51
|
Muyldermans S, Smider VV. Distinct antibody species: structural differences creating therapeutic opportunities. Curr Opin Immunol 2016; 40:7-13. [PMID: 26922135 PMCID: PMC4884505 DOI: 10.1016/j.coi.2016.02.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 02/01/2016] [Accepted: 02/11/2016] [Indexed: 11/27/2022]
Abstract
Antibodies have been a remarkably successful class of molecules for binding a large number of antigens in therapeutic, diagnostic, and research applications. Typical antibodies derived from mouse or human sources use the surface formed by complementarity determining regions (CDRs) on the variable regions of the heavy chain/light chain heterodimer, which typically forms a relatively flat binding surface. Alternative species, particularly camelids and bovines, provide a unique paradigm for antigen recognition through novel domains which form the antigen binding paratope. For camelids, heavy chain antibodies bind antigen with only a single heavy chain variable region, in the absence of light chains. In bovines, ultralong CDR-H3 regions form an independently folding minidomain, which protrudes from the surface of the antibody and is diverse in both its sequence and disulfide patterns. The atypical paratopes of camelids and bovines potentially provide the ability to interact with different epitopes, particularly recessed or concave surfaces, compared to traditional antibodies.
Collapse
Affiliation(s)
- Serge Muyldermans
- Cellular and Molecular Immunology, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium.
| | - Vaughn V Smider
- Fabrus Inc., Division of Sevion Therapeutics, San Diego, CA 92121, United States; Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, United States.
| |
Collapse
|
52
|
Wendel S, Fischer EC, Martínez V, Seppälä S, Nørholm MHH. A nanobody:GFP bacterial platform that enables functional enzyme display and easy quantification of display capacity. Microb Cell Fact 2016; 15:71. [PMID: 27142225 PMCID: PMC4855350 DOI: 10.1186/s12934-016-0474-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 04/24/2016] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Bacterial surface display is an attractive technique for the production of cell-anchored, functional proteins and engineering of whole-cell catalysts. Although various outer membrane proteins have been used for surface display, an easy and versatile high-throughput-compatible assay for evaluating and developing surface display systems is missing. RESULTS Using a single domain antibody (also called nanobody) with high affinity for green fluorescent protein (GFP), we constructed a system that allows for fast, fluorescence-based detection of displayed proteins. The outer membrane hybrid protein LppOmpA and the autotransporter C-IgAP exposed the nanobody on the surface of Escherichia coli with very different efficiency. Both anchors were capable of functionally displaying the enzyme Chitinase A as a fusion with the nanobody, and this considerably increased expression levels compared to displaying the nanobody alone. We used flow cytometry to analyse display capability on single-cell versus population level and found that the signal peptide of the anchor has great effect on display efficiency. CONCLUSIONS We have developed an inexpensive and easy read-out assay for surface display using nanobody:GFP interactions. The assay is compatible with the most common fluorescence detection methods, including multi-well plate whole-cell fluorescence detection, SDS-PAGE in-gel fluorescence, microscopy and flow cytometry. We anticipate that the platform will facilitate future in-depth studies on the mechanism of protein transport to the surface of living cells, as well as the optimisation of applications in industrial biotech.
Collapse
Affiliation(s)
- Sofie Wendel
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Allé 6, 2970, Hørsholm, Denmark
| | - Emil C Fischer
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Allé 6, 2970, Hørsholm, Denmark
| | - Virginia Martínez
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Allé 6, 2970, Hørsholm, Denmark
| | - Susanna Seppälä
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Allé 6, 2970, Hørsholm, Denmark
| | - Morten H H Nørholm
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Allé 6, 2970, Hørsholm, Denmark.
