51
|
Li D, Zhang T, Lai J, Zhang J, Wang T, Ling Y, He S, Hu Z. MicroRNA‑25/ATXN3 interaction regulates human colon cancer cell growth and migration. Mol Med Rep 2019; 19:4213-4221. [PMID: 30942397 PMCID: PMC6471560 DOI: 10.3892/mmr.2019.10090] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 09/06/2018] [Indexed: 12/08/2022] Open
Abstract
The present study aimed to investigate the function of microRNA-25 (miR-25) in human colon cancer cell viability and migration in addition to the underlying possible mechanisms. miR-25 expression was upregulated in patients with colon cancer compared with the control group. Reverse transcription-quantitative polymerase chain reaction and gene chip technology were used to analyze the alterations of miR-25 in patients with colon cancer. Cell viability and cell migration were analyzed using MTT and wound healing assays, respectively, apoptosis was analyzed using flow cytometry, and western blot analysis was conducted to determine the protein expression of ataxin-3 (ATXN3), apoptosis regulator Bax (Bax) and cyclin D1. Overexpression of miR-25 increased cell viability and migration, decreased apoptosis, decreased caspase-3/9 activity level in addition to decreased Bax protein expression, and increased cyclin D1 protein expression in colon cancer cells. Furthermore, miR-25 was demonstrated to target ATXN3 and suppress ATXN3 protein expression. Downregulation of miR-25 induced apoptosis of colon cancer cells via increased expression ATXN3. Small interfering-ATXN3 inhibited the anti-cancer effects of miR-25 downregulation in colon cancer. Collectively, the present results demonstrated that miR-25 promoted human colon cancer cell viability and migration by regulating ATXN3 expression.
Collapse
Affiliation(s)
- Dingyun Li
- Department of Gastrointestinal Surgery, Yue Bei People's Hospital, Shaoguan, Guangdong 512026, P.R. China
| | - Tao Zhang
- Department of Gastrointestinal Surgery, Yue Bei People's Hospital, Shaoguan, Guangdong 512026, P.R. China
| | - Jiajun Lai
- Department of Gastrointestinal Surgery, Yue Bei People's Hospital, Shaoguan, Guangdong 512026, P.R. China
| | - Jian Zhang
- Department of Gastrointestinal Surgery, Yue Bei People's Hospital, Shaoguan, Guangdong 512026, P.R. China
| | - Ting Wang
- Department of Gastrointestinal Surgery, Yue Bei People's Hospital, Shaoguan, Guangdong 512026, P.R. China
| | - Yafei Ling
- Department of Gastrointestinal Surgery, Yue Bei People's Hospital, Shaoguan, Guangdong 512026, P.R. China
| | - Shengquan He
- Department of Gastrointestinal Surgery, Yue Bei People's Hospital, Shaoguan, Guangdong 512026, P.R. China
| | - Zhiwei Hu
- Department of Gastrointestinal Surgery, Yue Bei People's Hospital, Shaoguan, Guangdong 512026, P.R. China
| |
Collapse
|
52
|
Li Z, Sun X, Liu X, Sun Z, Li J. Antitumor Effects of Ruyiping on Cell Growth and Metastasis in Breast Cancer. Cancer Biother Radiopharm 2019; 34:297-305. [PMID: 30901274 DOI: 10.1089/cbr.2018.2703] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background: Ruyiping is an effective traditional Chinese herbal medicine formula for preventing postoperative recurrence and metastasis of breast cancer. However, the exact function and underlying mechanism of Ruyiping in breast cancer remain unclear. Materials and Methods: After breast cancer cell lines MDA-MB-231 and MDA-MB-468 were treated with Ruyiping, the CCK8, colony formation, wound-healing, and transwell invasion assays were used to examine cell proliferation, migration, and invasion, respectively. Flow cytometry was performed to examine the effect of Ruyiping on cell cycle distribution. Western blot was performed to examine the expression of related proteins, and the activity of MMP9 was detected using Gelatin zymography assay. Results: Ruyiping treatment significantly inhibited cell proliferation and viability of MDA-MB-231 and MDA-MB-468 cells. Ruyiping was also revealed to trigger cell cycle arrest at the G2 phase in MDA-MB-231 and MDA-MB-468 cells. Moreover, Ruyiping suppressed the migration and invasion abilities of MDA-MB-231 and MDA-MB-468 cells in vitro. Furthermore, Ruyiping blocked the activity of MMP9 in MDA-MB-231 and MDA-MB-468 cells. Additionally, western blotting showed that Ruyiping attenuated epithelial-to-mesenchymal transition (EMT) of breast cancer through downregulation of N-cadherin, Vimentin, Snail1, and Snail2 and upregulation of E-cadherin. The authors observed that the components of Ruyiping Pseudobulbus Cremastra seu pleiones polysaccharide and curcumol showed significant suppression in the growth and invasion of breast cancer cell. Conclusions: The observations of this study suggest the antitumor properties of Ruyiping in cell growth and invasion of breast cancer, which are modulated by induction of cell cycle arrest and reduction of MMP9 and EMT.
