51
|
Lamb DJ, Wollin SL, Schnapp A, Bischoff D, Erb KJ, Bouyssou T, Guilliard B, Strasser C, Wex E, Blum S, Thaler E, Nickel H, Radmacher O, Haas H, Swantek JL, Souza D, Canfield M, White D, Panzenbeck M, Kashem MA, Sanville-Ross M, Kono T, Sewald K, Braun A, Obernolte H, Danov O, Schaenzle G, Rast G, Maier GM, Hoffmann M. BI 1002494, a Novel Potent and Selective Oral Spleen Tyrosine Kinase Inhibitor, Displays Differential Potency in Human Basophils and B Cells. ACTA ACUST UNITED AC 2016; 357:554-61. [DOI: 10.1124/jpet.116.233155] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 03/31/2016] [Indexed: 01/29/2023]
|
52
|
Grebner C, Iegre J, Ulander J, Edman K, Hogner A, Tyrchan C. Binding Mode and Induced Fit Predictions for Prospective Computational Drug Design. J Chem Inf Model 2016; 56:774-87. [DOI: 10.1021/acs.jcim.5b00744] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Christoph Grebner
- CVMD Innovative Medicine, ‡RIA Innovative Medicine, and §Discovery Science, AstraZeneca R&D, 43283 Mölndal, Sweden
| | - Jessica Iegre
- CVMD Innovative Medicine, ‡RIA Innovative Medicine, and §Discovery Science, AstraZeneca R&D, 43283 Mölndal, Sweden
| | - Johan Ulander
- CVMD Innovative Medicine, ‡RIA Innovative Medicine, and §Discovery Science, AstraZeneca R&D, 43283 Mölndal, Sweden
| | - Karl Edman
- CVMD Innovative Medicine, ‡RIA Innovative Medicine, and §Discovery Science, AstraZeneca R&D, 43283 Mölndal, Sweden
| | - Anders Hogner
- CVMD Innovative Medicine, ‡RIA Innovative Medicine, and §Discovery Science, AstraZeneca R&D, 43283 Mölndal, Sweden
| | - Christian Tyrchan
- CVMD Innovative Medicine, ‡RIA Innovative Medicine, and §Discovery Science, AstraZeneca R&D, 43283 Mölndal, Sweden
| |
Collapse
|
53
|
Deng GM, Kyttaris VC, Tsokos GC. Targeting Syk in Autoimmune Rheumatic Diseases. Front Immunol 2016; 7:78. [PMID: 27014261 PMCID: PMC4779881 DOI: 10.3389/fimmu.2016.00078] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 02/16/2016] [Indexed: 02/03/2023] Open
Abstract
Spleen tyrosine kinase (Syk) is a member of the Src family of non-receptor tyrosine kinases, which associates directly with surface receptors, including B-cell receptor and Fcγ receptor, and is involved in a variety of signal transduction pathways. Rheumatoid arthritis (RA) and systemic lupus erythematosus are autoimmune diseases in which autoantibodies, immune complexes, and autoreactive T cells account for the expression of tissue inflammation and damage. Syk inhibitors efficiently suppress RA in patients albeit in the expression of unwanted side effects, including gastrointestinal effects, hypertension, and neutropenia. Syk inhibitors also inhibit clinical manifestations in lupus-prone mice. Here, we review the evidence that supports the use of Syk inhibitors to treat rheumatic and other autoimmune diseases.
