51
|
Zhu F, Hummer G. Gating transition of pentameric ligand-gated ion channels. Biophys J 2010; 97:2456-63. [PMID: 19883588 DOI: 10.1016/j.bpj.2009.08.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 08/12/2009] [Accepted: 08/13/2009] [Indexed: 02/03/2023] Open
Abstract
Pentameric ligand-gated ion channels are an important family of membrane proteins and play key roles in physiological processes, including signal transduction at chemical synapses. Here, we study the conformational changes associated with the opening and closing of the channel pore. Based on recent crystal structures of two prokaryotic members of the family in open and closed states, respectively, mixed elastic network models are constructed for the transmembrane domain. To explore the conformational changes in the gating transition, a coarse-grained transition path is computed that smoothly connects the closed and open conformations of the channel. We find that the conformational transition involves no major rotations of the transmembrane helices, and is instead characterized by a concerted tilting of helices M2 and M3. In addition, helix M2 changes its bending state, which results in an early closure of the pore during the open-to-closed transition.
Collapse
Affiliation(s)
- Fangqiang Zhu
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | | |
Collapse
|
52
|
|
53
|
Zhou HX, McCammon JA. The gates of ion channels and enzymes. Trends Biochem Sci 2009; 35:179-85. [PMID: 19926290 DOI: 10.1016/j.tibs.2009.10.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Revised: 10/26/2009] [Accepted: 10/27/2009] [Indexed: 02/01/2023]
Abstract
Protein dynamics are essential for virtually all protein functions, certainly for gating mechanisms of ion channels and regulation of enzyme catalysis. Ion channels usually feature a gate in the channel pore that prevents ion permeation in the closed state. Some bifunctional enzymes with two distant active sites use a tunnel to transport intermediate products; a gate can help prevent premature leakage. Enzymes with a buried active site also require a tunnel for substrate entrance; a gate along the tunnel can contribute to selectivity. The gates in these different contexts show distinct characteristics in sequence, structure and dynamics, but they also have common features. In particular, aromatic residues often appear to serve as gates, probably because of their ability, through side chain rotation, to effect large changes in cross section.
Collapse
Affiliation(s)
- Huan-Xiang Zhou
- Department of Physics and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA.
| | | |
Collapse
|
54
|
Law RJ, Lightstone FC. Modeling neuronal nicotinic and GABA receptors: important interface salt-links and protein dynamics. Biophys J 2009; 97:1586-94. [PMID: 19751663 DOI: 10.1016/j.bpj.2009.06.044] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Revised: 05/21/2009] [Accepted: 06/11/2009] [Indexed: 10/20/2022] Open
Abstract
Protein motions in the Cys-loop ligand-gated ion receptors that govern the gating mechanism are still not well understood. The details as to how motions in the ligand-binding domain are translated to the transmembrane domain and how subunit rotations are linked to bring about the cooperative movements involved in gating are under investigation. Homology models of the alpha4beta2 nicotinic acetylcholine (nACh) and beta2alpha1gamma2 GABA receptors were constructed based on the torpedo neuromuscular-like nicotinic receptor structure. The template constructed for the full electron microscopy structure must be considered more reliable for structure-function studies due to the preservation of the E45-R209 salt-link. Many other salt-links are seen to transiently form, including switching off of the E45-R209 link, within a network of potential salt-links at the binding domain to the transmembrane domain interface region. Several potentially important intersubunit salt-links form in both the nAChR and GABAR structures during the simulation and appear conserved across many subunit combinations, such as the salt-link between alpha4.E262 and beta2.K255 in nAChR (beta2.E262 and alpha1.K263 in GABAR), at the top of the pore-lining M2 helices, and the intersubunit link of R210 on the M1-linker to E168 on the beta8-sheet of the adjacent subunit in the GABA receptor (E175-K46 being the structurally equivalent link in the nAChR, with reversed polarity). A network of other salt-links may be vital for transmitting the cooperative gating motions between subunits that become biased upon ligand binding. The changes seen in the simulations suggest that this network of salt-links helps to set limits and specific states for the conformational changes involved in gating of the receptor. We hope that these hypotheses will be tested experimentally in the near future.
Collapse
Affiliation(s)
- Richard J Law
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | | |
Collapse
|
55
|
Bartos M, Corradi J, Bouzat C. Structural basis of activation of cys-loop receptors: the extracellular-transmembrane interface as a coupling region. Mol Neurobiol 2009; 40:236-52. [PMID: 19859835 DOI: 10.1007/s12035-009-8084-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Accepted: 09/22/2009] [Indexed: 10/25/2022]
Abstract
Cys-loop receptors mediate rapid transmission throughout the nervous system by converting a chemical signal into an electric one. They are pentameric proteins with an extracellular domain that carries the transmitter binding sites and a transmembrane region that forms the ion pore. Their essential function is to couple the binding of the agonist at the extracellular domain to the opening of the ion pore. How the structural changes elicited by agonist binding are propagated through a distance of 50 A to the gate is therefore central for the understanding of the receptor function. A step forward toward the identification of the structures involved in gating has been given by the recently elucidated high-resolution structures of Cys-loop receptors and related proteins. The extracellular-transmembrane interface has attracted attention because it is a structural transition zone where beta-sheets from the extracellular domain merge with alpha-helices from the transmembrane domain. Within this zone, several regions form a network that relays structural changes from the binding site toward the pore, and therefore, this interface controls the beginning and duration of a synaptic response. In this review, the most recent findings on residues and pairwise interactions underlying channel gating are discussed, the main focus being on the extracellular-transmembrane interface.
Collapse
Affiliation(s)
- Mariana Bartos
- Instituto de Investigaciones Bioquímicas, UNS-CONICET, Bahía Blanca, Argentina
| | | | | |
Collapse
|
56
|
Cheng X, Ivanov I, Wang H, Sine SM, McCammon JA. Molecular-dynamics simulations of ELIC-a prokaryotic homologue of the nicotinic acetylcholine receptor. Biophys J 2009; 96:4502-13. [PMID: 19486673 DOI: 10.1016/j.bpj.2009.03.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Revised: 03/05/2009] [Accepted: 03/11/2009] [Indexed: 11/19/2022] Open
Abstract
The ligand-gated ion channel from Erwinia chrysanthemi (ELIC) is a prokaryotic homolog of the eukaryotic nicotinic acetylcholine receptor (nAChR) that responds to the binding of neurotransmitter acetylcholine and mediates fast signal transmission. ELIC is similar to the nAChR in its primary sequence and overall subunit organization, but despite their structural similarity, it is not clear whether these two ligand-gated ion channels operate in a similar manner. Further, it is not known to what extent mechanistic insights gleaned from the ELIC structure translate to eukaryotic counterparts such as the nAChR. Here we use molecular-dynamics simulations to probe the conformational dynamics and hydration of the transmembrane pore of ELIC. The results are compared with those from our previous simulation of the human alpha7 nAChR. Overall, ELIC displays increased stability compared to the nAChR, whereas the two proteins exhibit remarkable similarity in their global motion and flexibility patterns. The majority of the increased stability of ELIC does not stem from the deficiency of the models used in the simulations, and but rather seems to have a structural basis. Slightly altered dynamical correlation features are also observed among several loops within the membrane region. In sharp contrast to the nAChR, ELIC is completely dehydrated from the pore center to the extracellular end throughout the simulation. Finally, the simulation of an ELIC mutant substantiates the important role of F246 on the stability, hydration and possibly function of the ELIC channel.
