51
|
Bao S, He C, Ku P, Xie M, Lin J, Lu S, Nie X. Effects of triclosan on the RedoximiRs/Sirtuin/Nrf2/ARE signaling pathway in mosquitofish (Gambusia affinis). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 230:105679. [PMID: 33227666 DOI: 10.1016/j.aquatox.2020.105679] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/05/2020] [Accepted: 11/07/2020] [Indexed: 06/11/2023]
Abstract
Triclosan (TCS) has been widely used in daily life for its broad-spectrum antibacterial property and subsequently detected frequently in aquatic waterborne. Environmental relevant concentrations of TCS in water (ng-μg/L) may pose potential unexpected impact on non-target aquatic organisms. In the present work, we investigated the transcriptional responses of Nrf2 as well as its downstream genes, sirtuins and redox-sensitive microRNAs (RedoximiRs) in livers of the small freshwater fish mosquitofish (Gambusia affinis) which were exposed to environmental relevant concentrations of TCS (0.05 μg/L, 0.5 μg/L and 5 μg/L for 24 h and 168 h). Results showed there were similar up-regulations in Nrf2 and its target genes (e. g. NQO1, CAT and SOD) at transcriptional, enzymatic and protein levels, reflecting oxidative stress of TCS to mosquitofish. Meanwhile, up-regulations of Sirt1, Sirt2 and down-regulations of miR-34b, miR-200b-5p and miR-21 could modulate antioxidant system via the Nrf2/ARE signaling pathway by the post-transcriptional regulations. Some oxidative stress-related biomarkers displayed in concentration-dependent manners (e. g. NQO1 mRNA, CAT mRNA) and/or time-dependent manners (e. g. GSH contents). This study indicated that the RedoximiRs/Sirtuin/Nrf2/ARE signaling pathway played a crucial role in mosquitofish exposed to TCS, and there might be potentially profound effects for TCS on the aquatic ecological safety.
Collapse
Affiliation(s)
- Shuang Bao
- Department of Ecology/Hydrobiology Research Institute, Jinan University, Guangzhou, 510632, China
| | - Cuiping He
- Department of Ecology/Hydrobiology Research Institute, Jinan University, Guangzhou, 510632, China
| | - Peijia Ku
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27402, United States
| | - Meinan Xie
- Department of Ecology/Hydrobiology Research Institute, Jinan University, Guangzhou, 510632, China
| | - Jiawei Lin
- Department of Ecology/Hydrobiology Research Institute, Jinan University, Guangzhou, 510632, China
| | - Songhui Lu
- Research Center of Harmful Algae and Marine Biology, Jinan University, Guangzhou, 510632, China.
| | - Xiangping Nie
- Department of Ecology/Hydrobiology Research Institute, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
52
|
Câmara JS, Albuquerque BR, Aguiar J, Corrêa RCG, Gonçalves JL, Granato D, Pereira JAM, Barros L, Ferreira ICFR. Food Bioactive Compounds and Emerging Techniques for Their Extraction: Polyphenols as a Case Study. Foods 2020; 10:foods10010037. [PMID: 33374463 PMCID: PMC7823739 DOI: 10.3390/foods10010037] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 12/11/2022] Open
Abstract
Experimental studies have provided convincing evidence that food bioactive compounds (FBCs) have a positive biological impact on human health, exerting protective effects against non-communicable diseases (NCD) including cancer and cardiovascular (CVDs), metabolic, and neurodegenerative disorders (NDDs). These benefits have been associated with the presence of secondary metabolites, namely polyphenols, glucosinolates, carotenoids, terpenoids, alkaloids, saponins, vitamins, and fibres, among others, derived from their antioxidant, antiatherogenic, anti-inflammatory, antimicrobial, antithrombotic, cardioprotective, and vasodilator properties. Polyphenols as one of the most abundant classes of bioactive compounds present in plant-based foods emerge as a promising approach for the development of efficacious preventive agents against NCDs with reduced side effects. The aim of this review is to present comprehensive and deep insights into the potential of polyphenols, from their chemical structure classification and biosynthesis to preventive effects on NCDs, namely cancer, CVDs, and NDDS. The challenge of polyphenols bioavailability and bioaccessibility will be explored in addition to useful industrial and environmental applications. Advanced and emerging extraction techniques will be highlighted and the high-resolution analytical techniques used for FBCs characterization, identification, and quantification will be considered.
Collapse
Affiliation(s)
- José S. Câmara
- CQM—Centro de Química da Madeira, Campus Universitário da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal; (J.A.); (J.L.G.); (J.A.M.P.)
- Departamento de Química, Faculdade de Ciências Exatas e da Engenharia da Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
- Correspondence: (J.S.C.); (L.B.); Tel.: +351-29170-5112 (J.S.C.); +351-2-7333-0901 (L.B.)
| | - Bianca R. Albuquerque
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (B.R.A.); (R.C.G.C.); (I.C.F.R.F.)
- REQUIMTE—Science Chemical Department, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira N° 228, 4050-313 Porto, Portugal
| | - Joselin Aguiar
- CQM—Centro de Química da Madeira, Campus Universitário da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal; (J.A.); (J.L.G.); (J.A.M.P.)
| | - Rúbia C. G. Corrêa
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (B.R.A.); (R.C.G.C.); (I.C.F.R.F.)
- Program of Master in Clean Technologies, Cesumar Institute of Science Technology and Innovation (ICETI), Cesumar University—UniCesumar, Parana 87050-390, Brazil
| | - João L. Gonçalves
- CQM—Centro de Química da Madeira, Campus Universitário da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal; (J.A.); (J.L.G.); (J.A.M.P.)
| | - Daniel Granato
- Food Processing and Quality, Natural Resources Institute Finland (Luke), Tietotie 2, FI-02150 Espoo, Finland;
| | - Jorge A. M. Pereira
- CQM—Centro de Química da Madeira, Campus Universitário da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal; (J.A.); (J.L.G.); (J.A.M.P.)
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (B.R.A.); (R.C.G.C.); (I.C.F.R.F.)
- Correspondence: (J.S.C.); (L.B.); Tel.: +351-29170-5112 (J.S.C.); +351-2-7333-0901 (L.B.)
| | - Isabel C. F. R. Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (B.R.A.); (R.C.G.C.); (I.C.F.R.F.)
| |
Collapse
|
53
|
Albuquerque BR, Heleno SA, Oliveira MBPP, Barros L, Ferreira ICFR. Phenolic compounds: current industrial applications, limitations and future challenges. Food Funct 2020; 12:14-29. [PMID: 33242057 DOI: 10.1039/d0fo02324h] [Citation(s) in RCA: 271] [Impact Index Per Article: 54.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Phenolic compounds are natural bioactive molecules found mainly in plant tissues that have shown interesting bioactivities, such as antioxidant, antimicrobial, anti-inflammatory, and antiproliferative activities, among others, which has led to great interest in their use by several industries. However, despite the large number of scientific studies on this topic, some issues still need to be studied and solved, such as the understanding of the main actions of these compounds in organisms. Besides their large potential applicability in industry, phenolic compounds still face some issues making it necessary to develop strategies to improve bioavailability, sustainable technologies of extraction and refinement, and stability procedures to increase the range of applicability. This review focuses on the most recent advances in the applications of phenolic compounds in different technological and medicinal areas. In addition, techniques to improve their sustainable resourcing, stability and bioavailability will be presented and discussed.