| |
Collapse
|
53
|
Antibody affinity maturation through combining display of two-chain paired antibody and precision flow cytometric sorting. Appl Microbiol Biotechnol 2016; 100:5977-88. [DOI: 10.1007/s00253-016-7472-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 03/13/2016] [Accepted: 03/15/2016] [Indexed: 01/09/2023]
|
54
|
Lai YD, Wu YY, Tsai YJ, Tsai YS, Lin YY, Lai SL, Huang CY, Lok YY, Hu CY, Lai JS. Generation of Potent Anti-Vascular Endothelial Growth Factor Neutralizing Antibodies from Mouse Phage Display Library for Cancer Therapy. Int J Mol Sci 2016; 17:214. [PMID: 26861297 PMCID: PMC4783946 DOI: 10.3390/ijms17020214] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 01/21/2016] [Accepted: 01/26/2016] [Indexed: 01/09/2023] Open
Abstract
Vascular endothelial growth factor (VEGF) is an important stimulator for angiogenesis in solid tumors. Blocking VEGF activity is an effective therapeutic strategy to inhibit tumor growth and metastasis. Avastin, a humanized monoclonal antibody recognizes VEGF, has been approved by the US Food and Drug Administration. To generate potential VEGF-recognizing antibodies with better tumor regression ability than that of Avastin, we have designed a systematic antibody selection plan. From mice immunized with recombinant human VEGF, we generated three phage display libraries, scFv-M13KO7, Fab-M13KO7, and scFv-Hyperphage, in single-chain Fv (scFv) or Fab format, displayed using either M13KO7 helper phage or Hyperphage. Solid-phase and solution-phase selection strategies were then applied to each library, generating six panning combinations. A total of sixty-four antibodies recognizing VEGF were obtained. Based on the results of epitope mapping, binding affinity, and biological functions in tumor inhibition, eight antibodies were chosen to examine their abilities in tumor regression in a mouse xenograft model using human COLO 205 cancer cells. Three of them showed improvement in the inhibition of tumor growth (328%–347% tumor growth ratio (% of Day 0 tumor volume) on Day 21 vs. 435% with Avastin). This finding suggests a potential use of these three antibodies for VEGF-targeted therapy.
Collapse
Affiliation(s)
- Yan-Da Lai
- Department of Protein Engineering, Development Center for Biotechnology, New Taipei City 22180, Taiwan.
| | - Yen-Yu Wu
- Department of Protein Engineering, Development Center for Biotechnology, New Taipei City 22180, Taiwan.
| | - Yi-Jiue Tsai
- Department of Protein Engineering, Development Center for Biotechnology, New Taipei City 22180, Taiwan.
| | - Yi-San Tsai
- Department of Protein Engineering, Development Center for Biotechnology, New Taipei City 22180, Taiwan.
| | - Yu-Ying Lin
- Department of Protein Engineering, Development Center for Biotechnology, New Taipei City 22180, Taiwan.
| | - Szu-Liang Lai
- Department of Protein Engineering, Development Center for Biotechnology, New Taipei City 22180, Taiwan.
| | - Chao-Yang Huang
- Department of Protein Engineering, Development Center for Biotechnology, New Taipei City 22180, Taiwan.
| | - Ying-Yung Lok
- Department of Protein Engineering, Development Center for Biotechnology, New Taipei City 22180, Taiwan.
| | - Chih-Yung Hu
- Department of Protein Engineering, Development Center for Biotechnology, New Taipei City 22180, Taiwan.
| | - Jiann-Shiun Lai
- Department of Protein Engineering, Development Center for Biotechnology, New Taipei City 22180, Taiwan.