Collapse
Affiliation(s)
- Guo-Min Deng
- Key Laboratory of Antibody Techniques of Ministry of Health, Nanjing Medical University, Nanjing, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | | | - George C Tsokos
- Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, MA , USA
| |
Collapse
|
54
|
Feng C, Post CB. Insights into the allosteric regulation of Syk association with receptor ITAM, a multi-state equilibrium. Phys Chem Chem Phys 2016; 18:5807-18. [PMID: 26468009 PMCID: PMC4758936 DOI: 10.1039/c5cp05417f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The phosphorylation of interdomain A (IA), a linker region between tandem SH2 domains of Syk tyrosine kinase, regulates the binding affinity for association of Syk with doubly-phosphorylated ITAM regions of the B cell receptor. The mechanism of this allosteric regulation has been suggested to be a switch from the high-affinity bifunctional binding, mediated through both SH2 domains binding two phosphotyrosine residues of ITAM, to a substantially lower-affinity binding of only one SH2 domain. IA phosphorylation triggers the switch by inducing disorder in IA and weakening the SH2-SH2 interaction. The postulated switch to a single-SH2-domain binding mode is examined using NMR to monitor site-specific binding to each SH2 domain of Syk variants engineered to have IA regions that differ in conformational flexibility. The combined analysis of titration curves and NMR line-shapes provides sufficient information to determine the energetics of inter-molecular binding at each SH2 site along with an intra-molecular binding or isomerization step. A less favorable isomerization equilibrium associated with the changes in the SH2-SH2 conformational ensemble and IA flexibility accounts for the inhibition of Syk association with membrane ITAM regions when IA is phosphorylated, and refutes the proposed switch to single-SH2-domain binding. Syk localizes in the cell through its SH2 interactions, and this basis for allosteric regulation of ITAM association proposes for the first time a phosphorylation-dependent model to regulate Syk binding to alternate receptors and other signaling proteins that differ either in the number of residues separating ITAM phosphotyrosines or by having only one phosphotyrosine, a half ITAM.
Collapse
Affiliation(s)
- Chao Feng
- Department of Medicinal Chemistry and Molecular Pharmacology, Markey Center for Structural Biology, Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, USA.
| | - Carol Beth Post
- Department of Medicinal Chemistry and Molecular Pharmacology, Markey Center for Structural Biology, Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, USA.
| |
Collapse
|
55
|
Prathipati P, Mizuguchi K. Integration of Ligand and Structure Based Approaches for CSAR-2014. J Chem Inf Model 2015; 56:974-87. [PMID: 26492437 DOI: 10.1021/acs.jcim.5b00477] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The prediction of binding poses and affinities is an area of active interest in computer-aided drug design (CADD). Given the documented limitations with either ligand or structure based approaches, we employed an integrated approach and developed a rapid protocol for binding mode and affinity predictions. This workflow was applied to the three protein targets of Community Structure-Activity Resource-2014 (CSAR-2014) exercise: Factor Xa (FXa), Spleen Tyrosine Kinase (SYK), and tRNA (guanine-N(1))-methyltransferase (TrmD). Our docking and scoring workflow incorporates compound clustering and ligand and protein structure based pharmacophore modeling, followed by local docking, minimization, and scoring. While the former part of the protocol ensures high-quality ligand alignments and mapping, the subsequent minimization and scoring provides the predicted binding modes and affinities. We made blind predictions of docking pose for 1, 5, and 14 ligands docked into 1, 2, and 12 crystal structures of FXa, SYK, and TrmD, respectively. The resulting 174 poses were compared with cocrystallized structures (1, 5, and 14 complexes) made available at the end of CSAR. Our predicted poses were related to the experimentally determined structures with a mean root-mean-square deviation value of 3.4 Å. Further, we were able to classify high and low affinity ligands with the area under the curve values of 0.47, 0.60, and 0.69 for FXa, SYK, and TrmD, respectively, indicating the validity of our approach in at least two of the three systems. Detailed critical analysis of the results and CSAR methodology ranking procedures suggested that a straightforward application of our workflow has limitations, as some of the performance measures do not reflect the actual utility of pose and affinity predictions in the biological context of individual systems.
Collapse
Affiliation(s)
- Philip Prathipati
- National Institutes of Biomedical Innovation, Health and Nutrition , 7-6-8 Saito-Asagi, Ibaraki City, Osaka 567-0085, Japan
| | - Kenji Mizuguchi
- National Institutes of Biomedical Innovation, Health and Nutrition , 7-6-8 Saito-Asagi, Ibaraki City, Osaka 567-0085, Japan
| |
Collapse
|
56
|
New spleen tyrosine kinase inhibitors: patent applications published during 2011-2013. Pharm Pat Anal 2015; 3:523-41. [PMID: 25374321 DOI: 10.4155/ppa.14.34] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Spleen tyrosine kinase (SYK) is one of the more advanced small-molecule targets with regard to clinical development for treatment of inflammatory diseases. In this review we continue our analysis of the patent literature covering the time period 2011-2013. The analysis relates to any organization that has filed applications that explicitly discloses SYK as the intended target. In the last 2 years there has been a surge of application with a few new entries in a crowded field with the structural theme of compounds in these applications being a traditional type I ATP competitive inhibitor [ 1 ]. This overview of the SYK patent literature and the learning's of the inhibitors substitution patterns would be an important reading for anyone working in the area of SYK inhibitors.