Collapse
Affiliation(s)
- Bianca R Albuquerque
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal. and REQUIMTE - Science Chemical Department, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira no. 228, 4050-313 Porto, Portugal
| | - Sandrina A Heleno
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | - M Beatriz P P Oliveira
- REQUIMTE - Science Chemical Department, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira no. 228, 4050-313 Porto, Portugal
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | - Isabel C F R Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| |
Collapse
|
54
|
Zabaleta ME, Forbes-Hernández TY, Simal-Gandara J, Quiles JL, Cianciosi D, Bullon B, Giampieri F, Battino M. Effect of polyphenols on HER2-positive breast cancer and related miRNAs: Epigenomic regulation. Food Res Int 2020; 137:109623. [DOI: 10.1016/j.foodres.2020.109623] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/25/2020] [Accepted: 08/11/2020] [Indexed: 12/19/2022]
|
55
|
Zhang X, Shen T, Zhou X, Tang X, Gao R, Xu L, Wang L, Zhou Z, Lin J, Hu Y. Network pharmacology based virtual screening of active constituents of Prunella vulgaris L. and the molecular mechanism against breast cancer. Sci Rep 2020; 10:15730. [PMID: 32978480 PMCID: PMC7519149 DOI: 10.1038/s41598-020-72797-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 09/04/2020] [Indexed: 02/08/2023] Open
Abstract
Prunella vulgaris L, a perennial herb widely used in Asia in the treatment of various diseases including cancer. In vitro studies have demonstrated the therapeutic effect of Prunella vulgaris L. against breast cancer through multiple pathways. However, the nature of the biological mechanisms remains unclear. In this study, a Network pharmacology based approach was used to explore active constituents and potential molecular mechanisms of Prunella vulgaris L. for the treatment of breast cancer. The methods adopted included active constituents prescreening, target prediction, GO and KEGG pathway enrichment analysis. Molecular docking experiments were used to further validate network pharmacology results. The predicted results showed that there were 19 active ingredients in Prunella vulgaris L. and 31 potential gene targets including AKT1, EGFR, MYC, and VEGFA. Further, analysis of the potential biological mechanisms of Prunella vulgaris L. against breast cancer was performed by investigating the relationship between the active constituents, target genes and pathways. Network analysis showed that Prunella vulgaris L. exerted a promising preventive effect on breast cancer by acting on tumor-associated signaling pathways. This provides a basis to understand the mechanism of the anti-breast cancer activity of Prunella vulgaris L.
Collapse
Affiliation(s)
- Xiaobo Zhang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Tao Shen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Xin Zhou
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xuehua Tang
- Academic Department, Zhuhai Ebang Pharmaceutical Co., Ltd, Zhuhai, 519040, China
| | - Rui Gao
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Lu Xu
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Long Wang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zubin Zhou
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jingjing Lin
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yuanzhang Hu
- College of Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| |
Collapse
|
56
|
Ferraz da Costa DC, Pereira Rangel L, Quarti J, Santos RA, Silva JL, Fialho E. Bioactive Compounds and Metabolites from Grapes and Red Wine in Breast Cancer Chemoprevention and Therapy. Molecules 2020; 25:E3531. [PMID: 32752302 PMCID: PMC7436232 DOI: 10.3390/molecules25153531] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/17/2020] [Accepted: 07/28/2020] [Indexed: 02/06/2023] Open
Abstract
Phytochemicals and their metabolites are not considered essential nutrients in humans, although an increasing number of well-conducted studies are linking their higher intake with a lower incidence of non-communicable diseases, including cancer. This review summarizes the current findings concerning the molecular mechanisms of bioactive compounds from grapes and red wine and their metabolites on breast cancer-the most commonly occurring cancer in women-chemoprevention and treatment. Flavonoid compounds like flavonols, monomeric catechins, proanthocyanidins, anthocyanins, anthocyanidins and non-flavonoid phenolic compounds, such as resveratrol, as well as their metabolites, are discussed with respect to structure and metabolism/bioavailability. In addition, a broad discussion regarding in vitro, in vivo and clinical trials about the chemoprevention and therapy using these molecules is presented.
Collapse
Affiliation(s)
- Danielly C. Ferraz da Costa
- Departamento de Nutrição Básica e Experimental, Instituto de Nutrição, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20550-013, Brazil; (D.C.F.d.C.); (R.A.S.)
| | - Luciana Pereira Rangel
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Julia Quarti
- Departamento de Nutrição Básica e Experimental, Instituto de Nutrição Josué de Castro, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Ronimara A. Santos
- Departamento de Nutrição Básica e Experimental, Instituto de Nutrição, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20550-013, Brazil; (D.C.F.d.C.); (R.A.S.)
| | - Jerson L. Silva
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Eliane Fialho
- Departamento de Nutrição Básica e Experimental, Instituto de Nutrição Josué de Castro, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| |
Collapse
|
57
|
Exploring Mechanism of Key Chinese Herbal Medicine on Breast Cancer by Data Mining and Network Pharmacology Methods. Chin J Integr Med 2020; 27:919-926. [PMID: 32572780 DOI: 10.1007/s11655-020-3422-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2020] [Indexed: 12/26/2022]
Abstract
OBJECTIVE To screen the key Chinese Herbal Medicines (KCHMs) against breast cancer by data mining, and analyze the potential mechanism of KCHMs using network pharmacology method. METHODS Clinical prescriptions consisted of CHMs for treating breast cancer were screened, and then Traditional Chinese Medicine Inheritance Support System (TCMISS) was applied to obtain the KCHMs. Subsequently, active ingredients and corresponding target genes of KCHMs were searched by Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) database, and target genes of breast cancer were collected using OMIM and MalaCards. After that, the overlapping target genes of KCHMs and breast cancer were screened, and the protein-protein interaction (PPI) network was built. In addition, a network of "KCHMs-active ingredients-breast cancer-targets" was constructed by Cytoscape 3.7.1. Finally, Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analysis were performed with Database for Annotation, Visualization and Integrated Discovery (DAVID) database to reveal the action mechanism of KCHMs. RESULTS A total of 7 KCHMs were identified, whose active ingredients include quercetin, luteolin, nobiletin, kaempferol, isorhamnetin, naringenin, and be-ta-sitosterol, etc. Based on protein-protein interaction analysis, core targets were ESR1, MYC, CCND1, EGFR, CASP3, ERBB2, etc. Several KEGG pathways (e.g, PI3K-Akt, p53, ErbB, and HIF-1 signaling pathways) were found. CONCLUSION Based on the combination of the data mining method and network pharmacology approach, the therapeutic effect of KCHMs on breast cancer may be realized by acting on target genes and signaling pathways related to the formation and progression of breast cancer.
Collapse
|
58
|
Cao S, Han Y, Li Q, Chen Y, Zhu D, Su Z, Guo H. Mapping Pharmacological Network of Multi-Targeting Litchi Ingredients in Cancer Therapeutics. Front Pharmacol 2020. [DOI: 10.3389/fphar.2020.00451
expr 967555229 + 995954239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
|
59
|
Cao S, Han Y, Li Q, Chen Y, Zhu D, Su Z, Guo H. Mapping Pharmacological Network of Multi-Targeting Litchi Ingredients in Cancer Therapeutics. Front Pharmacol 2020; 11:451. [PMID: 32390834 PMCID: PMC7193898 DOI: 10.3389/fphar.2020.00451] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 03/23/2020] [Indexed: 12/12/2022] Open
Abstract
Considerable pharmacological studies have demonstrated that the extracts and ingredients from different parts (seeds, peels, pulps, and flowers) of Litchi exhibited anticancer effects by affecting the proliferation, apoptosis, autophagy, metastasis, chemotherapy and radiotherapy sensitivity, stemness, metabolism, angiogenesis, and immunity via multiple targeting. However, there is no systematical analysis on the interaction network of “multiple ingredients-multiple targets-multiple pathways” anticancer effects of Litchi. In this study, we summarized the confirmed anticancer ingredients and molecular targets of Litchi based on published articles and applied network pharmacology approach to explore the complex mechanisms underlying these effects from a perspective of system biology. The top ingredients, top targets, and top pathways of each anticancer function were identified using network pharmacology approach. Further intersecting analyses showed that Epigallocatechin gallate (EGCG), Gallic acid, Kaempferol, Luteolin, and Betulinic acid were the top ingredients which might be the key ingredients exerting anticancer function of Litchi, while BAX, BCL2, CASP3, and AKT1 were the top targets which might be the main targets underling the anticancer mechanisms of these top ingredients. These results provided references for further understanding and exploration of Litchi as therapeutics in cancer as well as the application of “Component Formula” based on Litchi’s effective ingredients.
