51
|
Børsting T, Venkatraman V, Fagerhaug TN, Skeie MS, Stafne SN, Feuerherm AJ, Sen A. Systematic assessment of salivary inflammatory markers and dental caries in children: an exploratory study. Acta Odontol Scand 2022; 80:338-345. [PMID: 34875210 DOI: 10.1080/00016357.2021.2011400] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVE To investigate associations between a wide panel of salivary inflammatory markers and the presence of dental caries among children. MATERIAL AND METHODS In this exploratory, cross-sectional study, 176 children, aged 7-9, underwent a dental examination. Information on the children's oral health habits and lifestyles was collected from their mothers. In addition, saliva samples were collected and analyzed using a multiplex immunoassay. Of 92 inflammatory markers measured, 56 were included in the statistical analyses. To identify potential inflammatory markers associated with caries, we applied low to advanced statistical analyses. First, we performed traditional logistic regression analysis followed by Bonferroni corrections. Thereafter, a more robust and less conservative statistical approach, i.e. Least Absolute Shrinkage and Selection Operator (LASSO), was applied. The models were adjusted for potential confounders. RESULTS Of the 176 children in the study, 22.2% were affected by caries. Among the 56 salivary inflammatory markers, only macrophage colony-stimulating factor 1 (CSF1) was selected by the LASSO and found to be positively associated with the presence of caries. CONCLUSIONS The observed association between CSF1 and the presence of caries may be of clinical value in caries risk management and early diagnosis. Larger studies are warranted to assess the replicability of our findings.
Collapse
Affiliation(s)
- Torunn Børsting
- Center for Oral Health Services and Research, Mid-Norway (TkMidt), Trondheim, Norway
- Department of Public Health and Nursing, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Vishwesh Venkatraman
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Tone Natland Fagerhaug
- Center for Oral Health Services and Research, Mid-Norway (TkMidt), Trondheim, Norway
- Department of Public Health and Nursing, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Marit Slåttelid Skeie
- Center for Oral Health Services and Research, Mid-Norway (TkMidt), Trondheim, Norway
- Department of Clinical Dentistry, University of Bergen, Bergen, Norway
| | - Signe Nilssen Stafne
- Department of Public Health and Nursing, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Clinical Service, Trondheim University Hospital (St. Olavs hospital), Trondheim, Norway
| | | | - Abhijit Sen
- Center for Oral Health Services and Research, Mid-Norway (TkMidt), Trondheim, Norway
- Department of Public Health and Nursing, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
52
|
Aslantas EE, Buzoglu HD, Muftuoglu SF, Atilla P, Karapinar SP, Aksoy Y. Effects of aging and inflammation on catalase activity in human dental pulp. Arch Oral Biol 2022; 141:105482. [PMID: 35728513 DOI: 10.1016/j.archoralbio.2022.105482] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 11/27/2022]
Abstract
OBJECTIVES In this study, it was aimed to examine the catalase activity in clinically healthy and caries-related inflamed symptomatic human dental pulps of young and old individuals. DESIGN Sixty pulp samples from young and old healthy donors, were collected depending on pulpal status. 48 samples were used for spectrophotometric analysis and 12 samples for immunohistochemistry. Healthy pulps were maintained from non-carries, extracted third molars. Reversible and irreversible pulpitis samples were obtained by pulp extirpation during endodontic treatment. Following homogenization catalase enzyme activity was determined by spectrophotometry. Additionally, two pulp tissue samples from each group were fixed and evaluated for catalase immunoreactivity. RESULTS Catalase enzyme activity in old healthy pulp samples were significantly higher than healthy young samples (p ≤ 0.05). Reversible and irreversible pulpitis samples indicated significantly decreased activity compared to healthy samples in elderly group (p ≤ 0.05). Young reversible pulpitis samples showed significantly increased catalase activity when compared to irreversible pulpitis and the reversible pulpitis samples in elderly group (p ≤ 0.05). Immunohistochemical evaluation indicated that there was intense catalase immunoreactivity in young patients with reversible pulpitis compared with reversible pulpitis in elderly group. However, weak immunoreactivity was observed in young irreversible pulpitis and elderly reversible pulpitis samples. CONCLUSIONS The pulp tissues presented different levels of catalase activities against pulpitis and aging.
Collapse
Affiliation(s)
- Eda Ezgi Aslantas
- Department of Endodontics, Hacettepe University, Faculty of Dentistry, Ankara, Turkey
| | - Hatice Dogan Buzoglu
- Department of Endodontics, Hacettepe University, Faculty of Dentistry, Ankara, Turkey
| | - Sevda Fatma Muftuoglu
- Department of Histology and Embriology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Pergin Atilla
- Department of Histology and Embriology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | | | - Yasemin Aksoy
- Department of Medical Biochemistry, Hacettepe University Faculty of Medicine, Ankara, Turkey.
| |
Collapse
|
53
|
Palczewska-Komsa MP, Gapiński B, Nowicka A. The Influence of New Bioactive Materials on Pulp–Dentin Complex Regeneration in the Assessment of Cone Bone Computed Tomography (CBCT) and Computed Micro-Tomography (Micro-CT) from a Present and Future Perspective—A Systematic Review. J Clin Med 2022; 11:jcm11113091. [PMID: 35683478 PMCID: PMC9181092 DOI: 10.3390/jcm11113091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/23/2022] [Accepted: 05/27/2022] [Indexed: 11/16/2022] Open
Abstract
The present paper is the first article providing a systematic literature review on the visualization of tertiary dentin influenced by modern bioactive materials in CBCT and micro-CT. Six database searches of studies on tertiary dentin visualization using CBCT produced 622 records in total, and the search of the studies on tertiary dentin using micro-CT produced 502 records in total. The results were thoroughly selected considering the inclusion criteria, and five research papers using CBCT and nine research papers using micro-CT for visualization of tertiary dentin were eventually qualified for the analysis. All the non-randomized and randomized studies presented good and high levels of quality evidence, respectively. Among the bioactive materials used, the most frequently analysed were: MTA, Biodentine dentin matrix hydrogel, Pro Root MTA, and EndoSequence root repair material. The highest thickness of the tertiary dentin was achieved after the use of MTA material in both imaging techniques. The remaining parameters had different results, taking into account the CBCT and micro-CT analysis. The possibilities of the qualitative and quantitative assessment of the particular parameters of tertiary dentin using CBCT and micro-CT techniques were presented and analysed. CBCT and micro-CT analyses can be useful in the assessment of tertiary dentin formed beneath the bioactive material applied during vital pulp treatment. The research argues that the presented results differ depending on the material applied to the pulp, the study duration (4–6 weeks), difference in teeth, species (rats, human), as well as the applied technique and differences in computer software used for the analysis.
Collapse
Affiliation(s)
- Mirona Paula Palczewska-Komsa
- Department of Conservative Dentistry and Endodontics, Pomeranian Medical University in Szczecin, Powstanców Wielkopolskich 72, 70-111 Szczecin, Poland;
- Correspondence:
| | - Bartosz Gapiński
- Division of Metrology and Measurement Systems, Institute of Mechanical Technology, Poznan University of Technology, Jana Pawła II 24, 60-965 Poznań, Poland;
| | - Alicja Nowicka
- Department of Conservative Dentistry and Endodontics, Pomeranian Medical University in Szczecin, Powstanców Wielkopolskich 72, 70-111 Szczecin, Poland;
| |
Collapse
|
54
|
Chevalier V, Dessert M, Fouillen KJ, Lennon S, Duncan HF. Preclinical 3D-printed laboratory simulation of deep caries and the exposed pulp reduced student anxiety and stress, while increasing confidence and knowledge in vital pulp treatment. Int Endod J 2022; 55:844-857. [PMID: 35586992 PMCID: PMC9544659 DOI: 10.1111/iej.13780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 04/18/2022] [Accepted: 05/10/2022] [Indexed: 12/01/2022]
Abstract
Aim To evaluate the impact of a preclinical laboratory session using 3D printed teeth on dental student stress, anxiety, confidence and knowledge when treating deep caries and pulp exposure. Methodology This was a two‐centre controlled study, with randomized distribution of students into two groups: a vital pulp treatment (VPT) lecture‐only (control) group and a VPT‐lecture combined with a VPT‐laboratory (experimental) group. In both universities, preclinical students with endodontic or operative dentistry laboratory sessions could participate. All students were invited to the lecture. Two weeks later (timepoint‐T1), both groups completed validated and bespoke questionnaires and scales to evaluate their stress (Stress‐VAS), anxiety (STAI Trait [T] and State [S]), self‐confidence and knowledge. Thereafter, only the experimental group attended the hands‐on laboratory session demonstrating the techniques of selective caries removal and partial pulpotomy on a commercial 3D‐printed tooth. Two weeks later (timepoint‐T2), the participants from both groups repopulated the same questionnaires and VAS. The control group had the laboratory session after the completion of the study. The statistical analysis was performed with Statistica® (significance p = .05). The homogeneity between the two samples was checked by Khi2 and Student tests. Stress‐VAS, STAI‐S, confidence and knowledge scores were compared within each group, and between the two groups, at T1 and T2, with a repeated measures anova test (+/−Tukey post‐hoc test). Results The groups comprised 54 students each, with no statistical difference between the groups regarding demographic, academic data and STAI‐T score. The two groups had no significant difference of Stress‐VAS, STAI‐S, confidence and knowledge scores at T1 while they presented a significant difference in stress, anxiety and confidence scores at T2, but with no significant difference in knowledge score. However, knowledge score, as other parameters, improved significantly between T1 and T2 in the experimental group. Conclusions The addition of a laboratory session using 3D‐printed teeth that simulated deep caries and pulp exposure management, significantly reduced the stress and anxiety of students and increased their confidence. Within the limitations of this study, the benefit of introducing new technology in increasing student confidence and reducing stress offers opportunity for educational improvement in the VPT and cariology areas.
Collapse
Affiliation(s)
- V Chevalier
- University of Bretagne Occidentale, Brest University Hospital, Brest, France.,University of Bretagne Occidentale, UMR CNRS 6027, IRDL, Brest, France
| | - M Dessert
- University of Bretagne Occidentale, Brest University Hospital, Brest, France
| | - K J Fouillen
- University of Bretagne Occidentale, Brest University Hospital, Brest, France
| | - S Lennon
- Division of Restorative Dentistry and Periodontology, Dublin Dental University Hospital, Trinity College Dublin, Dublin 2, Ireland
| | - H F Duncan
- Division of Restorative Dentistry and Periodontology, Dublin Dental University Hospital, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
55
|
Choi B, Kim JE, Park SO, Kim EY, Oh S, Choi H, Yoon D, Min HJ, Kim HR, Chang EJ. Sphingosine-1-phosphate hinders the osteogenic differentiation of dental pulp stem cells in association with AKT signaling pathways. Int J Oral Sci 2022; 14:21. [PMID: 35459199 PMCID: PMC9033766 DOI: 10.1038/s41368-022-00173-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 02/24/2022] [Accepted: 02/24/2022] [Indexed: 11/16/2022] Open
Abstract
Sphingosine-1-phosphate (S1P) is an important lipid mediator that regulates a diverse range of intracellular cell signaling pathways that are relevant to tissue engineering and regenerative medicine. However, the precise function of S1P in dental pulp stem cells (DPSCs) and its osteogenic differentiation remains unclear. We here investigated the function of S1P/S1P receptor (S1PR)-mediated cellular signaling in the osteogenic differentiation of DPSCs and clarified the fundamental signaling pathway. Our results showed that S1P-treated DPSCs exhibited a low rate of differentiation toward the osteogenic phenotype in association with a marked reduction in osteogenesis-related gene expression and AKT activation. Of note, both S1PR1/S1PR3 and S1PR2 agonists significantly downregulated the expression of osteogenic genes and suppressed AKT activation, resulting in an attenuated osteogenic capacity of DPSCs. Most importantly, an AKT activator completely abrogated the S1P-mediated downregulation of osteoblastic markers and partially prevented S1P-mediated attenuation effects during osteogenesis. Intriguingly, the pro-inflammatory TNF-α cytokine promoted the infiltration of macrophages toward DPSCs and induced S1P production in both DPSCs and macrophages. Our findings indicate that the elevation of S1P under inflammatory conditions suppresses the osteogenic capacity of the DPSCs responsible for regenerative endodontics.
Collapse
Affiliation(s)
- Bongkun Choi
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea.,Stem Cell Immunomodulation Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Ji-Eun Kim
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea.,Stem Cell Immunomodulation Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Si-On Park
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea.,Stem Cell Immunomodulation Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Eun-Young Kim
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea.,Stem Cell Immunomodulation Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Soyoon Oh
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea.,Stem Cell Immunomodulation Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hyuksu Choi
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea.,Stem Cell Immunomodulation Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Dohee Yoon
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea.,Stem Cell Immunomodulation Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hyo-Jin Min
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea.,Stem Cell Immunomodulation Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hyung-Ryong Kim
- Department of Pharmacology, College of Dentistry, Jeonbuk National University, Jeonju, Korea.
| | - Eun-Ju Chang
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea. .,Stem Cell Immunomodulation Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea. .,Department of Biochemistry and Molecular Biology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| |
Collapse
|
56
|
Leme RD, Lamarque GDCC, Bastos LA, Arnez MFM, Paula-Silva FWG. Minimal Intervention Dentistry: Biocompatibility and Mechanism of Action of Products for Chemical-Mechanical Removal of Carious Tissue. FRONTIERS IN DENTAL MEDICINE 2022. [DOI: 10.3389/fdmed.2022.851331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Conventional method for removal of carious tissue using low speed drills usually induce noise and vibration, in addition to thermal and pressure effects that can be harmful to the pulp tissue and cause fear in children. Therefore, several alternative methods are being developed to try to minimize the unpleasant perception of the patient during caries removal. Chemical-mechanical removal of carious tissue goal is to selectively remove the carious lesion, which reduces the amount of bacteria inside the cavity without removing the tissue susceptible to remineralization. This method is also able to minimize the tactile perception by the patient during the manipulation of the lesion compared to the conventional method, and, therefore, it has been widely accepted among phobic patients, children and special needs patients. Due to the close relationship between dentin and pulp tissue, all injuries imposed on this dentin may have repercussions on the underlying pulp connective tissue. The morphological aspects of remaining dentin favor the diffusion of chemical components of dental materials, which can be toxic to the pulp tissue or even negatively interfere in the reparative process. Thus, considering the proximity between the applied material and the underlying pulp tissue, especially in deep cavities, there is a need to assess the biological behavior of dental materials against pulp cells, since aggressions to the pulp tissue can be caused not only by metabolites from microorganisms involved in dental caries but also by components that are released from these products. This subject was explored in this narrative literature review.