Collapse
Affiliation(s)
- Xiaolin Cheng
- Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.
| | | | | | | | | |
Collapse
|
57
|
Zouridakis M, Zisimopoulou P, Poulas K, Tzartos SJ. Recent advances in understanding the structure of nicotinic acetylcholine receptors. IUBMB Life 2009; 61:407-23. [PMID: 19319967 DOI: 10.1002/iub.170] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs), members of the Cys-loop ligand-gated ion channels (LGICs) superfamily, are involved in signal transduction upon binding of the neurotransmitter acetylcholine or exogenous ligands, such as nicotine. nAChRs are pentameric assemblies of homologous subunits surrounding a central pore that gates cation flux, and are expressed at the neuromuscular junction and in the nervous system and several nonneuronal cell types. The 17 known nAChR subunits assemble into a variety of pharmacologically distinct receptor subtypes. nAChRs are implicated in a range of physiological functions and pathophysiological conditions related to muscle contraction, learning and memory, reward, motor control, arousal, and analgesia, and therefore present an important target for drug research. Such studies would be greatly facilitated by knowledge of the high-resolution structure of the nAChR. Although this information is far from complete, important progress has been made mainly based on electron microscopy studies of Torpedo nAChR and the high-resolution X-ray crystal structures of the homologous molluscan acetylcholine-binding proteins, the extracellular domain of the mouse nAChR alpha1 subunit, and two prokaryotic pentameric LGICs. Here, we review some of the latest advances in our understanding of nAChR structure and gating.
Collapse
Affiliation(s)
- Marios Zouridakis
- Department of Biochemistry, Hellenic Pasteur Institute, Athens, Greece
| | | | | | | |
Collapse
|
58
|
Inherent dynamics of the acid-sensing ion channel 1 correlates with the gating mechanism. PLoS Biol 2009; 7:e1000151. [PMID: 19597538 PMCID: PMC2701601 DOI: 10.1371/journal.pbio.1000151] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Accepted: 06/04/2009] [Indexed: 01/17/2023] Open
Abstract
The acid-sensing ion channel 1 (ASIC1) is a key receptor for extracellular protons. Although numerous structural and functional studies have been performed on this channel, the structural dynamics underlying the gating mechanism remains unknown. We used normal mode analysis, mutagenesis, and electrophysiological methods to explore the relationship between the inherent dynamics of ASIC1 and its gating mechanism. Here we show that a series of collective motions among the domains and subdomains of ASIC1 correlate with its acid-sensing function. The normal mode analysis result reveals that the intrinsic rotation of the extracellular domain and the collective motions between the thumb and finger induced by proton binding drive the receptor to experience a deformation from the extracellular domain to the transmembrane domain, triggering the channel pore to undergo "twist-to-open" motions. The movements in the transmembrane domain indicate that the likely position of the channel gate is around Leu440. These motion modes are compatible with a wide body of our complementary mutations and electrophysiological data. This study provides the dynamic fundamentals of ASIC1 gating.
Collapse
|
59
|
Law RJ, Lightstone FC. Gaba Receptor Insecticide Non-Competitive Antagonists May Bind at Allosteric Modulator Sites. Int J Neurosci 2009; 118:705-34. [DOI: 10.1080/00207450701750216] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
60
|
Matsuda K, Kanaoka S, Akamatsu M, Sattelle DB. Diverse actions and target-site selectivity of neonicotinoids: structural insights. Mol Pharmacol 2009; 76:1-10. [PMID: 19321668 PMCID: PMC2701451 DOI: 10.1124/mol.109.055186] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Accepted: 03/25/2009] [Indexed: 11/22/2022] Open
Abstract
The nicotinic acetylcholine receptors (nAChRs) are targets for human and veterinary medicines as well as insecticides. Subtype-selectivity among the diverse nAChR family members is important for medicines targeting particular disorders, and pest-insect selectivity is essential for the development of safer, environmentally acceptable insecticides. Neonicotinoid insecticides selectively targeting insect nAChRs have important applications in crop protection and animal health. Members of this class exhibit strikingly diverse actions on their nAChR targets. Here we review the chemistry and diverse actions of neonicotinoids on insect and mammalian nAChRs. Electrophysiological studies on native nAChRs and on wild-type and mutagenized recombinant nAChRs have shown that basic residues particular to loop D of insect nAChRs are likely to interact electrostatically with the nitro group of neonicotinoids. In 2008, the crystal structures were published showing neonicotinoids docking into the acetylcholine binding site of molluscan acetylcholine binding proteins with homology to the ligand binding domain (LBD) of nAChRs. The crystal structures showed that 1) glutamine in loop D, corresponding to the basic residues of insect nAChRs, hydrogen bonds with the NO(2) group of imidacloprid and 2) neonicotinoid-unique stacking and CH-pi bonds at the LBD. A neonicotinoid-resistant strain obtained by laboratory-screening has been found to result from target site mutations, and possible reasons for this are also suggested by the crystal structures. The prospects of designing neonicotinoids that are safe not only for mammals but also for beneficial insects such as honey bees (Apis mellifera) are discussed in terms of interactions with non-alpha nAChR subunits.
Collapse
Affiliation(s)
- Kazuhiko Matsuda
- Department of Applied Biological Chemistry, School of Agriculture, Kinki University, Nara, Japan.
| | | | | | | |
Collapse
|
61
|
Song C, Corry B. Computational study of the transmembrane domain of the acetylcholine receptor. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2009; 38:961-70. [PMID: 19466401 DOI: 10.1007/s00249-009-0476-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2008] [Revised: 05/01/2009] [Accepted: 05/04/2009] [Indexed: 11/26/2022]
Abstract
The nicotinic acetylcholine receptor (nAChR) is a ligand-gated ion channel protein whose transmembrane domain (TM-domain) is believed to be responsible for channel gating via a hydrophobic effect. In this work, we perform molecular dynamics and Brownian dynamics simulations to investigate the effect of transmembrane potential on the conformation and water occupancy of TM-domain, and the resulting ion permeation events. The results show that the behavior of the hydrophobic gate is voltage-dependent. Large hyperpolarized membrane potential can change the conformation of TM-domain and water occupancy in this region, which may enable ion conduction. An electrostatic gating mechanism is also proposed from our simulations, which seems to play a role in addition to the well-known hydrophobic effect.
Collapse
Affiliation(s)
- Chen Song
- School of Biomedical, Biomolecular and Chemical Sciences, The University of Western Australia, Crawley, WA 6009, Australia.
| | | |
Collapse
|
62
|
Asymmetric conformational flexibility in the ATP-binding cassette transporter HI1470/1. Biophys J 2009; 96:1918-30. [PMID: 19254551 DOI: 10.1016/j.bpj.2008.11.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Accepted: 11/17/2008] [Indexed: 10/21/2022] Open
Abstract
Putative metal-chelate-type ABC transporter HI1470/1 is homologous with vitamin B(12) importer BtuCD but exhibits a distinct inward-facing conformation in contrast to the outward-facing conformation of BtuCD. Normal-mode analysis of HI1470/1 reveals the intrinsic asymmetric conformational flexibility in this transporter and demonstrates that the transition from the inward-facing to the outward-facing conformation is realized through the asymmetric motion of individual subunits of the transporter. This analysis suggests that the asymmetric arrangement of the BtuC dimer in the crystal structure of the BtuCD-F complex represents an intermediate state relating HI1470/1 and BtuCD. Furthermore, a twisting motion between transmembrane domains and nucleotide-binding domains encoded in the lowest-frequency normal mode of this type of importer is found to contribute to the conformational transitions during the whole cycle of substrate transportation. A more complete translocation mechanism of the BtuCD type importer is proposed.
Collapse
|
63
|
Paulo JA, Hawrot E. Effect of homologous serotonin receptor loop substitutions on the heterologous expression in Pichia of a chimeric acetylcholine-binding protein with alpha-bungarotoxin-binding activity. Protein Expr Purif 2009; 67:76-81. [PMID: 19427904 DOI: 10.1016/j.pep.2009.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2009] [Revised: 05/01/2009] [Accepted: 05/01/2009] [Indexed: 11/28/2022]
Abstract
The molluscan acetylcholine-binding protein (AChBP) is a soluble homopentameric homolog of the extracellular domain of various ligand-gated ion channels. Previous studies have reported that AChBP, when fused to the ion pore domain of the serotonin receptor (5HT(3A)R), can form a functional ligand-gated chimeric channel only if the AChBP loop regions between beta-strands beta1 and beta2 (beta1-beta2), beta6 and beta7 (beta6-beta7), and beta8 and beta9 (beta8-beta9) are replaced with those of the 5HT(3A)R. To investigate further the potential interactions among these three important loop regions in a membrane- and detergent-free system, we designed AChBP constructs in which loops beta1-beta2, beta6-beta7, and beta8-beta9 of the AChBP were individually and combinatorially substituted in all permutations with the analogous loops of the 5HT(3A)R. These chimeras were expressed as secreted proteins using the Pichia pastoris yeast expression system. [(125)I]-alpha-Bungarotoxin-binding was detected in the culture media obtained from homologous recombinant clones expressing the wild-type AChBP, the beta1-beta2 loop-only chimera, and the chimera containing all three 5HT(3A)R loop substitutions. The remaining chimeras failed to show [(125)I]-alpha-bungarotoxin binding, and further analysis of cellular extracts allowed us to determine that these binding-negative chimeric constructs accumulated intracellularly and were not secreted into the culture medium. Our results demonstrate that coordinated interactions among loops beta1-beta2, beta6-beta7, and beta8-beta9 are essential for the formation of a functional ligand-binding site, as evidenced by [(125)I]-alpha-bungarotoxin-binding, and for efficient protein secretion. In addition, the constructs described here demonstrate the feasibility of utilizing soluble scaffolds to explore functionally important interactions within the extracellular domain of membrane-bound proteins.
