51
|
Ding Y, Xu S, Zhang H, Zhang J, Qiu Z, Chen H, Wang J, Zheng J, Wu J. One-Step Fabrication of a Micro/Nanosphere-Coordinated Dual Stimulus-Responsive Nanofibrous Membrane for Intelligent Antifouling and Ultrahigh Permeability of Viscous Water-in-Oil Emulsions. ACS APPLIED MATERIALS & INTERFACES 2021; 13:27635-27644. [PMID: 34060802 DOI: 10.1021/acsami.1c05896] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Membrane fouling is a major challenge for long-term oil/water separation. The incomplete degradation of organic pollutants or membrane damage exists in the common methods of membrane regeneration. Herein, a dual-responsive nanofibrous membrane with high water-in-oil emulsion separation efficiency and smart cleaning properties is reported, which shows complete restoration of its original separation performance. The pH-responsive and upper critical solution temperature (UCST)-type thermoresponsive nanofibrous membrane with a micro/nanosphere structure was developed via a one-step-blending electrospinning strategy. The membrane displays high hydrophobicity/oleophilicity at pH 7 and 25 °C and hydrophilicity/oleophobicity at pH 3 and 55 °C. As a result, it exhibits an ultrahigh permeability of 60528.76 L m-2 h-1 bar-1 and a separation efficiency of 99.5% for water-in-D5 emulsions at room temperature (25 °C). Moreover, the contaminated membranes could be easily reclaimed by being rinsed with warm acidic water (pH 3 and 55 °C). The membrane maintained high separation performance after being used for multiple cycles, indicating its scalable application for purifying emulsified oil. This study provides a facial method of constructing membranes with multiscale hierarchical structures and a new idea for the design of recyclable oil/water separation membranes.
Collapse
Affiliation(s)
- Yajie Ding
- Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, P. R. China
| | - Shuting Xu
- Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, P. R. China
| | - Huiling Zhang
- Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, P. R. China
| | - Jiaming Zhang
- Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, P. R. China
| | - Zhiye Qiu
- Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, P. R. China
| | - Huaxiang Chen
- Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, P. R. China
| | - Jiping Wang
- Shanghai University of Engineering Science, Shanghai 200336, P. R. China
| | - Jinhuan Zheng
- Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, P. R. China
| | - Jindan Wu
- Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, P. R. China
| |
Collapse
|
52
|
Niu H, Qiang Z, Ren J. Durable, magnetic-responsive melamine sponge composite for high efficiency, in situoil-water separation. NANOTECHNOLOGY 2021; 32:275705. [PMID: 33725679 DOI: 10.1088/1361-6528/abef2e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 03/16/2021] [Indexed: 05/25/2023]
Abstract
The development of durable and high-performance absorbents forin situoil-water separation is of critical importance for addressing severe water pollution in daily life as well as for solving accidental large-scale oil spillages. Herein, we demonstrate a simple and scalable approach to fabricate magnetic-responsive superhydrophobic melamine sponges byin situdeposition of PDA coatings and Fe3O4nanoparticles, followed by surface silanization with low surface energy 1H,1H,2H,2H-perfluorooctyltriethoxysilane (PTOS) layer. The prepared melamine sponge composite (PTOS-Fe3O4@PDA/MF) not only exhibits a very high water contact angle of 165 ± 1.5° and an excellent ability to uptake a variety of oils and organic solvents (e.g. up to 141.1 g/g for chloroform), but also shows robust durability and superior recyclability. The PTOS-Fe3O4@PDA/MF sponge can also efficiently separate oils (or organic solvents) and water, as demonstrated by different model systems including immiscible oil-water solution mixture and miscible water-oil (W/O) emulsion (stabilized by surfactants). Furthermore, the PTOS-Fe3O4@PDA/MF sponge is able toin siturecover organics from water using a peristaltic pump, which gives it significant advantages over other traditional batch processes for oil-water separation. We believe that the PTOS-Fe3O4@PDA/MF sponge provides a very promising material solution to address oil-water separation, especially for the large-scale problems that have been long-time challenges with conventional sorption methods.