Collapse
|
57
|
Kwack KH, Lee HW. Clinical Potential of Dental Pulp Stem Cells in Pulp Regeneration: Current Endodontic Progress and Future Perspectives. Front Cell Dev Biol 2022; 10:857066. [PMID: 35478967 PMCID: PMC9035692 DOI: 10.3389/fcell.2022.857066] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/18/2022] [Indexed: 12/12/2022] Open
Abstract
Dental caries is a common disease that not only destroys the rigid structure of the teeth but also causes pulp necrosis in severe cases. Once pulp necrosis has occurred, the most common treatment is to remove the damaged pulp tissue, leading to a loss of tooth vitality and increased tooth fragility. Dental pulp stem cells (DPSCs) isolated from pulp tissue exhibit mesenchymal stem cell-like characteristics and are considered ideal candidates for regenerating damaged dental pulp tissue owing to their multipotency, high proliferation rate, and viability after cryopreservation. Importantly, DPSCs do not elicit an allogeneic immune response because they are non-immunogenic and exhibit potent immunosuppressive properties. Here, we provide an up-to-date review of the clinical applicability and potential of DPSCs, as well as emerging trends in the regeneration of damaged pulp tissue. In addition, we suggest the possibility of using DPSCs as a resource for allogeneic transplantation and provide a perspective for their clinical application in pulp regeneration.
Collapse
Affiliation(s)
- Kyu Hwan Kwack
- Department of Dentistry, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Hyeon-Woo Lee
- Department of Pharmacology, School of Dentistry, Graduate School, Institute of Oral Biology, Kyung Hee University, Seoul, South Korea
- *Correspondence: Hyeon-Woo Lee,
| |
Collapse
|
58
|
Roberts WE, Mangum JE, Schneider PM. Pathophysiology of Demineralization, Part I: Attrition, Erosion, Abfraction, and Noncarious Cervical Lesions. Curr Osteoporos Rep 2022; 20:90-105. [PMID: 35129809 PMCID: PMC8930910 DOI: 10.1007/s11914-022-00722-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/15/2021] [Indexed: 12/14/2022]
Abstract
PURPOSE OF THE REVIEW Compare pathophysiology for infectious and noninfectious demineralization disease relative to mineral maintenance, physiologic fluoride levels, and mechanical degradation. RECENT FINDINGS Environmental acidity, biomechanics, and intercrystalline percolation of endemic fluoride regulate resistance to demineralization relative to osteopenia, noncarious cervical lesions, and dental caries. Demineralization is the most prevalent chronic disease in the world: osteoporosis (OP) >10%, dental caries ~100%. OP is severely debilitating while caries is potentially fatal. Mineralized tissues have a common physiology: cell-mediated apposition, protein matrix, fluid logistics (blood, saliva), intercrystalline ion percolation, cyclic demineralization/remineralization, and acid-based degradation (microbes, clastic cells). Etiology of demineralization involves fluid percolation, metabolism, homeostasis, biomechanics, mechanical wear (attrition or abrasion), and biofilm-related infections. Bone mineral density measurement assesses skeletal mass. Attrition, abrasion, erosion, and abfraction are diagnosed visually, but invisible subsurface caries <400μm cannot be detected. Controlling demineralization at all levels is an important horizon for cost-effective wellness worldwide.
Collapse
Affiliation(s)
- W. Eugene Roberts
- grid.257413.60000 0001 2287 3919Indiana University & Purdue University at Indianapolis, 8260 Skipjack Drive, Indianapolis, IN 46236 USA
| | - Jonathan E. Mangum
- grid.1008.90000 0001 2179 088XDepartment of Biochemistry and Pharmacology, Dentistry and Health Sciences, University of Melbourne, Corner Grattan Street and Royal Parade, Parkville, Victoria 3010 Australia
| | - Paul M. Schneider
- grid.1008.90000 0001 2179 088XMelbourne Dental School, University of Melbourne, 720 Swanston St, Melbourne, Victoria 3010 Australia
| |
Collapse
|
59
|
Arora S, Cooper PR, Ratnayake JT, Friedlander LT, Rizwan SB, Seo B, Hussaini HM. A critical review of in vitro research methodologies used to study mineralization in human dental pulp cell cultures. Int Endod J 2022; 55 Suppl 1:3-13. [PMID: 35030284 PMCID: PMC9303903 DOI: 10.1111/iej.13684] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/11/2022] [Indexed: 11/27/2022]
Abstract
Background The pulp contains a resident population of stem cells which can be stimulated to differentiate in order to repair the tooth by generating a mineralized extracellular matrix. Over recent decades there has been considerable interest in utilizing in vitro cell culture models to study dentinogenesis, with the aim of developing regenerative endodontic procedures, particularly where some vital pulp tissue remains. Objectives The purpose of this review is to provide a structured oversight of in vitro research methodologies which have been used to study human pulp mineralization processes. Method The literature was screened in the PubMed database up to March 2021 to identify manuscripts reporting the use of human dental pulp cells to study mineralization. The dataset identified 343 publications initially which were further screened and consequently 166 studies were identified and it was methodologically mined for information on: i) study purpose, ii) source and characterization of cells, iii) mineralizing supplements and concentrations, and iv) assays and markers used to characterize mineralization and differentiation, and the data was used to write this narrative review. Results Most published studies aimed at characterizing new biological stimulants for mineralization as well as determining the effect of scaffolds and dental (bio)materials. In general, pulp cells were isolated by enzymatic digestion, although the pulp explant technique was also common. For enzymatic digestion, a range of enzymes and concentrations were utilized, although collagenase type I and dispase were the most frequent. Isolated cells were not routinely characterized using either fluorescence‐activated cell sorting (FACS) and magnetic‐activated cell sorting (MACS) approaches and there was little consistency in terming cultures as dental pulp cells or dental pulp stem cells. A combination of media supplements, at a range of concentrations, of dexamethasone, ascorbic acid and beta‐glycerophosphate, were frequently applied as the basis for the experimental conditions. Alizarin Red S (ARS) staining was the method of choice for assessment of mineralization at 21‐days. Alkaline phosphatase assay was relatively frequently applied, solely or in combination with ARS staining. Further assessment of differentiation status was performed using transcript or protein markers, with dentine sialophosphoprotein (DSPP), osteocalcin and dentine matrix protein‐1 (DMP ‐1), the most frequent. Discussion While this review highlights variability among experimental approaches, it does however identify a consensus experimental approach. Conclusion Standardization of experimental conditions and sustained research will significantly benefit endodontic patient outcomes in the future.
Collapse
Affiliation(s)
- Shelly Arora
- Faculty of Dentistry, Sir John Walsh Research Institute, University of Otago, Dunedin
| | - Paul R Cooper
- Faculty of Dentistry, Sir John Walsh Research Institute, University of Otago, Dunedin
| | - Jithendra T Ratnayake
- Faculty of Dentistry, Sir John Walsh Research Institute, University of Otago, Dunedin
| | - Lara T Friedlander
- Faculty of Dentistry, Sir John Walsh Research Institute, University of Otago, Dunedin
| | | | - Benedict Seo
- Faculty of Dentistry, Sir John Walsh Research Institute, University of Otago, Dunedin
| | - Haizal M Hussaini
- Faculty of Dentistry, Sir John Walsh Research Institute, University of Otago, Dunedin
| |
Collapse
|
60
|
Evaluation of a Hypersensitivity Inhibitor Containing a Novel Monomer That Induces Remineralization-A Case Series in Pediatric Patients. CHILDREN (BASEL, SWITZERLAND) 2021; 8:children8121189. [PMID: 34943385 PMCID: PMC8700649 DOI: 10.3390/children8121189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND Recently, tooth deformities have been frequently encountered by pediatric dentists. Severe enamel hypomineralization sometimes induces pain such as hyperesthesia, but composite resin restoration is difficult because it often detaches without any cavity preparation. Resin-based hypersensitivity inhibitors for tooth physically seal the dentinal tubules. It was reported that hypersensitivity inhibitor containing novel adhesive monomers forms apatite and induces remineralization in vitro. Therefore, these case series assessed the clinical effects of remineralization and the suppression of hypersensitivity by Bio Coat Ca (Sun Medical, Shiga, Japan). METHODS After mechanical tooth cleaning was performed, the hypersensitivity inhibitors were applied and cured by light exposure. Changes in hypersensitivity were determined by visual analog scale (VAS). The improvement of hypomineralization was evaluated by the change in color tone based on the digital images of intraoral photographs. RESULTS After repeated monthly treatments, these cases showed decreased hypersensitivity after the fourth application, while the opaque white and brownish color improved on the seventh application. CONCLUSION This novel hypersensitivity inhibitor with calcium salt of 4-methacryloxyethyl trimellitic acid (C-MET) and 10-methacryloyloxydecyl dihydrogen calcium phosphate (MDCP) not only suppressed hypersensitivity but also improved cloudiness and brown spots in recently erupted permanent teeth in presented cases.
Collapse
|
61
|
Reis MDS, Scarparo RK, Signor B, Bolzan JT, Steier L, Figueiredo JAPD. Pulp capping with mineral trioxide aggregate or Biodentine: a comparison of mineralized barrier formation and inflammatory and degenerative events. Braz Oral Res 2021; 35:e118. [PMID: 34878073 DOI: 10.1590/1807-3107bor-2021.vol35.0118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 03/01/2021] [Indexed: 11/22/2022] Open
Abstract
Biodentine in endodontic practice has been widely investigated, but comprehensive histological descriptions of degenerative and inflammatory responses are not covered in most of the studies that compare pulp capping materials. This study aimed to evaluate pulpal responses to mineral trioxide aggregate (MTA Angelus) and Biodentine, focusing on mineralized barrier formation and on inflammatory and degenerative events. 80 male Wistar rats were assigned to 5 groups, according to the materials used for pulp capping and coronal sealing (n=8 per group/period). The lower first molars were mechanically exposed, capped with either MTA or Biodentine, and restored with silver amalgam. In an additional test group, the teeth were capped and sealed with Biodentine. The teeth capped with gutta-percha and restored with silver amalgam served as positive control, whereas untreated teeth served as negative control. Pulpal responses and coronal sealing were evaluated after 14 or 21 days. Data was statistically analyzed by the Kruskal-Wallis and Dunn's post hoc tests (p<0.05). Biodentine and MTA presented satisfactory results, showing a milder inflammatory response (p<0.0001) and more pronounced formation of mineralized barrier (p<0.0001) compared to the teeth capped with gutta-percha. As a restorative material, Biodentine kept coronal sealing in only 37.5% of the samples. Biodentine showed favorable properties in vital pulp therapy, being similar to MTA. However, it was not effective in protecting dental pulp from microleakage during the experimental period.
Collapse
Affiliation(s)
- Magda de Sousa Reis
- Universidade de Santa Cruz do Sul - Unisc, Department of Health Sciences, Santa Cruz do Sul, RS, Brazil
| | - Roberta Kochenborger Scarparo
- Universidade Federal do Rio Grande do Sul - UFRGS, School of Dentistry, Department of Conservative Dentistry, Porto Alegre, RS, Brazil
| | - Bruna Signor
- Universidade Federal do Rio Grande do Sul - UFRGS, School of Dentistry, Department of Conservative Dentistry, Porto Alegre, RS, Brazil
| | - Juliana Troglio Bolzan
- Pontifícia Universidade Católica do Riio Grande do Sul - PUCRS, Clinical Department, Porto Alegre, RS, Brazil
| | - Liviu Steier
- University of Pennsylvania, School of Dental Medicine, Division of Restorative Dentistry, Philadelphia, PA, USA
| | - José Antonio Poli de Figueiredo
- Universidade Federal do Rio Grande do Sul - UFRGS, School of Dentistry, Department of Conservative Dentistry, Porto Alegre, RS, Brazil
| |
Collapse
|
62
|
Lee S, Li Z, Meng D, Fei Q, Jiang L, Fu T, Wang Z, Liu S, Zhang J. Effect of silicon-doped calcium phosphate cement on angiogenesis based on controlled macrophage polarization. Acta Biochim Biophys Sin (Shanghai) 2021; 53:1516-1526. [PMID: 34536273 DOI: 10.1093/abbs/gmab121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Indexed: 11/13/2022] Open
Abstract
Vascularization is an important early indicator of osteogenesis involving biomaterials. Bone repair and new bone formation are associated with extensive neovascularization. Silicon-based biomaterials have attracted widespread attention due to their rapid vascularization. Although calcium phosphate cement (CPC) is a mature substitute for bone, the application of CPC is limited by its slow degradation and insufficient promotion of neovascularization. Calcium silicate (CS) has been shown to stimulate vascular endothelial proliferation. Thus, CS may be added to CPC (CPC-CS) to improve the biocompatibility and neovascularization of CPC. In the early phase of bone repair (the inflammatory phase), macrophages accumulate around the biomaterial and exert both anti- and pro-inflammatory effects. However, the effect of CPC-CS on macrophage polarization is not known, and it is not clear whether the effect on neovascularization is mediated through macrophage polarization. In the present study, we explored whether silicon-mediated macrophage polarization contributes to vascularization by evaluating the CPC-CS-mediated changes in the immuno-environment under different silicate ion contents both in vivo and in vitro. We found that the silicon released from CPC-CS can promote macrophage polarization into the M2 phenotype and rapid endothelial neovascularization during bone repair. Dramatic neovascularization and osteogenesis were observed in mouse calvarial bone defects implanted with CPC-CS containing 60% CS. These findings suggest that CPC-CS is a novel biomaterial that can modulate immune response, promote endothelial proliferation, and facilitate neovascularization and osteogenesis. Thus, CPC-CS shows potential as a bone substitute material.
Collapse
Affiliation(s)
- Soomin Lee
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Zheng Li
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Dehua Meng
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Qinming Fei
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Libo Jiang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Tengfei Fu
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Ze Wang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Shuhao Liu
- Department of Orthopedics, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Jian Zhang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| |
Collapse
|
63
|
Oral Cavity as a Source of Mesenchymal Stem Cells Useful for Regenerative Medicine in Dentistry. Biomedicines 2021; 9:biomedicines9091085. [PMID: 34572271 PMCID: PMC8469189 DOI: 10.3390/biomedicines9091085] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 12/17/2022] Open
Abstract
The use of mesenchymal stem cells (MSCs) for regenerative purposes has become common in a large variety of diseases. In the dental and maxillofacial field, there are emerging clinical needs that could benefit from MSC-based therapeutic approaches. Even though MSCs can be isolated from different tissues, such as bone marrow, adipose tissue, etc., and are known for their multilineage differentiation, their different anatomical origin can affect the capability to differentiate into a specific tissue. For instance, MSCs isolated from the oral cavity might be more effective than adipose-derived stem cells (ASCs) for the treatment of dental defects. Indeed, in the oral cavity, there are different sources of MSCs that have been individually proposed as promising candidates for tissue engineering protocols. The therapeutic strategy based on MSCs can be direct, by using cells as components of the tissue to be regenerated, or indirect, aimed at delivering local growth factors, cytokines, and chemokines produced by the MSCs. Here, the authors outline the major sources of mesenchymal stem cells attainable from the oral cavity and discuss their possible usage in some of the most compelling therapeutic frontiers, such as periodontal disease and dental pulp regeneration.