Collapse
Affiliation(s)
- Joao A Paulo
- Graduate Program in Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, USA
| | | |
Collapse
|
64
|
Song C, Corry B. Role of acetylcholine receptor domains in ion selectivity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:1466-73. [PMID: 19397891 DOI: 10.1016/j.bbamem.2009.04.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 04/09/2009] [Accepted: 04/21/2009] [Indexed: 02/06/2023]
Abstract
The nicotinic acetylcholine receptor (nAChR) is a ligand gated ion channel protein, composed of three domains: a transmembrane domain (TM-domain), extracellular domain (EC-domain), and intracellular domain (IC-domain). Due to its biological importance, much experimental and theoretical research has been carried out to explore its mechanisms of gating and selectivity, but there are still many unresolved issues, especially on the ion selectivity. Moreover, most of the previous theoretical work has concentrated on the TM-domain or EC-domain of nAChR, which may be insufficient to understand the entire structure-function relation. In this work, we perform molecular dynamics, Brownian dynamics simulations and continuum electrostatic calculations to investigate the role of different nAChR domains in ion conduction and selectivity. The results show that although both the EC and IC domains contain strong negative charges that create large cation concentrations at either end of the pore, this alone is not sufficient to create the observed cation selectivity and may play a greater role in determining the channel conductance. The presence of cations in the wide regions of the pore can screen out the protein charge allowing anions to enter, meaning that local regions of the TM-domain are most likely responsible for discriminating between ions. These new results complement our understanding about the ion conduction and selectivity mechanism of nAChR.
Collapse
Affiliation(s)
- Chen Song
- School of Biomedical, Biomolecular and Chemical Sciences, The University of Western Australia, Crawley WA 6009, Australia
| | | |
Collapse
|
65
|
Li JL, Geng CY, Bu Y, Huang XR, Sun CC. Conformational transition pathway in the allosteric process of calcium-induced recoverin: Molecular dynamics simulations. J Comput Chem 2009; 30:1135-45. [DOI: 10.1002/jcc.21144] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
66
|
Gating mechanisms in Cys-loop receptors. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2009; 39:37-49. [PMID: 19404635 DOI: 10.1007/s00249-009-0452-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Revised: 03/23/2009] [Accepted: 03/27/2009] [Indexed: 10/20/2022]
Abstract
The Cys-loop receptor superfamily of ligand-gated ion channels has a prominent role in neuronal signalling. These receptors are pentamers, each subunit containing ten beta-strands in the extracellular domain and four alpha-helical transmembrane domains (M1-M4). The M2 domain of each subunit lines the intrinsic ion channel pore and residues within the extracellular domain form ligand binding sites. Ligand binding initiates a conformational change that opens the ion-selective pore. The coupling between ligand binding in the extracellular domain and opening of the intrinsic ion channel pore located in the membrane is not fully understood. Several loop structures, such as loop 2, the Cys-loop, the pre-M1 region and the M2-M3 loop have been implicated in receptor activation. The current "conformational change wave" hypothesis suggests that binding of a ligand initiates a rotation of the beta-sheets around an axis that passes through the Cys-loop. Due to this rotation, the Cys-loop and loop 2 are displaced. Movement of the M2-M3 loop then twists the M2 domain leading to a separation of the helices and opening of the pore. The publication of a crystal structure of an acetylcholine binding protein and the refined structure of the Torpedo marmorata acetylcholine receptor have improved the understanding of the mechanisms and structures involved in coupling ligand binding to channel gating. In this review, the most recent findings on some of these loop structures will be reported and discussed in view of their role in the gating mechanism.
Collapse
|
67
|
Binding to gating transduction in nicotinic receptors: Cys-loop energetically couples to pre-M1 and M2-M3 regions. J Neurosci 2009; 29:3189-99. [PMID: 19279256 DOI: 10.1523/jneurosci.6185-08.2009] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The nicotinic acetylcholine receptor (AChR) transduces binding of nerve-released ACh into opening of an intrinsic ion channel, yet the intraprotein interactions behind transduction remain to be fully elucidated. Attention has focused on the region of the AChR in which the beta1-beta2 and Cys-loops from the extracellular domain project into a cavity framed by residues preceding the first transmembrane domain (pre-M1) and the linker spanning transmembrane domains M2 and M3. Previous studies identified a principal transduction pathway in which the pre-M1 domain is coupled to the M2-M3 linker through the beta1-beta2 loop. Here we identify a parallel pathway in which the pre-M1 domain is coupled to the M2-M3 linker through the Cys-loop. Mutagenesis, single-channel kinetic analyses and thermodynamic mutant cycle analyses reveal energetic coupling among alphaLeu 210 from the pre-M1 domain, alphaPhe 135 and alphaPhe 137 from the Cys-loop, and alphaLeu 273 from the M2-M3 linker. Residues at equivalent positions of non-alpha-subunits show negligible coupling, indicating these interresidue couplings are specific to residues in the alpha-subunit. Thus, the extracellular beta1-beta2 and Cys-loops bridge the pre-M1 domain and M2-M3 linker to transduce agonist binding into channel gating.
Collapse
|
68
|
Pless SA, Lynch JW. Ligand-specific conformational changes in the alpha1 glycine receptor ligand-binding domain. J Biol Chem 2009; 284:15847-56. [PMID: 19286654 DOI: 10.1074/jbc.m809343200] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Understanding the activation mechanism of Cys loop ion channel receptors is key to understanding their physiological and pharmacological properties under normal and pathological conditions. The ligand-binding domains of these receptors comprise inner and outer beta-sheets and structural studies indicate that channel opening is accompanied by conformational rearrangements in both beta-sheets. In an attempt to resolve ligand-dependent movements in the ligand-binding domain, we employed voltage-clamp fluorometry on alpha1 glycine receptors to compare changes mediated by the agonist, glycine, and by the antagonist, strychnine. Voltage-clamp fluorometry involves labeling introduced cysteines with environmentally sensitive fluorophores and inferring structural rearrangements from ligand-induced fluorescence changes. In the inner beta-sheet, we labeled residues in loop 2 and in binding domain loops D and E. At each position, strychnine and glycine induced distinct maximal fluorescence responses. The pre-M1 domain responded similarly; at each of four labeled positions glycine produced a strong fluorescence signal, whereas strychnine did not. This suggests that glycine induces conformational changes in the inner beta-sheet and pre-M1 domain that may be important for activation, desensitization, or both. In contrast, most labeled residues in loops C and F yielded fluorescence changes identical in magnitude for glycine and strychnine. A notable exception was H201C in loop C. This labeled residue responded differently to glycine and strychnine, thus underlining the importance of loop C in ligand discrimination. These results provide an important step toward mapping the domains crucial for ligand discrimination in the ligand-binding domain of glycine receptors and possibly other Cys loop receptors.