Collapse
Affiliation(s)
- Zhiyuan Li
- 1 Department of Health Care, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Xiaohui Sun
- 2 Breast Thyroid Surgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China.,3 Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Xiaoming Liu
- 1 Department of Health Care, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Ziyuan Sun
- 2 Breast Thyroid Surgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Jingwei Li
- 2 Breast Thyroid Surgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| |
Collapse
|
53
|
Zhang X, Zhang HM. Alantolactone induces gastric cancer BGC-823 cell apoptosis by regulating reactive oxygen species generation and the AKT signaling pathway. Oncol Lett 2019; 17:4795-4802. [PMID: 31186685 PMCID: PMC6507453 DOI: 10.3892/ol.2019.10172] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 01/21/2019] [Indexed: 12/12/2022] Open
Abstract
Alantolactone (ALT), a natural sesquiterpene lactone, has been suggested to exert anti-cancer activities in various cancer cell lines. However, the effects and mechanisms of action of ALT in human gastric cancer remains to be elucidated. In the present study, the effects of ALT on BGC-823 cells were examined and the underlying molecular mechanisms associated with these effects were investigated. Cell viability was detected by using an MTT assay. Cell cycle, cell apoptosis and the level of reactive oxygen species (ROS) were assessed by flow cytometry, and the expression levels of proteins of interest were analyzed by western blot assay. The results demonstrated that ALT triggered apoptosis and induced G0/G1 phase arrest in a dose-dependent manner. Furthermore, the expression level of the anti-apoptosis protein Bcl-2 was downregulated, and expression of the pro-apoptosis proteins Bax and cleaved PARP were significantly upregulated. The cell cycle-associated proteins cyclin-dependent kinase inhibitor 1 and cyclin-dependent kinase inhibitor 1B were also increased, while cyclin D1 was deceased. In addition, ALT induced apoptosis via the inhibition of RAC-alpha serine/threonine-protein kinase (AKT) signaling and ROS generation, which was effectively inhibited by the ROS scavenger, N-acetyl cysteine. Therefore, the results from the present study indicated that the ROS-mediated inhibition of the AKT signaling pathway serves an important role in ALT-induced apoptosis in BGC-823 cells. In conclusion, the results demonstrated that ALT exerted significant anti-cancer effects against gastric cancer cells in vitro.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Gastroenterology, People's Hospital, Chongqing 401120, P.R. China
| | - Hong-Ming Zhang
- Department of Blood Transfusion, General Hospital of Xinjiang Military Area Command for The People's Liberation Army, Urumqi, Xinjiang Uygur Autonomous Region 830000, P.R. China
| |
Collapse
|
54
|
Nie Y, Zhang D, Jin Z, Li B, Wang X, Che H, You Y, Qian X, Zhang Y, Zhao P, Chai G. Lanatoside C protects mice against bleomycin-induced pulmonary fibrosis through suppression of fibroblast proliferation and differentiation. Clin Exp Pharmacol Physiol 2019; 46:575-586. [PMID: 30854687 DOI: 10.1111/1440-1681.13081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 02/21/2019] [Accepted: 03/04/2019] [Indexed: 12/14/2022]
Abstract
It has been established that lanatoside C, a FDA-approved cardiac glycoside, reduces proliferation of cancer cell lines. The proliferation of fibroblasts is critical to the pathogenesis of pulmonary fibrosis (PF), a progressive and fatal fibrotic lung disease lacking effective treatment. In this study we have investigated the impact of lanatoside C on a bleomycin (BLM)-induced mouse model of PF and through the evaluation of fibroblast proliferation and activation in vitro. We evaluated explanted lung tissue by histological staining, western blot analysis, qRT-PCR and survival analysis, demonstrating that lanatoside C was able to protect mice against BLM-induced pulmonary fibrosis. The proliferation of cultured pulmonary fibroblasts isolated from BLM-induced PF mice was suppressed by lanatoside C, as hypothesized, through the induction of cell apoptosis and cell cycle arrest at the G2/M phase. The Akt signalling pathway was involved in this process. Interestingly, the production of α-SMA, fibronectin, and collagen I and III in response to TGF-β1 in healthy mouse fibroblasts was suppressed following lanatoside C administration by inhibition of TGF-β1/Smad signalling. In addition, TGF-β1-induced migration in lung fibroblasts was also impeded after lanatoside C treatment. Together, our data revealed that lanatoside C alleviated BLM-induced pulmonary fibrosis in mice via attenuation of growth and differentiation of fibroblasts, suggesting that it has potential as a candidate therapy for PF patients.
Collapse
Affiliation(s)
- Yunjuan Nie
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Dan Zhang
- Department of Laboratory Medicine, Research Center for Cancer Precision Medicine, Bengbu Medical College, Bengbu, Anhui Province, China
| | - Zhewu Jin
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Boyu Li
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Xue Wang
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Huilian Che
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Yaqian You
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiaohang Qian
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Yang Zhang
- Department of Orthopedic, Lu'an Fourth People's Hospital, Lu'an, Anhui, China
| | - Peng Zhao
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Gaoshang Chai
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
55
|
Mo'men YS, Hussein RM, Kandeil MA. Involvement of PI3K/Akt pathway in the protective effect of hesperidin against a chemically induced liver cancer in rats. J Biochem Mol Toxicol 2019; 33:e22305. [PMID: 30779474 DOI: 10.1002/jbt.22305] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 11/14/2018] [Accepted: 01/09/2019] [Indexed: 12/14/2022]
Abstract
Hesperidin is a flavanone glycoside that is found in the Citrus species and showed antioxidant, hepatoprotective as well as anticancer activity. This study investigated the effect of hesperidin on the PI3K/Akt pathway as a possible mechanism for its protective effect against diethylnitrosamine (DEN)-induced hepatocellular carcinoma (HCC). Adult Wistar rats were divided into Control group (received drug vehicle); DEN group (received 100 mg/L of DEN solution for 8 weeks), and hesperidin + DEN group (received 200 mg/kg body weight of hesperidin/day orally for 16 weeks + DEN solution as DEN group). Our findings showed that the administration of hesperidin significantly decreased the elevation in liver function enzymes, serum AFP level, and oxidative stress markers. Moreover, hesperidin administration suppressed DEN-induced upregulation of PI3K, Akt, CDK-2 protein expression, and preserved the integrity of the liver tissues from HCC formation. In conclusion, the hepatoprotective activity of hesperidin is mediated via its antioxidation and downregulation of the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Yomna S Mo'men
- Department of Biochemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Rasha M Hussein
- Department of Biochemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Mohamed A Kandeil
- Department of Biochemistry, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
56
|
Quezada SM, Cross RK. Cannabis and Turmeric as Complementary Treatments for IBD and Other Digestive Diseases. Curr Gastroenterol Rep 2019; 21:2. [PMID: 30635796 DOI: 10.1007/s11894-019-0670-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Complementary therapies for inflammatory bowel disease (IBD) have earned growing interest from patients and investigators alike, with a dynamic landscape of research in this area. In this article, we review results of the most recent studies evaluating the role of cannabis and turmeric for the treatment of IBD and other intestinal illnesses. RECENT FINDINGS Cannabinoids are well-established modulators of gut motility and visceral pain and have demonstrated anti-inflammatory properties. Clinical trials suggest that there may be a therapeutic role for cannabinoid therapy in the treatment of IBD, irritable bowel syndrome (IBS), nausea and vomiting, and GI motility disorders. Recent reports of serious adverse effects from synthetic cannabinoids highlight the need for additional investigation of cannabinoids to establish their efficacy and safety. Turmeric trials have demonstrated some promise as adjuvant treatment for IBD, though not in other GI disease processes. Evidence suggests that the use of cannabis and turmeric is potentially beneficial in IBD and IBS; however, neither has been compared to standard therapy in IBD, and thus should not be recommended as alternative treatment for IBD. For cannabis in particular, additional investigation regarding appropriate dosing and timing, given known adverse effects of its chronic use, and careful monitoring of potential bleeding complications with synthetic cannabinoids are imperative.