Collapse
Affiliation(s)
- Haifeng Niu
- Institute of Nano and Biopolymeric Materials, Department of Polymeric Materials, Key Laboratory of Advanced Civil Engineering Materials (Ministry of Education), School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, People's Republic of China
| | - Zhe Qiang
- School of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, MS, 39406, United States of America
| | - Jie Ren
- Institute of Nano and Biopolymeric Materials, Department of Polymeric Materials, Key Laboratory of Advanced Civil Engineering Materials (Ministry of Education), School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, People's Republic of China
| |
Collapse
|
53
|
Shi HG, Li SL, Cheng JB, Zhao HB, Wang YZ. Multifunctional Photothermal Conversion Nanocoatings Toward Highly Efficient and Safe High-Viscosity Oil Cleanup Absorption. ACS APPLIED MATERIALS & INTERFACES 2021; 13:11948-11957. [PMID: 33650846 DOI: 10.1021/acsami.0c22596] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Efficient and safe cleanup for the high-viscosity heavy oil spill has been a worldwide challenge due to its sluggish flowability, while classic absorption methods by electric/solar heating are seriously limited by low efficiency and high fire hazards during heating of highly flammable oil. Facing this dilemma, we reported a novel flame-retardant photothermal conversion nanocoating to endow commercial foams with highly efficient and safe heavy oil cleanup absorption. This multifunctional nanocoating consisting of nano-Fe3O4 and reduced graphene oxide (rGO) that both showed photothermal conversion ability and non-flammable nature can be firmly deposited on the polymer foam skeletons via facile coprecipitation and dip-coating processes. The composite foam showed a tough morphology with high hydrophobicity and low density, thus leading to selective high absorption for various oils and organic solvents. Due to the double photothermal conversion effects of nano-Fe3O4 and rGO, the temperature of the foam can be rapidly heated at a rate of ∼103.5 °C/min (the fastest rate ever) under 1 sun irradiation. Consequently, the foam with a high absorption capacity of 75.1 times its weight demonstrated a rapid absorption rate of 9000 g m-2 min-1 for large-viscosity oil under 1 sun irradiation, which was 3 times faster than previously reported. Furthermore, benefitting from high flame retardancy, elasticity, and magnetism, the foam can be safely and repeatedly used for magnetically controllable oil cleanup absorption, which effectively avoids oil spill hazards.
Collapse
Affiliation(s)
- Hai-Gang Shi
- School of Chemical Engineering, Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), Sichuan University, Chengdu 610064, China
| | - Shu-Liang Li
- School of Chemical Engineering, Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), Sichuan University, Chengdu 610064, China
| | - Jin-Bo Cheng
- School of Chemical Engineering, Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), Sichuan University, Chengdu 610064, China
| | - Hai-Bo Zhao
- School of Chemical Engineering, Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), Sichuan University, Chengdu 610064, China
| | - Yu-Zhong Wang
- School of Chemical Engineering, Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), Sichuan University, Chengdu 610064, China
| |
Collapse
|
54
|
Gavazzoni C, Silvestrini M, Brito C. Modeling oil-water separation with controlled wetting properties. J Chem Phys 2021; 154:104704. [PMID: 33722045 DOI: 10.1063/5.0041070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Several oil-water separation techniques have been proposed to improve the capacity of cleaning water. With the technological possibility of producing materials with antagonist wetting behavior, for example, a substrate that repels water and absorbs oil, the understanding of the properties that control this selective capacity has increased with the goal of being used as the mechanism to separate mixed liquids. Besides the experimental advance in this field, less is known from the theoretical side. In this work, we propose a theoretical model to predict the wetting properties of a given substrate and introduce simulations with a four-spin cellular Potts model to study its efficiency in separating water from oil. Our results show that the efficiency of the substrates depends both on the interaction between the liquids and on the wetting behavior of the substrates itself. The water behavior of the droplet composed of both liquids is roughly controlled by the hydrophobicity of the substrate. Predicting the oil behavior, however, is more complex because the substrate being oleophilic does not guarantee that the total amount of oil present on the droplet will be absorbed by the substrate. For both types of substrates considered in this work, pillared and porous with a reservoir, there is always an amount of reminiscent oil on the droplet, which is not absorbed by the substrate due to the interaction with the water and the gas. Both theoretical and numerical models can be easily modified to analyze other types of substrates and liquids.