Collapse
|
64
|
Cao R, Wang Q, Wu J, Liu M, Han Q, Wang X. Nell-1 attenuates lipopolysaccharide-induced inflammation in human dental pulp cells. J Mol Histol 2021; 52:671-680. [PMID: 33905072 DOI: 10.1007/s10735-021-09976-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 04/20/2021] [Indexed: 02/04/2023]
Abstract
Nel-like molecule type 1 (Nell-1) is a secreted protein that plays an important role in osteoinduction in multiple animal models. A previous study has suggested the anti-inflammatory effect of Nell-1 on bone inflammation inhibition. However, its role in pulpitis has not been investigated. The present study aims to explore the effect of human recombinant Nell-1 (Nell-1) on rat pulp inflammation response, and its effect on lipopolysaccharide-induced inflammation in human dental pulp cells and its related intracellular signaling pathways. 30 Wistar rats with healthy non-carious maxillary first molars were chosen, Nell-1 was absorbed onto a sterile collagen sponge and capped onto exposed pulps. The expression of IL-6 and IL-8 were detected by immunohistochemical staining. Human dental pulp cells (hDPCs) were isolated from healthy extracted premolars and third molars. hDPCs were co-cultured with Escherichia coli lipopolysaccharide (LPS), Nell-1 protein, and mitogen-activated protein kinase (MAPK) inhibitors. The expression of pro-inflammatory cytokines and chemokines, such as IL-6 and IL-8, was examined via quantitative real-time PCR and enzyme-linked immunosorbent assay. The results showed that Nell-1 inhibited the inflammatory response of rat pulp. LPS treatment contributed to the expression of inflammatory factors in hDPCs, whereas Nell-1 obviously suppressed the LPS-induced inflammation. p38 MAPK and extracellular signal-regulated kinase (ERK) MAPK inhibitors attenuated the anti-inflammatory effect of hrNell-1, whereas the c-Jun N-terminal kinases (JNK) MAPK inhibitor exerted minimal effect. Therefore Nell-1 could inhibit LPS-induced inflammation in human dental pulp cells, and this effect may be mediated by p38 and ERK MAPK signaling pathways, but not JNK MAPK signaling pathway.
Collapse
Affiliation(s)
- Rongyu Cao
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
| | - Qiang Wang
- Jinan Stomatological Hospital, Jinan, 250001, Shandong, China
| | - Jiameng Wu
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
| | - Mengmeng Liu
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
| | - Qi Han
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
| | - Xiaoying Wang
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China.
| |
Collapse
|
65
|
Alipour M, Fadakar S, Aghazadeh M, Salehi R, Samadi Kafil H, Roshangar L, Mousavi E, Aghazadeh Z. Synthesis, characterization, and evaluation of curcumin-loaded endodontic reparative material. J Biochem Mol Toxicol 2021; 35:e22854. [PMID: 34331815 DOI: 10.1002/jbt.22854] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/07/2021] [Accepted: 07/14/2021] [Indexed: 12/23/2022]
Abstract
Curcumin (CUR) is an ancient therapeutic agent with remarkable antimicrobial and anti-inflammatory properties. The purpose of the current study was to synthesize and evaluate a curcumin-based reparative endodontic material to reduce infection and inflammation besides the induction of mineralization during the healing of the dentin-pulp complex. Poly-ɛ-caprolactone (PCL)/gelatin (Gel)/CUR scaffold was synthesized and assessed by scanning electron microscopy, Fourier transform infrared spectroscopy, and thermo-gravimetric analysis (TGA). Agar diffusion test was performed against E. coli, A. baumannii, P. aeruginosa, S. aureus, E. faecalis, and S. mutans. Moreover, proliferative, antioxidative, anti-inflammatory, and calcification properties of these scaffolds on human dental pulp stem cells (hDPSCs) were evaluated. The results showed that PCL/Gel/CUR scaffold had antibacterial effects. Also, these CUR-based scaffolds had significant inhibitory effects on the expression of tumor necrosis factor α and DCF from inflamed hDPSCs (p < 0.05). Moreover, the induction of mineralization in hDPSCs significantly increased after seeding on CUR-based scaffolds (p < 0.05). Based on these findings, the investigated CUR-loaded material was fabricated successfully and provided an appropriate structure for the attachment and proliferation of hDPSCs. It was found that these scaffolds had antimicrobial, antioxidant, and anti-inflammatory characteristics and could induce mineralization in hDPSCs, which is essential for healing and repairing the injured dentin-pulp complex.
Collapse
Affiliation(s)
- Mahdieh Alipour
- Dental and Periodontal Research Center, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran.,Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sadaf Fadakar
- Department of Oral Medicine, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marziyeh Aghazadeh
- Stem Cell Research Center and Department of Oral Medicine, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roya Salehi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ensieh Mousavi
- Department of Oral Medicine, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Aghazadeh
- Stem Cell Research Center and Department of Oral Medicine, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
66
|
Virdee SS, Bashir N, Camilleri J, Cooper PR, Tomson P. Exploiting dentine matrix proteins in cell-free approaches for periradicular tissue engineering. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:707-732. [PMID: 34309453 PMCID: PMC9419954 DOI: 10.1089/ten.teb.2021.0074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The recent discovery of mesenchymal stem cells within periapical lesions (PL-MSC) has presented novel opportunities for managing periradicular diseases in adult teeth by way of enhancing tissue regeneration. This discovery coincides with the current paradigm shift toward biologically driven treatment strategies in endodontics, which have typically been reserved for non-vital immature permanent teeth. One such approach that shows promise is utilizing local endogenous non-collagenous dentine extracellular matrix components (dECM) to recruit and upregulate the intrinsic regenerative capacity of PL-MSCs in situ. At picogram levels, these morphogens have demonstrated tremendous ability to enhance the cellular activities in in vitro and in vivo animal studies that would otherwise be necessary for periradicular regeneration. Briefly, these include proliferation, viability, migration, differentiation, and mineralization. Therefore, topical application of dECMs during ortho- or retrograde root canal treatment could potentially enhance and sustain the regenerative mechanisms within diseased periapical tissues that are responsible for attaining favorable clinical and radiographic outcomes. This would provide many advantages when compared with conventional antimicrobial-only therapies for apical periodontitis (AP), which do not directly stimulate healing and have had stagnant success rates over the past five decades despite significant advances in operative techniques. The aim of this narrative review was to present the novel concept of exploiting endogenous dECMs as clinical tools for treating AP in mature permanent teeth. A large scope of literature was summarized to discuss the issues associated with conventional treatment modalities; current knowledge surrounding PL-MSCs; composition of the dECM; inductive potentials of dECM morphogens in other odontogenic stem cell niches; how treatment protocols can be adapted to take advantage of dECMs and PL-MSCs; and finally, the challenges currently impeding successful clinical translation alongside directions for future research.
Collapse
Affiliation(s)
- Satnam Singh Virdee
- University of Birmingham, 1724, School of Dentistry, Birmingham, West Midlands, United Kingdom of Great Britain and Northern Ireland;
| | - Nasir Bashir
- University of Birmingham, 1724, School of Dentistry, Birmingham Dental Hospital and School of Dentistry, 5 Mill Pool Way, Edgbaston, Birmingham, United Kingdom of Great Britain and Northern Ireland, B5 7SA;
| | - Josette Camilleri
- University of Birmingham, 1724, School of Dentistry, Birmingham, West Midlands, United Kingdom of Great Britain and Northern Ireland;
| | - Paul R Cooper
- University of Otago, 2495, Faculty of Dentistry, Dunedin, New Zealand;
| | - Phillip Tomson
- University of Birmingham College of Medical and Dental Sciences, 150183, School of Dentistry, Institute of Clinical Sciences, 5 Mill Pool Way, Edgbaston, Birmingham, Birmingham, Birmingham, United Kingdom of Great Britain and Northern Ireland, B5 7EG.,University of Birmingham;
| |
Collapse
|
67
|
Liu K, Yu S, Ye L, Gao B. The Regenerative Potential of bFGF in Dental Pulp Repair and Regeneration. Front Pharmacol 2021; 12:680209. [PMID: 34354584 PMCID: PMC8329335 DOI: 10.3389/fphar.2021.680209] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 06/22/2021] [Indexed: 02/05/2023] Open
Abstract
Regenerative endodontic therapy intends to induce the host’s natural wound-healing process, which can restore the vitality, immunity, and sensitivity of the inflammatory or necrotic pulp tissue destroyed by infection or trauma. Myriads of growth factors are critical in the processes of pulp repair and regeneration. Among the key regulatory factors are the fibroblast growth factors, which have turned out to be the master regulators of both organogenesis and tissue homeostasis. Fibroblast growth factors, a family composed of 22 polypeptides, have been used in tissue repair and regeneration settings, in conditions as diverse as burns, ulcers, bone-related diseases, and spinal cord injuries. Meanwhile, in dentistry, the basic fibroblast growth factor is the most frequently investigated. Thereby, the aim of this review is 2-fold: 1) foremost, to explore the underlying mechanisms of the bFGF in dental pulp repair and regeneration and 2) in addition, to shed light on the potential therapeutic strategies of the bFGF in dental pulp–related clinical applications.
Collapse
Affiliation(s)
- Keyue Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Sijing Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ling Ye
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bo Gao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
68
|
Minic S, Florimond M, Sadoine J, Valot-Salengro A, Chaussain C, Renard E, Boukpessi T. Evaluation of Pulp Repair after Biodentine TM Full Pulpotomy in a Rat Molar Model of Pulpitis. Biomedicines 2021; 9:biomedicines9070784. [PMID: 34356848 PMCID: PMC8301331 DOI: 10.3390/biomedicines9070784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 12/14/2022] Open
Abstract
Dental pulp is a dynamic tissue able to heal after injury under moderate inflammatory conditions. Our study aimed to evaluate pulp repair under inflammatory conditions in rats. For this purpose, we developed a rat model of controlled pulpitis followed by pulpotomy with a tricalcium silicate-based cement. Fifty-four cavities were prepared on the occlusal face of the maxillary upper first molar of 27 eight-week-old male rats. E. coli lipopolysaccharides at 10 mg/mL or phosphate-buffered saline PBS was injected after pulp injury. Non-inflamed molars were used as controls. Levels of inflammation-related molecules were measured 6 and 24 h after induction by enzyme-linked immunosorbent assay of coronal pulp samples. Pulp capping and coronal obturation after pulpotomy were performed with tricalcium silicate-based cement. Four and fifteen days after pulpotomy, histological and immunohistochemical analysis was performed to assess pulp inflammation and repair processes. Our results showed significantly higher levels of innate inflammatory proteins (IL-1β, IL-6, TNF-α and CXCL-1) compared with those in controls. Moderate residual inflammation near the capping material was demonstrated by histology and immunohistochemistry, with the presence of few CD68-positive cells. We showed that, in this model of controlled pulpitis, pulpotomy with BiodentineTM allowed the synthesis at the injury site of a mineralized bridge formed from mineralized tissue secreted by cells displaying odontoblastic characteristics. Analysis of these data suggests overall that, with the limitations inherent to findings in animal models, pulpotomy with a silicate-based cement is a good treatment for controlling inflammation and enhancing repair in cases of controlled pulpitis.
Collapse
Affiliation(s)
- Sandra Minic
- Laboratory of Orofacial Pathologies, Imaging and Biotherapies, School of Dentistry, Laboratoire d’excellence INFLAMEX, Université de Paris, URP 2496, 1 Rue Maurice Arnoux, 92120 Montrouge, France; (S.M.); (M.F.); (J.S.); (C.C.)
| | - Marion Florimond
- Laboratory of Orofacial Pathologies, Imaging and Biotherapies, School of Dentistry, Laboratoire d’excellence INFLAMEX, Université de Paris, URP 2496, 1 Rue Maurice Arnoux, 92120 Montrouge, France; (S.M.); (M.F.); (J.S.); (C.C.)
- AP-HP Department of Dental Medicine, Charles Foix and Bretonneau Hospitals, and Reference Center for Rare Diseases of Calcium and Phosphorus Metabolism, 7 Avenue de la République, 94200 Ivry-sur-Seine, France
| | - Jérémy Sadoine
- Laboratory of Orofacial Pathologies, Imaging and Biotherapies, School of Dentistry, Laboratoire d’excellence INFLAMEX, Université de Paris, URP 2496, 1 Rue Maurice Arnoux, 92120 Montrouge, France; (S.M.); (M.F.); (J.S.); (C.C.)
| | | | - Catherine Chaussain
- Laboratory of Orofacial Pathologies, Imaging and Biotherapies, School of Dentistry, Laboratoire d’excellence INFLAMEX, Université de Paris, URP 2496, 1 Rue Maurice Arnoux, 92120 Montrouge, France; (S.M.); (M.F.); (J.S.); (C.C.)
- AP-HP Department of Dental Medicine, Charles Foix and Bretonneau Hospitals, and Reference Center for Rare Diseases of Calcium and Phosphorus Metabolism, 7 Avenue de la République, 94200 Ivry-sur-Seine, France
| | - Emmanuelle Renard
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, 1 Place Alexis Ricordeau, 44000 Nantes, France
- CHU de Nantes, Service d’Odontologie Restauratrice et Chirurgicale, 1 Place Alexis Ricordeau, 44000 Nantes, France
- Correspondence: (E.R.); (T.B.); Tel.: +33-2-40-41-29-86 (E.R.); +33-1-58-07-67-24 (T.B.)
| | - Tchilalo Boukpessi
- Laboratory of Orofacial Pathologies, Imaging and Biotherapies, School of Dentistry, Laboratoire d’excellence INFLAMEX, Université de Paris, URP 2496, 1 Rue Maurice Arnoux, 92120 Montrouge, France; (S.M.); (M.F.); (J.S.); (C.C.)