Collapse
Affiliation(s)
- Sandra M Quezada
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| | - Raymond K Cross
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| |
Collapse
|
57
|
Wang J, Song Y, Zhang M, Wu Z, Xu YJ, Lin J, Ling D, Sheng Y, Lu Y, Wu Q. A liposomal curcumol nanocomposite for magnetic resonance imaging and endoplasmic reticulum stress-mediated chemotherapy of human primary ovarian cancer. J Mater Chem B 2019. [DOI: 10.1039/c8tb03123a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A liposomal curcumol nanocomposite has been successfully synthesized for the theranostics of human primary ovarian cancer cells from solid tumor tissue in patients.
Collapse
Affiliation(s)
- Jing Wang
- School of Basic Medical Sciences
- Anhui Medical University
- Hefei
- P. R. China
- Department of Obstetrics and Gynecology
| | - Yonghong Song
- School of Chemistry and Chemical Engineering
- Hefei University of Technology
- Hefei
- P. R. China
| | - Mingxun Zhang
- Department of Pathology
- Anhui Medical University
- Hefei
- P. R. China
| | - Zhensheng Wu
- Department of Pathology
- Anhui Medical University
- Hefei
- P. R. China
| | - Yun-Jun Xu
- University of Science and Technology of China
- Hefei
- P. R. China
| | - Jun Lin
- University of Science and Technology of China
- Hefei
- P. R. China
| | - Daishun Ling
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou 310058
- P. R. China
| | - Youjing Sheng
- Department of Pathology
- Anhui Medical University
- Hefei
- P. R. China
| | - Yang Lu
- School of Chemistry and Chemical Engineering
- Hefei University of Technology
- Hefei
- P. R. China
| | - Qiang Wu
- School of Basic Medical Sciences
- Anhui Medical University
- Hefei
- P. R. China
- Department of Pathology
| |
Collapse
|
58
|
Xu PF, Yang JA, Liu JH, Yang X, Liao JM, Yuan FE, Liu BH, Chen QX. PI3Kβ inhibitor AZD6482 exerts antiproliferative activity and induces apoptosis in human glioblastoma cells. Oncol Rep 2018; 41:125-132. [PMID: 30542720 PMCID: PMC6278584 DOI: 10.3892/or.2018.6845] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 10/30/2018] [Indexed: 12/22/2022] Open
Abstract
Glioblastoma is the most common type of primary brain tumour in adults, and its pathogenesis is particularly complicated. Among the many possible mechanisms underlying its pathogenesis, hyperactivation of the PI3K/Akt pathway is essential to the occurrence and development of glioma through the loss of PTEN or somatic activating mutations in PIK3CA. In the present study, we investigated the effect of the PI3Kβ inhibitor AZD6482 on glioma cells. The CCK-8 assay showed dose-dependent cytotoxicity in glioma cell lines treated with AZD6482. Additionally, AZD6482 treatment was found to significantly induce apoptosis and cell cycle arrest as detected using flow cytometry. Moreover, as shown using western blot analysis, the levels of p-AKT, p-GSK-3β, Bcl-2, and cyclin D1 were decreased after AZD6482 treatment. In addition, we found that AZD6482 inhibited the migration and invasion of glioma cells as detected by wound healing and Transwell invasion assays. Taken together, our findings indicate that AZD6482 exerts an antitumour effect by inhibiting proliferation and inducing apoptosis in human glioma cells. AZD6482 may be applied as an adjuvant therapy to improve the therapeutic efficacy of glioblastoma treatment.
Collapse
Affiliation(s)
- Peng-Fei Xu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Ji-An Yang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jun-Hui Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xue Yang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jian-Ming Liao
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Fan-En Yuan
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Bao-Hui Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Qian-Xue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
59
|
Gao X, Cen L, Li F, Wen R, Yan H, Yao H, Zhu S. Oral administration of indole substituted dipyrido[2,3-d]pyrimidine derivative exhibits anti-tumor activity via inhibiting AKT and ERK1/2 on hepatocellular carcinoma. Biochem Biophys Res Commun 2018; 505:761-767. [DOI: 10.1016/j.bbrc.2018.09.120] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 09/19/2018] [Indexed: 11/16/2022]
|
60
|
Plumbagin inhibits the proliferation of nasopharyngeal carcinoma 6-10B cells by upregulation of reactive oxygen species. Anticancer Drugs 2018; 29:890-897. [PMID: 30119131 DOI: 10.1097/cad.0000000000000665] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Plumbagin (PLB) is the primary component of the traditional Chinese medicine Baihua Dan, and possesses anti-infection and anticancer effects, with the ability to enhance the sensitivity of tumor cells to radiation therapy. However, the anticancer effect of PLB on nasopharyngeal carcinoma and the underlying mechanisms remain unclear. In this study, we investigated the anticancer effects of PLB on nasopharyngeal carcinoma 6-10B cells and clarified its molecular mechanisms in vitro. The results showed that PLB was effective against 6-10B cells proliferation in a dose-dependent manner by inducing G2/M phase cell cycle arrest. Furthermore, our data showed that PLB induced reactive oxygen species accumulation, which inhibited the GSK3β/STAT3 pathway and arrested the G2/M phase. Therefore, our results provided new insight into the mechanism of the antitumor effects of PLB, supporting PLB as a prospective therapeutic drug in nasopharyngeal carcinoma by modulating intracellular redox balance.