| |
Collapse
|
55
|
Nilvebrant J, Tessier PM, Sidhu SS. Engineered Autonomous Human Variable Domains. Curr Pharm Des 2016; 22:6527-6537. [PMID: 27655414 PMCID: PMC5326600 DOI: 10.2174/1381612822666160921143011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 09/16/2016] [Accepted: 09/20/2016] [Indexed: 12/16/2022]
Abstract
BACKGROUND The complex multi-chain architecture of antibodies has spurred interest in smaller derivatives that retain specificity but can be more easily produced in bacteria. Domain antibodies consisting of single variable domains are the smallest antibody fragments and have been shown to possess enhanced ability to target epitopes that are difficult to access using multidomain antibodies. However, in contrast to natural camelid antibody domains, human variable domains typically suffer from low stability and high propensity to aggregate. METHODS This review summarizes strategies to improve the biophysical properties of heavy chain variable domains from human antibodies with an emphasis on aggregation resistance. Several protein engineering approaches have targeted antibody frameworks and complementarity determining regions to stabilize the native state and prevent aggregation of the denatured state. CONCLUSION Recent findings enable the construction of highly diverse libraries enriched in aggregation-resistant variants that are expected to provide binders to diverse antigens. Engineered domain antibodies possess unique advantages in expression, epitope preference and flexibility of formatting over conventional immunoreagents and are a promising class of antibody fragments for biomedical development.
Collapse
Affiliation(s)
- Johan Nilvebrant
- Division of Protein Technology, School of Biotechnology, Royal Institute of Technology, Stockholm, Sweden
- Donnelly Centre for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, Toronto, Canada
| | - Peter M. Tessier
- Center for Biotechnology and Interdisciplinary Studies, Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Sachdev S. Sidhu
- Donnelly Centre for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, Toronto, Canada
| |
Collapse
|
56
|
Lim SY, Chan CEZ, Lisowska MM, Hanson BJ, MacAry PA. The Molecular Engineering of an Anti-Idiotypic Antibody for Pharmacokinetic Analysis of a Fully Human Anti-Infective. PLoS One 2015; 10:e0145381. [PMID: 26700297 PMCID: PMC4689483 DOI: 10.1371/journal.pone.0145381] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 12/01/2015] [Indexed: 11/19/2022] Open
Abstract
Anti-idiotype monoclonal antibodies represent a class of reagents that are potentially optimal for analyzing the pharmacokinetics of fully human, anti-infective antibodies that have been developed as therapeutic candidates. This is particularly important where direct pathogen binding assays are complicated by requirements for biosafety level III or IV for pathogen handling. In this study, we describe the development of a recombinant, anti-idiotype monoclonal antibody termed E1 for the detection of a fully human, serotype-specific, therapeutic antibody candidate for the BSLIII pathogen Dengue virus termed 14c10 hG1. E1 was generated by naïve human Fab phage library panning technology and subsequently engineered as a monoclonal antibody. We show that E1 is highly specific for the fully-folded form of 14c10 hG1 and can be employed for the detection of this antibody in healthy human subjects' serum by enzyme linked immunosorbent assay. In addition, we show that E1 is capable of blocking the binding of 14c10 hG1 to dengue virus serotype 1. Finally, we show that E1 can detect 14c10 hG1 in mouse serum after the administration of the therapeutic antibody in vivo. E1 represents an important new form of ancillary reagent that can be utilized in the clinical development of a therapeutic human antibody candidate.
