51
|
Wu PH, Cheng YC, Chen HY, Chueh TW, Chen HC, Huang LH, Wu ZX, Hsieh TM, Chang CC, Yang PY, Lin CF, Yu CP. Using the entrapped bioprocess as the pretreatment method for the drinking water treatment receiving eutrophic source water. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 248:57-65. [PMID: 30771748 DOI: 10.1016/j.envpol.2019.01.128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/29/2019] [Accepted: 01/31/2019] [Indexed: 06/09/2023]
Abstract
Control of organic matter, nutrients and disinfection byproduct formation is a major challenge for the drinking water treatment plants on Matsu Islands, Taiwan, receiving source water from the eutrophic reservoirs. A pilot entrapped biomass reactor (EBR) system was installed as the pretreatment process to reduce organic and nitrogen contents into the drinking water treatment plant. The effects of hydraulic retention time (HRT) and combination of preceding physical treatment (ultraviolet and ultrasound) on the treatment performance were further evaluated. The results showed that the EBR system achieved higher than 81%, 35%, 12% and 46% of reduction in chlorophyll a (Chl a), total COD (TCOD), dissolved organic carbon (DOC) and total nitrogen (TN), respectively under varied influent concentrations. The treatment performance was not significantly influenced by HRT and presence/absence of physical pretreatment and the effluent water quality was stable; however, removal efficiencies and removal rates of Chl a, TCOD and DOC showed strong correlation with their influent concentrations. Excitation-emission matrix (EEM) fluorescence spectroscopy identified fulvic-like and humic-like substances as the two major components of dissolved organic matter (DOM) in the reservoir, and decreased intensity of the major peaks in effluent EEM fluorescence spectra suggested the effective removal of DOM without production of additional amount of soluble microbial products in the EBR. Through the treatment by EBR, about 10% of reduction of total trihalomethane formation potential for the effluent could also be achieved. Therefore, the overall results of this study demonstrate that EBR can be a potential pretreatment process for drinking water treatment plants receiving eutrophic source water.
Collapse
Affiliation(s)
- Pei-Hsun Wu
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Yi-Ching Cheng
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Haon-Yao Chen
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Ti-Wen Chueh
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Hui-Chen Chen
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Li-Hsun Huang
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Zhong-Xian Wu
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Tsung-Min Hsieh
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Chao-Chin Chang
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Ping-Yi Yang
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Cheng-Fang Lin
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Chang-Ping Yu
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
52
|
Wagner ND, Helm PA, Simpson AJ, Simpson MJ. Metabolomic responses to pre-chlorinated and final effluent wastewater with the addition of a sub-lethal persistent contaminant in Daphnia magna. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:9014-9026. [PMID: 30719660 DOI: 10.1007/s11356-019-04318-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 01/22/2019] [Indexed: 06/09/2023]
Abstract
Consumer products such as perfluorooctanesulfonic acid (PFOS) and pharmaceuticals (PCPPs) enter aquatic ecosystems through inefficient removal during wastewater treatment. Often, the sterilization process of wastewater includes the addition of sodium hypochlorite that can react with PCPPs and other organic matter (i.e., dissolve organic matter) to generate disinfection by-products and can cause the final effluent to be more harmful to aquatic organisms. Here, we exposed Daphnia magna to two stages of wastewater, the pre-chlorinated wastewater (PreCl) and the final effluent. In addition, we exposed D. magna, to the final effluent with a concentration gradient of added PFOS, to investigate if this persistent contaminant altered the toxicity of the final effluent. After 48 h of contaminant exposure, we measured the daphnids metabolic responses to the different stages of wastewater treatment, and with the addition of PFOS, utilizing proton nuclear magnetic resonance spectroscopy and liquid chromatography tandem mass spectrometry. We found few significant changes to the metabolic profile of animals exposed to the PreCl wastewater; however, animals exposed to the final effluent displayed increases in many amino acids and decreases in some sugar metabolites. With the addition of PFOS to the final effluent, the metabolic profile shifted from increased amino acids and decreased sugar metabolites and energy molecules especially at the low and high concentrations of PFOS. Overall, our results demonstrate the metabolome is sensitive to changes in the final effluent that are caused by sterilization, and with the addition of a persistent contaminant, the metabolic profile is further altered.