Collapse
|
61
|
Li X, Liu H, Wang J, Qin J, Bai Z, Chi B, Yan W, Chen X. Curcumol induces cell cycle arrest and apoptosis by inhibiting IGF-1R/PI3K/Akt signaling pathway in human nasopharyngeal carcinoma CNE-2 cells. Phytother Res 2018; 32:2214-2225. [PMID: 30069933 DOI: 10.1002/ptr.6158] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 05/30/2018] [Accepted: 06/26/2018] [Indexed: 12/26/2022]
Abstract
Curcumol has been proved to possess antitumor effects in vivo and in vitro in several cancers. Previously, we have found that curcumol induced apoptosis in CNE-2 cells, but its underlying mechanism has not yet been studied well. Recently, our team clarified that curcumol inhibited colorectal cancer cells' growth partially through insulin-like growth factor 1 receptor (IGF-1R) pathway. Given the key importance of IGF-1R pathway in tumorigenesis, we want to explore whether curcumol effects on nasopharyngeal carcinoma (NPC) cells relates to IGF-1R and its downstream pathway inactivation. In this study, we found that curcumol inhibited IGF-1R and p-Akt expression in a dose- and time-dependent way. In addition, it also regulated their downstream GSK-3β's activity in CNE-2 cells, which further triggering alterations in the expression of cycle- and apoptosis-related molecules, and then leading to G0/G1-phase arrest and apoptosis. Moreover, curcumol's effect on CNE-2 cells was partly eliminated by IGF-1R's agonist IGF-1. In conclusion, our findings indicated that the inhibitory effect of curcumol on proliferation of NPC cells is related to the inhibition of IGF-1R and its downstream PI3K/Akt/GSK-3β pathway.
Collapse
Affiliation(s)
- Xumei Li
- College of Pharmacy, Guilin Medical University, Guilin, China
| | - Haowei Liu
- College of Pharmacy, Guilin Medical University, Guilin, China
| | - Juan Wang
- College of Pharmacy, Guilin Medical University, Guilin, China.,Xiangya Hospital, Central South University, Changsha, China
| | - Jianli Qin
- College of Pharmacy, Guilin Medical University, Guilin, China
| | - Zhun Bai
- Intensive Care Unit, Zhuzhou Central Hospital, Zhuzhou, China
| | - Bixia Chi
- Digestive System Department, The Frist People's Hospital of Yueyang, Yueyang, China
| | - Wei Yan
- College of Pharmacy, Guilin Medical University, Guilin, China
| | - Xu Chen
- College of Pharmacy, Guilin Medical University, Guilin, China
| |
Collapse
|
62
|
Phull AR, Kim SJ. Undaria pinnatifida a Rich Marine Reservoir of Nutritional and Pharmacological Potential: Insights into Growth Signaling and Apoptosis Mechanisms in Cancer. Nutr Cancer 2018; 70:956-970. [PMID: 30616379 DOI: 10.1080/01635581.2018.1490449] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 06/04/2018] [Indexed: 02/04/2023]
Abstract
Seaweeds are an important part of diet consumed in a different part of the world such as New Zealand, Ireland, Wales, and Asian countries including Korea, China, and Japan. In addition, seaweed is nutritious sources possessing health improving effects and therapeutic potential. Recently, one of the widely eaten seaweed species Undaria pinnatifida (U. pinnatifida) has got much attention because of its pharmacological properties for the prevention of various ailments, including cancer, inflammation, and other diseases. It is rich in all essential amino acids, physiologically significant fatty acids, vitamins, minerals, and has a variety of bioactive constituents which include fucoidan, carotenoids, and fucoxanthin. The present study reviews the nutritional aspects, key bioactivities specifically focusing on anticancer potential along with apoptosis and growth signaling mechanisms of U. pinnatifida or its constituents. It exhibited anticancer effects both in vitro and in vivo studies in a variety of experimental models. Due to a variety of pharmacological properties of U. pinnatifida can not only fulfilling nutritional necessities, but it can be used for treating, curing and preventing cancer.