Collapse
Affiliation(s)
- She Yah Lim
- Department of Microbiology, National University of Singapore, Singapore, Singapore
- Immunology Program, Centre for Life Sciences, National University of Singapore, Singapore, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, Singapore, Singapore
| | - Conrad E. Z. Chan
- Defence Medical and Environmental Research Institute, DSO National Laboratories, Singapore, Singapore
| | - Malgorzata M. Lisowska
- Department of Microbiology, National University of Singapore, Singapore, Singapore
- Immunology Program, Centre for Life Sciences, National University of Singapore, Singapore, Singapore
| | - Brendon J. Hanson
- Department of Microbiology, National University of Singapore, Singapore, Singapore
- Defence Medical and Environmental Research Institute, DSO National Laboratories, Singapore, Singapore
| | - Paul A. MacAry
- Department of Microbiology, National University of Singapore, Singapore, Singapore
- Immunology Program, Centre for Life Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
57
|
Riaño-Umbarila L, Ledezma-Candanoza LM, Serrano-Posada H, Fernández-Taboada G, Olamendi-Portugal T, Rojas-Trejo S, Gómez-Ramírez IV, Rudiño-Piñera E, Possani LD, Becerril B. Optimal Neutralization of Centruroides noxius Venom Is Understood through a Structural Complex between Two Antibody Fragments and the Cn2 Toxin. J Biol Chem 2015; 291:1619-1630. [PMID: 26589800 DOI: 10.1074/jbc.m115.685297] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Indexed: 12/19/2022] Open
Abstract
The current trend of using recombinant antibody fragments in research to develop novel antidotes against scorpion stings has achieved excellent results. The polyclonal character of commercial antivenoms, obtained through the immunization of animals and which contain several neutralizing antibodies that recognize different epitopes on the toxins, guarantees the neutralization of the venoms. To avoid the use of animals, we aimed to develop an equivalent recombinant antivenom composed of a few neutralizing single chain antibody fragments (scFvs) that bind to two different epitopes on the scorpion toxins. In this study, we obtained scFv RU1 derived from scFv C1. RU1 showed a good capacity to neutralize the Cn2 toxin and whole venom of the scorpion Centruroides noxius. Previously, we had produced scFv LR, obtained from a different parental fragment (scFv 3F). LR also showed a similar neutralizing capacity. The simultaneous administration of both scFvs resulted in improved protection, which was translated as a rapid recovery of previously poisoned animals. The crystallographic structure of the ternary complex scFv LR-Cn2-scFv RU1 allowed us to identify the areas of interaction of both scFvs with the toxin, which correspond to non-overlapping sites. The epitope recognized by scFv RU1 seems to be related to a greater efficiency in the neutralization of the whole venom. In addition, the structural analysis of the complex helped us to explain the cross-reactivity of these scFvs and how they neutralize the venom.
Collapse
Affiliation(s)
- Lidia Riaño-Umbarila
- From the Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, Cuernavaca, Morelos 62250, México and
| | - Luis M Ledezma-Candanoza
- From the Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, Cuernavaca, Morelos 62250, México and
| | - Hugo Serrano-Posada
- the Laboratorio de Bioingeniería, Universidad de Colima, Km. 9 carretera Coquimatlán-Colima, C.P. 28400 Coquimatlán, Colima, México
| | - Guillermo Fernández-Taboada
- From the Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, Cuernavaca, Morelos 62250, México and
| | - Timoteo Olamendi-Portugal
- From the Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, Cuernavaca, Morelos 62250, México and
| | - Sonia Rojas-Trejo
- From the Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, Cuernavaca, Morelos 62250, México and
| | - Ilse V Gómez-Ramírez
- From the Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, Cuernavaca, Morelos 62250, México and
| | - Enrique Rudiño-Piñera
- From the Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, Cuernavaca, Morelos 62250, México and
| | - Lourival D Possani
- From the Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, Cuernavaca, Morelos 62250, México and
| | - Baltazar Becerril
- From the Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, Cuernavaca, Morelos 62250, México and.
| |
Collapse
|
58
|
Nakka SS, Lönn J, Starkhammar Johansson C, Bengtsson T, Nayeri F. Antibodies produced in vitro in the detection of periodontal bacteria by using surface plasmon resonance analysis. Clin Exp Dent Res 2015; 1:32-44. [PMID: 29744138 PMCID: PMC5839181 DOI: 10.1002/cre2.6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 08/14/2015] [Accepted: 08/24/2015] [Indexed: 12/17/2022] Open
Abstract
Porphyromonas gingivalis (P. gingivalis) is a major etiological agent associated with periodontitis. This study aims to develop antibodies to P. gingivalis in vitro for real-time detection of bacteria in clinical samples. Lymphocytes were isolated from whole blood of patient treated for periodontitis and were stimulated with P. gingivalis ATCC 33277. B-cell maturation to long-living antibody secreting-plasma cells was studied using flow cytometry and immunofluorescence staining. The antibodies developed in vitro were immobilized onto a CM-5 sensor chip of a biosensor to detect the presence of P. gingivalis in the gingival crevicular fluid of patients with periodontitis compared to periodontally healthy controls (n = 30). Surface plasmon resonance (SPR) analysis was performed to evaluate specific interactions of bacteria in samples with the immobilized antibodies. The results of SPR analysis were compared to the detection of P. gingivalis in the samples using DNA-DNA checkerboard hybridization technique. A clear and distinct change in lymphocyte morphology upon stimulation with P. gingivalis was observed. Anti-P. gingivalis antibodies secreted by CD38+ plasma cells showed the presence of all the four IgG subclasses. The results of DNA-DNA checkerboard analysis were in agreement with that of SPR analysis for the detection of P. gingivalis in patient samples. Furthermore, incubation with anti-P. gingivalis attenuated the bacterial response in SPR. The in vitro method for antibody production developed during this study could be used for an efficient real-time detection of periodontitis, and the attenuating effects of in vitro antibodies suggest their role in passive immunization to prevent periodontitis and their associated risk factors.