Collapse
Affiliation(s)
- Sisi Cao
- College of Pharmacy, Guangxi Medical University, Nanning, China
| | - Yaoyao Han
- College of Pharmacy, Guangxi Medical University, Nanning, China.,Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, Guangxi Medical University, Nanning, China
| | - Qiaofeng Li
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, Guangxi Medical University, Nanning, China.,School of Preclinical Medicine, Guangxi Medical University, Nanning, China
| | - Yanjiang Chen
- Department of Surgery, University of Melbourne, Parkville, VIC, Australia
| | - Dan Zhu
- College of Pharmacy, Guangxi Medical University, Nanning, China
| | - Zhiheng Su
- College of Pharmacy, Guangxi Medical University, Nanning, China
| | - Hongwei Guo
- College of Pharmacy, Guangxi Medical University, Nanning, China.,Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, Guangxi Medical University, Nanning, China
| |
Collapse
|
60
|
Zhang E, Zhang Y, Fan Z, Cheng L, Han S, Che H. Apigenin Inhibits Histamine-Induced Cervical Cancer Tumor Growth by Regulating Estrogen Receptor Expression. Molecules 2020; 25:E1960. [PMID: 32340124 PMCID: PMC7221565 DOI: 10.3390/molecules25081960] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/15/2020] [Accepted: 04/21/2020] [Indexed: 01/08/2023] Open
Abstract
Apigenin is a natural flavone with anti-inflammatory and antioxidant properties and antitumor abilities against several types of cancers. Previous studies have found that the antitumor effects of apigenin may be due to its similar chemical structure to 17β-estradiol (E2), a main kind of estrogen in women. However, the precise mechanism underlying the antitumor effects of apigenin in cervical cancer remains unknown. On the other hand, there is increasing evidence that describes a histamine role in cancer cell proliferation. In this study, we examined whether apigenin can attenuate the effects of histamine on tumors by regulating the expression level of estrogen receptors (ERs) to inhibit cervical cancer growth. Our in vitro data indicates that apigenin inhibited cell proliferation in a dose-dependent manner in human cervical cancer cells (HeLa), while histamine shows the opposite effects. After that, the xenograft model was established to explore the antitumor effects of apigenin in vivo, the results show that apigenin inhibited cervical tumor growth by reversing the abnormal ER signal in tumor tissue which was caused by histamine. We also demonstrate that apigenin inhibited cell proliferation via suppressing the PI3K/Akt/mTOR signaling pathway. Collectively, our results suggest that apigenin may inhibit tumor growth through the ER-mediated PI3K/Akt/mTOR pathway and that it can also attenuate the effects of histamine on tumors.
Collapse
Affiliation(s)
| | | | | | | | | | - Huilian Che
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
61
|
Malla RR, Deepak K, Merchant N, Dasari VR. Breast Tumor Microenvironment: Emerging target of therapeutic phytochemicals. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 70:153227. [PMID: 32339885 DOI: 10.1016/j.phymed.2020.153227] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/31/2020] [Accepted: 04/11/2020] [Indexed: 06/11/2023]
Abstract
Triple negative breast cancer (TNBC) is the most aggressive and challenging form of breast cancers. Tumor microenvironment (TME) of TNBC is associated with induction of metastasis, immune system suppression, escaping immune detection and drug resistance. TME is highly complex and heterogeneous, consists of tumor cells, stromal cells and immune cells. The rapid expansion of tumors induce hypoxia, which concerns the reprogramming of TME components. The reciprocal communication of tumor cells and TME cells predisposes cancer cells to metastasis by modulation of developmental pathways, Wnt, notch, hedgehog and their related mechanisms in TME. Dietary phytochemicals are non-toxic and associated with various human health benefits and remarkable spectrum of biological activities. The phytochemicals serve as vital resources for drug discovery and also as a source for breast cancer therapy. The novel properties of dietary phytochemicals propose platform for modulation of tumor signaling, overcoming drug resistance, and targeting TME. Therefore, TME could serve as promising target for the treatment of TNBC. This review presents current status and implications of experimentally evaluated therapeutic phytochemicals as potential targeting agents of TME, potential nanosystems for targeted delivery of phytochemicals and their current challenges and future implications in TNBC treatment. The dietary phytochemicals especially curcumin with significant delivery system could prevent TNBC development as it is considered safe and well tolerated in phase II clinical trials.
Collapse
Affiliation(s)
- Rama Rao Malla
- Cancer Biology Lab, Department of Biochemistry and Bioinformatics, Institute of Science, GITAM (Deemed to be University), Visakhapatnam, 530045, India.
| | - Kgk Deepak
- Cancer Biology Lab, Department of Biochemistry and Bioinformatics, Institute of Science, GITAM (Deemed to be University), Visakhapatnam, 530045, India
| | - Neha Merchant
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| | - Venkata Ramesh Dasari
- Department of Molecular and Functional Genomics, Geisinger Clinic, 100 Academy Ave, Danville, PA, 17822, USA
| |
Collapse
|
62
|
Metabolic Profile and Evaluation of Biological Activities of Extracts from the Stems of Cissus trifoliata. Int J Mol Sci 2020; 21:ijms21030930. [PMID: 32023823 PMCID: PMC7037309 DOI: 10.3390/ijms21030930] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 01/29/2020] [Indexed: 11/17/2022] Open
Abstract
Cissus trifoliata (L.) L belongs to the Vitaceae family and is an important medicinal plant used in Mexico for the management of infectious diseases and tumors. The present study aimed to evaluate the metabolic profile of the stems of C. trifoliata and to correlate the results with their antibacterial and cytotoxic activities. The hexane extract was analyzed using gas chromatography coupled with mass spectrometry (GC-MS) and the CHCl3-MeOH and aqueous extracts by ultraperformance liquid chromatography quadrupole time of fly mass spectrometry (UPLC-QTOF-MS). The antibacterial activity was determined by broth microdilution and the cytotoxicity was evaluated using MTS cell proliferation assay. Forty-six metabolites were putatively identified from the three extracts. Overall, terpenes, flavonoids and stilbenes characterize the metabolic profile. No antibacterial activity was found in any extract against the fifteen bacteria strains tested (MIC >500 µg/mL). However, high cytotoxic activity (IC50 ≤ 30 µg/mL) was found in the hexane and aqueous extracts against hepatocarcinoma and breast cancer cells (Hep3B, HepG2 and MCF7). This is the first report of the bioactive compounds of C. trifoliata stems and their antibacterial and cytotoxic properties. The metabolic profile rich in anticancer compounds correlate with the cytotoxic activity of the extracts from the stems of C. trifoliata. This study shows the antitumor effects of this plant used in the traditional medicine and justifies further research of its anticancer activity.