Collapse
|
57
|
Goodfellow HS, Frushicheva MP, Ji Q, Cheng DA, Kadlecek TA, Cantor AJ, Kuriyan J, Chakraborty AK, Salomon A, Weiss A. The catalytic activity of the kinase ZAP-70 mediates basal signaling and negative feedback of the T cell receptor pathway. Sci Signal 2015; 8:ra49. [PMID: 25990959 DOI: 10.1126/scisignal.2005596] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
T cell activation by antigens binding to the T cell receptor (TCR) must be properly regulated to ensure normal T cell development and effective immune responses to pathogens and transformed cells while avoiding autoimmunity. The Src family kinase Lck and the Syk family kinase ZAP-70 (ζ chain-associated protein kinase of 70 kD) are sequentially activated in response to TCR engagement and serve as critical components of the TCR signaling machinery that leads to T cell activation. We performed a mass spectrometry-based phosphoproteomic study comparing the quantitative differences in the temporal dynamics of phosphorylation in stimulated and unstimulated T cells with or without inhibition of ZAP-70 catalytic activity. The data indicated that the kinase activity of ZAP-70 stimulates negative feedback pathways that target Lck and thereby modulate the phosphorylation patterns of the immunoreceptor tyrosine-based activation motifs (ITAMs) of the CD3 and ζ chain components of the TCR and of signaling molecules downstream of Lck, including ZAP-70. We developed a computational model that provides a mechanistic explanation for the experimental findings on ITAM phosphorylation in wild-type cells, ZAP-70-deficient cells, and cells with inhibited ZAP-70 catalytic activity. This model incorporated negative feedback regulation of Lck activity by the kinase activity of ZAP-70 and predicted the order in which tyrosines in the ITAMs of TCR ζ chains must be phosphorylated to be consistent with the experimental data.
Collapse
Affiliation(s)
- Hanna Sjölin Goodfellow
- Howard Hughes Medical Institute, UCSF, San Francisco, CA 94143, USA.,Department of Medicine, UCSF, San Francisco, CA 94143, USA
| | - Maria P Frushicheva
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Qinqin Ji
- Department of Chemistry, Brown University, Providence, RI 02912, USA
| | - Debra A Cheng
- Howard Hughes Medical Institute, UCSF, San Francisco, CA 94143, USA.,Department of Medicine, UCSF, San Francisco, CA 94143, USA
| | - Theresa A Kadlecek
- Howard Hughes Medical Institute, UCSF, San Francisco, CA 94143, USA.,Department of Medicine, UCSF, San Francisco, CA 94143, USA
| | - Aaron J Cantor
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.,California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720, USA
| | - John Kuriyan
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.,California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720, USA.,Department of Chemistry, University of California, Berkeley, CA 94720, USA.,Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA.,Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Arup K Chakraborty
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Arthur Salomon
- Department of Chemistry, Brown University, Providence, RI 02912, USA.,Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Arthur Weiss
- Howard Hughes Medical Institute, UCSF, San Francisco, CA 94143, USA.,Department of Medicine, UCSF, San Francisco, CA 94143, USA
| |
Collapse
|
58
|
Long X, Yu Y, Perlaky L, Man TK, Redell MS. Stromal CYR61 Confers Resistance to Mitoxantrone via Spleen Tyrosine Kinase Activation in Human Acute Myeloid Leukaemia. Br J Haematol 2015; 170:704-18. [PMID: 25974135 DOI: 10.1111/bjh.13492] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 03/29/2015] [Indexed: 02/04/2023]
Abstract
Approximately 50% of children with acute myeloid leukaemia (AML) relapse, despite aggressive chemotherapy. The bone marrow stromal environment protects leukaemia cells from chemotherapy (i.e., stroma-induced chemoresistance), eventually leading to recurrence. Our goal is to delineate the mechanisms underlying stroma-mediated chemoresistance in AML. We used two human bone marrow stromal cell lines, HS-5 and HS-27A, which are equally effective in protecting AML cells from chemotherapy-induced apoptosis in AML-stromal co-cultures. We found that CYR61 was highly expressed by stromal cells, and was upregulated in AML cells by both stromal cell lines. CYR61 is a secreted matricellular protein and is associated with cell-intrinsic chemoresistance in other malignancies. Here, we show that blocking stromal CYR61 activity, by neutralization or RNAi, increased mitoxantrone-induced apoptosis in AML cells in AML-stromal co-cultures, providing functional evidence for its role in stroma-mediated chemoresistance. Further, we found that spleen tyrosine kinase (SYK) mediates CYR61 signalling. Exposure to stroma increased SYK expression and activation in AML cells, and this increase required CYR61. SYK inhibition reduced stroma-dependent mitoxantrone resistance in the presence of CYR61, but not in its absence. Therefore, SYK is downstream of CYR61 and contributes to CYR61-mediated mitoxantrone resistance. The CYR61-SYK pathway represents a potential target for reducing stroma-induced chemoresistance.