Collapse
Affiliation(s)
- Cristina Gavazzoni
- Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, CEP 91501-970 Porto Alegre, Rio Grande do Sul, Brazil
| | - Marion Silvestrini
- Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, CEP 91501-970 Porto Alegre, Rio Grande do Sul, Brazil
| | - Carolina Brito
- Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, CEP 91501-970 Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
55
|
Yuan N, Gong X, Sun W, Yu C. Advanced applications of Zr-based MOFs in the removal of water pollutants. CHEMOSPHERE 2021; 267:128863. [PMID: 33199106 DOI: 10.1016/j.chemosphere.2020.128863] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 06/11/2023]
Abstract
The global water pollution is caused by the increase of industrial and agricultural activities, which have produced various toxic pollutants. Pollutants in water generally consist of metal ions, pharmaceuticals and personal care products (PPCPs), oil spills, organic dyes, and other organic pollutants. Amongst the adsorbents that have been developed to deal with pollutants in water, Zr-based metal-organic frameworks (MOFs) have drawn scientists' great attention due to their excellent stability and adjustable functionalization. Herein, the present review article introduces the synthetic methods of functionalized Zr-based MOFs and summarizes their applications in water pollution treatment. It also clarifies the interactions and removal mechanisms between pollutants and Zr-based MOFs. The use of these MOFs with eminent adsorption ability and recycling performance have been discussed in detail. Zr-based MOFs also face some challenges such as high cost, lack of real water environment applications, selective removal of pollutants, and low ability to remove composite pollutants. Future research should focus on addressing these issues. Although there is still a blank of the practical utility of Zr-based MOFs on a commercial scale, the research reported to date clearly shows that they are very promising materials for the water treatment.
Collapse
Affiliation(s)
- Ning Yuan
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, 100083, China.
| | - Xinrui Gong
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, 100083, China
| | - Wenduo Sun
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, 100083, China
| | - Caihong Yu
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, 100083, China
| |
Collapse
|
56
|
Xue J, Zhu L, Zhu X, Li H, Ma C, Yu S, Sun D, Xia F, Xue Q. Tetradecylamine-MXene functionalized melamine sponge for effective oil/water separation and selective oil adsorption. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118106] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
57
|
Guo Z, Feng Y, Zhang C, Huang G, Chi J, Yao Q, Zhang G, Chen X. Three dimensional graphene materials doped with heteroatoms for extraction and adsorption of environmental pollutants in wastewater. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2021; 39:17-43. [PMID: 33554725 DOI: 10.1080/26896583.2020.1863725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Environmental pollution by heavy metal ions, organic pollutants, oils, pesticides or dyes is a ubiquitous problem adversely affecting human health and environmental ecology. Development and application novel adsorbents in full-scale treatment systems with effectiveness properties could effective ways to facilitate the extraction and adsorption of environment pollutants from wastewater. Graphene materials have drawn much attention due to their extraordinary electron mobilities, high surface areas, good thermal conductivities, and excellent mechanical properties. Three-dimensional graphene materials can provide the inherent advantages of 2D graphene sheets and exhibit micro/nanoporous structures, increased specific surface areas, high electron conductivities, fast mass transport kinetics, and strong mechanical strength. Potential applications for 3D graphene materials include environmental remediation, chemical and biological sensing, catalysis, and super capacitors. Recent advances in the applications of 3D functionalized graphene materials (3D FGMs) doped with heteroatoms for the extraction and adsorption of environmental pollutants in wastewater are summarized in this review.