Collapse
Affiliation(s)
- Stephan A Pless
- Queensland Brain Institute and School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | | |
Collapse
|
69
|
Haddadian EJ, Cheng MH, Coalson RD, Xu Y, Tang P. In silico models for the human alpha4beta2 nicotinic acetylcholine receptor. J Phys Chem B 2008; 112:13981-90. [PMID: 18847252 DOI: 10.1021/jp804868s] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The neuronal alpha4beta2 nicotinic acetylcholine receptor (nAChR) is one of the most widely expressed nAChR subtypes in the brain. Its subunits have high sequence identity (54 and 46% for alpha4 and beta2, respectively) with alpha and beta subunits in Torpedo nAChR. Using the known structure of the Torpedo nAChR as a template, the closed-channel structure of the alpha4beta2 nAChR was constructed through homology modeling. Normal-mode analysis was performed on this closed structure and the resulting lowest frequency mode was applied to it for a "twist-to-open" motion, which increased the minimum pore radius from 2.7 to 3.4 A and generated an open-channel model. Nicotine could bind to the predicted agonist binding sites in the open-channel model but not in the closed one. Both models were subsequently equilibrated in a ternary lipid mixture via extensive molecular dynamics (MD) simulations. Over the course of 11 ns MD simulations, the open channel remained open with filled water, but the closed channel showed a much lower water density at its hydrophobic gate comprised of residues alpha4-V259 and alpha4-L263 and their homologous residues in the beta2 subunits. Brownian dynamics simulations of Na+ permeation through the open channel demonstrated a current-voltage relationship that was consistent with experimental data on the conducting state of alpha4beta2 nAChR. Besides establishment of the well-equilibrated closed- and open-channel alpha4beta2 structural models, the MD simulations on these models provided valuable insights into critical factors that potentially modulate channel gating. Rotation and tilting of TM2 helices led to changes in orientations of pore-lining residue side chains. Without concerted movement, the reorientation of one or two hydrophobic side chains could be enough for channel opening. The closed- and open-channel structures exhibited distinct patterns of electrostatic interactions at the interface of extracellular and transmembrane domains that might regulate the signal propagation of agonist binding to channel opening. A potential prominent role of the beta2 subunit in channel gating was also elucidated in the study.
Collapse
Affiliation(s)
- Esmael J Haddadian
- Department of Anesthesiology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | | | | | | | |
Collapse
|
70
|
Potentiation of alpha7 nicotinic acetylcholine receptors via an allosteric transmembrane site. Proc Natl Acad Sci U S A 2008; 105:14686-91. [PMID: 18791069 DOI: 10.1073/pnas.0804372105] [Citation(s) in RCA: 188] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Positive allosteric modulators of alpha7 nicotinic acetylcholine receptors (nAChRs) have attracted considerable interest as potential tools for the treatment of neurological and psychiatric disorders such as Alzheimer's disease and schizophrenia. However, despite the potential therapeutic usefulness of these compounds, little is known about their mechanism of action. Here, we have examined two allosteric potentiators of alpha7 nAChRs (PNU-120596 and LY-2087101). From studies with a series of subunit chimeras, we have identified the transmembrane regions of alpha7 as being critical in facilitating potentiation of agonist-evoked responses. Furthermore, we have identified five transmembrane amino acids that, when mutated, significantly reduce potentiation of alpha7 nAChRs. The amino acids we have identified are located within the alpha-helical transmembrane domains TM1 (S222 and A225), TM2 (M253), and TM4 (F455 and C459). Mutation of either A225 or M253 individually have particularly profound effects, reducing potentiation of EC(20) concentrations of acetylcholine to a tenth of the level seen with wild-type alpha7. Reference to homology models of the alpha7 nAChR, based on the 4A structure of the Torpedo nAChR, indicates that the side chains of all five amino acids point toward an intrasubunit cavity located between the four alpha-helical transmembrane domains. Computer docking simulations predict that the allosteric compounds such as PNU-120596 and LY-2087101 may bind within this intrasubunit cavity, much as neurosteroids and volatile anesthetics are thought to interact with GABA(A) and glycine receptors. Our findings suggest that this is a conserved modulatory allosteric site within neurotransmitter-gated ion channels.
Collapse
|
71
|
Spontaneous conformational change and toxin binding in alpha7 acetylcholine receptor: insight into channel activation and inhibition. Proc Natl Acad Sci U S A 2008; 105:8280-5. [PMID: 18541920 DOI: 10.1073/pnas.0710530105] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Nicotinic AChRs (nAChRs) represent a paradigm for ligand-gated ion channels. Despite intensive studies over many years, our understanding of the mechanisms of activation and inhibition for nAChRs is still incomplete. Here, we present molecular dynamics (MD) simulations of the alpha7 nAChR ligand-binding domain, both in apo form and in alpha-Cobratoxin-bound form, starting from the respective homology models built on crystal structures of the acetylcholine-binding protein. The toxin-bound form was relatively stable, and its structure was validated by calculating mutational effects on the toxin-binding affinity. However, in the apo form, one subunit spontaneously moved away from the conformation of the other four subunits. This motion resembles what has been proposed for leading to channel opening. At the top, the C loop and the adjacent beta7-beta8 loop swing downward and inward, whereas at the bottom, the F loop and the C terminus of beta10 swing in the opposite direction. These swings appear to tilt the whole subunit clockwise. The resulting changes in solvent accessibility show strong correlation with experimental results by the substituted cysteine accessibility method upon addition of acetylcholine. Our MD simulation results suggest a mechanistic model in which the apo form, although predominantly sampling the "closed" state, can make excursions into the "open" state. The open state has high affinity for agonists, leading to channel activation, whereas the closed state upon distortion has high affinity for antagonists, leading to inhibition.
Collapse
|
72
|
Mashl RJ, Jakobsson E. End-point targeted molecular dynamics: large-scale conformational changes in potassium channels. Biophys J 2008; 94:4307-19. [PMID: 18310251 PMCID: PMC2480670 DOI: 10.1529/biophysj.107.118778] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Accepted: 01/17/2008] [Indexed: 11/18/2022] Open
Abstract
Large-scale conformational changes in proteins that happen often on biological time scales may be relatively rare events on the molecular dynamics time scale. We have implemented an approach to targeted molecular dynamics called end-point targeted molecular dynamics that transforms proteins between two specified conformational states through the use of nonharmonic "soft" restraints. A key feature of the method is that the protein is free to discover its own conformational pathway through the plethora of possible intermediate states. The method is applied to the Shaker K(v)1.2 potassium channel in implicit solvent. The rate of cycling between the open and closed states was varied to explore how slow the cycling rate needed to be to ensure that microscopic reversibility along the transition pathways was well approximated. Results specific to the K(+) channel include: 1), a variation in backbone torsion angles of residues near the Pro-Val-Pro motif in the inner helix during both opening and closing; 2), the identification of possible occlusion sites in the closed channel located among Pro-Val-Pro residues and downstream; 3), a difference in the opening and closing pathways of the channel; and 4), evidence of a transient intermediate structural substate. The results also show that likely intermediate conformations during the opening-closing process can be generated in computationally tractable simulation times.
Collapse
Affiliation(s)
- R J Mashl
- National Center for Supercomputing Applications, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.
| | | |
Collapse
|
73
|
Taly A, Changeux JP. Functional Organization and Conformational Dynamics of the Nicotinic Receptor. Ann N Y Acad Sci 2008; 1132:42-52. [DOI: 10.1196/annals.1405.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
74
|
Sine SM, Gao F, Lee WY, Mukhtasimova N, Wang HL, Engel AG. Recent Structural and Mechanistic Insights into Endplate Acetylcholine Receptors. Ann N Y Acad Sci 2008; 1132:53-60. [DOI: 10.1196/annals.1405.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
75
|
Wang HL, Cheng X, Taylor P, McCammon JA, Sine SM. Control of cation permeation through the nicotinic receptor channel. PLoS Comput Biol 2008; 4:e41. [PMID: 18282090 PMCID: PMC2242826 DOI: 10.1371/journal.pcbi.0040041] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Accepted: 01/10/2008] [Indexed: 11/30/2022] Open
Abstract
We used molecular dynamics (MD) simulations to explore the transport of single cations through the channel of the muscle nicotinic acetylcholine receptor (nAChR). Four MD simulations of 16 ns were performed at physiological and hyperpolarized membrane potentials, with and without restraints of the structure, but all without bound agonist. With the structure unrestrained and a potential of −100 mV, one cation traversed the channel during a transient period of channel hydration; at −200 mV, the channel was continuously hydrated and two cations traversed the channel. With the structure restrained, however, cations did not traverse the channel at either membrane potential, even though the channel was continuously hydrated. The overall results show that cation selective transport through the nAChR channel is governed by electrostatic interactions to achieve charge selectivity, but ion translocation relies on channel hydration, facilitated by a trans-membrane field, coupled with dynamic fluctuations of the channel structure. Communication between a cell and its environment relies on channel-forming proteins to provide a low energy pathway for ions to move in and out. Although channel-forming proteins are essential to all life forms, the atomic-scale mechanisms that enable ions to pass through the channel remain elusive due to the lack of experimental approaches to monitor the protein and ion in real time and at atomic resolution. A powerful alternative approach is molecular dynamics (MD) simulation based on the laws of physics applied to the increasing body of protein structures resolved at atomic resolution. Here we present all-atom MD simulations applied to the nicotinic acetylcholine receptor (nAChR) that initiates voluntary movement in skeletal muscle. By focusing on individual permeant cations, we find that selective cation translocation occurs in stages: cations are first selected through a series of oppositely charged residues within the protein vestibule leading to a narrow hydrophobic constriction, but then hydration of the narrow region and dynamic fluctuations of the protein enable the cation to pass through. The findings provide a general framework for understanding how ions are selected for transport based on charge, and how the dynamic interplay between water, the ion, and the channel protein enable rapid ion translocation through the broad class of channel-forming proteins with hydrophobic barriers.