Collapse
Affiliation(s)
- Xin Long
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Yang Yu
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Laszlo Perlaky
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.,Texas Children's Hospital, Houston, TX, USA
| | - Tsz-Kwong Man
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Michele S Redell
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.,Texas Children's Hospital, Houston, TX, USA
| |
Collapse
|
59
|
Krisenko MO, Geahlen RL. Calling in SYK: SYK's dual role as a tumor promoter and tumor suppressor in cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:254-63. [PMID: 25447675 DOI: 10.1016/j.bbamcr.2014.10.022] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 10/21/2014] [Accepted: 10/27/2014] [Indexed: 12/18/2022]
Abstract
SYK (spleen tyrosine kinase) is well-characterized in the immune system as an essential enzyme required for signaling through multiple classes of immune recognition receptors. As a modulator of tumorigenesis, SYK has a bit of a schizophrenic reputation, acting in some cells as a tumor promoter and in others as a tumor suppressor. In many hematopoietic malignancies, SYK provides an important survival function and its inhibition or silencing frequently leads to apoptosis. In cancers of non-immune cells, SYK provides a pro-survival signal, but can also suppress tumorigenesis by restricting epithelial-mesenchymal transition, enhancing cell-cell interactions and inhibiting migration.
Collapse
Affiliation(s)
- Mariya O Krisenko
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, United States
| | - Robert L Geahlen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, United States.
| |
Collapse
|
60
|
A combined experimental and computational study of Vam3, a derivative of resveratrol, and Syk interaction. Int J Mol Sci 2014; 15:17188-203. [PMID: 25257535 PMCID: PMC4200806 DOI: 10.3390/ijms150917188] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 09/18/2014] [Accepted: 09/22/2014] [Indexed: 01/02/2023] Open
Abstract
Spleen tyrosine kinase (Syk) plays an indispensable role through preliminary extracellular antigen-induced crosslinking of Fc receptor (FcR) in the pathogenesis of autoimmune disorders, such as rheumatoid arthritis. In this study, we identify Vam3, a dimeric derivative of resveratrol isolated from grapes, as an ATP-competitive inhibitor of Syk with an IC50 of 62.95 nM in an in vitro kinase assay. Moreover, docking and molecular dynamics simulation approaches were performed to get more detailed information about the binding mode of Vam3 and Syk. The results show that 11b-OH on ring-C and 4b-OH on ring-D could form two hydrogen bonds with Glu449 and Phe382 of Syk, respectively. In addition, arene-cation interaction between ring-D of Vam3 and Lys402 of Syk was also observed. These results indicate that ring-C and D play an essential role in Vam3–Syk interaction. Our studies may be helpful in the structural optimization of Vam3, and also aid the design of novel Syk inhibitors in the future.