- AP-HP Department of Dental Medicine, Charles Foix and Bretonneau Hospitals, and Reference Center for Rare Diseases of Calcium and Phosphorus Metabolism, 7 Avenue de la République, 94200 Ivry-sur-Seine, France
- Correspondence: (E.R.); (T.B.); Tel.: +33-2-40-41-29-86 (E.R.); +33-1-58-07-67-24 (T.B.)
| |
Collapse
|
69
|
Shah J, Manton DJ, McCullough MJ, Rajan S. Odontoblast markers and dentine reactions in carious primary molars with and without hypomineralised enamel defects. Int J Paediatr Dent 2021; 31:451-458. [PMID: 33222333 DOI: 10.1111/ipd.12750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/07/2020] [Accepted: 10/22/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND Wnt/β-Catenin signalling and DMP1 have key roles in tertiary dentinogenesis. AIM To compare the relationship between remaining dentine thickness (RDT), tertiary dentine thickness (TDT), β-catenin and dentine matrix protein 1 (DMP1) in carious second primary molar teeth with normal (SPM) and hypomineralised enamel (HSPM). DESIGN Extracted carious SPM and HSPM were fixed, sectioned (5 μm) and stained with haematoxylin and eosin or with indirect immunofluorescence for β-catenin and DMP1. Image analysis was performed to determine RDT, TDT, β-catenin and DMP1 intensity in the odontoblast layer and dentine-pulp complex. RESULTS Carious SPM (n = 11; mean RDT = 1536.1 μm) and HSPM (n = 12; mean RDT = 1179.9 μm) had mean TDT 248.6 μm and 518.1 μm, respectively (P = .02). There were no significant differences in intensity values in the odontoblast layer and dentine-pulp complex for β-catenin and DMP1 for both groups. CONCLUSION There was no observable variation in Wnt/β-catenin and DMP1 expression between HSPM and SPM despite a statistically significant twofold increased TDT in HSPM compared with SPM that had similar RDT. Thus, the observed increased TDT in HSPM is more likely due to an earlier onset of repair processes rather than an amplified response to caries.
Collapse
Affiliation(s)
- Janita Shah
- Paediatric Dentistry, Melbourne Dental School, The University of Melbourne, Melbourne, Vic., Australia.,Oral Health Services, Health Care Agency, Mahé, Republic of Seychelles
| | - David J Manton
- Paediatric Dentistry, Melbourne Dental School, The University of Melbourne, Melbourne, Vic., Australia.,Centrum voor Tandheelkunde en Mondzorgkunde, Universitair Medisch Centrum Groningen, Groningen, The Netherlands
| | - Michael J McCullough
- Oral Anatomy, Medicine and Surgery, Melbourne Dental School, The University of Melbourne, Melbourne, Vic., Australia
| | - Sadna Rajan
- Paediatric Dentistry, Melbourne Dental School, The University of Melbourne, Melbourne, Vic., Australia
| |
Collapse
|
70
|
Le Fournis C, Jeanneau C, Giraud T, El Karim I, Lundy FT, About I. Fibroblasts Control Macrophage Differentiation during Pulp Inflammation. J Endod 2021; 47:1427-1434. [PMID: 34181951 DOI: 10.1016/j.joen.2021.06.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 10/21/2022]
Abstract
INTRODUCTION During pulp inflammation, recruited macrophages can differentiate into 2 phenotypes: proinflammatory M1 and anti-inflammatory M2. Pulp fibroblasts have previously been shown to regulate pulp inflammation via cytokine and growth factor secretion. We hypothesized that upon carious injury, pulp fibroblasts interact with macrophages and modulate their differentiation. METHODS Cultures of pulp fibroblasts were physically injured and incubated with lipoteichoic acid (LTA) to mimic the pulp environment underlying a carious lesion. Physical injuries without LTA were performed on cultured fibroblasts to simulate the surrounding pulp tissue. Fibroblast supernatants were collected and added to undifferentiated macrophages to study their differentiation into M1 or M2 phenotypes by investigating cytokine secretion profiles and phagocytosis capacity. Histologic staining and immunofluorescence were performed on healthy and carious human tooth sections to localize the 2 macrophage phenotypes. RESULTS LTA-stimulated fibroblasts induced macrophage differentiation into the M1 phenotype with a significant increase both in tumor necrosis factor alpha secretion and phagocytosis capacity. By contrast, injured fibroblasts without LTA led to M2 differentiation with a significant increase in interleukin 10 secretion and low phagocytosis capacity. In carious teeth, M1 macrophages were detected mainly in the pulp zone underlying caries, whereas M2 macrophages were detected in the peripheral inflammatory zone. CONCLUSIONS Fibroblasts induced macrophage differentiation to proinflammatory M1 with high bacteria phagocytosis capacity to control infection at the carious front. Fibroblasts located at the periphery of the inflammatory zone induced macrophage differentiation to anti-inflammatory M2. The fine balance between the 2 phenotypes may represent a prerequisite for initiating the healing process.
Collapse
Affiliation(s)
- Chloé Le Fournis
- Aix Marseille University, CNRS, Institute of Movement Sciences, Marseille, France
| | - Charlotte Jeanneau
- Aix Marseille University, CNRS, Institute of Movement Sciences, Marseille, France
| | - Thomas Giraud
- Aix Marseille University, CNRS, Institute of Movement Sciences, Marseille, France; APHM, Hôpital Timone, Service d'Odontologie, Marseille, France
| | - Ikhlas El Karim
- Wellcome-Wolfson for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Fionnuala T Lundy
- Wellcome-Wolfson for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Imad About
- Aix Marseille University, CNRS, Institute of Movement Sciences, Marseille, France.
| |
Collapse
|
71
|
Tran XV, Ngo LTQ, Boukpessi T. Biodentine TM Full Pulpotomy in Mature Permanent Teeth with Irreversible Pulpitis and Apical Periodontitis. Healthcare (Basel) 2021; 9:720. [PMID: 34204620 PMCID: PMC8231158 DOI: 10.3390/healthcare9060720] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/05/2021] [Accepted: 06/10/2021] [Indexed: 12/29/2022] Open
Abstract
Vital pulp therapy, including direct pulp capping and partial and full pulpotomy, is primarily indicated for immature or mature permanent teeth with reversible pulpitis. Mature permanent teeth with irreversible pulpitis are frequently treated with root canal therapy. This report presents two cases of full pulpotomy using BiodentineTM in mature permanent teeth with irreversible pulpitis and acute apical periodontitis. The periapical radiograph illustrated a deep carious lesion extended to the pulp with apical radiolucency lesion or widened periodontal ligament space. Full pulpotomy with a tricalcium silicate-based cement was chosen as the definitive treatment. After decayed tissue excavation under a rubber dam, the exposed pulp tissue was amputated to the level of the canal orifice with a new sterile bur. BiodentineTM was applied as the pulp capping agent after hemostasis was obtained and for temporary restoration. The clinical signs disappeared quickly after the treatment. After one month, the coronal part of the temporary restoration was removed, and a composite resin was placed over the capping agent as a final restoration. At two-year follow-ups, the teeth were asymptomatic. Radiographs showed healing of the periapical lesion and periodontal ligament. BiodentineTM full pulpotomy of mature permanent teeth with irreversible pulpitis and apical periodontitis can be an alternative option to root canal therapy.
Collapse
Affiliation(s)
- Xuan Vinh Tran
- Faculty of Odonto-Stomatology, University of Medicine and Pharmacy at Ho Chi Minh City (UMP), 217 Hong Bang, 11 Ward, 5 District, Ho Chi Minh City 70000, Vietnam;
| | - Lan Thi Quynh Ngo
- Faculty of Odonto-Stomatology, University of Medicine and Pharmacy at Ho Chi Minh City (UMP), 217 Hong Bang, 11 Ward, 5 District, Ho Chi Minh City 70000, Vietnam;
| | - Tchilalo Boukpessi
- UR 2496 Laboratory of Orofacial Pathologies, Imaging and Biotherapies, School of Dentistry, Université de Paris, 1 rue Maurice Arnoux, 92120 Montrouge, France
- AP-HP Department of Dental Medicine, Charles Foix Hospital, 94200 Ivry sur Seine, France
| |
Collapse
|
72
|
El karim IA, Duncan HF. Reducing Intervention in the COVID-19 Era: Opportunities for Vital Pulp Treatment. FRONTIERS IN DENTAL MEDICINE 2021. [DOI: 10.3389/fdmed.2021.686701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Over the last 12 months, the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-COV-2) virus has emerged as a significant global health problem with extensive repercussions for the practise of dentistry. As the principle transmission-route is via droplet-spread, aerosol-generating dental procedures (AGPs) present an exquisite challenge, which either has to be avoided or performed using strict infection-control measures, which increase the deployment of resources and cost. This new working environment necessitates the adoption of simplified, yet effective procedures that reduce intervention and minimise clinical chair time to short, single visits. Vital pulp treatment (VPT) has emerged as an attractive, technically less-complicated group of biologically-based management strategies that are aimed at maintaining pulp vitality and avoiding root canal treatment (RCT). These procedures are carried out in a strict aseptic environment using a rubber dam and have a reported high success rate, suggesting that they could be considered as effective and simple alternative therapies to relieve pain and avoid multiple visit RCT and other endodontic procedures. The relevance of promoting a simple, predictable and effective alternative to traditional, more complex dentistry has never been more compelling. In this perspective article, the latest advances in VPT are highlighted, along with an analysis of their relative success and compelling reasons why we as dentists should be adopting these treatment approaches. Thereafter, case selection, prognostic factors, techniques, limitations and future prospects of these procedures are discussed.
Collapse
|
73
|
Rodrigues NS, França CM, Tahayeri A, Ren Z, Saboia VPA, Smith AJ, Ferracane JL, Koo H, Bertassoni LE. Biomaterial and Biofilm Interactions with the Pulp-Dentin Complex-on-a-Chip. J Dent Res 2021; 100:1136-1143. [PMID: 34036838 DOI: 10.1177/00220345211016429] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Calcium silicate cements (CSCs) are the choice materials for vital pulp therapy because of their bioactive properties, promotion of pulp repair, and dentin bridge formation. Despite the significant progress made in understanding CSCs' mechanisms of action, the key events that characterize the early interplay between CSC-dentin-pulp are still poorly understood. To address this gap, a microfluidic device, the "tooth-on-a-chip," which was developed to emulate the biomaterial-dentin-pulp interface, was used to test 1) the effect of CSCs (ProRoot, Biodentine, and TheraCal) on the viability and proliferation of human dental pulp stem cells, 2) variations of pH, and 3) release within the pulp chamber of transforming growth factor-β (TGFβ) as a surrogate of the bioactive dentin matrix molecules. ProRoot significantly increased the extraction of TGFβ (P < 0.05) within 24 to 72 h and, along with Biodentine, induced higher cell proliferation (P > 0.05), while TheraCal decreased cell viability and provoked atypical changes in cell morphology. No correlation between TGFβ levels and pH was observed. Further, we established a biofilm of Streptococcus mutans on-chip to model the biomaterial-biofilm-dentin interface and conducted a live and dead assay to test the antimicrobial capability of ProRoot in real time. In conclusion, the device allows for direct characterization of the interaction of bioactive dental materials with the dentin-pulp complex on a model of restored tooth while enabling assessment of antibiofilm properties at the interface in real time that was previously unattainable.
Collapse
Affiliation(s)
- N S Rodrigues
- Post-Graduation Program in Dentistry, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - C M França
- Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR, USA
| | - A Tahayeri
- Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR, USA
| | - Z Ren
- Department of Orthodontics, Divisions of Community Oral Health & Pediatric Dentistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - V P A Saboia
- Post-Graduation Program in Dentistry, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - A J Smith
- School of Dentistry, University of Birmingham, Birmingham, UK
| | - J L Ferracane
- Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR, USA
| | - H Koo
- Department of Orthodontics, Divisions of Community Oral Health & Pediatric Dentistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Center for Innovation & Precision Dentistry, School of Dental Medicine and School of Engineering & Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - L E Bertassoni
- Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR, USA.,Center for Regenerative Medicine, School of Medicine, Oregon Health & Science University, Portland, OR, USA.,Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, USA.,Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, Portland, OR, USA
| |
Collapse
|
74
|
Aubeux D, Peters OA, Hosseinpour S, Tessier S, Geoffroy V, Pérez F, Gaudin A. Specialized pro-resolving lipid mediators in endodontics: a narrative review. BMC Oral Health 2021; 21:276. [PMID: 34030680 PMCID: PMC8142493 DOI: 10.1186/s12903-021-01619-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 05/09/2021] [Indexed: 02/06/2023] Open
Abstract
Endodontics is the branch of dentistry concerned with the morphology, physiology, and pathology of the human dental pulp and periradicular tissues. Human dental pulp is a highly dynamic tissue equipped with a network of resident immunocompetent cells that play major roles in the defense against pathogens and during tissue injury. However, the efficiency of these mechanisms during dental pulp inflammation (pulpitis) varies due to anatomical and physiological restrictions. Uncontrolled, excessive, or unresolved inflammation can lead to pulp tissue necrosis and subsequent bone infections called apical periodontitis. In most cases, pulpitis treatment consists of total pulp removal. Although this strategy has a good success rate, this treatment has some drawbacks (lack of defense mechanisms, loss of healing capacities, incomplete formation of the root in young patients). In a sizeable number of clinical situations, the decision to perform pulp extirpation and endodontic treatment is justifiable by the lack of therapeutic tools that could otherwise limit the immune/inflammatory process. In the past few decades, many studies have demonstrated that the resolution of acute inflammation is necessary to avoid the development of chronic inflammation and to promote repair or regeneration. This active process is orchestrated by Specialized Pro-resolving lipid Mediators (SPMs), including lipoxins, resolvins, protectins and maresins. Interestingly, SPMs do not have direct anti-inflammatory effects by inhibiting or directly blocking this process but can actively reduce neutrophil infiltration into inflamed tissues, enhance efferocytosis and bacterial phagocytosis by monocytes and macrophages and simultaneously inhibit inflammatory cytokine production. Experimental clinical application of SPMs has shown promising result in a wide range of inflammatory diseases, such as renal fibrosis, cerebral ischemia, marginal periodontitis, and cancer; the potential of SPMs in endodontic therapy has recently been explored. In this review, our objective was to analyze the involvement and potential use of SPMs in endodontic therapies with an emphasis on SPM delivery systems to effectively administer SPMs into the dental pulp space.
Collapse
Affiliation(s)
- Davy Aubeux
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, 44042, Nantes, France
- Université de Nantes, UFR Odontologie, 44042, Nantes, France
| | - Ove A Peters
- School of Dentistry, The University of Queensland, Brisbane, Australia
| | | | - Solène Tessier
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, 44042, Nantes, France
- Université de Nantes, UFR Odontologie, 44042, Nantes, France
| | - Valérie Geoffroy
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, 44042, Nantes, France
- Université de Nantes, UFR Odontologie, 44042, Nantes, France
| | - Fabienne Pérez
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, 44042, Nantes, France
- Université de Nantes, UFR Odontologie, 44042, Nantes, France
- CHU Nantes, PHU4 OTONN44093, Nantes, France
| | - Alexis Gaudin
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, 44042, Nantes, France.
- Université de Nantes, UFR Odontologie, 44042, Nantes, France.