Collapse
Affiliation(s)
- Abdul Rehman Phull
- a Department of Biological Sciences, College of Natural Sciences , Kongju National University , Chungnam , Republic of Korea
- b Department of Biochemistry , Shah Abdul Latif University , Khairpur , Sindh , Pakistan
| | - Song Ja Kim
- a Department of Biological Sciences, College of Natural Sciences , Kongju National University , Chungnam , Republic of Korea
| |
Collapse
|
63
|
Li T, Sun W, Dong X, Yu W, Cai J, Yuan Q, Shan L, Efferth T. Total ginsenosides of Chinese ginseng induces cell cycle arrest and apoptosis in colorectal carcinoma HT-29 cells. Oncol Lett 2018; 16:4640-4648. [PMID: 30197678 DOI: 10.3892/ol.2018.9192] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 07/05/2018] [Indexed: 12/11/2022] Open
Abstract
Colorectal carcinoma (CRC) is the most frequent malignant disease of the gastrointestinal tract and it has a poor prognosis. The current treatment options for CRC are far from optimal; they have limited efficacy and toxic effects. Chinese ginseng (the dried root of Panax ginseng) is a medicinal herb, of which ginsenosides are the most effective anticancer component. The aim of the present study was to evaluate the anti-CRC effect of total ginsenosides of Chinese ginseng (TGCG), by analyzing the cellular and molecular pathways. This was done via MTT assay, morphological observation (DAPI staining), flow cytometry for cell cycle and apoptosis analyses, reverse transcription-quantitative polymerase chain reaction and western blot analysis. The results revealed that TGCG inhibited cell proliferation and induced cell cycle arrest and cell apoptosis in HT-29 cells in a dose-dependent manner. The mRNA expression of CDK2, CDK4, CDK6, BAX, CDKN2B, CASP8, CASP3, TP53, TOP1, MYC, MDM2, and CCND1 and the protein expression of cyclin-dependent kinase (Cdk) 2, Cdk4, Cyclin D1, Bax, p21WAF1, p27Kip1, c-Myc, p15INK4b, and p53 were revealed to be modulated by TGCG in HT-29 cells, and are all factors associated with DNA damage, cell proliferation, cell cycle and apoptosis. In conclusion, TGCG induced cell cycle arrest at the G0/G1 and G2/M phases and induced apoptosis in HT-29 cells through the c-Myc- and p53-mediated signaling pathways, possibly in response to DNA damage. Therefore, TGCG may be regarded a promising candidate for development as an anticancer agent for the treatment of CRC.
Collapse
Affiliation(s)
- Ting Li
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Wan Sun
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Xiaoqiao Dong
- Department of Neurosurgery, Hangzhou First People's Hospital, Hangzhou, Zhejiang 310006, P.R. China
| | - Wenhua Yu
- Department of Neurosurgery, Hangzhou First People's Hospital, Hangzhou, Zhejiang 310006, P.R. China
| | - Jianyong Cai
- Department of Neurosurgery, Wenzhou Central Hospital, Wenzhou, Zhejiang 325000, P.R. China
| | - Qiang Yuan
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Letian Shan
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Thomas Efferth
- Department of Neurosurgery, Wenzhou Central Hospital, Wenzhou, Zhejiang 325000, P.R. China.,Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, D-55128 Mainz, Germany
| |
Collapse
|
64
|
Wang J, Wu J, Li X, Liu H, Qin J, Bai Z, Chi B, Chen X. Identification and validation nucleolin as a target of curcumol in nasopharyngeal carcinoma cells. J Proteomics 2018; 182:1-11. [PMID: 29684682 DOI: 10.1016/j.jprot.2018.04.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 03/22/2018] [Accepted: 04/19/2018] [Indexed: 11/16/2022]
Abstract
Identification of the specific protein target(s) of a drug is a critical step in unraveling its mechanisms of action (MOA) in many natural products. Curcumol, isolated from well known Chinese medicinal plant Curcuma zedoary, has been shown to possess multiple biological activities. It can inhibit nasopharyngeal carcinoma (NPC) proliferation and induce apoptosis, but its target protein(s) in NPC cells remains unclear. In this study, we employed a mass spectrometry-based chemical proteomics approach reveal the possible protein targets of curcumol in NPC cells. Cellular thermal shift assay (CETSA), molecular docking and cell-based assay was used to validate the binding interactions. Chemical proteomics capturing uncovered that NCL is a target of curcumol in NPC cells, Molecular docking showed that curcumol bound to NCL with an -7.8 kcal/mol binding free energy. Cell function analysis found that curcumol's treatment leads to a degradation of NCL in NPC cells, and it showed slight effects on NP69 cells. In conclusion, our results providing evidences that NCL is a target protein of curcumol. We revealed that the anti-cancer effects of curcumol in NPC cells are mediated, at least in part, by NCL inhibition. SIGNIFICANCE Many natural products showed high bioactivity, while their mechanisms of action (MOA) are very poor or completely missed. Understanding the MOA of natural drugs can thoroughly exploit their therapeutic potential and minimize their adverse side effects. Identification of the specific protein target(s) of a drug is a critical step in unraveling its MOA. Compound-centric chemical proteomics is a classic chemical proteomics approach which integrates chemical synthesis with cell biology and mass spectrometry (MS) to identify protein targets of natural products determine the drug mechanism of action, describe its toxicity, and figure out the possible cause of off-target. It is an affinity-based chemical proteomics method to identify small molecule-protein interactions through affinity chromatography approach coupled with mass spectrometry, has been conventionally used to identify target proteins and has yielded good results. Curcumol, has shown effective inhibition on Nasopharyngeal Carcinoma (NPC) Cells, interacted with NCL and then initiated the anti-tumor biological effect. This research demonstrated the effectiveness of chemical proteomics approaches in natural drugs molecular target identification, revealing and understanding of the novel mechanism of actions of curcumol is crucial for cancer prevention and treatment in nasopharynx cancer.
Collapse
Affiliation(s)
- Juan Wang
- Xiangya Hospital, Central South University, Changsha 410008, China; College of Pharmacy, Guilin Medical University, Guilin 541004, China
| | - Jiacai Wu
- Research Center for Science, Guilin Medical University, Guilin 541004, China
| | - Xumei Li
- College of Pharmacy, Guilin Medical University, Guilin 541004, China
| | - Haowei Liu
- College of Pharmacy, Guilin Medical University, Guilin 541004, China
| | - Jianli Qin
- College of Pharmacy, Guilin Medical University, Guilin 541004, China
| | - Zhun Bai
- Intensive Care Unit, The Affiliated Zhuzhou Hospital XiangYa Medical College CSU, Zhuzhou 412007, China
| | - Bixia Chi
- Department of Gastroenterology, The First People's Hospital of Yueyang, Yueyang 414000, China
| | - Xu Chen
- College of Pharmacy, Guilin Medical University, Guilin 541004, China.