Collapse
Affiliation(s)
- Hai-Long Wang
- Receptor Biology Laboratory, Department of Physiology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA.
| | | | | | | | | |
Collapse
|
76
|
Bathe M. A finite element framework for computation of protein normal modes and mechanical response. Proteins 2008; 70:1595-609. [PMID: 17975833 DOI: 10.1002/prot.21708] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A computational framework based on the Finite Element Method is presented to calculate the normal modes and mechanical response of proteins and their supramolecular assemblies. Motivated by elastic network models, proteins are treated as continuum elastic solids with molecular volume defined by their solvent-excluded surface. The discretized Finite Element representation is obtained using a surface simplification algorithm that facilitates the generation of models of arbitrary prescribed spatial resolution. The procedure is applied to a mutant of T4 phage lysozyme, G-actin, syntenin, cytochrome-c', beta-tubulin, and the supramolecular assembly filamentous actin (F-actin). Equilibrium thermal fluctuations of alpha-carbon atoms and their inter-residue correlations compare favorably with all-atom-based results, the Rotational-Translational Block procedure, and experiment. Additionally, the free vibration and compressive buckling responses of F-actin are in quantitative agreement with experiment. The proposed methodology is applicable to any protein or protein assembly and facilitates the incorporation of specific atomic-level interactions, including aqueous-electrolyte-mediated electrostatic effects and solvent damping. The procedure is equally applicable to proteins with known atomic coordinates as it is to electron density maps of proteins, protein complexes, and supramolecular assemblies of unknown atomic structure.
Collapse
Affiliation(s)
- Mark Bathe
- Arnold Sommerfeld Zentrum für Theoretische Physik and Center for NanoScience, Ludwig-Maximilians-Universität München, Theresienstrasse 37, 80333 Munich, Germany.
| |
Collapse
|
77
|
Bertaccini EJ, Lindahl E, Sixma T, Trudell JR. Effect of cobratoxin binding on the normal mode vibration within acetylcholine binding protein. J Chem Inf Model 2008; 48:855-60. [PMID: 18348519 DOI: 10.1021/ci700456s] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Recent crystal structures of the acetylcholine binding protein (AChBP) have revealed surprisingly small structural alterations upon ligand binding. Here we investigate the extent to which ligand binding may affect receptor dynamics. AChBP is a homologue of the extracellular component of ligand-gated ion channels (LGICs). We have previously used an elastic network normal-mode analysis to propose a gating mechanism for the LGICs and to suggest the effects of various ligands on such motions. However, the difficulties with elastic network methods lie in their inability to account for the modest effects of a small ligand or mutation on ion channel motion. Here, we report the successful application of an elastic network normal mode technique to measure the effects of large ligand binding on receptor dynamics. The present calculations demonstrate a clear alteration in the native symmetric motions of a protein due to the presence of large protein cobratoxin ligands. In particular, normal-mode analysis revealed that cobratoxin binding to this protein significantly dampened the axially symmetric motion of the AChBP that may be associated with channel gating in the full nAChR. The results suggest that alterations in receptor dynamics could be a general feature of ligand binding.
Collapse
Affiliation(s)
- Edward J Bertaccini
- Department of Anesthesia, Stanford University School of Medicine and Beckman Center for Molecular and Genetic Medicine, Stanford, California 94305-5117, USA.
| | | | | | | |
Collapse
|
78
|
Samson AO, Levitt M. Inhibition mechanism of the acetylcholine receptor by alpha-neurotoxins as revealed by normal-mode dynamics. Biochemistry 2008; 47:4065-70. [PMID: 18327915 DOI: 10.1021/bi702272j] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The nicotinic acetylcholine receptor (AChR) is the prototype of ligand-gated ion channels. Here, we calculate the dynamics of the muscle AChR using normal modes. The calculations reveal a twist-like gating motion responsible for channel opening. The ion channel diameter is shown to increase with this twist motion. Strikingly, the twist motion and the increase in channel diameter are not observed for the AChR in complex with two alpha-bungarotoxin (alphaBTX) molecules. The toxins seems to lock together neighboring receptor subunits, thereby inhibiting channel opening. Interestingly, one alphaBTX molecule suffices to prevent the twist motion. These results shed light on the gating mechanism of the AChR and present a complementary inhibition mechanism by snake-venom-derived alpha-neurotoxins.
Collapse
Affiliation(s)
- Abraham O Samson
- Department of Structural Biology, Stanford University, Stanford, California 94305, USA
| | | |
Collapse
|
79
|
Liu X, Xu Y, Li H, Wang X, Jiang H, Barrantes FJ. Mechanics of channel gating of the nicotinic acetylcholine receptor. PLoS Comput Biol 2008; 4:e19. [PMID: 18225945 PMCID: PMC2211534 DOI: 10.1371/journal.pcbi.0040019] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Accepted: 12/05/2007] [Indexed: 12/31/2022] Open
Abstract
The nicotinic acetylcholine receptor (nAChR) is a key molecule involved in the propagation of signals in the central nervous system and peripheral synapses. Although numerous computational and experimental studies have been performed on this receptor, the structural dynamics of the receptor underlying the gating mechanism is still unclear. To address the mechanical fundamentals of nAChR gating, both conventional molecular dynamics (CMD) and steered rotation molecular dynamics (SRMD) simulations have been conducted on the cryo-electron microscopy (cryo-EM) structure of nAChR embedded in a dipalmitoylphosphatidylcholine (DPPC) bilayer and water molecules. A 30-ns CMD simulation revealed a collective motion amongst C-loops, M1, and M2 helices. The inward movement of C-loops accompanying the shrinking of acetylcholine (ACh) binding pockets induced an inward and upward motion of the outer beta-sheet composed of beta9 and beta10 strands, which in turn causes M1 and M2 to undergo anticlockwise motions around the pore axis. Rotational motion of the entire receptor around the pore axis and twisting motions among extracellular (EC), transmembrane (TM), and intracellular MA domains were also detected by the CMD simulation. Moreover, M2 helices undergo a local twisting motion synthesized by their bending vibration and rotation. The hinge of either twisting motion or bending vibration is located at the middle of M2, possibly the gate of the receptor. A complementary twisting-to-open motion throughout the receptor was detected by a normal mode analysis (NMA). To mimic the pulsive action of ACh binding, nonequilibrium MD simulations were performed by using the SRMD method developed in one of our laboratories. The result confirmed all the motions derived from the CMD simulation and NMA. In addition, the SRMD simulation indicated that the channel may undergo an open-close (O <--> C) motion. The present MD simulations explore the structural dynamics of the receptor under its gating process and provide a new insight into the gating mechanism of nAChR at the atomic level.