Collapse
|
61
|
Geahlen RL. Getting Syk: spleen tyrosine kinase as a therapeutic target. Trends Pharmacol Sci 2014; 35:414-22. [PMID: 24975478 DOI: 10.1016/j.tips.2014.05.007] [Citation(s) in RCA: 176] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 05/27/2014] [Accepted: 05/30/2014] [Indexed: 02/06/2023]
Abstract
Spleen tyrosine kinase (Syk) is a cytoplasmic protein tyrosine kinase well known for its ability to couple immune cell receptors to intracellular signaling pathways that regulate cellular responses to extracellular antigens and antigen-immunoglobulin (Ig) complexes of particular importance to the initiation of inflammatory responses. Thus, Syk is an attractive target for therapeutic kinase inhibitors designed to ameliorate the symptoms and consequences of acute and chronic inflammation. Its more recently recognized role as a promoter of cell survival in numerous cancer cell types ranging from leukemia to retinoblastoma has attracted considerable interest as a target for a new generation of anticancer drugs. This review discusses the biological processes in which Syk participates that have made this kinase such a compelling drug target.
Collapse
Affiliation(s)
- Robert L Geahlen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, Hansen Life Sciences Research Building, 210 South University Street, West Lafayette, IN 47907, USA.
| |
Collapse
|
62
|
In situ selectivity profiling and crystal structure of SML-8-73-1, an active site inhibitor of oncogenic K-Ras G12C. Proc Natl Acad Sci U S A 2014; 111:8895-900. [PMID: 24889603 DOI: 10.1073/pnas.1404639111] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Directly targeting oncogenic V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (K-Ras) with small-molecule inhibitors has historically been considered prohibitively challenging. Recent reports of compounds that bind directly to the K-Ras G12C mutant suggest avenues to overcome key obstacles that stand in the way of developing such compounds. We aim to target the guanine nucleotide (GN)-binding pocket because the natural contents of this pocket dictate the signaling state of K-Ras. Here, we characterize the irreversible inhibitor SML-8-73-1 (SML), which targets the GN-binding pocket of K-Ras G12C. We report a high-resolution X-ray crystal structure of G12C K-Ras bound to SML, revealing that the compound binds in a manner similar to GDP, forming a covalent linkage with Cys-12. The resulting conformation renders K-Ras in the open, inactive conformation, which is not predicted to associate productively with or activate downstream effectors. Conservation analysis of the Ras family GN-binding pocket reveals variability in the side chains surrounding the active site and adjacent regions, especially in the switch I region. This variability may enable building specificity into new iterations of Ras and other GTPase inhibitors. High-resolution in situ chemical proteomic profiling of SML confirms that SML effectively discriminates between K-Ras G12C and other cellular GTP-binding proteins. A biochemical assay provides additional evidence that SML is able to compete with millimolar concentrations of GTP and GDP for the GN-binding site.
Collapse
|
63
|
Puri KD, Di Paolo JA, Gold MR. B-cell receptor signaling inhibitors for treatment of autoimmune inflammatory diseases and B-cell malignancies. Int Rev Immunol 2014; 32:397-427. [PMID: 23886342 DOI: 10.3109/08830185.2013.818140] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
B-cell receptor (BCR) signaling is essential for normal B-cell development, selection, survival, proliferation, and differentiation into antibody-secreting cells. Similarly, this pathway plays a key role in the pathogenesis of multiple B-cell malignancies. Genetic and pharmacological approaches have established an important role for the Spleen tyrosine kinase (Syk), Bruton's tyrosine kinase (Btk), and phosphatidylinositol 3-kinase isoform p110delta (PI3Kδ) in coupling the BCR and other BCRs to B-cell survival, migration, and activation. In the past few years, several small-molecule inhibitory drugs that target PI3Kδ, Btk, and Syk have been developed and shown to have efficacy in clinical trials for the treatment of several types of B-cell malignancies. Emerging preclinical data have also shown a critical role of BCR signaling in the activation and function of self-reactive B cells that contribute to autoimmune diseases. Because BCR signaling plays a major role in both B-cell-mediated autoimmune inflammation and B-cell malignancies, inhibition of this pathway may represent a promising new strategy for treating these diseases. This review summarizes recent achievements in the mechanism of action, pharmacological properties, and clinical activity and toxicity of these BCR signaling inhibitors, with a focus on their emerging role in treating lymphoid malignancies and autoimmune disorders.