| |
Collapse
|
65
|
Pan J, Zhang L, Xu S, Cheng X, Yu H, Bao J, Lu R. Induction of Apoptosis in Human Papillary-Thyroid-Carcinoma BCPAP Cells by Diallyl Trisulfide through Activation of the MAPK Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:5871-5878. [PMID: 29786427 DOI: 10.1021/acs.jafc.8b02243] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This study aimed to elucidate the potential effects of diallyl trisulfide (DATS) on human papillary-thyroid-carcinoma BCPAP cells and its underlying mechanisms. DATS is an organosulfur compound derived from garlic. In this study, we demonstrated that compared with the solvent control, DATS treatment at concentrations of 5, 10, and 20 μΜ decreased cell survival rates of BCPAP cells to 84.51 ± 2.67, 57.16 ± 1.18, and 41.22 ± 1.19% respectively. DATS also caused cell-cycle arrest at G0/G1 phase, and the proportion of cells arrested in G0/G1 phase rose from 68.8 ± 8.38 to 80.4 ± 8.38%, which eventually resulted in cell apoptosis through a mitochondrial apoptotic pathway in BCPAP cells. Further evidence showed that DATS activated ERK, JNK, and p38, members of the MAPK family. Moreover, ERK and JNK inhibitors partially reversed apoptosis in BCPAP cells induced by DATS treatment. Taken together, our results demonstrated that DATS exerted an apoptosis-inducing effect on papillary-thyroid-cancer cells via activation of the MAPK signaling pathway, which shed light on a prospective therapeutic target for thyroid-cancer treatment.
Collapse
Affiliation(s)
- Jie Pan
- School of Food Science and Technology , Jiangnan University , 1800 Lihu Avenue , Wuxi , Jiangsu 214122 , China
- Key Laboratory of Nuclear Medicine, Ministry of Health , Jiangsu Institute of Nuclear Medicine , 20 Qian Rong Road , Wuxi , Jiangsu 214063 , China
| | - Li Zhang
- Key Laboratory of Nuclear Medicine, Ministry of Health , Jiangsu Institute of Nuclear Medicine , 20 Qian Rong Road , Wuxi , Jiangsu 214063 , China
| | - Shichen Xu
- Key Laboratory of Nuclear Medicine, Ministry of Health , Jiangsu Institute of Nuclear Medicine , 20 Qian Rong Road , Wuxi , Jiangsu 214063 , China
| | - Xian Cheng
- Key Laboratory of Nuclear Medicine, Ministry of Health , Jiangsu Institute of Nuclear Medicine , 20 Qian Rong Road , Wuxi , Jiangsu 214063 , China
| | - Huixin Yu
- Key Laboratory of Nuclear Medicine, Ministry of Health , Jiangsu Institute of Nuclear Medicine , 20 Qian Rong Road , Wuxi , Jiangsu 214063 , China
| | - Jiandong Bao
- Key Laboratory of Nuclear Medicine, Ministry of Health , Jiangsu Institute of Nuclear Medicine , 20 Qian Rong Road , Wuxi , Jiangsu 214063 , China
| | - Rongrong Lu
- School of Food Science and Technology , Jiangnan University , 1800 Lihu Avenue , Wuxi , Jiangsu 214122 , China
| |
Collapse
|
66
|
Yang K, Liu G, Wang N, Zhang R, Yu J, Chen J, Zhou X. Heterogeneous network propagation for herb target identification. BMC Med Inform Decis Mak 2018; 18:17. [PMID: 29589568 PMCID: PMC5872392 DOI: 10.1186/s12911-018-0592-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Identifying targets of herbs is a primary step for investigating pharmacological mechanisms of herbal drugs in Traditional Chinese medicine (TCM). Experimental targets identification of herbs is a difficult and time-consuming work. Computational method for identifying herb targets is an efficient approach. However, how to make full use of heterogeneous network data about herbs and targets to improve the performance of herb targets prediction is still a dilemma. METHODS In our study, a random walk algorithm on the heterogeneous herb-target network (named heNetRW) has been proposed to identify protein targets of herbs. By building a heterogeneous herb-target network involving herbs, targets and their interactions and simulating random walk algorithm on the network, the candidate targets of the given herb can be predicted. RESULTS The experimental results on large-scale dataset showed that heNetRW had higher performance of targets prediction than PRINCE (improved F1-score by 0.08 and Hit@1 by 21.34% in one validation setting, and improved F1-score by 0.54 and Hit@1 by 69.08% in the other validation setting). Furthermore, we evaluated novel candidate targets of two herbs (rhizoma coptidis and turmeric), which showed our approach could generate potential targets that are valuable for further experimental investigations. CONCLUSIONS Compared with PRINCE algorithm, heNetRW algorithm can fuse more known information (such as, known herb-target associations and pathway-based similarities of protein pairs) to improve prediction performance. Experimental results also indicated heNetRW had higher performance than PRINCE. The prediction results not only can be used to guide the selection of candidate targets of herbs, but also help to reveal the molecule mechanisms of herbal drugs.