Collapse
Affiliation(s)
- Zhiyong Guo
- Institute of Analytical Technology and Smart Instruments and College of Environment and Public Healthy, Xiamen Huaxia University, Xiamen, China
- Key Laboratory of environmental monitoring, Universities of Fujian Province, Fujian Province, China
| | - Yufeng Feng
- The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, China
| | - Chen Zhang
- Institute of Analytical Technology and Smart Instruments and College of Environment and Public Healthy, Xiamen Huaxia University, Xiamen, China
| | - Guihua Huang
- Institute of Analytical Technology and Smart Instruments and College of Environment and Public Healthy, Xiamen Huaxia University, Xiamen, China
| | - Jinxin Chi
- Institute of Analytical Technology and Smart Instruments and College of Environment and Public Healthy, Xiamen Huaxia University, Xiamen, China
| | - Qiuhong Yao
- Institute of Analytical Technology and Smart Instruments and College of Environment and Public Healthy, Xiamen Huaxia University, Xiamen, China
| | - Guofeng Zhang
- Baotai Biological Technology Co. Ltd of Xiamen, Xiamen, China
| | - Xi Chen
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| |
Collapse
|
58
|
Rego RM, Kuriya G, Kurkuri MD, Kigga M. MOF based engineered materials in water remediation: Recent trends. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123605. [PMID: 33264853 DOI: 10.1016/j.jhazmat.2020.123605] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/25/2020] [Accepted: 07/27/2020] [Indexed: 05/25/2023]
Abstract
The significant upsurge in the demand for freshwater has prompted various developments towards water sustainability. In this context, several materials have gained remarkable interest for the removal of emerging contaminants from various freshwater sources. Among the currently investigated materials for water treatment, metal organic frameworks (MOFs), a developing class of porous materials, have provided excellent platforms for the separation of several pollutants from water. The structural modularity and the striking chemical/physical properties of MOFs have provided more room for target-specific environmental applications. However, MOFs limit their practical applications in water treatment due to poor processability issues of the intrinsically fragile and powdered crystalline forms. Nevertheless, growing efforts are recognized to impart macroscopic shapability to render easy handling shapes for real-time industrial applications. Furthermore, efforts have been devoted to improve the stabilities of MOFs that are subjected to fragile collapse in aqueous environments expanding their use in water treatment. Advances made in MOF based material design have headed towards the use of MOF based aerogels/hydrogels, MOF derived carbons (MDCs), hydrophobic MOFs and magnetic framework composites (MFCs) to remediate water from contaminants and for the separation of oils from water. This review is intended to highlight some of the recent trends followed in MOF based material engineering towards effective water regeneration.
Collapse
Affiliation(s)
- Richelle M Rego
- Centre for Nano and Material Sciences, JAIN (Deemed-to-be-University), Jain Global Campus, Bengaluru, 562112, Karnataka, India
| | - Gangalakshmi Kuriya
- Centre for Nano and Material Sciences, JAIN (Deemed-to-be-University), Jain Global Campus, Bengaluru, 562112, Karnataka, India
| | - Mahaveer D Kurkuri
- Centre for Nano and Material Sciences, JAIN (Deemed-to-be-University), Jain Global Campus, Bengaluru, 562112, Karnataka, India.
| | - Madhuprasad Kigga
- Centre for Nano and Material Sciences, JAIN (Deemed-to-be-University), Jain Global Campus, Bengaluru, 562112, Karnataka, India.
| |
Collapse
|
59
|
Zhai G, Qi L, He W, Dai J, Xu Y, Zheng Y, Huang J, Sun D. Durable super-hydrophobic PDMS@SiO 2@WS 2 sponge for efficient oil/water separation in complex marine environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 269:116118. [PMID: 33280919 DOI: 10.1016/j.envpol.2020.116118] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
The robust and eco-friendly super-hydrophobic sponge with remarkable performances has been potential adsorption material for the treatment of offshore oil spills. In this work, the durable PDMS@SiO2@WS2 sponge was fabricated via a green and facile one-step dipping method. The mixed tungsten disulfide (WS2) microparticles and hydrophobic SiO2 nanoparticles were immobilized on the sponge by non-toxic polydimethylsiloxane (PDMS) glue tier, which featured the hierarchical structure and extreme water repellency with the water contact angle of 158.8 ± 1.4°. The obtained PDMS@SiO2@WS2 sponge exhibits high oil adsorption capacity with 12-112 times of its own weight, and oil/water selectivity with separation efficiency over 99.85%. Notably, when subjected to the complex marine environment including high temperature, corrosive condition, insolation, and strong wind and waves, the modified sponge can maintain sable super-hydrophobicity with water contact angle over 150°. Moreover, it possesses superior mechanical stability for sustainable reusability and oil recovery. The sponge fabricated by non-toxic modifiers along with its sable super-hydrophobicity in complex marine environment makes it a potential material for practical applications.