Collapse
Affiliation(s)
- Xinli Liu
- Department of Engineering Mechanics, State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian, Liaoning, China
| | - Yechun Xu
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Honglin Li
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xicheng Wang
- Department of Engineering Mechanics, State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian, Liaoning, China
- * To whom correspondence should be addressed. E-mail: (XW); (HJ)
| | - Hualiang Jiang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmacy, East China University of Science and Technology, Shanghai, China
- * To whom correspondence should be addressed. E-mail: (XW); (HJ)
| | - Francisco J Barrantes
- UNESCO Chair of Biophysics & Molecular Neurobiology and Instituto de Investigaciones Bioquímicas de Bahía Blanca, Bahía Blanca, Argentina
| |
Collapse
|
80
|
Miloshevsky GV, Jordan PC. Open-state conformation of the KcsA K+ channel: Monte Carlo normal mode following simulations. Structure 2008; 15:1654-62. [PMID: 18073114 DOI: 10.1016/j.str.2007.09.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Revised: 09/28/2007] [Accepted: 09/30/2007] [Indexed: 11/29/2022]
Abstract
Potassium channels fluctuate between closed and open states. The detailed mechanism of the conformational changes opening the intracellular pore in the K+ channel from Streptomyces lividans (KcsA) is unknown. Applying Monte Carlo normal mode following, we find that gating involves rotation and unwinding of the TM2 bundle, lateral movement of the TM2 helices away from the channel axis, and disappearance of the TM2 bundle. The open-state conformation of KcsA exhibits a very wide inner vestibule, with a radius approximately 5-7 A and inner helices bent at the A98-G99 hinge. Computed conformational changes demonstrate that spin labeling and X-ray experiments illuminate different stages in gating: transition begins with clockwise rotation of the TM2 helices ending at a final state with the TM2 bend hinged near residues A98-G99. The concordance between the computational and experimental results provides atomic-level insights into the structural rearrangements of the channel's inner pore.
Collapse
Affiliation(s)
- Gennady V Miloshevsky
- Department of Chemistry, MS-015, Brandeis University, P.O. Box 549110, Waltham, MA 02454-9110, USA
| | | |
Collapse
|
81
|
Changeux JP, Taly A. Nicotinic receptors, allosteric proteins and medicine. Trends Mol Med 2008; 14:93-102. [PMID: 18262468 DOI: 10.1016/j.molmed.2008.01.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Revised: 01/16/2008] [Accepted: 01/16/2008] [Indexed: 01/20/2023]
Abstract
The nicotinic acetylcholine receptor (nAChR) was the first ion channel and membrane receptor of a neurotransmitter to be isolated and chemically identified and is one of the best known membrane proteins involved in signal transduction. Subsequently, nAChRs have been a target for drug discovery because of their potential to impact numerous brain diseases and disorders. Here, we consider recent developments in our understanding of nAChR structure and of the conformational transitions that link the acetylcholine (ACh)-binding site and the ion channel to mediate fast neurotransmission. The knowledge of such allosteric mechanisms is essential to understand pathologies such as congenital myasthenia, autosomal dominant nocturnal frontal lobe epilepsies, sudden infant death syndrome, attention deficit hyperactivity disorder and nicotine addiction and to design novel therapies.
Collapse
Affiliation(s)
- Jean-Pierre Changeux
- Research unit, National Center of Scientific Research 2182, Department of Neuroscience, Pasteur Institute, Paris, France.
| | | |
Collapse
|
82
|
Essiz SG, Coalson RD. Langevin dynamics of molecules with internal rigid fragments in the harmonic regime. J Chem Phys 2007; 127:104109. [PMID: 17867739 DOI: 10.1063/1.2756044] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
An approximation scheme is developed to compute Brownian motion according to the Langevin equation for a molecular system moving in a harmonic force field (corresponding to a quadratic potential energy surface) and characterized by one or more rigid internal fragments. This scheme, which relies on elements of the rotation translation block (RTB) method for computing vibrational normal modes of large molecules developed by Sanejouand and co-workers [Biopolymers 34, 759 (1994); Proteins: Struct., Funct., Genet. 41, 1 (2000)], provides a natural and efficient way to freeze out the small amplitude, high frequency motions within each rigid fragment. The number of dynamical degrees of freedom in the problem is thereby reduced, often dramatically. To illustrate the method, the relaxation kinetics of the small membrane-bound ion channel protein gramicidin-A, subjected to an externally imposed impulse, is computed. The results obtained from all-atom dynamics are compared to those obtained using the RTB-Langevin dynamics approximation (treating eight indole moieties as internal rigid fragments): good agreement between the two treatments is found.
Collapse
Affiliation(s)
- Sebnem G Essiz
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | |
Collapse
|
83
|
Abstract
Acetylcholinesterase rapidly hydrolyzes the neurotransmitter acetylcholine in cholinergic synapses, including the neuromuscular junction. The tetramer is the most important functional form of the enzyme. Two low-resolution crystal structures have been solved. One is compact with two of its four peripheral anionic sites (PAS) sterically blocked by complementary subunits. The other is a loose tetramer with all four subunits accessible to solvent. These structures lacked the C-terminal amphipathic t-peptide (WAT domain) that interacts with the proline-rich attachment domain (PRAD). A complete tetramer model (AChEt) was built based on the structure of the PRAD/WAT complex and the compact tetramer. Normal mode analysis suggested that AChEt could exist in several conformations with subunits fluctuating relative to one another. Here, a multiscale simulation involving all-atom molecular dynamics and C alpha-based coarse-grained Brownian dynamics simulations was carried out to investigate the large-scale intersubunit dynamics in AChEt. We sampled the ns-mus timescale motions and found that the tetramer indeed constitutes a dynamic assembly of monomers. The intersubunit fluctuation is correlated with the occlusion of the PAS. Such motions of the subunits "gate" ligand-protein association. The gates are open more than 80% of the time on average, which suggests a small reduction in ligand-protein binding. Despite the limitations in the starting model and approximations inherent in coarse graining, these results are consistent with experiments which suggest that binding of a substrate to the PAS is only somewhat hindered by the association of the subunits.
Collapse
|
84
|
Szarecka A, Xu Y, Tang P. Dynamics of heteropentameric nicotinic acetylcholine receptor: implications of the gating mechanism. Proteins 2007; 68:948-60. [PMID: 17546671 DOI: 10.1002/prot.21462] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The dynamics characteristics of the currently available structure of Torpedo nicotinic acetylcholine receptor (nAChR), including the extracellular, transmembrane, and intracellular domains (ICDs), were analyzed using the Gaussian Network Model (GNM) and Anisotropic Network Model (ANM). We found that a symmetric quaternary twist motion, reported previously in the literature in a homopentameric receptor (Cheng et al. J Mol Biol 2006;355:310-324; Taly et al. Biophys J 2005;88:3954-3965), occurred also in the heteropentameric Torpedo nAChR. We believe, however, that the symmetric twist alone is not sufficient to explain a large body of experimental data indicating asymmetry and subunit nonequivalence during gating. Here we report our results supporting the hypothesis that a combination of symmetric and asymmetric motions opens the gate. We show that the asymmetric motion involves tilting of the TM2 helices. Furthermore, our study reveals three additional aspects of channel dynamics: (1) loop A serves as an allosteric mediator between the ligand binding loops and those at the domain interface, particularly the linker between TM2 and TM3; (2) the ICD can modulate the pore dynamics and thus should not be neglected in gating studies; and (3) the F loops, which are peculiarly longer and poorly-conserved in non-alpha-subunits, have important dynamical implications.
Collapse
Affiliation(s)
- Agnieszka Szarecka
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | |
Collapse
|
85
|
Gay EA, Yakel JL. Gating of nicotinic ACh receptors; new insights into structural transitions triggered by agonist binding that induce channel opening. J Physiol 2007; 584:727-33. [PMID: 17823204 PMCID: PMC2276999 DOI: 10.1113/jphysiol.2007.142554] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) are in the superfamily of Cys-loop ligand-gated ion channels, and are pentameric assemblies of five subunits, with each subunit arranged around the central ion-conducting pore. The binding of ACh to the extracellular interface between two subunits induces channel opening. With the recent 4 A resolution of the Torpedo nAChR, and the crystal structure of the related molluscan ACh binding protein, much has been learned about the structure of the ligand binding domain and the channel pore, as well as major structural rearrangements that may confer channel opening. For example, the putative pathway coupling agonist binding to channel gating may include a major rearrangement of the C-loop within the ligand binding pocket, and the disruption of a salt bridge between an arginine residue at the end of the beta10 strand and a glutamate residue in the beta1-beta2 linker. Here we will review and discuss the latest structural findings aiming to further refine the transduction pathway linking binding to gating for the nAChR channels, and discuss similarities and differences among the different members of this Cys-loop superfamily of receptors.