Collapse
|
63
|
Huang J, Guo W, Cheung F, Tan HY, Wang N, Feng Y. Integrating Network Pharmacology and Experimental Models to Investigate the Efficacy of Coptidis and Scutellaria Containing Huanglian Jiedu Decoction on Hepatocellular Carcinoma. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 48:161-182. [PMID: 31964157 DOI: 10.1142/s0192415x20500093] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Unlike Western medicines with single-target, the traditional Chinese medicines (TCM) always exhibit diverse curative effects against multiple diseases through its "multi-components" and "multi-targets" manifestations. However, discovery and identification of the major therapeutic diseases and the underlying molecular mechanisms of TCM remain to be challenged. In the current study, we, for the first time, applied an integrated strategy by combining network pharmacology with experimental evaluation, for exploration and demonstration of the therapeutic potentials and the underlying possible mechanisms of a classic TCM formula, Huanglian Jiedu decoction (HLJDD). First, the herb-compound, compound-protein, protein-pathway, and gene-disease networks were constructed to predict the major therapeutic diseases of HLJDD and explore the underlying molecular mechanisms. Network pharmacology analysis showed the top one predicted disease of HLJDD treatment was cancer, especially hepatocellular carcinoma (HCC) and inflammation-related genes played an important role in the treatment of HLJDD on cancer. Next, based on the prediction by network pharmacology analysis, both in vitro HCC cell and in vivo orthotopic HCC implantation mouse models were established to validate the curative role of HLJDD. HLJDD exerted its antitumor activity on HCC in vitro, as demonstrated by impaired cell proliferation and colony formation abilities, induced apoptosis and cell cycle arrest, as well as inhibited migratory and invasive properties of HCC cells. The orthotopic HCC implantation mouse model further demonstrated the remarkable antitumour effects of HLJDD on HCC in vivo. In conclusion, our study demonstrated the effectiveness of integrating network pharmacology with experimental study for discovery and identification of the major therapeutic diseases and the underlying molecular mechanisms of TCM.
Collapse
Affiliation(s)
- Jihan Huang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Center for Drug Clinical Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Guo
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Fan Cheung
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Hor-Yue Tan
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ning Wang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
64
|
Martínez-Rodríguez OP, Thompson-Bonilla MDR, Jaramillo-Flores ME. Association between obesity and breast cancer: Molecular bases and the effect of flavonoids in signaling pathways. Crit Rev Food Sci Nutr 2020; 60:3770-3792. [PMID: 31899947 DOI: 10.1080/10408398.2019.1708262] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Obesity is an abnormal or excessive accumulation of fat that leads to different health problems, such as cancer, where the adipocytes promote the proliferation, migration, and invasion of cancer cells, especially in the breast, where the epithelial cells are immersed in a fatty environment, and the interactions between these two types of cells involve, not only adipokines but also local pro-inflammatory mechanisms and hypoxic processes generating anti-apoptotic signals, which are a common result in leptin signaling. The expression of the Vascular Endothelial Growth Factor (VEGF) and cyclin D1, results in the decrease in phosphorylation of AMPK, increasing the activity of the aromatase enzyme; alternatively, the adiponectin activates AMPK to reduce inflammation. Nevertheless, alterations of the JAK/STAT pathways contribute to mammary carcinogenesis, while the PI3K/AKT/mTOR pathway controls most of the cancer's characteristics such as the cell cycle, survival, differentiation, proliferation, motility, metabolism, and genetic stability. Therefore, the purpose of the present review is, through the accumulated scientific evidence, to find the concordance between the signaling pathways involved among obesity and breast cancer, which can be modulated by using flavonoids.
Collapse
Affiliation(s)
- Oswaldo Pablo Martínez-Rodríguez
- Departamento de Ingeniería Bioquímica, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Ciudad de México, México
| | - María Del Rocío Thompson-Bonilla
- Laboratorio de Medicina Genómica, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado ISSSTE, Ciudad de México, México
| | - María Eugenia Jaramillo-Flores
- Departamento de Ingeniería Bioquímica, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Ciudad de México, México
| |
Collapse
|
65
|
Kaempferol Promotes Apoptosis While Inhibiting Cell Proliferation via Androgen-Dependent Pathway and Suppressing Vasculogenic Mimicry and Invasion in Prostate Cancer. Anal Cell Pathol (Amst) 2019; 2019:1907698. [PMID: 31871879 PMCID: PMC6913338 DOI: 10.1155/2019/1907698] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 08/27/2019] [Accepted: 09/30/2019] [Indexed: 12/23/2022] Open
Abstract
Kaempferol is a well-known natural flavonol reported to be a potential treatment for multiple cancers. In this study, we demonstrated that cell growth of androgen-sensitive LNCaP cells could be inhibited 33% by 5 μM kaempferol, around 60% by 10 μM kaempferol, and almost 100% by 15 μM kaempferol. Also, kaempferol showed relatively limited effect on PC-3 cells and nonmalignant RWPE-1 cells. In the presence of DHT, the IC50 for kaempferol was 28.8 ± 1.5 μM in LNCaP cells, 58.3 ± 3.5 μM in PC-3 cells, and 69.1 ± 1.2 μM in RWPE-1 cells, respectively. Kaempferol promotes apoptosis of LNCaP cells in a dose-dependent manner in the presence of dihydrotestosterone (DHT). Then, luciferase assay data showed that kaempferol could inhibit the activation of androgen receptors induced by DHT significantly. The downstream targets of androgen receptors, such as PSA, TMPRSS2, and TMEPA1, were found decreased in the presence of kaempferol in qPCR data. It was then confirmed that the protein level of PSA was decreased. Kaempferol inhibits AR protein expression and nuclear accumulation. Kaempferol suppressed vasculogenic mimicry of PC-3 cells in an in vitro study. In conclusion, kaempferol is a promising therapeutic candidate for treatment of prostate cancer, where the androgen signaling pathway as well as vasculogenic mimicry are involved.
Collapse
|
66
|
Miranda JF, Scarinci LD, Ramos LF, Silva CM, Gonçalves LR, de Morais PF, Malaspina O, Moraes KCM. The modulatory effect of triclosan on the reversion of the activated phenotype of LX-2 hepatic stellate cells. J Biochem Mol Toxicol 2019; 34:e22413. [PMID: 31714634 DOI: 10.1002/jbt.22413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 09/12/2019] [Accepted: 10/07/2019] [Indexed: 01/03/2023]
Abstract
Hepatic diseases leading to fibrosis affect millions of individuals worldwide and are a major public health challenge. Although, there have been many advances in understanding hepatic fibrogenesis, an effective therapy remains elusive. Studies focus primarily on activation of the hepatic stellate cells (HSCs), the principal fibrogenic cells in the liver; however, fewer numbers of studies have examined molecular mechanisms that deactivate HSC, controlling the profibrogenic phenotype. In the present study, we evaluated cellular and molecular actions of the chemical triclosan (TCS) in reverting activated HSCs to a quiesced phenotype. We demonstrated that the inhibition of the enzyme fatty acid synthase by TCS in activated HSCs promotes survival of the cells and triggers cellular and molecular changes that promote cellular phenotypic reversion, offering potentially new therapeutic directions.