Collapse
|
64
|
Kim DK, Kim HS, Kim AR, Jang GH, Kim HW, Park YH, Kim B, Park YM, Beaven MA, Kim YM, Choi WS. The scaffold protein prohibitin is required for antigen-stimulated signaling in mast cells. Sci Signal 2013; 6:ra80. [PMID: 24023254 DOI: 10.1126/scisignal.2004098] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The protein prohibitin (PHB) is implicated in diverse cellular processes, including cell signaling, transcriptional control, and mitochondrial function. We found that PHB was abundant in the intracellular granules of mast cells, which are critical for allergic responses to antigens. Thus, we investigated whether PHB played a role in signaling mediated by the high-affinity receptor for antigen-bound immunoglobulin E (IgE), FcεRI. PHB-specific small interfering RNAs (siRNAs) inhibited antigen-mediated signaling, degranulation, and cytokine secretion by mast cells in vitro. Knockdown of PHB inhibited the antigen-dependent association of the tyrosine kinase Syk with FcεRI and inhibited the activation of Syk. Fractionation studies revealed that PHB translocated from intracellular granules to plasma membrane lipid rafts in response to antigen, and knockdown of PHB suppressed the movement of FcεRIγ and Syk into lipid rafts. Tyrosine phosphorylation of PHB by Lyn was observed early after exposure to antigen, and point mutations in PHB indicated that Tyr(114) and Tyr(259) were required for the recruitment of Syk to FcεRIγ and mast cell activation. In mice, PHB-specific siRNAs inhibited antigen-initiated mast cell degranulation, passive cutaneous anaphylaxis, and passive systemic anaphylaxis. Together, these results suggest that PHB is essential for FcεRI-mediated mast cell activation and allergic responses in vivo, raising the possibility that PHB might serve as a therapeutic target for the treatment of allergic diseases.
Collapse
Affiliation(s)
- Do Kyun Kim
- 1Department of Immunology and Physiology and Functional Genomics Institute, College of Medicine, Konkuk University, Chungju 380-701, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Abstract
Immune defenses depend on the ability of immunoreceptors to recognize foreign antigens and initiate intracellular signaling when a pathogen is detected. Signal initiation requires spatial reorganization of proteins and site-specific receptor phosphorylation, which leads to engagement of feedback loops. This Journal Club discusses recent work using combined experimental and computational approaches to investigate these processes in B cell antigen receptor (BCR) signaling. Specifically, the roles of different kinases in the presence and absence of BCR clustering were evaluated. Results indicated that spleen tyrosine kinase (SYK) can compensate for loss of Src-family kinase activity when receptors are spatially clustered, in part because receptor clustering enables SYK to trigger a positive feedback loop. This study and its implications suggest additional uses for computational models in studies of immunoreceptor signaling and highlight areas where extensions of current methodology are needed to better understand the complexities of biomolecular interactions.
Collapse
Affiliation(s)
- Lily A Chylek
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
66
|
Structural basis for activation of ZAP-70 by phosphorylation of the SH2-kinase linker. Mol Cell Biol 2013; 33:2188-201. [PMID: 23530057 DOI: 10.1128/mcb.01637-12] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Serial activation of the tyrosine kinases Lck and ZAP-70 initiates signaling downstream of the T cell receptor. We previously reported the structure of an autoinhibited ZAP-70 variant in which two regulatory tyrosine residues (315 and 319) in the SH2-kinase linker were replaced by phenylalanine. We now present a crystal structure of ZAP-70 in which Tyr 315 and Tyr 319 are not mutated, leading to the recognition of a five-residue sequence register error in the SH2-kinase linker of the original crystallographic model. The revised model identifies distinct roles for these two tyrosines. As seen in a recently reported structure of the related tyrosine kinase Syk, Tyr 315 of ZAP-70 is part of a hydrophobic interface between the regulatory apparatus and the kinase domain, and the integrity of this interface would be lost upon engagement of doubly phosphorylated peptides by the SH2 domains. Tyr 319 is not necessarily dislodged by SH2 engagement, which activates ZAP-70 only ∼5-fold in vitro. In contrast, phosphorylation by Lck activates ZAP-70 ∼100-fold. This difference is due to the ability of Tyr 319 to suppress ZAP-70 activity even when the SH2 domains are dislodged from the kinase domain, providing stringent control of ZAP-70 activity downstream of Lck.
Collapse
|