- CHU Nantes, PHU4 OTONN44093, Nantes, France.
| |
Collapse
|
75
|
Cui D, Yu S, Zhou X, Liu Y, Gan L, Pan Y, Zheng L, Wan M. Roles of Dental Mesenchymal Stem Cells in the Management of Immature Necrotic Permanent Teeth. Front Cell Dev Biol 2021; 9:666186. [PMID: 34095133 PMCID: PMC8170050 DOI: 10.3389/fcell.2021.666186] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/06/2021] [Indexed: 02/05/2023] Open
Abstract
Dental caries and trauma always lead to pulp necrosis and subsequent root development arrest of young permanent teeth. The traditional treatment, apexification, with the absence of further root formation, results in abnormal root morphology and compromises long-term prognosis. Regeneration endodontics procedures (REPs) have been developed and considered as an alternative strategy for management of immature permanent teeth with pulpal necrosis, including cell-free and cell-based REPs. Cell-free REPs, including revascularization and cell homing with molecules recruiting endogenous mesenchymal stem cells (MSCs), have been widely applied in clinical treatment, showing optimistic periapical lesion healing and continued root development. However, the regenerated pulp-dentin complex is still absent in these cases. Dental MSCs, as one of the essentials of tissue engineering, are vital seed cells in regenerative medicine. Dental MSC-based REPs have presented promising potential with pulp-dentin regeneration in large animal studies and clinical trials via cell transplantation. In the present review, we summarize current understanding of the biological basis of clinical treatments for immature necrotic permanent teeth and the roles of dental MSCs during this process and update the progress of MSC-based REPs in the administration of immature necrotic permanent teeth.
Collapse
Affiliation(s)
- Dixin Cui
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Sihan Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ying Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lu Gan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yue Pan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Liwei Zheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mian Wan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
76
|
Aubeux D, Renard E, Pérez F, Tessier S, Geoffroy V, Gaudin A. Review of Animal Models to Study Pulp Inflammation. FRONTIERS IN DENTAL MEDICINE 2021. [DOI: 10.3389/fdmed.2021.673552] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Human dental pulp is a highly dynamic tissue equipped with a network of resident immunocompetent cells that play a major role in the defense against pathogens and during tissue injury. Animal studies are mandatory and complementary to in vitro experiments when studying the physiopathology of dental pulp, new diagnostic tools, or innovative therapeutic strategies. This animal approach makes it possible to define a benefit-risk ratio necessary to be subsequently tested in humans. Among the animal kingdom, rodents, rabbits, ferrets, swine, dogs, and non-human primates have been used to model human pulpitis. The diversity of animals found in studies indicate the difficulty of choosing the correct and most efficient model. Each animal model has its own characteristics that may be advantageous or limiting, according to the studied parameters. These elements have to be considered in preclinical studies. This article aims to provide a thorough understanding of the different animal models used to study pulp inflammation. This may help to find the most pertinent or appropriate animal model depending on the hypothesis investigated and the expected results.
Collapse
|
77
|
Widbiller M, Rothmaier C, Saliter D, Wölflick M, Rosendahl A, Buchalla W, Schmalz G, Spruss T, Galler KM. Histology of human teeth: Standard and specific staining methods revisited. Arch Oral Biol 2021; 127:105136. [PMID: 34044318 DOI: 10.1016/j.archoralbio.2021.105136] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/01/2021] [Accepted: 04/23/2021] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Histological techniques have long been an integral part of dental research. Especially the processing of complex tissues poses specific challenges, however, literature offers only few technical references. Objectives of this study were therefore to optimize histological staining methods and compile detailed protocols for preparation and staining of dental tissues. METHODS Human teeth were collected and fixed with 4 % formaldehyde solution after extraction. Subsequently, teeth were decalcified in 17 % EDTA or Morse's solution over a period of 28 days. The extent of decalcification was determined by weight loss and radiography. After sectioning, histological staining methods were optimized for their use on teeth. These included hematoxylin-eosin, Masson trichrome, Masson-Goldner trichrome and May-Gruenwald-Giemsa staining. Nerve fibres were visualized by luxol fast blue staining and Bodian silver staining. In addition, specific methods like TRAP, modified Brown and Brenn as well as picrosirius red staining with light polarization or fluorescence were applied and optimized. RESULTS Preparation of an artificial access to the pulp chamber was essential to ensure prompt penetration of the chemicals. Decalcification with Morse's solution took at least two weeks but was more efficient than 17 % ETDA, where thorough demineralization was achieved only after three weeks. The staining methods exhibited differences not only regarding their ability to display specific structures of interest, but also in terms of reproducibility. CONCLUSION High-quality histology of teeth can only be achieved after optimal tissue preparation and accurate staining. A complementary use of staining techniques is necessary to answer specific research questions.
Collapse
Affiliation(s)
- M Widbiller
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany.
| | - C Rothmaier
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | - D Saliter
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | - M Wölflick
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | - A Rosendahl
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | - W Buchalla
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | - G Schmalz
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - T Spruss
- Central Animal Facilities, University of Regensburg, Regensburg, Germany
| | - K M Galler
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
78
|
Arora S, Cooper PR, Friedlander LT, Rizwan S, Seo B, Rich AM, Hussaini HM. Potential application of immunotherapy for modulation of pulp inflammation: opportunities for vital pulp treatment. Int Endod J 2021; 54:1263-1274. [PMID: 33797765 DOI: 10.1111/iej.13524] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 12/15/2022]
Abstract
Caries results in the demineralization and destruction of enamel and dentine, and as the disease progresses, irreversible pulpitis can occur. Vital pulp therapy (VPT) is directed towards pulp preservation and the prevention of the progression of inflammation. The outcomes of VPT are not always predictable, and there is often a poor correlation between clinical signs and symptoms, and the events occurring at a molecular level. The inflamed pulp expresses increased levels of cytokines, including tumour necrosis factor (TNF)-α, interleukin (IL)-1α, IL-1β, IL-4, IL-6, IL-8, IL-17 and IL-23, which recruit and drive a complex cellular immune response. Chronic inflammation and sustained cytokine release can result in irreversible pulp damage and a decreased capacity for tissue healing. Other chronic inflammatory diseases, such as psoriasis, inflammatory bowel diseases and rheumatoid arthritis, are also characterized by an dysregulated immune response composed of relatively high cytokine levels and increased numbers of immune cells along with microbial and hard-soft tissue destructive pathologies. Whilst anti-cytokine therapies have been successfully applied in the treatment of these diseases, this approach is yet to be attempted in cases of pulp inflammation. This review therefore focuses on the similarities in the aetiology between chronic inflammatory diseases and pulpitis, and explores how anti-cytokine therapies could be applied to manage an inflamed pulp and facilitate healing. Further proof-of-concept studies and clinical trials are justified to determine the effectiveness of these treatments to enable more predictable outcomes in VPT.
Collapse
Affiliation(s)
- S Arora
- Faculty of Dentistry, Sir John Walsh Research Institute, University of Otago, Dunedin, New Zealand
| | - P R Cooper
- Faculty of Dentistry, Sir John Walsh Research Institute, University of Otago, Dunedin, New Zealand
| | - L T Friedlander
- Faculty of Dentistry, Sir John Walsh Research Institute, University of Otago, Dunedin, New Zealand
| | - S Rizwan
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | - B Seo
- Faculty of Dentistry, Sir John Walsh Research Institute, University of Otago, Dunedin, New Zealand
| | - A M Rich
- Faculty of Dentistry, Sir John Walsh Research Institute, University of Otago, Dunedin, New Zealand
| | - H M Hussaini
- Faculty of Dentistry, Sir John Walsh Research Institute, University of Otago, Dunedin, New Zealand
| |
Collapse
|
79
|
Investigation of PPAR β/ δ within Human Dental Pulp Cells: A Preliminary In Vitro Study. PPAR Res 2021; 2021:8854921. [PMID: 33790957 PMCID: PMC7997762 DOI: 10.1155/2021/8854921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 01/15/2021] [Accepted: 02/17/2021] [Indexed: 11/17/2022] Open
Abstract
Controlling the inflammatory response to restore tissue homeostasis is a crucial step to maintain tooth vitality after pathogen removal from caries-affected dental tissues. The nuclear peroxisome proliferator-activated receptor beta/delta (PPARβ/δ) is a ligand-activated transcription factor with emerging anti-inflammatory roles in many cells and tissues. However, its expression and functions are poorly understood in human dental pulp cells (hDPCs). Thus, this study evaluated PPARβ/δ expression and assessed the anti-inflammatory effects evoked by activation of PPARβ/δ in lipopolysaccharide- (LPS-) induced hDPCs. Our results showed that hDPCs constitutively expressed PPARβ/δ mRNA/protein, and treatment with LPS increased PPARβ/δ mRNA expression. The selective PPARβ/δ agonist GW0742 significantly decreased inflammation-related mRNA expression in hDPCs (IL6, IL1β, TNFα, MMP1, and MMP2) and RAW264.7 cells (Il6 and Tnfα). Further, PPARβ/δ agonist attenuated MMP2/9 gelatinolytic activity in hDPCs. Previously LPS-conditioned hDPCs increased the migration of RAW264.7 cells through the membrane of a Transwell coculture system. Conversely, pretreatment with GW0742 markedly decreased macrophage recruitment. These findings provide among the first evidence that hDPCs express PPARβ/δ. In addition, they suggest that activation of PPARβ/δ by GW0742 can attenuate some cellular and molecular in vitro aspects related to the inflammatory process, pointing out to investigate its potential target role in dental pulp inflammation.
Collapse
|
80
|
Lin LM, Huang GTJ, Sigurdsson A, Kahler B. Clinical cell-based versus cell-free regenerative endodontics: clarification of concept and term. Int Endod J 2021; 54:887-901. [PMID: 33389773 DOI: 10.1111/iej.13471] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 12/17/2022]
Abstract
There is no consensus on the true meaning of clinical regenerative endodontics, and there is confusion over the concept and the term. Commonly used terms include revitalization and revascularization. The clinical methods for endodontic revitalization procedures and the tissue engineering concept differ depending on whether there is exogenous delivery of cells - called cell therapy, or not. Here, in this review, the difference is clarified by emphasizing the correct terminology: cell-free versus cell-based regenerative endodontic therapy (CF-RET versus CB-RET). The revitalization procedures practised clinically do not fit into the modern tissue engineering concepts of pulp regeneration but can be categorized as CF-RET. The modern tissue engineering concept in pulp regeneration is a CB-RET, which so far is at the clinical trial stage. However, histological examination of teeth following regenerative endodontic treatments reveals healing with repair derived from stem cells that originate from the periodontal, bone and other tissues. The aim of regenerative endodontics is regeneration of the pulp-dentine complex. This review discusses why CF-RET is unlikely to regenerate a pulp-dentine complex with current protocols. The American Association of Endodontists and the European Society of Endodontology have not yet recommended autologous stem cell transplantation (CB-RERT) which aspires for regeneration. Therefore, an understanding of the concept, term, difficulties and differences in current protocols is important for the clinician. However, rather than being discouraged that ideal regeneration has not been achieved to date, repair can be an acceptable outcome in clinical regenerative endodontics as it has also been accepted in medicine. Repair should also be considered in the context that resolution of the clinical signs/symptoms of pulp necrosis/apical periodontitis is generally reliably obtained in clinical regenerative endodontics.
Collapse
Affiliation(s)
- L M Lin
- College of Dentistry, New York University, New York, NY, USA
| | - G T-J Huang
- Department of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - A Sigurdsson
- College of Dentistry, New York University, New York, NY, USA
| | - B Kahler
- School of Dentistry, University of Queensland, Brisbane, Australia
| |
Collapse
|
81
|
Qiu YJ, Tang J, Saito T. A novel bio-active adhesive monomer induces odontoblast differentiation: a comparative study. Int Endod J 2021; 53:1413-1429. [PMID: 33460206 DOI: 10.1111/iej.13365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/06/2020] [Indexed: 12/29/2022]
Abstract
AIM To evaluate the in vitro effect of the novel adhesive monomer CMET, a calcium salt of 4-methacryloxyethyl trimellitate (4-MET), on the proliferation, mineralization and differentiation of odontoblast-like cells, comparing with 4-MET, calcium hydroxide (CH) and mineral trioxide aggregate (MTA). METHODOLOGY Rat odontoblast-like MDPC-23 cells were cultured in Dulbecco's modified Eagle's medium (DMEM) supplemented with 5% foetal bovine serum. The powder of four tested materials (CMET, 4-MET, CH and MTA) was first dissolved in distilled water (dH2O) and then was diluted by DMEM to yield final concentrations. Solvent (dH2O) was used as a control. Cell viability was assessed using CCK-8 assay. Real-time RT-PCR was used to quantify the mRNA expression of odontogenic markers, cytokines and integrins. Mineralization inducing capacity was evaluated by alkaline phosphatase (ALPase) activity and alizarin red S staining. Statistical analyses were performed using one-way anova and post hoc Tukey's HSD test, with the significance level at 1%. RESULTS Cell viability was significantly greater in the CMET- (83 to 828 mmol L-1), CH- and MTA-treated (low concentrations) groups than that in the control group (P < 0.01). Higher concentrations of each material decreased the viable cells to different extents (P < 0.01). CMET treatment augmented the expression of several integrin subunits and exhibited the highest mRNA expression levels of odontogenic markers among all groups (P < 0.01). CH and MTA treatment caused significantly greater upregulation of pro-inflammatory cytokines expression than the other groups (P < 0.01). The calcific deposition of MDPC-23 cells was dose-dependently accelerated by the addition of CMET (P < 0.01); the enhancement of mineralization was also found in the fresh prepared CH and MTA treatments. Besides, CMET showed consistency in mineralization induction after 8 weeks storage. Exposure to SB202190, a specific p38 mitogen-activated protein kinases inhibitor, significantly decreased the ALPase activity as well as the mineral deposition which was enhanced by CMET treatment (P < 0.01). CONCLUSIONS The novel bio-active monomer had the lowest cytotoxicity among all groups and it induced the proliferation, mineralization and differentiation of odontoblast-like cells under appropriate concentrations. This adhesive monomer possesses excellent biocompatibility and hence exhibits great potential in dentine regeneration.