Collapse
Affiliation(s)
- Juliana F Miranda
- Departamento de Biologia, Instituto de Biociências, Universidade Estadual Paulista "Júlio de Mesquita Filho", Rio Claro, São Paulo, Brazil
| | - Letícia D Scarinci
- Departamento de Biologia, Instituto de Biociências, Universidade Estadual Paulista "Júlio de Mesquita Filho", Rio Claro, São Paulo, Brazil
| | - Letícia F Ramos
- Departamento de Biologia, Instituto de Biociências, Universidade Estadual Paulista "Júlio de Mesquita Filho", Rio Claro, São Paulo, Brazil
| | - Caio M Silva
- Departamento de Biologia, Instituto de Biociências, Universidade Estadual Paulista "Júlio de Mesquita Filho", Rio Claro, São Paulo, Brazil
| | - Letícia R Gonçalves
- Departamento de Biologia, Instituto de Biociências, Universidade Estadual Paulista "Júlio de Mesquita Filho", Rio Claro, São Paulo, Brazil
| | - Priscila F de Morais
- Departamento de Biologia, Instituto de Biociências, Universidade Estadual Paulista "Júlio de Mesquita Filho", Rio Claro, São Paulo, Brazil
| | - Osmar Malaspina
- Instituto de Biociências, Centro de Estudos de Insetos Sociais, Universidade Estadual Paulista "Júlio de Mesquita Filho", Rio Claro, São Paulo, Brazil
| | - Karen C M Moraes
- Departamento de Biologia, Instituto de Biociências, Universidade Estadual Paulista "Júlio de Mesquita Filho", Rio Claro, São Paulo, Brazil
| |
Collapse
|
67
|
Cardoso ME, Tejería E, Rey Ríos AM, Terán M. Development and characterization of a 99m Tc-labeled Neuropeptide Y short analog with potential application in breast cancer imaging. Chem Biol Drug Des 2019; 95:302-310. [PMID: 31709766 DOI: 10.1111/cbdd.13644] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/03/2019] [Accepted: 09/29/2019] [Indexed: 12/26/2022]
Abstract
The aim of this work was to develop and evaluate a 99m Tc-labeled neuropeptide Y derivative with affinity toward Y1-receptor. The selected amino acid sequence included nine amino acids derived from the C-terminal portion of the NPY complemented with the addition of one cysteine-mercaptoacetic acid moiety to bind the radiometal. Labeling was achieved through the preparation of a 3 + 1 nitrido complex. Physicochemical evaluation, cell uptake, internalization and externalization studies, and competitive assays were performed. Biodistribution experiments were carried out in normal and tumor-bearing mice. A single product with radiochemical purity >90% and high stability was obtained. In vitro analysis showed specific cellular uptake, IC50 of 73.2 nM, and a high internalization rate (80%). Biodistribution studies showed low blood and renal uptake and combined hepatobiliary and urinary elimination. Preliminary studies in mice bearing induced breast tumors rendered promising uptake values.
Collapse
Affiliation(s)
- María Elena Cardoso
- Área de Radioquímica, Facultad de Química, Universidad de la República (UdelaR), Montevideo, Uruguay
| | - Emilia Tejería
- Área de Radioquímica, Facultad de Química, Universidad de la República (UdelaR), Montevideo, Uruguay
| | - Ana María Rey Ríos
- Área de Radioquímica, Facultad de Química, Universidad de la República (UdelaR), Montevideo, Uruguay
| | - Mariella Terán
- Área de Radioquímica, Facultad de Química, Universidad de la República (UdelaR), Montevideo, Uruguay
| |
Collapse
|
68
|
Sharma N, Sharma A, Bhatia G, Landi M, Brestic M, Singh B, Singh J, Kaur S, Bhardwaj R. Isolation of Phytochemicals from Bauhinia variegata L. Bark and Their In Vitro Antioxidant and Cytotoxic Potential. Antioxidants (Basel) 2019; 8:antiox8100492. [PMID: 31627372 PMCID: PMC6826637 DOI: 10.3390/antiox8100492] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/07/2019] [Accepted: 10/16/2019] [Indexed: 12/31/2022] Open
Abstract
Plants have been the basis of traditional medicine since the dawn of civilizations. Different plant parts possess various phytochemicals, playing important roles in preventing and curing diseases. Scientists, through extensive experimental studies, are playing an important part in establishing the use of phytochemicals in medicine. However, there are still a large number of medicinal plants which need to be studied for their phytochemical profile. In this study, the objective was to isolate phytochemicals from bark of Bauhinia variegata L. and to study them for their antioxidant and cytotoxic activities. The bark was extracted with methanol, followed by column chromatography and thus isolating kaempferol, stigmasterol, protocatechuic acid-methyl ester (PCA-ME) and protocatechuic acid (PCA). 2,2-azinobis-3-ethyl-benzothiazoline-6-sulfonic acid (ABTS) and 2, 2'-diphenyl-1-picrylhydrazyl radical (DPPH) radical scavenging assays were utilized for assessment of antioxidant activity, and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) dye reduction assay was used to determine cytotoxic activity against C-6 glioma rat brain, MCF-7 breast cancer, and HCT-15 colon cancer cell lines. The compounds were found to have significant antioxidant and cytotoxic activity. Since there is a considerable increase in characterizing novel chemical compounds from plant parts, the present study might be helpful for chemotaxonomic determinations, for understanding of medicinal properties as well as for the quality assessment of herbal supplements containing B. variegata bark, thus establishing its use in traditional medicine.
Collapse
Affiliation(s)
- Neha Sharma
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, India.
| | - Anket Sharma
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, India.
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China.
| | - Gaurav Bhatia
- Department of Biophysics, Panjab University, Chandigarh 160014, India.
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar 143005, India.
| | - Marco Landi
- Department of Agriculture, Food and Environment, University of Pisa, 56124 Pisa, Italy.
| | - Marian Brestic
- Department of Plant Physiology, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, Nitra 94976, Slovakia.
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, 16500 Prague, Czech Republic.
| | - Bikram Singh
- Natural Product Chemistry and Process Development Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India.
| | - Jatinder Singh
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar 143005, India.
| | - Satwinderjeet Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, India.
| | - Renu Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, India.
| |
Collapse
|
69
|
Ren J, Lu Y, Qian Y, Chen B, Wu T, Ji G. Recent progress regarding kaempferol for the treatment of various diseases. Exp Ther Med 2019; 18:2759-2776. [PMID: 31572524 PMCID: PMC6755486 DOI: 10.3892/etm.2019.7886] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 07/16/2019] [Indexed: 12/24/2022] Open
Abstract
Kaempferol, also known as kaempferol-3 or kaempferide, is a flavonoid compound that naturally occurs in tea, as well as numerous common vegetables and fruits, including beans, broccoli, cabbage, gooseberries, grapes, kale, strawberries, tomatoes, citrus fruits, brussel sprouts, apples and grapefruit. The present review mainly summarizes the application of kaempferol in treating diseases and the underlying mechanisms that are currently being studied. Due to its anti-inflammatory properties, it may be used to treat numerous acute and chronic inflammation-induced diseases, including intervertebral disc degeneration and colitis, as well as post-menopausal bone loss and acute lung injury. In addition, it has beneficial effects against cancer, liver injury, obesity and diabetes, inhibits vascular endothelial inflammation, protects the cranial nerve and heart function, and may be used for treating fibroproliferative disorders, including hypertrophic scar.