Collapse
Affiliation(s)
- Sravya Sowdamini Nakka
- The Institution for Protein Environmental Affinity SurveysPEAS Institut ABLinköpingSweden
- Clinical Research Center, School of Health and Medical SciencesÖrebro UniversityÖrebroSweden
| | - Johanna Lönn
- The Institution for Protein Environmental Affinity SurveysPEAS Institut ABLinköpingSweden
- Clinical Research Center, School of Health and Medical SciencesÖrebro UniversityÖrebroSweden
| | | | - Torbjörn Bengtsson
- Clinical Research Center, School of Health and Medical SciencesÖrebro UniversityÖrebroSweden
| | - Fariba Nayeri
- The Institution for Protein Environmental Affinity SurveysPEAS Institut ABLinköpingSweden
- Division of Infectious DiseasesUniversity HospitalLinköpingSweden
| |
Collapse
|
59
|
|
60
|
Challenges in Antibody Development against Tn and Sialyl-Tn Antigens. Biomolecules 2015. [DOI: 10.3390/biom5031783 and (6108=6108)*5040# ieds] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
61
|
|
62
|
|
63
|
|
64
|
|
65
|
|
66
|
|
67
|
|
68
|
|
69
|
Abstract
The carbohydrate antigens Tn and sialyl-Tn (STn) are expressed in most carcinomas and usually absent in healthy tissues. These antigens have been correlated with cancer progression and poor prognosis, and associated with immunosuppressive microenvironment. Presently they are used in clinical trials as therapeutic vaccination, but with limited success due to their low immunogenicity. Alternatively, anti-Tn and/or STn antibodies may be used to harness the immune system against tumor cells. Whilst the development of antibodies against these antigens had a boost two decades ago for diagnostic use, so far no such antibody entered into clinical trials. Possible limitations are the low specificity and efficiency of existing antibodies and that novel antibodies are still necessary. The vast array of methodologies available today will allow rapid antibody development and novel formats. Following the advent of hybridoma technology, the immortalization of human B cells became a methodology to obtain human monoclonal antibodies with better specificity. Advances in molecular biology including phage display technology for high throughput screening, transgenic mice and more recently molecularly engineered antibodies enhanced the field of antibody production. The development of novel antibodies against Tn and STn taking advantage of innovative technologies and engineering techniques may result in innovative therapeutic antibodies for cancer treatment.