Collapse
Affiliation(s)
- Guanzhong Zhai
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, PR China
| | - Lixue Qi
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, PR China
| | - Wang He
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, PR China
| | - Jiajun Dai
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, PR China
| | - Yan Xu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, PR China
| | - Yanmei Zheng
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, PR China
| | - Jiale Huang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, PR China
| | - Daohua Sun
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, PR China.
| |
Collapse
|
60
|
Zheng W, Huang J, Li S, Ge M, Teng L, Chen Z, Lai Y. Advanced Materials with Special Wettability toward Intelligent Oily Wastewater Remediation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:67-87. [PMID: 33382588 DOI: 10.1021/acsami.0c18794] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Clean water resources are essential to our human society. Oil leakage has caused water contamination, which leads to serious shortage of clean water, environmental deterioration, and even increasing number of deaths. It is of great urgency to solve the oil-polluted water problems worldwide. Efficient oil/water separation, especially emulsified oil/water mixture separation, is widely used to mitigate water pollution issues. Recently, advanced materials with special wettability have been employed for oily wastewater remediation. Moreover, by endowing them with various intelligent functions, smart materials can effectively separate complex oil/water mixtures including extremely stable emulsions. In this review, oil/water separation mechanisms and various fabrication methods of special wettability separation materials are summarized. We highlight the special wettable materials with intelligent functions, including photocatalytic, self-healing, and switchable oil/water separation materials, which can achieve self-cleaning, self-healing, and efficient oily wastewater treatment. In each section, the acting mechanisms, fabricating technologies, representative studies, and separation efficiency are briefly introduced. Lastly, the challenges and outlook for oil/water separation based on the special wettability materials are discussed.
Collapse
Affiliation(s)
- Weiwei Zheng
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China
| | - Jianying Huang
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China
| | - Shuhui Li
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, P. R. China
| | - Mingzheng Ge
- School of Textile & Clothing, National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, Nantong University, Nantong 226019, P. R. China
| | - Lin Teng
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China
| | - Zhong Chen
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore
| | - Yuekun Lai
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
61
|
Woo S, Park HR, Park J, Yi J, Hwang W. Robust and continuous oil/water separation with superhydrophobic glass microfiber membrane by vertical polymerization under harsh conditions. Sci Rep 2020; 10:21413. [PMID: 33293602 PMCID: PMC7722867 DOI: 10.1038/s41598-020-78271-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/17/2020] [Indexed: 11/24/2022] Open
Abstract
We report a robust and continuous oil/water separation with nanostructured glass microfiber (GMF) membranes modified by oxygen plasma treatment and self-assembled monolayer coating with vertical polymerization. The modified GMF membrane had a nanostructured surface and showed excellent superhydrophobicity. With an appropriate membrane thickness, a high water intrusion pressure (< 62.7 kPa) was achieved for continuous pressure-driven separation of oil/water mixtures with high flux (< 4418 L h-1 m-2) and high oil purity (> 99%). Under simulated industrial conditions, the modified GMF membrane exhibited robust chemical stability against strong acidic/alkaline solutions and corrosive environments. The proposed superhydrophobic composite coating technique is simple, low cost, environmentally friendly, and suitable for the mass production of scalable three-dimensional surfaces. Moreover, its stability and customizable functionality offers considerable potential for a wide range of novel applications.
Collapse
Affiliation(s)
- Seeun Woo
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Hong Ryul Park
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Jinyoung Park
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Johan Yi
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Woonbong Hwang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea.
| |
Collapse
|
62
|
Zhao S, Zhan Y, Wan X, He S, Yang X, Hu J, Zhang G. Selective and efficient adsorption of anionic dyes by core/shell magnetic MWCNTs nano-hybrid constructed through facial polydopamine tailored graft polymerization: Insight of adsorption mechanism, kinetic, isotherm and thermodynamic study. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114289] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
63
|
Ejeromedoghene O, Oderinde O, Kang M, Agbedor S, Faruwa AR, Olukowi OM, Fu G, Daramola MO. Multifunctional metal-organic frameworks in oil spills and associated organic pollutant remediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:42346-42368. [PMID: 32862347 DOI: 10.1007/s11356-020-10322-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 07/29/2020] [Indexed: 05/13/2023]
Abstract
The release of toxic organic compounds into the environment in an event of oil spillage is a global menace due to the potential impacts on the ecosystem. Several approaches have been employed for oil spills clean-up, with adsorption technique proven to be more promising for the total reclamation of a polluted site. Of the several adsorbents so far reported, adsorbent-based porous materials have gained attention for the reduction/total removal of different compounds in environmental remediation applications. The superior potential of mesoporous materials based on metal-organic frameworks (MOFs) against conventional adsorbents is due to their intriguing and enhanced properties. Therefore, this review presents recent development in MOF composites; methods of preparation; and their practical applications towards remediating oil spill, organic pollutants, and toxic gases in different environmental media, as well as potential materials in the possible deployment in reclaiming the polluted Niger Delta due to unabated oil spillage and gas flaring.