Collapse
Affiliation(s)
- Jie Ren
- Center of Chinese Medical Therapy and Systems Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| | - Yifei Lu
- Center of Chinese Medical Therapy and Systems Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| | - Yanhong Qian
- Center of Chinese Medical Therapy and Systems Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| | - Bozhou Chen
- Center of Chinese Medical Therapy and Systems Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| | - Tao Wu
- Center of Chinese Medical Therapy and Systems Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| | - Guang Ji
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| |
Collapse
|
70
|
Arora I, Sharma M, Tollefsbol TO. Combinatorial Epigenetics Impact of Polyphenols and Phytochemicals in Cancer Prevention and Therapy. Int J Mol Sci 2019; 20:ijms20184567. [PMID: 31540128 PMCID: PMC6769666 DOI: 10.3390/ijms20184567] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/08/2019] [Accepted: 09/11/2019] [Indexed: 12/24/2022] Open
Abstract
Polyphenols are potent micronutrients that can be found in large quantities in various food sources and spices. These compounds, also known as phenolics due to their phenolic structure, play a vital nutrient-based role in the prevention of various diseases such as diabetes, cardiovascular diseases, neurodegenerative diseases, liver disease, and cancers. However, the function of polyphenols in disease prevention and therapy depends on their dietary consumption and biological properties. According to American Cancer Society statistics, there will be an expected rise of 23.6 million new cancer cases by 2030. Due to the severity of the increased risk, it is important to evaluate various preventive measures associated with cancer. Relatively recently, numerous studies have indicated that various dietary polyphenols and phytochemicals possess properties of modifying epigenetic mechanisms that modulate gene expression resulting in regulation of cancer. These polyphenols and phytochemicals, when administrated in a dose-dependent and combinatorial-based manner, can have an enhanced effect on epigenetic changes, which play a crucial role in cancer prevention and therapy. Hence, this review will focus on the mechanisms of combined polyphenols and phytochemicals that can impact various epigenetic modifications such as DNA methylation and histone modifications as well as regulation of non-coding miRNAs expression for treatment and prevention of various types of cancer.
Collapse
Affiliation(s)
- Itika Arora
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA.
| | - Manvi Sharma
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA.
| | - Trygve O Tollefsbol
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA.
- Comprehensive Center for Healthy Aging, University of Alabama Birmingham, 1530 3rd Avenue South, Birmingham, AL 35294, USA.
- Comprehensive Cancer Center, University of Alabama Birmingham, 1802 6th Avenue South, Birmingham, AL 35294, USA.
- Nutrition Obesity Research Center, University of Alabama Birmingham, 1675 University Boulevard, Birmingham, AL 35294, USA.
- Comprehensive Diabetes Center, University of Alabama Birmingham, 1825 University Boulevard, Birmingham, AL 35294, USA.
| |
Collapse
|
71
|
Li J, Di L, Cheng X, Ji W, Piao H, Cheng G, Zou M. The characteristics and mechanism of co-administration of lovastatin solid dispersion with kaempferol to increase oral bioavailability. Xenobiotica 2019; 50:593-601. [PMID: 31505985 DOI: 10.1080/00498254.2019.1662136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Lovastatin shows low bioavailability (lower than 5%) after oral administration because of the poor aqueous solubility and widely metabolized by CYP3A4.Lovastatin solid dispersion was designed to enhance the dissolution. The in vitro intestinal absorption study indicated an increase in the apparent permeability of different intestinal segments compared with crude lovastatin. In the range of 12.5-50 μg/ml, the absorption of both lovastatin and lovastatin solid dispersion were found to be a passive process in rat's jejunum and ileum, but not endocytosis process. CYP3A4 inhibitor (ketoconazole) significantly increased the intestinal absorption of lovastatin and lovastatin solid dispersion. However, P-glycoprotein efflux inhibitor (verapamil) had little effect on them.The absolute bioavailability of lovastatin and lovastatin acid after oral administration of lovastatin solid dispersion were increased by about 2.01-fold and 1.40-fold than that of lovastatin suspension. The oral bioavailability of lovastatin and lovastatin acid after oral administration of lovastatin solid dispersion with 10 mg/kg kaempferol (CYP3A4 inhibitor) were increased about 3.79-fold and 2.51-fold than that of lovastatin suspension, and the absolute bioavailability of lovastatin was up to 33.0%.As a result, co-administration of lovastatin solid dispersion with kaempferol could be a promising delivery system to improve the oral bioavailability of lovastatin.
Collapse
Affiliation(s)
- Jiaqi Li
- Department of Pharmaceutics, Faculty of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Liuying Di
- Department of Pharmaceutics, Faculty of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China.,STA Pharmaceutical Co., LTD, Shanghai, China
| | - Xu Cheng
- Department of Pharmaceutics, Faculty of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Weiwen Ji
- Pharmaceutical Engineering College, Shenyang Pharmaceutical University, Shenyang, China
| | - Hongyu Piao
- Department of Pharmaceutics, Faculty of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Gang Cheng
- Department of Pharmaceutics, Faculty of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Meijuan Zou
- Department of Pharmaceutics, Faculty of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
72
|
Tejería E, Giglio J, Fernández L, Rey A. Development and evaluation of a 99mTc(V)-nitrido complex derived from estradiol for breast cancer imaging. Appl Radiat Isot 2019; 154:108854. [PMID: 31442798 DOI: 10.1016/j.apradiso.2019.108854] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/02/2019] [Accepted: 08/11/2019] [Indexed: 01/10/2023]
Abstract
Estrogen receptors are overexpressed in 70% of breast cancer and identification of their presence is important to select the appropriate treatment. This work proposes the preparation and evaluation of an estradiol derived as potential ER imaging agent. Ethinylestradiol was derivatized to introduce a dithiocarbamate function for Tc coordination. Labeling was achieved through the formation of a symmetric Tc(V)-nitrido complex with a radiochemical purity (RCP) > 95%. Physicochemical evaluation, cell uptake, biodistribution in normal animals and in nude mice bearing induced ER + breast tumors showed promising results.
Collapse
Affiliation(s)
- Emilia Tejería
- Área de Radioquímica, Facultad de Química, General Flores 2124, Universidad de La República, 11800, Montevideo, Uruguay
| | - Javier Giglio
- Área de Radioquímica, Facultad de Química, General Flores 2124, Universidad de La República, 11800, Montevideo, Uruguay.
| | - Leticia Fernández
- Área de Radioquímica, Facultad de Química, General Flores 2124, Universidad de La República, 11800, Montevideo, Uruguay
| | - Ana Rey
- Área de Radioquímica, Facultad de Química, General Flores 2124, Universidad de La República, 11800, Montevideo, Uruguay.
| |
Collapse
|
73
|
Imran M, Salehi B, Sharifi-Rad J, Aslam Gondal T, Saeed F, Imran A, Shahbaz M, Tsouh Fokou PV, Umair Arshad M, Khan H, Guerreiro SG, Martins N, Estevinho LM. Kaempferol: A Key Emphasis to Its Anticancer Potential. Molecules 2019; 24:molecules24122277. [PMID: 31248102 PMCID: PMC6631472 DOI: 10.3390/molecules24122277] [Citation(s) in RCA: 414] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/07/2019] [Accepted: 06/15/2019] [Indexed: 12/31/2022] Open
Abstract
A marked decrease in human cancers, including breast cancer, bone cancer, and cervical cancer, has been linked to the consumption of vegetable and fruit, and the corresponding chemoprotective effect has been associated with the presence of several active molecules, such as kaempferol. Kaempferol is a major flavonoid aglycone found in many natural products, such as beans, bee pollen, broccoli, cabbage, capers, cauliflower, chia seeds, chives, cumin, moringa leaves, endive, fennel, and garlic. Kaempferol displays several pharmacological properties, among them antimicrobial, anti-inflammatory, antioxidant, antitumor, cardioprotective, neuroprotective, and antidiabetic activities, and is being applied in cancer chemotherapy. Specifically, kaempferol-rich food has been linked to a decrease in the risk of developing some types of cancers, including skin, liver, and colon. The mechanisms of action include apoptosis, cell cycle arrest at the G2/M phase, downregulation of epithelial-mesenchymal transition (EMT)-related markers, and phosphoinositide 3-kinase/protein kinase B signaling pathways. In this sense, this article reviews data from experimental studies that investigated the links between kaempferol and kaempferol-rich food intake and cancer prevention. Even though growing evidence supports the use of kaempferol for cancer prevention, further preclinical and clinical investigations using kaempferol or kaempferol-rich foods are of pivotal importance before any public health recommendation or formulation using kaempferol.