Collapse
Affiliation(s)
- Elaine A Gay
- Laboratory of Neurobiology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | | |
Collapse
|
86
|
Levin EJ, Kondrashov DA, Wesenberg GE, Phillips GN. Ensemble refinement of protein crystal structures: validation and application. Structure 2007; 15:1040-52. [PMID: 17850744 PMCID: PMC2039884 DOI: 10.1016/j.str.2007.06.019] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2006] [Revised: 06/20/2007] [Accepted: 06/21/2007] [Indexed: 11/28/2022]
Abstract
X-ray crystallography typically uses a single set of coordinates and B factors to describe macromolecular conformations. Refinement of multiple copies of the entire structure has been previously used in specific cases as an alternative means of representing structural flexibility. Here, we systematically validate this method by using simulated diffraction data, and we find that ensemble refinement produces better representations of the distributions of atomic positions in the simulated structures than single-conformer refinements. Comparison of principal components calculated from the refined ensembles and simulations shows that concerted motions are captured locally, but that correlations dissipate over long distances. Ensemble refinement is also used on 50 experimental structures of varying resolution and leads to decreases in R(free) values, implying that improvements in the representation of flexibility observed for the simulated structures may apply to real structures. These gains are essentially independent of resolution or data-to-parameter ratio, suggesting that even structures at moderate resolution can benefit from ensemble refinement.
Collapse
Affiliation(s)
- Elena J Levin
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
87
|
Aldea M, Mulet J, Sala S, Sala F, Criado M. Non-charged amino acids from three different domains contribute to link agonist binding to channel gating in alpha7 nicotinic acetylcholine receptors. J Neurochem 2007; 103:725-35. [PMID: 17635664 DOI: 10.1111/j.1471-4159.2007.04771.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Binding of agonists to nicotinic acetylcholine receptors results in channel opening. Previously, we have shown that several charged residues at three different domains of the alpha7 nicotinic receptor are involved in coupling binding and gating, probably through a network of electrostatic interactions. This network, however, could also be integrated by other residues. To test this hypothesis, non-charged amino acids were mutated and expression levels and electrophysiological responses of mutant receptors were determined. Mutants at positions Asn47 and Gln48 (loop 2), Ile130, Trp134, and Gln140 (loop 7), and Thr264 (M2-M3 linker) showed poor or null functional responses, despite significant membrane expression. By contrast, mutants F137A and S265A exhibited a gain of function effect. In all cases, changes in dose-response relationships were small, EC(50) values being between threefold smaller and fivefold larger, arguing against large modifications of agonist binding. Peak currents decayed at the same rate in all receptors except two, excluding large effects on desensitization. Thus, the observed changes could be mostly caused by alterations of the gating characteristics. Moreover, analysis of double mutants showed an interconnection between some residues in these domains, especially Gln48 with Ile130, suggesting a potential coupling between agonist binding and channel gating through these amino acids.
Collapse
Affiliation(s)
- Marcos Aldea
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Sant Joan d'Alacant, Alicante, Spain
| | | | | | | | | |
Collapse
|
88
|
Taly A. Opened by a twist: a gating mechanism for the nicotinic acetylcholine receptor. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2007; 36:911-8. [PMID: 17609938 DOI: 10.1007/s00249-007-0189-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Revised: 04/27/2007] [Accepted: 05/07/2007] [Indexed: 12/25/2022]
Affiliation(s)
- Antoine Taly
- Unité de Recherche Associée Centre National de la Recherche Scientifique 2182 "Récepteurs et Cognition", Département de Neuroscience, Institut Pasteur, 25 Rue du Dr Roux, 75724, Paris Cedex 15, France.
| |
Collapse
|
89
|
Bertaccini EJ, Trudell JR, Lindahl E. Normal-mode analysis of the glycine alpha1 receptor by three separate methods. J Chem Inf Model 2007; 47:1572-9. [PMID: 17602605 PMCID: PMC2530920 DOI: 10.1021/ci600566j] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Predicting collective dynamics and structural changes in biological macromolecules is pivotal toward a better understanding of many biological processes. Limitations due to large system sizes and inaccessible time scales have prompted the development of alternative techniques for the calculation of such motions. In this work, we present the results of a normal-mode analysis technique based on molecular mechanics that enables the calculation of accurate force-field based vibrations of extremely large molecules and compare it with two elastic network approximate models. When applied to the glycine alpha1 receptor, all three normal-mode analysis algorithms demonstrate an "iris-like" gating motion. Such gating motions have implications for understanding the effects of anesthetic and other ligand binding sites and for the means of transducing agonist binding into ion channel opening. Unlike the more approximate methods, molecular mechanics based analyses can also reveal approximate vibrational frequencies. Such analyses may someday allow the use of protein dynamics elucidated via normal-mode calculations as additional endpoints for future drug design.
Collapse
Affiliation(s)
- Edward J Bertaccini
- Department of Anesthesia, Stanford University School of Medicine and Beckman Center for Molecular and Genetic Medicine, Stanford, California 94305-5117, USA.
| | | | | |
Collapse
|
90
|
Cheng X, Ivanov I, Wang H, Sine SM, McCammon JA. Nanosecond-timescale conformational dynamics of the human alpha7 nicotinic acetylcholine receptor. Biophys J 2007; 93:2622-34. [PMID: 17573436 PMCID: PMC1989720 DOI: 10.1529/biophysj.107.109843] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We explore the conformational dynamics of a homology model of the human alpha7 nicotinic acetylcholine receptor using molecular dynamics simulation and analyses of root mean-square fluctuations, block partitioning of segmental motion, and principal component analysis. The results reveal flexible regions and concerted global motions of the subunits encompassing extracellular and transmembrane domains of the subunits. The most relevant motions comprise a bending, hinged at the beta10-M1 region, accompanied by concerted tilting of the M2 helices that widens the intracellular end of the channel. Despite the nanosecond timescale, the observations suggest that tilting of the M2 helices may initiate opening of the pore. The results also reveal direct coupling between a twisting motion of the extracellular domain and dynamic changes of M2. Covariance analysis of interresidue motions shows that this coupling arises through a network of residues within the Cys and M2-M3 loops where Phe135 is stabilized within a hydrophobic pocket formed by Leu270 and Ile271. The resulting concerted motion causes a downward shift of the M2 helices that disrupts a hydrophobic girdle formed by 9' and 13' residues.
Collapse
Affiliation(s)
- Xiaolin Cheng
- Howard Hughes Medical Institute, National Science Foundation Center for Theoretical Biophysics, Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA.
| | | | | | | | | |
Collapse
|
91
|
Changeux JP. The Ferrier Lecture 1998. The molecular biology of consciousness investigated with genetically modified mice. Philos Trans R Soc Lond B Biol Sci 2006; 361:2239-59. [PMID: 17015398 PMCID: PMC1764850 DOI: 10.1098/rstb.2006.1832] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/1998] [Accepted: 01/17/2006] [Indexed: 11/12/2022] Open
Abstract
The question is raised of the relevance of experimental work with the mouse and some of its genetically modified individuals in the study of consciousness. Even if this species does not go far beyond the level of 'minimal consciousness', it may be a useful animal model to examine the elementary building blocks of consciousness using the methods of molecular biology jointly with investigations at the physiological and behavioural levels. These building blocks which are anticipated to be universally shared by higher organisms (from birds to humans) may include: (i) the access to multiple states of vigilance, like wakefulness, sleep, general anaesthesia, etc.; (ii) the capacity for global integration of several sensory and cognitive functions, together with behavioural flexibility resulting in what is referred to as exploratory behaviour, and possibly a minimal form of intentionality. In addition, the contribution of defined neuronal nicotinic receptors species to some of these processes is demonstrated and the data discussed within the framework of recent neurocomputational models for access to consciousness.