Collapse
Affiliation(s)
- Onome Ejeromedoghene
- School of Chemistry and Chemical Engineering, Southeast University, Jiangning District, Nanjing, 211189, Jiangsu Province, People's Republic of China
| | - Olayinka Oderinde
- School of Chemistry and Chemical Engineering, Southeast University, Jiangning District, Nanjing, 211189, Jiangsu Province, People's Republic of China.
| | - Mengmeng Kang
- School of Chemistry and Chemical Engineering, Southeast University, Jiangning District, Nanjing, 211189, Jiangsu Province, People's Republic of China
| | - Solomon Agbedor
- College of Mechanics and Materials, Hohai University, Jiangning District, Nanjing, 210000, Jiangsu Province, People's Republic of China
| | - Ajibola R Faruwa
- College of Earth Science and Engineering, Hohai University, Jiangning District, Nanjing, 210000, Jiangsu Province, People's Republic of China
| | - Olubunmi M Olukowi
- School of Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Lingwei Street, Nanjing, 210094, People's Republic of China
| | - Guodong Fu
- School of Chemistry and Chemical Engineering, Southeast University, Jiangning District, Nanjing, 211189, Jiangsu Province, People's Republic of China.
| | - Michael O Daramola
- Department of Chemical Engineering, Faculty of Engineering, Built Environment and Information Technology, University of Pretoria, Private Bag X20 Hatfield, Pretoria, 0028, South Africa.
| |
Collapse
|
64
|
Yang X, Liu Y, Hu S, Yu F, He Z, Zeng G, Feng Z, Sengupta A. Construction of
Fe
3
O
4
@
MXene composite
nanofiltration membrane for heavy metal ions removal from wastewater. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.5148] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Xiaojun Yang
- Evaluation and Utilization of Strategic Rare Metals and Rare Earth Resource Key Laboratory of Sichuan Province Chengdu Analytical & Testing Center, Sichuan Bureau of Geology & Mineral Resources (Chengdu Mineral Resources Supervision and Testing Center, Ministry of Land and Resources) Chengdu China
- Sichuan Bureau of Geology and Mineral Resources Chengdu Analytical & Testing Center for Mineral and Rocks Chengdu China
| | - Yongcong Liu
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology Chengdu China
| | - Sixian Hu
- Evaluation and Utilization of Strategic Rare Metals and Rare Earth Resource Key Laboratory of Sichuan Province Chengdu Analytical & Testing Center, Sichuan Bureau of Geology & Mineral Resources (Chengdu Mineral Resources Supervision and Testing Center, Ministry of Land and Resources) Chengdu China
- Sichuan Bureau of Geology and Mineral Resources Chengdu Analytical & Testing Center for Mineral and Rocks Chengdu China
| | - Futao Yu
- Evaluation and Utilization of Strategic Rare Metals and Rare Earth Resource Key Laboratory of Sichuan Province Chengdu Analytical & Testing Center, Sichuan Bureau of Geology & Mineral Resources (Chengdu Mineral Resources Supervision and Testing Center, Ministry of Land and Resources) Chengdu China
- Sichuan Bureau of Geology and Mineral Resources Chengdu Analytical & Testing Center for Mineral and Rocks Chengdu China
| | - Zhenzhen He
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology Chengdu China
| | - Guangyong Zeng
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology Chengdu China
| | - Zhenhua Feng
- Evaluation and Utilization of Strategic Rare Metals and Rare Earth Resource Key Laboratory of Sichuan Province Chengdu Analytical & Testing Center, Sichuan Bureau of Geology & Mineral Resources (Chengdu Mineral Resources Supervision and Testing Center, Ministry of Land and Resources) Chengdu China
- Sichuan Bureau of Geology and Mineral Resources Chengdu Analytical & Testing Center for Mineral and Rocks Chengdu China
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology Chengdu China
| | - Arijit Sengupta
- Radiochemistry Division Bhabha Atomic Research Center Mumbai India
- Homi Bhabha National Institute, Anushaktinagar Mumbai India
| |
Collapse
|
65
|
Ali N, Bilal M, Khan A, Ali F, Khan H, Khan HA, Rasool K, Iqbal HM. Understanding the hierarchical assemblies and oil/water separation applications of metal-organic frameworks. J Mol Liq 2020; 318:114273. [DOI: 10.1016/j.molliq.2020.114273] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
66
|
Zhou Z, Li X, Guo D, Shinde DB, Lu D, Chen L, Liu X, Cao L, Aboalsaud AM, Hu Y, Lai Z. Electropolymerization of robust conjugated microporous polymer membranes for rapid solvent transport and narrow molecular sieving. Nat Commun 2020; 11:5323. [PMID: 33087722 PMCID: PMC7578036 DOI: 10.1038/s41467-020-19182-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 10/02/2020] [Indexed: 01/28/2023] Open