Collapse
Affiliation(s)
- Muhammad Imran
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore 54000, Pakistan.
| | - Bahare Salehi
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam 44340847, Iran.
| | - Javad Sharifi-Rad
- Zabol Medicinal Plants Research Center, Zabol University of Medical Sciences, Zabol 61615-585, Iran.
| | | | - Farhan Saeed
- Department of Food Science, Nutrition & Home Economics, Institute of Home and Food Sciences, Government College University, Faisalabad 38000, Pakistan.
| | - Ali Imran
- Department of Food Science, Nutrition & Home Economics, Institute of Home and Food Sciences, Government College University, Faisalabad 38000, Pakistan.
| | - Muhammad Shahbaz
- Department of Food Science and Technology, MNS-University of Agriculture, Multan 66000, Pakistan.
| | - Patrick Valere Tsouh Fokou
- Department of Biochemistry, Faculty of Science, University of Yaounde 1, Yaounde P.O. Box 812, Cameroon.
| | - Muhammad Umair Arshad
- Department of Food Science, Nutrition & Home Economics, Institute of Home and Food Sciences, Government College University, Faisalabad 38000, Pakistan.
| | - Haroon Khan
- Department of Pharmacy, Faculty of Chemical & Life Sciences, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan.
| | - Susana G Guerreiro
- Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal.
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal.
- Faculty of Nutrition and Food Science, University of Porto, 4200-465 Porto, Portugal.
| | - Natália Martins
- Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal.
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal.
| | - Leticia M Estevinho
- Department of Biology and Biotechnology, School of Agriculture of the Polytechnic Institute of Bragança (ESA-IPB), Campus de Santa Apolónia, 5301-854 Bragança, Portugal.
- CIMO, Mountain Research Center, Polytechnic Institute of Bragança. Campus Santa Apolónia, 5301-855 Bragança, Portugal.
| |
Collapse
|
74
|
Wang X, Yang Y, An Y, Fang G. The mechanism of anticancer action and potential clinical use of kaempferol in the treatment of breast cancer. Biomed Pharmacother 2019; 117:109086. [PMID: 31200254 DOI: 10.1016/j.biopha.2019.109086] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 06/02/2019] [Accepted: 06/04/2019] [Indexed: 01/09/2023] Open
Abstract
In the last century, natural compounds have achieved remarkable achievements in the treatment of tumors through chemotherapy. This inspired scientists to continuously explore anticancer agents from natural compounds. Kaempferol is an ordinary natural compound, the most common flavonoid, which is widely existed in vegetables and fruits. It has been reported to have various anticancer activities, including breast cancer, prostate cancer, bladder cancer, cervical cancer, colon cancer, liver cancer, lung cancer, ovarian cancer, leukemia, etc. Meanwhile, we found that there were more reports on breast cancer among these cancers although there are limited clinical studies that have addressed the benefits of kaempferol as an anti-cancer agent for breast cancer treatment. Then we realize that although kaempferol has been reported to have anti-breast cancer effect many times, it is still far from becoming a real anti-breast cancer agent. Therefore, in this review, we talk about the options for improving the anti-breast cancer effect of kaempferol, including various techniques and methods to improve the bioavailability of kaempferol, the idea of combining other compounds to produce synergistic effects, and the possibility of developing kaempferol into a targeted drug delivery system.
Collapse
Affiliation(s)
- Xueni Wang
- Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine, 13 Wuhe Road, Qingxiu District, Nanning, 530200, China.
| | - Yuting Yang
- Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine, 13 Wuhe Road, Qingxiu District, Nanning, 530200, China; Faculty of pharmacy, Guangxi University of Chinese Medicine, 13 Wuhe Road, Qingxiu District, Nanning, 530200, China.
| | - Yating An
- Department of pharmacy, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, 354 North road, Hongqiao District, Tianjin, 300120, China.
| | - Gang Fang
- Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine, 13 Wuhe Road, Qingxiu District, Nanning, 530200, China; Laboratory of Zhuang Medicine Prescriptions Basis and application Research, Guangxi University of Chinese medicine, 179 Mingxiudong Road, Xixiangtang District, Nanning, 530001, China.
| |
Collapse
|
75
|
Triclosan: An Update on Biochemical and Molecular Mechanisms. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1607304. [PMID: 31191794 PMCID: PMC6525925 DOI: 10.1155/2019/1607304] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/28/2019] [Accepted: 04/01/2019] [Indexed: 12/23/2022]
Abstract
Triclosan (TCS) is a synthetic, chlorinated phenolic antimicrobial agent commonly used in commercial and healthcare products. Items made with TCS include soaps, deodorants, shampoos, cosmetics, textiles, plastics, surgical sutures, and prosthetics. A wealth of information obtained from in vitro and in vivo studies has demonstrated the therapeutic effects of TCS, particularly against inflammatory skin conditions. Nevertheless, extensive investigations on the molecular aspects of TCS action have identified numerous adversaries associated with the disinfectant including oxidative injury and influence of physiological lifespan and longevity. This review presents a summary of the biochemical alterations pertaining to TCS exposure, with special emphasis on the diverse molecular pathways responsive to TCS that have been elucidated during the present decade.
Collapse
|
76
|
Zhang F, Ma C. Kaempferol suppresses human gastric cancer SNU-216 cell proliferation, promotes cell autophagy, but has no influence on cell apoptosis. ACTA ACUST UNITED AC 2019; 52:e7843. [PMID: 30785478 PMCID: PMC6376319 DOI: 10.1590/1414-431x20187843] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 11/19/2018] [Indexed: 02/06/2023]
Abstract
Gastric cancer remains a serious threat to human health worldwide. Kaempferol is a plant-derived flavonoid compound with a wide range of pharmacological activities. This study aimed to investigate the effects of kaempferol on gastric cancer SNU-216 cell proliferation, apoptosis, and autophagy, as well as underlying potential mechanisms. Viability, proliferation, and apoptosis of SNU-216 cells after kaempferol treatment were evaluated using cell counting kit-8 assay, 5-btomo-2′-deoxyuridine incorporation assay, and annexin V-FITC/PI staining, respectively. Quantitative reverse transcription PCR was performed to measure the mRNA expressions of cyclin D1 and microRNA-181a (miR-181a) in SNU-216 cells. Cell transfection was used to down-regulate the expression of miR-181a. The protein expression levels of cyclin D1, bcl-2, bax, caspase 3, caspase 9, autophagy-related gene 7, microtubule-associated protein 1 light chain 3-I (LC3-I), LC3-II, Beclin 1, p62, mitogen-activated protein kinase (MAPK), extracellular regulated protein kinases (ERK), and phosphatidylinositol 3 kinase (PI3K) in SNU-216 cells were detected using western blotting. Results showed that kaempferol significantly suppressed SNU-216 cell viability and proliferation but had no influence on cell apoptosis. Further results suggested that kaempferol significantly induced SNU-216 cell autophagy. The expression of miR-181a in SNU-216 cells after kaempferol treatment was enhanced. Kaempferol significantly inactivated MAPK/ERK and PI3K pathways in SNU-216 cells. Suppression of miR-181a significantly reversed the kaempferol-induced MAPK/ERK and PI3K pathways inactivation in SNU-216 cells. This research demonstrated that kaempferol suppressed proliferation and promoted autophagy of human gastric cancer SNU-216 cells by up-regulating miR-181a and inactivating MAPK/ERK and PI3K pathways.