Collapse
Affiliation(s)
- Y J Qiu
- Division of Clinical Cariology and Endodontology, Department of Oral Rehabilitation, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - J Tang
- Division of Biochemistry, Department of Oral Biology, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - T Saito
- Division of Clinical Cariology and Endodontology, Department of Oral Rehabilitation, Health Sciences University of Hokkaido, Hokkaido, Japan
| |
Collapse
|
82
|
Shayegan A, Zucchi A, De Swert K, Balau B, Truyens C, Nicaise C. Lipoteichoic acid stimulates the proliferation, migration and cytokine production of adult dental pulp stem cells without affecting osteogenic differentiation. Int Endod J 2021; 54:585-600. [PMID: 33210765 DOI: 10.1111/iej.13448] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 01/09/2023]
Abstract
AIM To model in vitro the contact between adult dental pulp stem cells (DPSCs) and lipoteichoic acid (LTA), a cell wall component expressed at the surface of most Gram-positive bacteria. METHODOLOGY Human DPSCs obtained from impacted third molars were cultured and exposed to various concentrations of S. aureus LTA (0.1, 1.0 and 10 µg mL-1 ). The effects of LTA on DPSCs proliferation and apoptosis were investigated by MTT assay and flow cytometry. Mineralization of DPSCs was evaluated by alizarin red staining assay. Migration was investigated by microphotographs of wound-healing and Transwell migration assays. Reverse transcription polymerase chain reaction was used to examine the effects of LTA on p65 NF-κB translocation and TLR1, TLR2 or TLR6 regulation. Enzyme-linked immunosorbent assay was used to investigate LTA-stimulated DPSCs cytokine production. One-way or two-way ANOVA and Tukey post hoc multiple comparison were used for statistical analysis. RESULTS DPSCs expressed TLR1, TLR2 and TLR6 involved in the recognition of various forms of LTA or lipoproteins. Exposure to LTA did not up- or down-regulate the mRNAs of TLR1, TLR2 or TLR6 whilst LPS acted as a potent inducer of them [TLR1 (P ≤ 0.05), TLR2 (P ≤ 0.001) and TLR6 (P ≤ 0.001)]. Translocation of p65 NF-κB to the nucleus was detected in LTA-stimulated cells, but to a lesser extent than LPS-stimulated DPSCs (P ≤ 0.001). The viability of cells exposed to LTA was greater than unstimulated cells, which was attributed to an increased proliferation and not to less cell death [LTA 1 μg mL-1 (P ≤ 0.001) and 10 μg mL-1 (P ≤ 0.01)]. For specific doses of LTA (1.0 µg mL-1 ), adhesion of DPSCs to collagen matrix was disturbed (P ≤ 0.05) and cells enhanced their horizontal mobility (P ≤ 0.001). LTA-stimulated DPSCs released IL-6 and IL-8 in a dose-dependent manner (P ≤ 0.0001). At all concentrations investigated, LTA did not influence osteogenic/odontoblastic differentiation. CONCLUSIONS Human DPSCs were able to sense the wall components of Gram-positive bacteria likely through TLR2 signalling. Consequently, cells modestly proliferated, increased their migratory behaviour and contributed significantly to the local inflammatory response through cytokine release.
Collapse
Affiliation(s)
- A Shayegan
- Department of Children and Adult Operative Dentistry, Children's Hospital of Queen Fabiola, Université Libre de Bruxelles, Brussels, Belgium
| | - A Zucchi
- Laboratory of Parasitology, Université Libre de Bruxelles, Brussels, Belgium
| | - K De Swert
- URPhyM - NARILIS, Université de Namur, Namur, Belgium
| | - B Balau
- URPhyM - NARILIS, Université de Namur, Namur, Belgium
| | - C Truyens
- Laboratory of Parasitology, Université Libre de Bruxelles, Brussels, Belgium
| | - C Nicaise
- URPhyM - NARILIS, Université de Namur, Namur, Belgium
| |
Collapse
|
83
|
Son YB, Kang YH, Lee HJ, Jang SJ, Bharti D, Lee SL, Jeon BG, Park BW, Rho GJ. Evaluation of odonto/osteogenic differentiation potential from different regions derived dental tissue stem cells and effect of 17β-estradiol on efficiency. BMC Oral Health 2021; 21:15. [PMID: 33413268 PMCID: PMC7792121 DOI: 10.1186/s12903-020-01366-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/15/2020] [Indexed: 12/12/2022] Open
Abstract
Background The dentin is a tissue, which is formed by odontoblasts at the pulp interface of the teeth that supports the enamel. Odontoblasts, the cranial neural crest cells are derived from ectodermal mesenchymal stem cells (MSCs) and are long and polarized cells. They are present at the outer surface of dentin and play a prominent role about dentin formation. Recently, attention has been focused on induction of odontoblast using various type of MSCs and effects of the 17ß-estradiol supplementation. In this study, we establish an efficient odonto/osteoblast differentiation protocol using 17ß-estradiol supplementation while comparing the odonto/osteoblast ability of various dental MSCs. Methods Same donor derived four types of dental MSCs namely dental pulp stem cells (DPSCs), stem cells from apical papilla (SCAP), dental follicle stem cells (DFSCs), and periodontal ligament stem cells (PDLSCs) were evaluated for their stemness characteristics and potency towards odonto/osteoblast (Induced odonto/osteoblast) differentiation.
Then 17ß-estradiol supplementation of 0 and 10 µM was applied to the odonto/osteoblast differentiation media for 14 days respectively. Furthermore, mRNA and protein levels of odonto/osteoblast markers were evaluated. Results All of the experimental groups displayed stemness characteristics by showing adipocyte and chondrocyte differentiation abilities, expression for cell surface markers and cell proliferation capacity without any significant differences. Moreover, all dental derived MSCs were shown to have odonto/osteoblast differentiation ability when cultured under specific conditions and also showed positive expression for odontoblast markers at both mRNA and protein level. Among all, DPSCs revealed the higher differentiation potential than other dental MSCs. Furthermore, odonto/osteoblast differentiation potential was enhanced by supplementing the differentiation media with 17ß-estradiol (E2). Conclusions Thus, DPSCs possess higher odonto/osteogenic potential than the SCAPs, DFSCs, PDLSCs and their differentiation capacity can by further enhanced under E2 supplementation.
Collapse
Affiliation(s)
- Young-Bum Son
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju, GN, 660-701, Republic of Korea
| | - Young-Hoon Kang
- Department of Oral and Maxillofacial Surgery, Changwon Gyeongsang National University Hospital, Changwon, Republic of Korea.,Department of Oral and Maxillofacial Surgery, Gyeongsang National University School of Medicine, Jinju, Republic of Korea
| | - Hyeon-Jeong Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju, GN, 660-701, Republic of Korea
| | - Si-Jung Jang
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju, GN, 660-701, Republic of Korea
| | - Dinesh Bharti
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju, GN, 660-701, Republic of Korea
| | - Sung-Lim Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju, GN, 660-701, Republic of Korea
| | - Byeong-Gyun Jeon
- Department of Biology Education, Gyeongsang National University, Jinju, Republic of Korea
| | - Bong-Wook Park
- Department of Oral and Maxillofacial Surgery, Changwon Gyeongsang National University Hospital, Changwon, Republic of Korea. .,Department of Oral and Maxillofacial Surgery, Gyeongsang National University School of Medicine, Jinju, Republic of Korea. .,Department of Dentistry, Hanil Hospital, Jinju, Republic of Korea.
| | - Gyu-Jin Rho
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju, GN, 660-701, Republic of Korea.
| |
Collapse
|
84
|
Abbass MMS, El-Rashidy AA, Sadek KM, Moshy SE, Radwan IA, Rady D, Dörfer CE, Fawzy El-Sayed KM. Hydrogels and Dentin-Pulp Complex Regeneration: From the Benchtop to Clinical Translation. Polymers (Basel) 2020; 12:E2935. [PMID: 33316886 PMCID: PMC7763835 DOI: 10.3390/polym12122935] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/08/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023] Open
Abstract
Dentin-pulp complex is a term which refers to the dental pulp (DP) surrounded by dentin along its peripheries. Dentin and dental pulp are highly specialized tissues, which can be affected by various insults, primarily by dental caries. Regeneration of the dentin-pulp complex is of paramount importance to regain tooth vitality. The regenerative endodontic procedure (REP) is a relatively current approach, which aims to regenerate the dentin-pulp complex through stimulating the differentiation of resident or transplanted stem/progenitor cells. Hydrogel-based scaffolds are a unique category of three dimensional polymeric networks with high water content. They are hydrophilic, biocompatible, with tunable degradation patterns and mechanical properties, in addition to the ability to be loaded with various bioactive molecules. Furthermore, hydrogels have a considerable degree of flexibility and elasticity, mimicking the cell extracellular matrix (ECM), particularly that of the DP. The current review presents how for dentin-pulp complex regeneration, the application of injectable hydrogels combined with stem/progenitor cells could represent a promising approach. According to the source of the polymeric chain forming the hydrogel, they can be classified into natural, synthetic or hybrid hydrogels, combining natural and synthetic ones. Natural polymers are bioactive, highly biocompatible, and biodegradable by naturally occurring enzymes or via hydrolysis. On the other hand, synthetic polymers offer tunable mechanical properties, thermostability and durability as compared to natural hydrogels. Hybrid hydrogels combine the benefits of synthetic and natural polymers. Hydrogels can be biofunctionalized with cell-binding sequences as arginine-glycine-aspartic acid (RGD), can be used for local delivery of bioactive molecules and cellularized with stem cells for dentin-pulp regeneration. Formulating a hydrogel scaffold material fulfilling the required criteria in regenerative endodontics is still an area of active research, which shows promising potential for replacing conventional endodontic treatments in the near future.
Collapse
Affiliation(s)
- Marwa M. S. Abbass
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt; (M.M.S.A.); (S.E.M.); (I.A.R.); (D.R.)
- Stem Cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt; (A.A.E.-R.); (K.M.S.)
| | - Aiah A. El-Rashidy
- Stem Cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt; (A.A.E.-R.); (K.M.S.)
- Biomaterials Department, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt
| | - Khadiga M. Sadek
- Stem Cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt; (A.A.E.-R.); (K.M.S.)
- Biomaterials Department, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt
| | - Sara El Moshy
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt; (M.M.S.A.); (S.E.M.); (I.A.R.); (D.R.)
- Stem Cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt; (A.A.E.-R.); (K.M.S.)
| | - Israa Ahmed Radwan
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt; (M.M.S.A.); (S.E.M.); (I.A.R.); (D.R.)
- Stem Cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt; (A.A.E.-R.); (K.M.S.)
| | - Dina Rady
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt; (M.M.S.A.); (S.E.M.); (I.A.R.); (D.R.)
- Stem Cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt; (A.A.E.-R.); (K.M.S.)
| | - Christof E. Dörfer
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts University, 24105 Kiel, Germany;
| | - Karim M. Fawzy El-Sayed
- Stem Cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt; (A.A.E.-R.); (K.M.S.)
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts University, 24105 Kiel, Germany;
- Oral Medicine and Periodontology Department, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
85
|
Abstract
A loss of organs or the destruction of tissue leaves wounds to which organisms and living things react differently. Their response depends on the extent of damage, the functional impairment and the biological potential of the organism. Some can completely regenerate lost body parts or tissues, whereas others react by forming scars in the sense of a tissue repair. Overall, the regenerative capacities of the human body are limited and only a few tissues are fully restored when injured. Dental tissues may suffer severe damage due to various influences such as caries or trauma; however, dental care aims at preserving unharmed structures and, thus, the functionality of the teeth. The dentin-pulp complex, a vital compound tissue that is enclosed by enamel, holds many important functions and is particularly worth protecting. It reacts physiologically to deleterious impacts with an interplay of regenerative and reparative processes to ensure its functionality and facilitate healing. While there were initially no biological treatment options available for the irreversible destruction of dentin or pulp, many promising approaches for endodontic regeneration based on the principles of tissue engineering have been developed in recent years. This review describes the regenerative and reparative processes of the dentin-pulp complex as well as the morphological criteria of possible healing results. Furthermore, it summarizes the current knowledge on tissue engineering of dentin and pulp, and potential future developments in this thriving field.
Collapse
|
86
|
Zheng J, Kong Y, Hu X, Li Z, Li Y, Zhong Y, Wei X, Ling J. MicroRNA-enriched small extracellular vesicles possess odonto-immunomodulatory properties for modulating the immune response of macrophages and promoting odontogenesis. Stem Cell Res Ther 2020; 11:517. [PMID: 33256846 PMCID: PMC7708107 DOI: 10.1186/s13287-020-02039-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 11/19/2020] [Indexed: 02/06/2023] Open
Abstract
Background To investigate the odonto-immunomodulatory properties of dental pulp stem cell-derived small extracellular vesicles (DPSCs-sEV), which promote odontogenesis by switching macrophages toward the pro-healing M2 phenotype. Methods MicroRNA sequencing was carried out for microRNA profiling of DPSCs-sEV. Automated Western blot, qPCR, ELISA, and flow cytometry were performed to identify the functions of microRNA-enriched DPSCs-sEV in macrophages. A luciferase reporter gene assay was carried out to confirm exosomal miR-125a-3p’s direct target gene. DPSCs-sEV-stimulated macrophage-conditioned media were used to promote odontogenesis in DPSCs and explore the mechanism of immune response in DPSCs-SEV-stimulated odontogenesis. DPSCs-sEV were injected into the exposed pulp tissue of rat incisor to investigate the odonto-immunomodulatory properties of DPSCs-sEV in vivo. Results DPSCs-sEV switched macrophages to the pro-healing M2 phenotype by inhibiting TLR and NFκΒ signaling. MicroRNA sequencing found 81 microRNAs significantly altered in DPSCS-sEV, with miR-125a-3p showing a 12-fold upregulation. Exosomal miR-125a-3p switched macrophages toward the M2 phenotype via inhibiting NFκΒ and TLR signaling via direct IKBKB targeting. Interestingly, DPSCs-sEV and the encapsulated miR-125a-3p enhanced BMP2 release in macrophages, promoting odontogenesis in DPSCs through BMP2 pathway activation. The rat study confirmed that DPSCs-sEV could be used as ideal biomimetic tools to enhance odontogenesis by switching macrophages toward pro-healing M2 cells. Conclusions We firstly defined the odonto-immunomodulatory properties of microRNA-enriched DPSCs-sEV, which could be used as ideal biomimetic tools to enhance odontogenesis by switching macrophages toward the pro-healing M2 phenotype.