Abstract
Pore size uniformity is one of the most critical parameters in determining membrane separation performance. Recently, a novel type of conjugated microporous polymers (CMPs) has shown uniform pore size and high porosity. However, their brittle nature has prevented them from preparing robust membranes. Inspired by the skin-core architecture of spider silk that offers both high strength and high ductility, herein we report an electropolymerization process to prepare a CMP membrane from a rigid carbazole monomer, 2,2’,7,7’-tetra(carbazol-9-yl)-9,9’-spirobifluorene, inside a robust carbon nanotube scaffold. The obtained membranes showed superior mechanical strength and ductility, high surface area, and uniform pore size of approximately 1 nm. The superfast solvent transport and excellent molecular sieving well surpass the performance of most reported polymer membranes. Our method makes it possible to use rigid CMPs membranes in pressure-driven membrane processes, providing potential applications for this important category of polymer materials. Conjugated microporous polymers (CMPs) have great potential in membrane applications but are often brittle. Here, the authors develop an electropolymerization process to form a skin-core architecture which allows them to overcome mechanical limitations while keeping the excellent separation performance of CMP membranes.
Collapse
Affiliation(s)
- Zongyao Zhou
- Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Xiang Li
- Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Dong Guo
- Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Digambar B Shinde
- Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Dongwei Lu
- Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Long Chen
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Xiaowei Liu
- Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Li Cao
- Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Ammar M Aboalsaud
- Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Yunxia Hu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, 300387, Tianjin, P. R. China
| | - Zhiping Lai
- Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
67
|
Chen J, Yu Y, Shang Q, Han J, Liu C. Enhanced Oil Adsorption and Nano-Emulsion Separation of Nanofibrous Aerogels by Coordination of Pomelo Peel-Derived Biochar. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c00512] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Jianqiang Chen
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, P.R. China
| | - Yang Yu
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, P.R. China
| | - Qianqian Shang
- Institute of Chemical Industry of Forestry Products, Chinese Academy of Forestry, 16 Suojin Wucun, Nanjing 210042, P.R. China
| | - Jiangang Han
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, P.R. China
| | - Chengguo Liu
- Institute of Chemical Industry of Forestry Products, Chinese Academy of Forestry, 16 Suojin Wucun, Nanjing 210042, P.R. China
| |
Collapse
|
68
|
Zhang G, Zhan Y, He S, Zhang L, Zeng G, Chiao Y. Construction of superhydrophilic/underwater superoleophobic polydopamine‐modified h‐BN/poly(arylene ether nitrile) composite membrane for stable oil‐water emulsions separation. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.4835] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Guiyuan Zhang
- College of Chemistry and Chemical EngineeringSouthwest Petroleum University Chengdu China
| | - Yingqing Zhan
- College of Chemistry and Chemical EngineeringSouthwest Petroleum University Chengdu China
- State Key Lab of Oil and Gas Reservoir Geology and ExploitationSouthwest Petroleum University Chengdu China
- Research Institute of Industrial Hazardous Waste Disposal and Resource UtilizationSouthwest Petroleum University Chengdu P R of China
| | - Shuangjiang He
- College of Chemistry and Chemical EngineeringSouthwest Petroleum University Chengdu China
| | - Lianhong Zhang
- College of Chemistry and Chemical EngineeringSouthwest Petroleum University Chengdu China
| | - Guangyong Zeng
- College of Materials and Chemistry & Chemical EngineeringChengdu University of Technology Chengdu China
| | - Yu‐Hsuan Chiao
- R&D Center for Membrane Technology and Department of Chemical EngineeringChung Yuan University Chung Li Taiwan
| |
Collapse
|