Collapse
Affiliation(s)
- Jean-Pierre Changeux
- Institut Pasteur & Collège de France, 25 rue du Dr Roux, 75724 Cedex 15, Paris, France.
| |
Collapse
|
92
|
Taly A, Corringer PJ, Grutter T, de Carvalho LP, Karplus M, Changeux JP. Implications of the quaternary twist allosteric model for the physiology and pathology of nicotinic acetylcholine receptors. Proc Natl Acad Sci U S A 2006; 103:16965-70. [PMID: 17077146 PMCID: PMC1629088 DOI: 10.1073/pnas.0607477103] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nicotinic acetylcholine receptors (nAChR) are pentameric ligand-gated ion channels composed of subunits that consist of an extracellular domain that carries the ligand-binding site and a distinct ion-pore domain. Signal transduction results from the allosteric coupling between the two domains: the distance from the binding site to the gate of the pore domain is 50 A. Normal mode analysis with a C(alpha) Gaussian network of a new structural model of the neuronal alpha7 nAChR showed that the lowest mode involves a global quaternary twist motion that opens the ion pore. A molecular probe analysis, in which the network is modified at each individual amino acid residue, demonstrated that the major effect is to change the frequency, but not the form, of the twist mode. The largest effects were observed for the ligand-binding site and the Cys-loop. Most (24/27) of spontaneous mutations known to cause congenital myasthenia and autosomal dominant nocturnal frontal lobe epilepsy are located either at the interface between subunits or, within a given subunit, at the interface between rigid blocks. These interfaces are modified significantly by the twist mode. The present analysis, thus, supports the quaternary twist model of the nAChR allosteric transition and provides a qualitative interpretation of the effect of the mutations responsible for several receptor pathologies.
Collapse
MESH Headings
- Allosteric Regulation
- Animals
- Epilepsy, Frontal Lobe/genetics
- Epilepsy, Frontal Lobe/physiopathology
- Genes, Dominant
- Humans
- Models, Molecular
- Models, Neurological
- Mutation
- Myasthenic Syndromes, Congenital/genetics
- Myasthenic Syndromes, Congenital/physiopathology
- Protein Structure, Quaternary
- Protein Subunits
- Receptors, Nicotinic/chemistry
- Receptors, Nicotinic/physiology
- Torpedo
- alpha7 Nicotinic Acetylcholine Receptor
Collapse
Affiliation(s)
- Antoine Taly
- *Recepteurs et Cognition, Unité de Recherche Associée Centre National de la Recherche Scientifique 2182, Institut Pasteur, 25 Rue du Dr Roux, 75724 Paris Cedex 15, France
- To whom correspondence may be sent at the present address:
Laboratoire de Chimie Biophysique, Université Louis Pasteur, 8, Allée Gaspard Monge, B.P. 70028, F-67083 Strasbourg Cedex, France. E-mail:
| | - Pierre-Jean Corringer
- *Recepteurs et Cognition, Unité de Recherche Associée Centre National de la Recherche Scientifique 2182, Institut Pasteur, 25 Rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Thomas Grutter
- *Recepteurs et Cognition, Unité de Recherche Associée Centre National de la Recherche Scientifique 2182, Institut Pasteur, 25 Rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Lia Prado de Carvalho
- *Recepteurs et Cognition, Unité de Recherche Associée Centre National de la Recherche Scientifique 2182, Institut Pasteur, 25 Rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Martin Karplus
- Laboratoire de Chimie Biophysique, Institut de Science et d'Ingénierie Supramoléculaire, Université Louis Pasteur, 8, Allée Gaspard Monge, B.P. 70028, F-67083 Strasbourg Cedex, France; and
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138
| | - Jean-Pierre Changeux
- *Recepteurs et Cognition, Unité de Recherche Associée Centre National de la Recherche Scientifique 2182, Institut Pasteur, 25 Rue du Dr Roux, 75724 Paris Cedex 15, France
- To whom correspondence may be addressed. E-mail:
| |
Collapse
|
93
|
Miloshevsky GV, Jordan PC. The open state gating mechanism of gramicidin a requires relative opposed monomer rotation and simultaneous lateral displacement. Structure 2006; 14:1241-9. [PMID: 16905098 DOI: 10.1016/j.str.2006.06.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2006] [Revised: 06/01/2006] [Accepted: 06/09/2006] [Indexed: 11/16/2022]
Abstract
The gating mechanism of the open state of the gramicidin A (gA) channel is studied by using a new Monte Carlo Normal Mode Following (MC-NMF) technique, one applicable even without a target structure. The results demonstrate that the lowest-frequency normal mode (NM) at approximately 6.5 cm(-1) is the crucial mode that initiates dissociation. Perturbing the gA dimer in either direction along this NM leads to opposed, nearly rigid-body rotations of the gA monomers around the central pore axis. Tracking this NM by using the eigenvector-following technique reveals the channel's gating mechanism: dissociation via relative opposed monomer rotation and simultaneous lateral displacement. System evolution along the lowest-frequency eigenvector shows that the large-amplitude motions required for gating (dissociation) are not simple relative rigid-body motions of the monomers. Gating involves coupling intermonomer hydrogen bond breaking, backbone realignment, and relative monomer tilt with complex side chain reorganization at the intermonomer junction.
Collapse
Affiliation(s)
- Gennady V Miloshevsky
- Department of Chemistry, MS-015 Brandeis University, P O Box 549110, Waltham, Massachusetts 02454, USA
| | | |
Collapse
|
94
|
Cheng X, Wang H, Grant B, Sine SM, McCammon JA. Targeted molecular dynamics study of C-loop closure and channel gating in nicotinic receptors. PLoS Comput Biol 2006; 2:e134. [PMID: 17009865 PMCID: PMC1584325 DOI: 10.1371/journal.pcbi.0020134] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2006] [Accepted: 08/23/2006] [Indexed: 11/24/2022] Open
Abstract
The initial coupling between ligand binding and channel gating in the human α7 nicotinic acetylcholine receptor (nAChR) has been investigated with targeted molecular dynamics (TMD) simulation. During the simulation, eight residues at the tip of the C-loop in two alternating subunits were forced to move toward a ligand-bound conformation as captured in the crystallographic structure of acetylcholine binding protein (AChBP) in complex with carbamoylcholine. Comparison of apo- and ligand-bound AChBP structures shows only minor rearrangements distal from the ligand-binding site. In contrast, comparison of apo and TMD simulation structures of the nAChR reveals significant changes toward the bottom of the ligand-binding domain. These structural rearrangements are subsequently translated to the pore domain, leading to a partly open channel within 4 ns of TMD simulation. Furthermore, we confirmed that two highly conserved residue pairs, one located near the ligand-binding pocket (Lys145 and Tyr188), and the other located toward the bottom of the ligand-binding domain (Arg206 and Glu45), are likely to play important roles in coupling agonist binding to channel gating. Overall, our simulations suggest that gating movements of the α7 receptor may involve relatively small structural changes within the ligand-binding domain, implying that the gating transition is energy-efficient and can be easily modulated by agonist binding/unbinding. Nicotinic acetylcholine receptors are ligand-gated ion channels responsible for neurotransmitter-mediated signal transduction at synapses throughout the central and peripheral nervous systems. Binding of neurotransmitter molecules to subunit interfaces in the N-terminal extracellular domain induces structural rearrangements of the membrane-spanning domain permitting the influx of cations. A full understanding of how the conformational changes propagate from the ligand-binding site to the pore domain is of great interest to biologists, yet remains to be established. Using a special simulation technique known as targeted molecular dynamics, Cheng and colleagues probed the early stages of ligand-induced conformational rearrangements that may lead to channel opening. During the simulation, Cheng et al. observed a sequence of conformational changes that stem from the ligand-binding site to the transmembrane domain resulting in a wider channel. From these results, they suggest that gating movements may entail only small structural changes in the ligand-binding domain, implying that channel gating is energy-efficient and can readily be modulated by the binding/unbinding of agonist molecules.
Collapse
Affiliation(s)
- Xiaolin Cheng
- Howard Hughes Medical Institute, University of California San Diego, La Jolla, California, United States of America.
| | | | | | | | | |
Collapse
|