Collapse
Affiliation(s)
- Jianmao Zheng
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China. .,Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Affiliated Stomatological Hospital, Sun Yat-sen University, Guangzhou, 510055, Guangdong, China.
| | - Yuanyuan Kong
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Department of Endodontics, Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaoli Hu
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China.,Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Affiliated Stomatological Hospital, Sun Yat-sen University, Guangzhou, 510055, Guangdong, China
| | - Zhishan Li
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China.,Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Affiliated Stomatological Hospital, Sun Yat-sen University, Guangzhou, 510055, Guangdong, China
| | - Yaoyin Li
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yingqun Zhong
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China.,Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Affiliated Stomatological Hospital, Sun Yat-sen University, Guangzhou, 510055, Guangdong, China
| | - Xi Wei
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China. .,Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Affiliated Stomatological Hospital, Sun Yat-sen University, Guangzhou, 510055, Guangdong, China.
| | - Junqi Ling
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China. .,Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Affiliated Stomatological Hospital, Sun Yat-sen University, Guangzhou, 510055, Guangdong, China.
| |
Collapse
|
87
|
Macrophage modulation of dental pulp stem cell activity during tertiary dentinogenesis. Sci Rep 2020; 10:20216. [PMID: 33214653 PMCID: PMC7678850 DOI: 10.1038/s41598-020-77161-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 11/02/2020] [Indexed: 01/10/2023] Open
Abstract
The interaction between immune cells and stem cells is important during tissue repair. Macrophages have been described as being crucial for limb regeneration and in certain circumstances have been shown to affect stem cell differentiation in vivo. Dentine is susceptible to damage as a result of caries, pulp infection and inflammation all of which are major problems in tooth restoration. Characterising the interplay between immune cells and stem cells is crucial to understand how to improve natural repair mechanisms. In this study, we used an in vivo damage model, associated with a macrophage and neutrophil depletion model to investigate the role of immune cells in reparative dentine formation. In addition, we investigated the effect of elevating the Wnt/β-catenin pathway to understand how this might regulate macrophages and impact upon Wnt receiving pulp stem cells during repair. Our results show that macrophages are required for dental pulp stem cell activation and appropriate reparative dentine formation. In addition, pharmacological stimulation of the Wnt/β-catenin pathway via GSK-3β inhibitor small molecules polarises macrophages to an anti-inflammatory state faster than inert calcium silicate-based materials thereby accelerating stem cell activation and repair. Wnt/β-catenin signalling thus has a dual role in promoting reparative dentine formation by activating pulp stem cells and promoting an anti-inflammatory macrophage response.
Collapse
|
88
|
Demant S, Dabelsteen S, Bjørndal L. A macroscopic and histological analysis of radiographically well-defined deep and extremely deep carious lesions: carious lesion characteristics as indicators of the level of bacterial penetration and pulp response. Int Endod J 2020; 54:319-330. [PMID: 33012046 DOI: 10.1111/iej.13424] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 09/29/2020] [Indexed: 12/26/2022]
Abstract
AIM To investigate the relationship between radiographically and macroscopically well-defined carious lesions and the dentine-pulp complex with regard to: (i) level of bacterial penetration; (ii) inflammatory status including the presence of hyperplastic pulp stroma; and (iii) formation of hard and/or ectopic connective tissue. METHODOLOGY The material comprised 68 untreated cavitated permanent teeth divided into well-defined radiographic categories based on the lesion penetration depth: (i) deep lesions ( ≥3/4 of the dentine thickness with a radio-dense zone separating the lesion from the pulp) and (ii) extremely deep lesions (the carious lesion penetrated the entire thickness of the dentine, without a radio-dense zone). After extraction, the teeth were processed for histology. The material was scored with regard to coronal breakdown, macroscopic variables describing caries activity and histological variables describing the dentine-pulp complex (bacteria, inflammatory infiltrate, partial pulp necrosis, hyperplastic changes and hard tissue/ectopic presence of connective tissue). Interrater agreement was assessed using Cohen's kappa. Associations between variables were assessed using Pearson's chi-squared or Fisher's exact test. The effect size was reported by odds ratio (OR) and associated 95% confidence interval (CI). Level of significance was set to 5%. RESULTS There were significant associations between a closed environment (1-2 surfaces involved) and the presence of biofilm, retrograde demineralization and light-coloured demineralized dentine. Whereas radiographically defined deep lesions tended to have bacteria only in the primary dentine (P < 0.001, OR = 20.55, 95% CI [4.44, 107.89]), extremely deep carious lesions tended to have bacteria in contact with the pulpal tissue (P = 0.007, OR = 6.84, 95% CI [2.00, 62.83]), presence of an inflammatory infiltrate (Fisher's exact; P < 0.001) and partial pulp necrosis. Hyperplastic pulps were seen only in extremely deep lesions. CONCLUSIONS Unlike deep lesions, extremely deep carious lesions were often associated with severe pulp inflammation and infection. A radiographic threshold between deep and extremely deep lesions is suggested as indicator of the bacterial penetration level and the severity of the pulpal response prior to intervention.
Collapse
Affiliation(s)
- S Demant
- Section of Clinical Oral Microbiology, Cariology and Endodontics, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Section of Oral Biology and Immunopathology, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - S Dabelsteen
- Section of Oral Biology and Immunopathology, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - L Bjørndal
- Section of Clinical Oral Microbiology, Cariology and Endodontics, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
89
|
Ge R, Lv Y, Li P, Xu L, Feng X, Qi H. Upregulated microRNA-126 induces apoptosis of dental pulp stem cell via mediating PTEN-regulated Akt activation. J Clin Lab Anal 2020; 35:e23624. [PMID: 33150661 PMCID: PMC7891527 DOI: 10.1002/jcla.23624] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/07/2020] [Accepted: 09/28/2020] [Indexed: 02/03/2023] Open
Abstract
INTRODUCTION Human dental pulp stem cells (DPSCs) have potential applications in regenerative medicine. The molecular mechanisms underlying DPSCs viability and apoptosis are not completely understood. Here, we investigated the role of miR-126 in DPSCs viability and apoptosis. MATERIAL AND METHODS Senescent DPSCs were compared with early passage DPSCs. real-time PCR and microARRAY were performed to identify the differential expression of miR-126, and western blot was performed to detect the expression of PTEN. MTT assay was utilized to reveal the proliferative rate of both senescent and early passage DPSCs. Flow cytometry was used to examine the apoptotic rate of DPSCs. Dual-luciferase reporter assay was carried out to detect the interaction of miR-126 and PTEN. RESULTS Senescent DPSCs showed a high level of apoptosis. Further study showed that miR-126 is upregulated in senescent DPSCs and its overexpression in early passaged DPSCs induced apoptosis. Phosphatase and tensin homolog gene (PTEN) was identified as a target of miR-126. PTEN was downregulated in senescent DPSCs, whereas miR-126 inhibition upregulated PTEN level, and subsequently activated Akt pathway and suppressed the apoptotic phenotype of senescent DPSCs. In addition, PTEN overexpression rescued apoptosis of DPSCs at later stage. CONCLUSION Our results demonstrate that the miR-126-PTEN-Akt axis plays a key role in the regulation of DPSCs apoptosis and provide a candidate target to improve the functional and therapeutic potential of DPSCs.
Collapse
Affiliation(s)
- Rucun Ge
- Laboratory of Regenerative Medicine, Shandong Provincial Third Hospital, Jinan, China
| | - Yongtao Lv
- Laboratory of Regenerative Medicine, Shandong Provincial Third Hospital, Jinan, China
| | - Peipei Li
- Laboratory of Regenerative Medicine, Shandong Provincial Third Hospital, Jinan, China
| | - Lin Xu
- Laboratory of Regenerative Medicine, Shandong Provincial Third Hospital, Jinan, China
| | - Xiaoya Feng
- Department of Neurology, Shandong Provincial Third Hospital, Jinan, China
| | - Hongshun Qi
- Laboratory of Regenerative Medicine, Shandong Provincial Third Hospital, Jinan, China
| |
Collapse
|
90
|
Sismanoglu S, Ercal P. Dentin-Pulp Tissue Regeneration Approaches in Dentistry: An Overview and Current Trends. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1298:79-103. [PMID: 32902726 DOI: 10.1007/5584_2020_578] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Conventional treatment approaches in irreversible pulpitis and apical periodontitis include the disinfection of the pulp space followed by filling with various materials, which is commonly known as the root canal treatment. Disadvantages including the loss of tooth vitality and defense mechanism against carious lesions, susceptibility to fractures, discoloration and microleakage led to the development of regenerative therapies for the dentin pulp-complex. The goal of dentin-pulp tissue regeneration is to reestablish the physiological pulp function such as pulp sensibility, pulp repair capability by mineralization and pulp immunity. Recent dentin-pulp tissue regeneration approaches can be divided into cell homing and cell transplantation. Cell based approaches include a suitable scaffold for the delivery of potent stem cells with or without bioactive molecules into the root canal system while cell homing is based on the recruitment of host endogenous stem cells from the resident tissue including periapical region or dental pulp. This review discusses the recent treatment modalities in dentin-pulp tissue regeneration through tissue engineering and current challenges and trends in this field of research.
Collapse
Affiliation(s)
- Soner Sismanoglu
- Department of Restorative Dentistry, Faculty of Dentistry, Altinbas University, Istanbul, Turkey
| | - Pınar Ercal
- Department of Oral Surgery, Faculty of Dentistry, Altinbas University, Istanbul, Turkey.
| |
Collapse
|
91
|
Li X, Wang L, Su Q, Ye L, Zhou X, Zhang L, Song D, Huang D. Potential Roles of Bone Morphogenetic Protein 9 in the Odontogenic Differentiation of Dental Pulp Cells. J Endod 2020; 47:436-443. [PMID: 33129897 DOI: 10.1016/j.joen.2020.10.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 02/08/2023]
Abstract
INTRODUCTION The differentiation of dental pulp cells (DPCs) plays an important role in the repair of dental pulp injury. Bone morphogenetic protein 9 (BMP9) is one of the most effective BMPs to induce the differentiation of stem cells. However, the role of BMP9 in promoting the odontogenic differentiation of DPCs and dentinogenesis is worth knowing. METHODS Fluorescence in situ hybridization and immunohistochemistry staining were performed to detect the BMP9 expression in human dental pulp. BMP9 was overexpressed in human DPCs (hDPCs), and the mineralization of hDPCs was tested by alkaline phosphatase staining and alizarin red staining. The expression of odontogenic differentiation-related genes was examined by quantitative real-time polymerase chain reaction and western blotting. The subcutaneous transplantation experiment was performed to test the odonto-induction ability of BMP9 in vivo. The rat direct pulp-capping experiment was performed to test the function of BMP9 in promoting dentin formation. RESULTS BMP9 showed an increased expression in odontoblast layer at both the mRNA and protein levels. BMP9 enhanced the mineralization and induced the expression of odontogenic differentiation-related genes in hDPCs. More mineralized nodules, and increased expression of dentin sialophosphoprotein (DSPP) and dentin matrix protein-1 (DMP1) were detected in the beta-tricalcium phosphate scaffold/cells composites of BMP9 group compared with the control group. Meanwhile, there was thicker reparative dentin formation in the BMP9 group in the rat pulp exposure experiment. CONCLUSIONS BMP9 participates in the process of DPC differentiation and promotes DPC mineralization and dentinogenesis. BMP9 might be a potential therapeutic target in the repair of dental pulp injury.
Collapse
Affiliation(s)
- Xiangfen Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Liu Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qin Su
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ling Ye
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lan Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dongzhe Song
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Dingming Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
92
|
Wang D, Sun S, Xue Y, Qiu J, Ye T, Zhang R, Song B, He W, Zhang Y, Jiang W. MicroRNA-223 negatively regulates LPS-induced inflammatory responses by targeting NLRP3 in human dental pulp fibroblasts. Int Endod J 2020; 54:241-254. [PMID: 32966618 DOI: 10.1111/iej.13413] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/08/2020] [Accepted: 09/14/2020] [Indexed: 12/11/2022]
Abstract
AIM To investigate the effect of miR-223 on NLRP3, subsequently regulating the production of the NLRP3/CASP1 inflammasome pathway-mediated proinflammatory cytokines IL-1β and IL-18 in human dental pulp fibroblasts (HDPFs). METHODOLOGY Human dental pulp tissue (HDPT) and HDPFs were obtained from impacted third molars. The miR-223 mimics and inhibitor or NLRP3 plasmid were used to upregulate or downregulate miR-223 or NLRP3 in HDPFs, respectively. Computational prediction via TargetScan 5.1 and a luciferase reporter assay was conducted to confirm target association. The mRNA and protein expression of NLRP3, caspase-1, IL-1β and IL-18 was determined by qRT-PCR and Western blotting, respectively. The release of IL-1β and IL-18 was analysed by ELISA. The significance of the differences between the experimental and the control groups was determined using one-way analysis of variance; P < 0.05 indicated statistical significance. RESULTS A decrease in miR-223 and an increase in NLRP3 in HDPT occurred during the transformation of reversible pulpitis into irreversible pulpitis compared to that in healthy pulp tissue (P < 0.05). The computational prediction and luciferase reporter assay confirmed that NLRP3 was a direct target of miR-223 in HDPFs. The miR-223 inhibitor further promoted ATP plus LPS-induced NLRP3/CASP1 inflammasome pathway activation compared to the ATP plus LPS-induced group (P < 0.05). In contrast, the miR-223 mimic significantly inhibited the NLRP3/CASP1 inflammasome pathway activation induced by ATP plus LPS compared to the ATP plus LPS-induced group (P < 0.05). CONCLUSION MiR-223 served as a negative regulator involved in the control of the production and secretion of proinflammatory cytokines mediated by the NLRP3/CASP1 inflammasome pathway by targeting NLRP3. These data provide insight into the potential regulatory effects of miRNAs on the NLRP3 inflammasome, thus opening up novel potential therapeutic avenues for future endodontic treatment.
Collapse
Affiliation(s)
- D Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Operative Dentistry & Endodontics, School of Stomatology, Fourth Military Medical University, Xi'an, China.,Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
| | - S Sun
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Y Xue
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
| | - J Qiu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Operative Dentistry & Endodontics, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - T Ye
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Operative Dentistry & Endodontics, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - R Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Operative Dentistry & Endodontics, School of Stomatology, Fourth Military Medical University, Xi'an, China.,Department of Stomatology, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - B Song
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Operative Dentistry & Endodontics, School of Stomatology, Fourth Military Medical University, Xi'an, China.,School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| | - W He
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Operative Dentistry & Endodontics, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Y Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Operative Dentistry & Endodontics, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - W Jiang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Operative Dentistry & Endodontics, School of Stomatology, Fourth Military Medical University, Xi'an, China.,School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| |
Collapse
|
93
|
Chen M, Zeng J, Yang Y, Wu B. Diagnostic biomarker candidates for pulpitis revealed by bioinformatics analysis of merged microarray gene expression datasets. BMC Oral Health 2020; 20:279. [PMID: 33046027 PMCID: PMC7552454 DOI: 10.1186/s12903-020-01266-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 09/29/2020] [Indexed: 12/11/2022] Open
Abstract
Background Pulpitis is an inflammatory disease, the grade of which is classified according to the level of inflammation. Traditional methods of evaluating the status of dental pulp tissue in clinical practice have limitations. The rapid and accurate diagnosis of pulpitis is essential for determining the appropriate treatment. By integrating different datasets from the Gene Expression Omnibus (GEO) database, we analysed a merged expression matrix of pulpitis, aiming to identify biological pathways and diagnostic biomarkers of pulpitis. Methods By integrating two datasets (GSE77459 and GSE92681) in the GEO database using the sva and limma packages of R, differentially expressed genes (DEGs) of pulpitis were identified. Then, the DEGs were analysed to identify biological pathways of dental pulp inflammation with Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis and Gene Set Enrichment Analysis (GSEA). Protein–protein interaction (PPI) networks and modules were constructed to identify hub genes with the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) and Cytoscape. Results A total of 470 DEGs comprising 394 upregulated and 76 downregulated genes were found in pulpitis tissue. GO analysis revealed that the DEGs were enriched in biological processes related to inflammation, and the enriched pathways in the KEGG pathway analysis were cytokine-cytokine receptor interaction, chemokine signalling pathway and NF-κB signalling pathway. The GSEA results provided further functional annotations, including complement system, IL6/JAK/STAT3 signalling pathway and inflammatory response pathways. According to the degrees of nodes in the PPI network, 10 hub genes were identified, and 8 diagnostic biomarker candidates were screened: PTPRC, CD86, CCL2, IL6, TLR8, MMP9, CXCL8 and ICAM1. Conclusions With bioinformatics analysis of merged datasets, biomarker candidates of pulpitis were screened and the findings may be as reference to develop a new method of pulpitis diagnosis.
