineering the shapes and compositions in practical fuel cells.
Collapse
Affiliation(s)
- Han-Bin Meng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Xiao-Fang Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yu-Lu Pu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Xue-Lu Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Jiu-Ju Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - De-Man Han
- Department of Chemistry, Taizhou University, Jiaojiang 318000, China
| | - Ai-Jun Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
59
|
Yao Y, Wang G, Chu G, An X, Guo Y, Sun X. The development of a novel biosensor based on gold nanocages/graphene oxide–chitosan modified acetylcholinesterase for organophosphorus pesticide detection. NEW J CHEM 2019. [DOI: 10.1039/c9nj02556a] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, a novel acetylcholinesterase biosensor, namely, gold nanocages/graphene oxide–chitosan nanocomposite modified screen-printed carbon electrode was prepared for chlorpyrifos detection.
Collapse
Affiliation(s)
- Yao Yao
- School of Agriculture Engineering and Food Science
- Shandong University of Technology
- Zibo 255049
- China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability
| | - Guangxian Wang
- School of Agriculture Engineering and Food Science
- Shandong University of Technology
- Zibo 255049
- China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability
| | - Guanglei Chu
- School of Agriculture Engineering and Food Science
- Shandong University of Technology
- Zibo 255049
- China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability
| | - Xingshuang An
- School of Agriculture Engineering and Food Science
- Shandong University of Technology
- Zibo 255049
- China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability
| | - Yemin Guo
- School of Agriculture Engineering and Food Science
- Shandong University of Technology
- Zibo 255049
- China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability
| | - Xia Sun
- School of Agriculture Engineering and Food Science
- Shandong University of Technology
- Zibo 255049
- China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability
| |
Collapse
|
60
|
Ercolano G, Farina F, Stievano L, Jones DJ, Rozière J, Cavaliere S. Preparation of Ni@Pt core@shell conformal nanofibre oxygen reduction electrocatalysts via microwave-assisted galvanic displacement. Catal Sci Technol 2019. [DOI: 10.1039/c9cy01514k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ni@Pt core@shell nanofibres with controlled platinum shell thickness and Pt/Ni ratio are synthesised by an extremely fast and reproducible route, allowing their direct use as electrocatalysts.
Collapse
Affiliation(s)
- Giorgio Ercolano
- Institut Charles Gerhardt Montpellier
- UMR CNRS 5253
- Agrégats Interfaces et Matériaux pour l'Energie
- Université de Montpellier
- 34095 Montpellier Cedex 5
| | - Filippo Farina
- Institut Charles Gerhardt Montpellier
- UMR CNRS 5253
- Agrégats Interfaces et Matériaux pour l'Energie
- Université de Montpellier
- 34095 Montpellier Cedex 5
| | - Lorenzo Stievano
- Institut Charles Gerhardt Montpellier
- UMR CNRS 5253
- Agrégats Interfaces et Matériaux pour l'Energie
- Université de Montpellier
- 34095 Montpellier Cedex 5
| | - Deborah J. Jones
- Institut Charles Gerhardt Montpellier
- UMR CNRS 5253
- Agrégats Interfaces et Matériaux pour l'Energie
- Université de Montpellier
- 34095 Montpellier Cedex 5
| | - Jacques Rozière
- Institut Charles Gerhardt Montpellier
- UMR CNRS 5253
- Agrégats Interfaces et Matériaux pour l'Energie
- Université de Montpellier
- 34095 Montpellier Cedex 5
| | - Sara Cavaliere
- Institut Charles Gerhardt Montpellier
- UMR CNRS 5253
- Agrégats Interfaces et Matériaux pour l'Energie
- Université de Montpellier
- 34095 Montpellier Cedex 5
| |
Collapse
|