Collapse
Affiliation(s)
- Nicole D Wagner
- Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto, Toronto, Ontario, M1C 1A4, Canada
| | - Paul A Helm
- Environmental Monitoring & Reporting Branch, Ontario Ministry of the Environment, Conservation, and Parks, Toronto, Ontario, M9P 3V6, Canada
| | - André J Simpson
- Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto, Toronto, Ontario, M1C 1A4, Canada
| | - Myrna J Simpson
- Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto, Toronto, Ontario, M1C 1A4, Canada.
| |
Collapse
|
53
|
Bustos N, Cruz-Alcalde A, Iriel A, Fernández Cirelli A, Sans C. Sunlight and UVC-254 irradiation induced photodegradation of organophosphorus pesticide dichlorvos in aqueous matrices. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 649:592-600. [PMID: 30176470 DOI: 10.1016/j.scitotenv.2018.08.254] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/24/2018] [Accepted: 08/04/2018] [Indexed: 06/08/2023]
Abstract
Dichlorvos (DDVP) is an organophosphorus pesticide that has been classified as highly hazardous chemical by the World Health organization. In this study, the fate of the pesticide DDVP in natural water compartments was examined under simulated sunlight. Moreover, the effect of UV-254 irradiation on DDVP depletion was also studied. In deionized water, DDVP was photodegraded only in the presence of dissolved molecular oxygen. The photodegradation during the first 6 h of sunlight irradiation occurred with pseudo first-order kinetics, and the rate constants were 0.040 h-1 at pH 7 and 0.064 h-1 at pH 3. A reaction mechanism for the generation of reactive oxygen species (ROS) via DDVP photoabsorption was proposed. Humic acids (HA) played a double role as photosensitizer and inhibitor, observing an enhancement on DDVP photodegradation at low HA concentration (TOC = 2 mg L-1). The depletion of DDVP under 254 nm UV irradiation was ascribed to direct photodegradation and oxygen mediated photoinduced reactions. Direct photodegradation of DDVP decreased with 254 nm irradiation reduction, highlighting the importance of radical mediated mechanisms at low irradiation doses. Based on LC/MS data, the main photoproducts under simulated solar light and UV-C irradiation were identified and potential reaction pathways were postulated. The three main identified products were o-methyl 2,2-dichlorovinyl phosphate, dichloroacetaldehyde and dimethylphosphate. Moreover, the toxicity of samples was evaluated along the irradiation exposure time using Microtox® assays. This study brings new insights into the role of oxygen in the photodegradation of DDVP and the induced and inhibition mechanisms involved in the presence of the humic acids in natural waters.
Collapse
Affiliation(s)
- Nahuel Bustos
- Centro de Estudios Transdisciplinarios del Agua/CETA (UBA), Instituto de Investigaciones en Producción Animal/INPA(CONICET-UBA), Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Av. Chorroarín 280, C1427CWO Buenos Aires, Argentina
| | - Alberto Cruz-Alcalde
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Analía Iriel
- Centro de Estudios Transdisciplinarios del Agua/CETA (UBA), Instituto de Investigaciones en Producción Animal/INPA(CONICET-UBA), Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Av. Chorroarín 280, C1427CWO Buenos Aires, Argentina
| | - Alicia Fernández Cirelli
- Centro de Estudios Transdisciplinarios del Agua/CETA (UBA), Instituto de Investigaciones en Producción Animal/INPA(CONICET-UBA), Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Av. Chorroarín 280, C1427CWO Buenos Aires, Argentina
| | - Carmen Sans
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain.
| |
Collapse
|
54
|
Dong S, Page MA, Wagner ED, Plewa MJ. Thiol Reactivity Analyses To Predict Mammalian Cell Cytotoxicity of Water Samples. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:8822-8829. [PMID: 29965743 DOI: 10.1021/acs.est.8b01675] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
An in chemico high throughput assay based on N-acetylcysteine was developed and used in conjunction with previous and new mammalian cell cytotoxicity data. Our objective was to derive an empirical equation with confidence levels for mammalian cell cytotoxicity prediction. Modeling data included 16 unique sources of waters and wastewaters of distinct water qualities to encompass a wide range of real environmental samples. This approach provides a quick screen to identify those water and wastewaters that could be prioritized for in depth analytical biological analyses and toxicity. The resulting model can serve as a preliminary convenient tool to screen for potential mammalian cell cytotoxicity in organic extracts of a wide variety of water samples.