Collapse
|
70
|
|
71
|
Challenges in Antibody Development against Tn and Sialyl-Tn Antigens. Biomolecules 2015. [DOI: 10.3390/biom5031783 or not 3512=3512# hidk] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
72
|
|
73
|
|
74
|
|
75
|
Challenges in Antibody Development against Tn and Sialyl-Tn Antigens. Biomolecules 2015. [DOI: 10.3390/biom5031783 order by 1-- gzgk] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
76
|
Abstract
The carbohydrate antigens Tn and sialyl-Tn (STn) are expressed in most carcinomas and usually absent in healthy tissues. These antigens have been correlated with cancer progression and poor prognosis, and associated with immunosuppressive microenvironment. Presently they are used in clinical trials as therapeutic vaccination, but with limited success due to their low immunogenicity. Alternatively, anti-Tn and/or STn antibodies may be used to harness the immune system against tumor cells. Whilst the development of antibodies against these antigens had a boost two decades ago for diagnostic use, so far no such antibody entered into clinical trials. Possible limitations are the low specificity and efficiency of existing antibodies and that novel antibodies are still necessary. The vast array of methodologies available today will allow rapid antibody development and novel formats. Following the advent of hybridoma technology, the immortalization of human B cells became a methodology to obtain human monoclonal antibodies with better specificity. Advances in molecular biology including phage display technology for high throughput screening, transgenic mice and more recently molecularly engineered antibodies enhanced the field of antibody production. The development of novel antibodies against Tn and STn taking advantage of innovative technologies and engineering techniques may result in innovative therapeutic antibodies for cancer treatment.
Collapse
|
77
|
Loureiro LR, Carrascal MA, Barbas A, Ramalho JS, Novo C, Delannoy P, Videira PA. Challenges in Antibody Development against Tn and Sialyl-Tn Antigens. Biomolecules 2015. [PMID: 26270678 DOI: 10.3390/biom5031783;if(3956=5996) select 3956 else drop function yccq--] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The carbohydrate antigens Tn and sialyl-Tn (STn) are expressed in most carcinomas and usually absent in healthy tissues. These antigens have been correlated with cancer progression and poor prognosis, and associated with immunosuppressive microenvironment. Presently they are used in clinical trials as therapeutic vaccination, but with limited success due to their low immunogenicity. Alternatively, anti-Tn and/or STn antibodies may be used to harness the immune system against tumor cells. Whilst the development of antibodies against these antigens had a boost two decades ago for diagnostic use, so far no such antibody entered into clinical trials. Possible limitations are the low specificity and efficiency of existing antibodies and that novel antibodies are still necessary. The vast array of methodologies available today will allow rapid antibody development and novel formats. Following the advent of hybridoma technology, the immortalization of human B cells became a methodology to obtain human monoclonal antibodies with better specificity. Advances in molecular biology including phage display technology for high throughput screening, transgenic mice and more recently molecularly engineered antibodies enhanced the field of antibody production. The development of novel antibodies against Tn and STn taking advantage of innovative technologies and engineering techniques may result in innovative therapeutic antibodies for cancer treatment.
Collapse
Affiliation(s)
- Liliana R Loureiro
- CEDOC, Chronic Diseases Research Center, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, Lisboa 1169-056, Portugal.
- IBET-Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras 2781-901, Portugal.
- IHMT, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa, Rua da Junqueira 100, Lisboa 1349-008, Portugal.
| | - Mylène A Carrascal
- CEDOC, Chronic Diseases Research Center, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, Lisboa 1169-056, Portugal.
| | - Ana Barbas
- IBET-Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras 2781-901, Portugal.
| | - José S Ramalho
- CEDOC, Chronic Diseases Research Center, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, Lisboa 1169-056, Portugal.
| | - Carlos Novo
- CEDOC, Chronic Diseases Research Center, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, Lisboa 1169-056, Portugal.
- IHMT, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa, Rua da Junqueira 100, Lisboa 1349-008, Portugal.
| | - Philippe Delannoy
- Structural and Functional Glycobiology Unit, UMR CNRS 8576, University of Lille, Villeneuve d'Ascq 59655, France.
| | - Paula A Videira
- CEDOC, Chronic Diseases Research Center, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, Lisboa 1169-056, Portugal.
- Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica 2829-516, Portugal.
| |
Collapse
|
78
|
|
79
|
|
80
|
Challenges in Antibody Development against Tn and Sialyl-Tn Antigens. Biomolecules 2015. [DOI: 10.3390/biom5031783 and 5081=5081# wakk] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
81
|
Challenges in Antibody Development against Tn and Sialyl-Tn Antigens. Biomolecules 2015. [DOI: 10.3390/biom5031783 where 8055=8055 or not 3512=3512-- sjzm] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
82
|
Loureiro LR, Carrascal MA, Barbas A, Ramalho JS, Novo C, Delannoy P, Videira PA. Challenges in Antibody Development against Tn and Sialyl-Tn Antigens. Biomolecules 2015. [PMID: 26270678 DOI: 10.3390/biom5031783;select (case when (7747=1872) then 7747 else 1/(select 0) end)--] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The carbohydrate antigens Tn and sialyl-Tn (STn) are expressed in most carcinomas and usually absent in healthy tissues. These antigens have been correlated with cancer progression and poor prognosis, and associated with immunosuppressive microenvironment. Presently they are used in clinical trials as therapeutic vaccination, but with limited success due to their low immunogenicity. Alternatively, anti-Tn and/or STn antibodies may be used to harness the immune system against tumor cells. Whilst the development of antibodies against these antigens had a boost two decades ago for diagnostic use, so far no such antibody entered into clinical trials. Possible limitations are the low specificity and efficiency of existing antibodies and that novel antibodies are still necessary. The vast array of methodologies available today will allow rapid antibody development and novel formats. Following the advent of hybridoma technology, the immortalization of human B cells became a methodology to obtain human monoclonal antibodies with better specificity. Advances in molecular biology including phage display technology for high throughput screening, transgenic mice and more recently molecularly engineered antibodies enhanced the field of antibody production. The development of novel antibodies against Tn and STn taking advantage of innovative technologies and engineering techniques may result in innovative therapeutic antibodies for cancer treatment.
Collapse
Affiliation(s)
- Liliana R Loureiro
- CEDOC, Chronic Diseases Research Center, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, Lisboa 1169-056, Portugal.
- IBET-Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras 2781-901, Portugal.
- IHMT, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa, Rua da Junqueira 100, Lisboa 1349-008, Portugal.
| | - Mylène A Carrascal
- CEDOC, Chronic Diseases Research Center, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, Lisboa 1169-056, Portugal.
| | - Ana Barbas
- IBET-Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras 2781-901, Portugal.
| | - José S Ramalho
- CEDOC, Chronic Diseases Research Center, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, Lisboa 1169-056, Portugal.
| | - Carlos Novo
- CEDOC, Chronic Diseases Research Center, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, Lisboa 1169-056, Portugal.
- IHMT, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa, Rua da Junqueira 100, Lisboa 1349-008, Portugal.
| | - Philippe Delannoy
- Structural and Functional Glycobiology Unit, UMR CNRS 8576, University of Lille, Villeneuve d'Ascq 59655, France.
| | - Paula A Videira
- CEDOC, Chronic Diseases Research Center, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, Lisboa 1169-056, Portugal.
- Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica 2829-516, Portugal.
| |
Collapse
|
83
|
Challenges in Antibody Development against Tn and Sialyl-Tn Antigens. Biomolecules 2015. [DOI: 10.3390/biom5031783 and 5401=2784#] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
84
|
|
85
|
|
86
|
|
87
|
|
88
|
Challenges in Antibody Development against Tn and Sialyl-Tn Antigens. Biomolecules 2015. [DOI: 10.3390/biom5031783 and (5526=8738)*8738# lvgk] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
89
|
|
90
|
Challenges in Antibody Development against Tn and Sialyl-Tn Antigens. Biomolecules 2015. [DOI: 10.3390/biom5031783 having 4867=4867# mhcu] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
91
|
|
92
|
|
93
|
|
94
|
|
95
|
|
96
|
Challenges in Antibody Development against Tn and Sialyl-Tn Antigens. Biomolecules 2015. [DOI: 10.3390/biom5031783 and elt(9942=9942,1925)] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
97
|
|
98
|
|
99
|
|
100
|
|