Collapse
Affiliation(s)
- Kuo Yang
- School of Computer and Information Technology and Beijing Key Lab of Traffic Data Analysis and Mining, Beijing Jiaotong University, Beijing, 100044 China
| | - Guangming Liu
- School of Computer and Information Technology and Beijing Key Lab of Traffic Data Analysis and Mining, Beijing Jiaotong University, Beijing, 100044 China
| | - Ning Wang
- School of Computer and Information Technology and Beijing Key Lab of Traffic Data Analysis and Mining, Beijing Jiaotong University, Beijing, 100044 China
| | - Runshun Zhang
- Guanganmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053 China
| | - Jian Yu
- School of Computer and Information Technology and Beijing Key Lab of Traffic Data Analysis and Mining, Beijing Jiaotong University, Beijing, 100044 China
| | - Jianxin Chen
- Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Xuezhong Zhou
- School of Computer and Information Technology and Beijing Key Lab of Traffic Data Analysis and Mining, Beijing Jiaotong University, Beijing, 100044 China
- Data Center of Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700 China
| |
Collapse
|
67
|
Zhang J, Su G, Tang Z, Wang L, Fu W, Zhao S, Ba Y, Bai B, Yue P, Lin Y, Bai Z, Hu J, Meng W, Qiao L, Li X, Xie X. Curcumol Exerts Anticancer Effect in Cholangiocarcinoma Cells via Down-Regulating CDKL3. Front Physiol 2018; 9:234. [PMID: 29615928 PMCID: PMC5870041 DOI: 10.3389/fphys.2018.00234] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 03/02/2018] [Indexed: 01/03/2023] Open
Abstract
Curcumol is the major component extracted from root of Rhizoma Curcumae. Recent studies have shown that curcumol exerts therapeutic effects against multiple conditions, particularly cancers. However, the therapeutic role and mechanism of curcumol against cholangiocarcinoma cells are still unclear. In our current research, we tested the effect of curcumol in cholangiocarcinoma cells, and using two-dimensional electrophoresis, proteomics and bioinformatics, we identified cyclin-dependent kinase like 3 (CDKL3) as a potential target for curcumol. We have demonstrated that curcumol can evidently suppress growth and migration of cholangiocarcinoma cells. Furthermore, curcumol could significantly block the cell cycle progression of the cholangiocarcinoma cells. These effects could be largely attributed to the inhibition of CDKL3 by curcumol. Further studies have recapitulated the oncogenic role of CDKL3 in that knockdown of CDKL3 by lentiviral mediated transfection of shRNA against CDKL3 also led to a significant inhibition on cell proliferation, migration, invasion, and cell cycle progression. Given the high level of CDKL3 expression in human cholangiocarcinoma tissues and cell lines, we speculated that CDKL3 may constitute a potential biological target for curcumol in cholangiocarcinoma.
Collapse
Affiliation(s)
- Jinduo Zhang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China.,Special Minimally Invasive Surgery, The First Hospital of Lanzhou University, Lanzhou, China.,School of Basic Medical Sciences, Institute of Genetics, Lanzhou University, Lanzhou, China.,Gansu Province Institute of Hepatopancreatobiliary, Lanzhou, China.,Gansu Province Key Laboratory Biotherapy and Regenerative Medicine, Lanzhou, China
| | - Gang Su
- The First Clinical Medical College, Lanzhou University, Lanzhou, China.,School of Basic Medical Sciences, Institute of Genetics, Lanzhou University, Lanzhou, China
| | - Zengwei Tang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China.,Special Minimally Invasive Surgery, The First Hospital of Lanzhou University, Lanzhou, China.,Gansu Province Institute of Hepatopancreatobiliary, Lanzhou, China.,Gansu Province Key Laboratory Biotherapy and Regenerative Medicine, Lanzhou, China
| | - Li Wang
- School of Basic Medical Sciences, Institute of Genetics, Lanzhou University, Lanzhou, China.,School of Stomatology, Lanzhou University, Lanzhou, China
| | - Wenkang Fu
- The First Clinical Medical College, Lanzhou University, Lanzhou, China.,Special Minimally Invasive Surgery, The First Hospital of Lanzhou University, Lanzhou, China.,Gansu Province Institute of Hepatopancreatobiliary, Lanzhou, China.,Gansu Province Key Laboratory Biotherapy and Regenerative Medicine, Lanzhou, China
| | - Sheng Zhao
- The First Clinical Medical College, Lanzhou University, Lanzhou, China.,School of Basic Medical Sciences, Institute of Genetics, Lanzhou University, Lanzhou, China
| | - Yongjiang Ba
- The First Clinical Medical College, Lanzhou University, Lanzhou, China.,Special Minimally Invasive Surgery, The First Hospital of Lanzhou University, Lanzhou, China.,Gansu Province Institute of Hepatopancreatobiliary, Lanzhou, China.,Gansu Province Key Laboratory Biotherapy and Regenerative Medicine, Lanzhou, China
| | - Bing Bai
- The First Clinical Medical College, Lanzhou University, Lanzhou, China.,Special Minimally Invasive Surgery, The First Hospital of Lanzhou University, Lanzhou, China.,Gansu Province Institute of Hepatopancreatobiliary, Lanzhou, China.,Gansu Province Key Laboratory Biotherapy and Regenerative Medicine, Lanzhou, China
| | - Ping Yue
- The First Clinical Medical College, Lanzhou University, Lanzhou, China.,Special Minimally Invasive Surgery, The First Hospital of Lanzhou University, Lanzhou, China.,Gansu Province Institute of Hepatopancreatobiliary, Lanzhou, China.,Gansu Province Key Laboratory Biotherapy and Regenerative Medicine, Lanzhou, China
| | - Yanyan Lin
- The First Clinical Medical College, Lanzhou University, Lanzhou, China.,Special Minimally Invasive Surgery, The First Hospital of Lanzhou University, Lanzhou, China.,Gansu Province Institute of Hepatopancreatobiliary, Lanzhou, China.,Gansu Province Key Laboratory Biotherapy and Regenerative Medicine, Lanzhou, China
| | - Zhongtian Bai
- The First Clinical Medical College, Lanzhou University, Lanzhou, China.,Gansu Province Institute of Hepatopancreatobiliary, Lanzhou, China.,Gansu Province Key Laboratory Biotherapy and Regenerative Medicine, Lanzhou, China.,The Second Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Jinjing Hu