Collapse
Affiliation(s)
| | - Martin A Page
- US Army Engineer Research and Development Center , 2902 Newmark Drive , Champaign , Illinois 61822 , United States
| | | | | |
Collapse
|
55
|
Cortés C, Marcos R. Genotoxicity of disinfection byproducts and disinfected waters: A review of recent literature. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 831:1-12. [DOI: 10.1016/j.mrgentox.2018.04.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 04/22/2018] [Accepted: 04/23/2018] [Indexed: 10/17/2022]
|
56
|
Gleason JM, McKay G, Ishida KP, Mezyk SP. Temperature dependence of hydroxyl radical reactions with chloramine species in aqueous solution. CHEMOSPHERE 2017; 187:123-129. [PMID: 28843670 PMCID: PMC6865285 DOI: 10.1016/j.chemosphere.2017.08.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/08/2017] [Accepted: 08/11/2017] [Indexed: 05/10/2023]
Abstract
The absolute temperature-dependent kinetics for the reaction between hydroxyl radicals and the chloramine water disinfectant species monochloramine (NH2Cl), as well as dichloramine (NHCl2) and trichloramine (NCl3), have been determined using electron pulse radiolysis and transient absorption spectroscopy. These radical reaction rate constants were fast, with values of 6.06 × 108, 2.57 × 108, and 1.67 × 108 M-1 s-1 at 25 °C for NH2Cl, NHCl2, and NCl3, respectively. The corresponding temperature dependence of these reaction rate constants, measured over the range 10-40 °C, is well-described by the transformed Arrhenius equations:giving activation energies of 8.57 ± 0.58, 6.11 ± 0.40, and 5.77 ± 0.72 kJ mol-1 for these three chloramines, respectively. These data will aid water utilities in predicting hydroxyl radical partitioning and chemical contaminant removal efficiencies under real-world advanced oxidation process treatment conditions.
Collapse
Affiliation(s)
- Jamie M Gleason
- Department of Chemistry and Biochemistry, California State University at Long Beach, Long Beach, CA 90820, USA
| | - Garrett McKay
- Department of Chemistry and Biochemistry, California State University at Long Beach, Long Beach, CA 90820, USA
| | - Kenneth P Ishida
- Research and Development Department, Orange County Water District, 18700 Ward Street, Fountain Valley, CA 92708, USA
| | - Stephen P Mezyk
- Department of Chemistry and Biochemistry, California State University at Long Beach, Long Beach, CA 90820, USA.
| |
Collapse
|
57
|
Wagner ED, Plewa MJ. CHO cell cytotoxicity and genotoxicity analyses of disinfection by-products: An updated review. J Environ Sci (China) 2017; 58:64-76. [PMID: 28774627 DOI: 10.1016/j.jes.2017.04.021] [Citation(s) in RCA: 435] [Impact Index Per Article: 62.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/25/2017] [Accepted: 04/20/2017] [Indexed: 05/07/2023]
Abstract
The disinfection of drinking water is an important public health service that generates high quality, safe and palatable tap water. The disinfection of drinking water to reduce waterborne disease was an outstanding public health achievement of the 20th century. An unintended consequence is the reaction of disinfectants with natural organic matter, anthropogenic contaminants and bromide/iodide to form disinfection by-products (DBPs). A large number of DBPs are cytotoxic, neurotoxic, mutagenic, genotoxic, carcinogenic and teratogenic. Epidemiological studies demonstrated low but significant associations between disinfected drinking water and adverse health effects. The distribution of DBPs in disinfected waters has been well defined by advances in high precision analytical chemistry. Progress in the analytical biology and toxicology of DBPs has been forthcoming. The objective of this review was to provide a detailed presentation of the methodology for the quantitative, comparative analyses on the induction of cytotoxicity and genotoxicity of 103 DBPs using an identical analytical biological platform and endpoints. A single Chinese hamster ovary cell line was employed in the assays. The data presented are derived from papers published in the literature as well as additional new data and represent the largest direct quantitative comparison on the toxic potency of both regulated and emerging DBPs. These data may form the foundation of novel research to define the major forcing agents of DBP-mediated toxicity in disinfected water and may play an important role in achieving the goal of making safe drinking water better.
Collapse
Affiliation(s)
- Elizabeth D Wagner
- Safe Global Water Institute, University of Illinois at Urbana-Champaign, 1101 W Peabody Dr., Urbana, IL 61801, United States; Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1101 W Peabody Dr., Urbana, IL 61801, United States.
| | - Michael J Plewa
- Safe Global Water Institute, University of Illinois at Urbana-Champaign, 1101 W Peabody Dr., Urbana, IL 61801, United States; Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1101 W Peabody Dr., Urbana, IL 61801, United States
| |
Collapse
|