Collapse
Affiliation(s)
- Ming Chen
- Stomatological Hospital, Southern Medical University, Guangzhou, China.,School of Stomatology, Southern Medical University, Guangzhou, China
| | - Junkai Zeng
- School of Stomatology, Southern Medical University, Guangzhou, China.,Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yeqing Yang
- Stomatological Hospital, Southern Medical University, Guangzhou, China.,School of Stomatology, Southern Medical University, Guangzhou, China
| | - Buling Wu
- School of Stomatology, Southern Medical University, Guangzhou, China. .,Shenzhen Stomatology Hospital (Pingshan), Southern Medical University, Shenzhen, Guangdong, 510515, P.R. China.
| |
Collapse
|
94
|
Shetty H, Shetty S, Kakade A, Mali S, Shetty A, Neelakantan P. Three-dimensional qualitative and quantitative analyses of the effect of periradicular lesions on the outcome of regenerative endodontic procedures: A prospective clinical study. Clin Oral Investig 2020; 25:691-700. [PMID: 32954475 DOI: 10.1007/s00784-020-03583-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/11/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Qualitative and quantitative evaluation of the outcomes of regenerative endodontic procedure (REP) on human immature necrotic teeth with apical periodontitis using cone-beam computed tomography (CBCT) MATERIALS AND METHODS: Immature permanent teeth (n = 50) with necrotic pulp and periradicular pathosis were treated with a cell-homing concept-based REP. Following the procedure, a limited field-of-view CBCT scan was obtained. At each recall session (6, 12, 18 months), clinical tests were performed, and a digital periapical radiograph was taken. When significant radiographic changes were evident in the follow-up, a final CBCT scan was taken for qualitative and quantitative assessment. These initial and follow-up CBCT scans were assessed for quantification of changes in root length, pulp space diameter and periradicular lesion size. The data were statistically analysed using t test, one-way ANOVA, post hoc test and paired t test (P = 0.05). RESULTS Of the teeth, 94.6% were clinically successful based on the lack or regression of signs and symptoms after 48 months follow-up. REP resulted in a statistically significant increase in root length, decrease in pulp space diameter and periradicular radiolucency (P < 0.05). CBCT images illustrated various patterns of root maturation including an increased thickening of the canal walls and continued root maturation (37.1%), continued root development with the apical foramen remaining open (57.1%), severe calcification (obliteration) of the canal space (2.9%) and hard tissue barrier formation in the canal space between the coronal plug and the root apex (2.9%). CONCLUSION This study highlighted that the expected outcome of radiographic root development was less predictable when immature permanent teeth with periradicular pathosis were treated with REP. CLINICAL RELEVANCE The size and extent (expansion/destruction of the cortical plate) of periradicular lesions and abscesses influence the outcome of REP. These factors must be taken into consideration during treatment planning.
Collapse
Affiliation(s)
- Heeresh Shetty
- Department of Conservative Dentistry and Endodontics, Nair Hospital Dental College, Mumbai, India
- Department of Conservative Dentistry and Endodontics, A.B. Shetty Memorial Institute of Dental Sciences, Mangalore, India
| | - Shishir Shetty
- Department of Conservative Dentistry and Endodontics, A.B. Shetty Memorial Institute of Dental Sciences, Mangalore, India
| | - Adesh Kakade
- Department of Pediatric Dentistry, Nair Hospital Dental College, Mumbai, India
| | - Sayali Mali
- Department of Pediatric Dentistry, Nair Hospital Dental College, Mumbai, India
| | - Aditya Shetty
- Department of Conservative Dentistry and Endodontics, A.B. Shetty Memorial Institute of Dental Sciences, Mangalore, India
| | - Prasanna Neelakantan
- Discipline of Endodontology, Division of Restorative Dental Sciences, Faculty of Demtistry, The University of Hong Kong, 34, Hospital Road, Sai Ying Pun, Hong Kong SAR.
| |
Collapse
|
95
|
Efficacy of different calcium silicate materials as pulp-capping agents: Randomized clinical trial. J Dent Sci 2020; 16:723-731. [PMID: 33854725 PMCID: PMC8025185 DOI: 10.1016/j.jds.2020.08.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 08/28/2020] [Indexed: 01/11/2023] Open
Abstract
Background/purpose Calcium hydroxide-based materials were the gold standard in vital pulp therapies for decades' despite of several shortcomings. However, calcium silicates have been discussed as an alternative to overcome these drawbacks. It was aimed to investigate the in-vivo effectiveness of different calcium silicates based materials in pulp capping in this study. Materials and methods A parallel-design, randomized controlled trial with 213 patients who has deep dentin caries, vital pulps and without spontaneous pain or history of swelling was designed. 525 M teeth were randomized, blinded and allocated to one of the five groups for pulp capping treatment (n = 105). All teeth were followed up clinically and radiographically (after 1st, 6th, 12th and 36th months) by blinded investigators. The clinical and radiographic success, and the effect of the pulp exposure to the success rate analyzed with Wald chi-square and Z tests. Results Clinical and radiographic success of MTA+ (86.3%, 85.4%) and Biodentine (79.4%, 80.1%) were found the highest. Although results of Theracal LC group (72.1%, 73.6%) were better than Dycal group (69.4%, 70.2%), the difference was nonsignificant (p > 0.05). Only in light-cured groups, (TheraCal LC & LC Calcihyd) pulpal exposure size effected the success of the materials (p < 0.05). MTA+ and Biodentine resulted better scores, when compared with TheraCal LC in large pulpal exposures (p < 0.05). Conclusion After 36-month follow-up, both MTA+ and Biodentine were found to be the appropriate material for direct pulp capping in permanent teeth. The filler ingredient of the Theracal-LC eases the usage of calcium silicates but decreases the success rate.
Collapse
|
96
|
Horsophonphong S, Sercia A, França CM, Tahayeri A, Reddy AP, Wilmarth PA, Surarit R, Smith AJ, Ferracane JL, Bertassoni LE. Equivalence of human and bovine dentin matrix molecules for dental pulp regeneration: proteomic analysis and biological function. Arch Oral Biol 2020; 119:104888. [PMID: 32932150 DOI: 10.1016/j.archoralbio.2020.104888] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/13/2020] [Accepted: 08/21/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To compare proteomics and biological function of human dentin matrix molecules (hDMMs) and bovine dentin matrix molecules (bDMMs). DESIGN Dentin powder from human or bovine teeth (n = 4) was demineralized in 10% (v/v) ethylenediaminetetraacetic acid for 7 days. The extracts were dialyzed, lyophilized and proteins were characterized using liquid chromatography-tandem mass spectrometry and shotgun proteomic analysis. To study biological function, mouse-derived undifferentiated dental pulp cells (OD21) were treated with 0.01, 0.1 or 1 μg/mL of hDMMs or bDMMs and proliferation was measured after 24 hours and 48 hours using 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Cell migration was assessed after 24 hours using a Boyden chamber. Alizarin Red S staining was used to evaluate mineral formation. RESULTS There were 307 proteins identified, of which 93 proteins were common to both species. Gene Ontology functional analysis demonstrated similar pattern of biological process in both species which consisted mainly of tissue development and biomineralization. hDMMs and bDMMs both enhanced cell proliferation. After 24 hours, all concentrations of bDMMs promoted cell proliferation (p ≤ 0.05), while hDMMs did not affect proliferation. After 48 hours, groups with 1μg/mL of bDMMs and 0.01μg/mL of hDMMs had increased cell proliferation compared to control (p ≤ 0.0001). All concentrations of hDMMs and bDMMs enhanced cell migration and mineralization (p ≤ 0.0001). CONCLUSION bDMMs has similar biological functions as hDMMs. Moreover, bDMMs stimulated cell proliferation, migration and differentiation similar to hDMMs.
Collapse
Affiliation(s)
- Sivaporn Horsophonphong
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR, USA; Department of Oral Biology, Faculty of Dentistry, Mahidol University, Bangkok, Thailand; Department of Pediatric Dentistry, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| | - Ashley Sercia
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR, USA
| | - Cristiane M França
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR, USA
| | - Anthony Tahayeri
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR, USA
| | - Ashok P Reddy
- Proteomics Shared Resource, Oregon Health and & Science University, Portland, OR, 97239, USA
| | - Phillip A Wilmarth
- Proteomics Shared Resource, Oregon Health and & Science University, Portland, OR, 97239, USA
| | - Rudee Surarit
- Department of Oral Biology, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| | - Anthony J Smith
- School of Dentistry, University of Birmingham, Birmingham, UK
| | - Jack L Ferracane
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR, USA
| | - Luiz E Bertassoni
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR, USA; Center for Regenerative Medicine, School of Medicine, Oregon Health & Science University, Portland, OR, USA; Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, USA; Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, Portland, OR, USA.
| |
Collapse
|
97
|
|
98
|
Expression of nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 6 in human dental pulp tissues and cells. Arch Oral Biol 2020; 117:104794. [DOI: 10.1016/j.archoralbio.2020.104794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 05/29/2020] [Accepted: 05/31/2020] [Indexed: 01/27/2023]
|
99
|
Zhai Y, Yuan X, Zhao Y, Ge L, Wang Y. Potential Application of Human β-Defensin 4 in Dental Pulp Repair. Front Physiol 2020; 11:1077. [PMID: 32973567 PMCID: PMC7472722 DOI: 10.3389/fphys.2020.01077] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/05/2020] [Indexed: 01/02/2023] Open
Abstract
When pulp tissue is damaged by caries or trauma, vital pulp therapy (VPT) can help preserve the pulp tissue for long-term retention of teeth. However, the choice of pulp capping agent used in VPT is important for the successful preservation of the pulp tissue. Here we investigated the expression and biological function of human β-defensin 4 (HBD4) in dental pulp stem cells (DPSC) and explored its potential as a pulp capping agent. We examined the expression of HBD4 in DPSC in vitro using qPCR and immunofluorescence staining. We also looked at the effect of HBD4 on inflammatory factors in lipopolysaccharide (LPS)-stimulated DPSC, and its effects on mineralizing cell phenotype differentiation, via qPCR and western blot. Finally, we examined the ability of HBD4 to promote the restoration of the pulp-dentin complex in vivo, using male Wistar rats with reversible pulpitis. We found HBD4 was highly expressed in DPSC stimulated by TNF-α and IL-1α. HBD4 down-regulated the expression of inflammatory mediators (i.e., IL-1α, IL-1β, IL-6, TNF-α) in LPS-stimulated DPSC, and suppressed MAPK activity and the NF-κB pathway. HBD4 also enhanced the differentiation of DPSC into osteoblasts or odontoblasts, potentially by modulating the Notch pathway. Furthermore, HBD4 controlled the degree of pulp inflammation in a rat model of reversible pulpitis and induced the formation of restorative dentin. Together our findings indicate HBD4 may be a useful pulp capping agent for use in VPT.
Collapse
Affiliation(s)
| | | | | | | | - Yuanyuan Wang
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
100
|
Swanson WB, Gong T, Zhang Z, Eberle M, Niemann D, Dong R, Rambhia KJ, Ma PX. Controlled release of odontogenic exosomes from a biodegradable vehicle mediates dentinogenesis as a novel biomimetic pulp capping therapy. J Control Release 2020; 324:679-694. [PMID: 32534011 PMCID: PMC7429296 DOI: 10.1016/j.jconrel.2020.06.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 02/06/2023]
Abstract
Mineralized enamel and dentin provide protection to the dental pulp, which is vital tissue rich with cells, vasculature, and nerves in the inner tooth. Dental caries left untreated threaten exposure of the dental pulp, providing facile access for bacteria to cause severe infection both in the pulp and systemically. Dental materials which stimulate the formation of a protective dentin bridge after insult are necessary to seal the pulp chamber in an effort to maintain natural dentition and prevent pulpal infection. Dental materials to date including calcium hydroxide paste, mineral trioxide aggregate, and glass ionomer resin, are used with mixed results. Herein we exploited the cell-cell communicative properties of exosomes, extracellular vesicles derived from both mineralizing primary human dental pulp stem cells (hDPSCs) and an immortalized murine odontoblast cell line (MDPC-23), to catalyze the formation of a reactionary dentin bridge by recruiting endogenous stem cells of the dental pulp, through an easy-to-handle delivery vehicle which allows for their therapeutic controlled delivery at the pulp interface. Exosomes derived from both hDPSCs and MDPCs upregulated odontogenic gene expression and increased mineralization in vitro. We designed an amphiphilic synthetic polymeric vehicle from a triblock copolymer which encapsulates exosomes by polymeric self-assembly and maintains their biologic integrity throughout release up to 8-12 weeks. The controlled release of odontogenic exosomes resulted in a reparative dentin bridge formation, superior to glass-ionomer cement alone in vivo, in a rat molar pulpotomy model after six weeks. We have developed a platform for the encapsulation and controlled, tunable release of cell-derived exosomes, which maintains their advantageous physiologic properties reflective of the donor cells. This platform is used to modulate downstream recipient cells towards a designed dentinogenic trajectory in vitro and in vivo. Additionally, we have demonstrated the utility of an immortalized cell line to produce a high yield of exosomes with cross-species efficacy.
Collapse
Affiliation(s)
- W Benton Swanson
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, United States of America
| | - Ting Gong
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, United States of America
| | - Zhen Zhang
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, United States of America
| | - Miranda Eberle
- Department of Chemistry, College of Literature, Science, and the Arts, University of Michigan, United States of America
| | - David Niemann
- Department of Chemistry, College of Literature, Science, and the Arts, University of Michigan, United States of America
| | - Ruonan Dong
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, United States of America
| | - Kunal J Rambhia
- Department of Biomedical Engineering, School of Medicine and College of Engineering, University of Michigan, United States of America
| | - Peter X Ma
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, United States of America; Macromolecular Science and Engineering Center, College of Engineering, University of Michigan, United States of America; Department of Biomedical Engineering, School of Medicine and College of Engineering, University of Michigan, United States of America; Department of Materials Science and Engineering, College of Engineering, University of Michigan, United States of America.
| |
Collapse
|