- The First Clinical Medical College, Lanzhou University, Lanzhou, China.,Gansu Province Institute of Hepatopancreatobiliary, Lanzhou, China.,Gansu Province Key Laboratory Biotherapy and Regenerative Medicine, Lanzhou, China
| | - Wenbo Meng
- The First Clinical Medical College, Lanzhou University, Lanzhou, China.,Special Minimally Invasive Surgery, The First Hospital of Lanzhou University, Lanzhou, China.,School of Basic Medical Sciences, Institute of Genetics, Lanzhou University, Lanzhou, China.,Gansu Province Institute of Hepatopancreatobiliary, Lanzhou, China.,Gansu Province Key Laboratory Biotherapy and Regenerative Medicine, Lanzhou, China
| | - Liang Qiao
- Storr Liver Centre, Westmead Institute for Medical Research, University of Sydney, Westmead, NSW, Australia
| | - Xun Li
- The First Clinical Medical College, Lanzhou University, Lanzhou, China.,Gansu Province Institute of Hepatopancreatobiliary, Lanzhou, China.,Gansu Province Key Laboratory Biotherapy and Regenerative Medicine, Lanzhou, China.,The Second Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Xiaodong Xie
- The First Clinical Medical College, Lanzhou University, Lanzhou, China.,School of Basic Medical Sciences, Institute of Genetics, Lanzhou University, Lanzhou, China
| |
Collapse
|
68
|
Peng Z, Zhou W, Zhang C, Liu H, Zhang Y. Curcumol Controls Choriocarcinoma Stem-Like Cells Self-Renewal via Repression of DNA Methyltransferase (DNMT)- and Histone Deacetylase (HDAC)-Mediated Epigenetic Regulation. Med Sci Monit 2018; 24:461-472. [PMID: 29363667 PMCID: PMC5791388 DOI: 10.12659/msm.908430] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Cancer stem cells (CSCs), in choriocarcinoma and other carcinomas, possess the ability of self-renewal and multilineage differentiation potential. We previous isolated choriocarcinoma cancer stem-like cells (CSLCs), which hold the stemness characteristics of CSCs. Epigenetic modifications have emerged as drivers in tumorigenesis, but the mechanisms of CSCs are largely unknown, and new drug therapies are needed to break the persistence of CSCs. MATERIAL AND METHODS Quantitative real-time PCR (qRT-PCR) and Western blot analysis were performed to detect the expression of DNMTs, HDACs, and stemness-genes. DNMTs and HDACs silencing and overexpressing lentivirus were transfected into JEG-3 cells to investigate the epigenetic functions in CSLCs. In vivo expression of curcumol effects of CSLCs on DNMTs and HDACs were analyzed by immunohistochemistry. RESULTS Expression of DNMT1, DNMT3b, HDAC1, and HDAC3 were increased in choriocarcinoma CSLCs. Consistent with the inhibitory effect of 5-AzaC and TSA on CSLCs, DNMT/HDAC knockdown displayed significant repression of self-renewal in CSLCs. Curcumol inhibited the stemness ability of CSLCs in vitro and in vivo, and the inhibitory effect we observed was mediated in part through repressing activity of DNMTs and HDACs. Importantly, curcumol showed a better effect than DNMT and HDAC inhibitors combined in eliminating CSLCs. CONCLUSIONS These findings indicate that DNMT- and HDAC-mediated epigenetic regulation plays an important role in the biology of choriocarcinoma CSLCs, and curcumol has the potential to be a new drug to fight CSLCs, warranting further investigation of epigenetic-based therapies.
Collapse
Affiliation(s)
- Zheng Peng
- Department of Gynecology and Obstetrics, Xiangya Hospital of Central South University, Changsha, Hunan, China (mainland)
| | - Wenjun Zhou
- Department of Gynecology and Obstetrics, Xiangya Hospital of Central South University, Changsha, Hunan, China (mainland)
| | - Chun Zhang
- Department of Gynecology and Obstetrics, Xiangya Hospital of Central South University, Changsha, Hunan, China (mainland)
| | - Huining Liu
- Department of Gynecology and Obstetrics, Xiangya Hospital of Central South University, Changsha, Hunan, China (mainland)
| | - Yi Zhang
- Department of Gynecology and Obstetrics, Xiangya Hospital of Central South University, Changsha, Hunan, China (mainland)
| |
Collapse
|
69
|
Zhang C, Ren J, Hua J, Xia L, He J, Huo D, Hu Y. Multifunctional Bi 2WO 6 Nanoparticles for CT-Guided Photothermal and Oxygen-free Photodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2018; 10:1132-1146. [PMID: 29250955 DOI: 10.1021/acsami.7b16000] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The consumption of oxygen in photodynamic therapy (PDT) significantly exacerbates the degree of hypoxia in tumors, which not only impedes the therapeutic effect of PDT, but also drives local tumor recurrence. To relieve the PDT-induced hypoxia and improve the therapeutic outcome of PDT in cancer treatment, herein we reported a class of Bi2WO6 nanoparticles (NPs) as a robust multifunctional platform, which integrates the abilities for contrast-enhanced computed tomography (CT) imaging, photothermal therapy, and PDT in an oxygen-free manner. The as-obtained Bi2WO6 NPs with a mean diameter of 5.2 nm are stable in phosphate-buffered saline and an in vivo microenvironment-mimicking buffer. The location of the solid tumor could be accurately positioned using Bi2WO6-enhanced CT with higher spatial resolution. After being irradiated with an 808 nm laser, these Bi2WO6 NPs could realize CT-guided local photothermal ablation of the tumor. Meanwhile, •OH radicals were generated simultaneously from the treatment without consuming an oxygen molecule, which enabled these Bi2WO6 NPs to exert photodynamic killing effect in an oxygen-free manner during cancer therapy. Remarkable tumor suppression was observed in mice bearing the HeLa xenograft, supporting the promising application of these multifunctional Bi2WO6 NPs in the combat against cancers through synergistic photothermal and oxygen-free PDT treatment.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Radiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School , No. 321 Zhongshan Road, Nanjing 210008, China
| | | | | | | | - Jian He
- Department of Radiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School , No. 321 Zhongshan Road, Nanjing 210008, China
| | | | | |
Collapse
|