Collapse
Affiliation(s)
- Fan Zhang
- Teaching and Research Department of Diagnostics, Jining Medical University, Jining, China
| | - Cuimei Ma
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining, China
| |
Collapse
|
77
|
Imran M, Rauf A, Shah ZA, Saeed F, Imran A, Arshad MU, Ahmad B, Bawazeer S, Atif M, Peters DG, Mubarak MS. Chemo-preventive and therapeutic effect of the dietary flavonoid kaempferol: A comprehensive review. Phytother Res 2019; 33:263-275. [PMID: 30402931 DOI: 10.1002/ptr.6227] [Citation(s) in RCA: 210] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/24/2018] [Accepted: 10/16/2018] [Indexed: 12/31/2022]
Abstract
Kaempferol, a natural flavonoid present in several plants, possesses a wide range of therapeutic properties such as antioxidant, anticancer, and anti-inflammatory. It has a significant role in reducing cancer and can act as a therapeutic agent in the treatment of diseases and ailments such as diabetes, obesity, cardiovascular diseases, oxidative stress, asthma, and microbial contamination disorders. Kaempferol acts through different mechanisms: It induces apoptosis (HeLa cervical cancer cells), decreases cell viability (G2/M phase), downregulates phosphoinositide 3-kinase (PI3K)/AKT (protein kinase B) and human T-cell leukemia/lymphoma virus-I (HTLV-I) signaling pathways, suppresses protein expression of epithelial-mesenchymal transition (EMT)-related markers including N-cadherin, E-cadherin, Slug, and Snail, and metastasis-related markers such as matrix metallopeptidase 2 (MMP-2). Accordingly, the aim of the present review is to collect information pertaining to the effective role of kaempferol against various degenerative disorders, summarize the antioxidant, anti-inflammatory, anticancer, antidiabetic, and antiaging effects of kaempferol and to review the progress of recent research and available data on kaempferol as a protective and chemotherapeutic agent against several ailments.
Collapse
Affiliation(s)
- Muhammad Imran
- University Institute of Diet & Nutritional Sciences, Faculty of Allied and Health Sciences, The University of Lahore-Pakistan
| | - Abdur Rauf
- Department of Chemistry, University of Swabi Anbar, Swabi, Pakistan
| | - Zafar Ali Shah
- Department of Chemistry, University of Swabi Anbar, Swabi, Pakistan
| | - Farhan Saeed
- Faculty of Home and Food Sciences, Government College University, Faisalabad, Pakistan
| | - Ali Imran
- Faculty of Home and Food Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Umair Arshad
- Faculty of Home and Food Sciences, Government College University, Faisalabad, Pakistan
| | - Bashir Ahmad
- Center of Biotechnology and Microbiology, University of Peshawar, Peshawar, Pakistan
| | - Sami Bawazeer
- Department of EMS. Paramedic, College of Public Health and Health Informatics, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Muhammad Atif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Dennis G Peters
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA
| | | |
Collapse
|
78
|
Go YH, Lee HJ, Kong HJ, Jeong HC, Lee DY, Hong SK, Sung SH, Kwon OS, Cha HJ. Screening of cytotoxic or cytostatic flavonoids with quantitative Fluorescent Ubiquitination-based Cell Cycle Indicator-based cell cycle assay. ROYAL SOCIETY OPEN SCIENCE 2018; 5:181303. [PMID: 30662739 PMCID: PMC6304118 DOI: 10.1098/rsos.181303] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 11/08/2018] [Indexed: 05/07/2023]
Abstract
The Fluorescent Ubiquitination-based Cell Cycle Indicator (FUCCI) system can be used not only to study gene expression at a specific cell cycle stage, but also to monitor cell cycle transitions in real time. In this study, we used a single clone of FUCCI-expressing HeLa cells (FUCCI-HeLa cells) and monitored the cell cycle in individual live cells over time by determining the ratios between red fluorescence (RF) of RFP-Cdt1 and green fluorescence (GF) of GFP-Geminin. Cytotoxic and cytostatic compounds, the latter of which induced G2 or mitotic arrest, were identified based on periodic cycling of the RF/GF and GF/RF ratios in FUCCI-HeLa cells treated with anti-cancer drugs. With this cell cycle monitoring system, ten flavonoids were screened. Of these, apigenin and luteolin, which have a flavone backbone, were cytotoxic, whereas kaempferol, which has a flavonol backbone, was cytostatic and induced G2 arrest. In summary, we developed a system to quantitatively monitor the cell cycle in real time. This system can be used to identify novel compounds that modulate the cell cycle and to investigate structure-activity relationships.
Collapse
Affiliation(s)
- Young-Hyun Go
- College of Natural Sciences, Department of Life Sciences, Sogang University, Seoul, Republic of Korea
| | - Hyo-Ju Lee
- College of Natural Sciences, Department of Life Sciences, Sogang University, Seoul, Republic of Korea
| | - Hyeon-Joon Kong
- College of Natural Sciences, Department of Life Sciences, Sogang University, Seoul, Republic of Korea
| | - Ho-Chang Jeong
- College of Natural Sciences, Department of Life Sciences, Sogang University, Seoul, Republic of Korea
| | - Dong Young Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Soon-Ki Hong
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sang Hyun Sung
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Ok-Seon Kwon
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hyuk-Jin Cha
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
79
|
Lee GA, Choi KC, Hwang KA. Treatment with Phytoestrogens Reversed Triclosan and Bisphenol A-Induced Anti-Apoptosis in Breast Cancer Cells. Biomol Ther (Seoul) 2018; 26:503-511. [PMID: 29310425 PMCID: PMC6131008 DOI: 10.4062/biomolther.2017.160] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 09/22/2017] [Accepted: 10/23/2017] [Indexed: 02/06/2023] Open
Abstract
Triclosan (TCS) and bisphenol A (BPA) are endocrine-disrupting chemicals that interfere with the hormone or endocrine system and may cause cancer. Kaempferol (Kaem) and 3,3'-diindolylmethane (DIM) are phytoestrogens that play chemopreventive roles in the inhibition of carcinogenesis and cancer progression. In this study, the influence of TCS, BPA, Kaem, and DIM on proliferation and apoptotic abilities of VM7Luc4E2 breast cancer cells were examined. MTT assay revealed that TCS (0.1-10 µM), BPA (0.1-10 µM) and E2 (0.01-0.0001 µM) induced significant cell proliferation of VM7Luc4E2 cells, which was restored to the control (0.1% DMSO) by co-treatment with Kaem (30 µM) or DIM (15 µM). Reactive oxygen species (ROS) production assays showed that TCS and BPA inhibited ROS production of VM7Luc4E2 cells similar to E2, but that co-treatment with Kaem or DIM on VM7Luc4E2 cells induced increased ROS production. Based on these results, the effects of TCS, BPA, Kaem, and DIM on protein expression of apoptosis and ROS production-related markers such as Bax and Bcl-xl, as well as endoplasmic reticulum (ER) stress-related markers such as eIF2α and CHOP were investigated by Western blot assay. The results revealed that TCS, and BPA induced anti-apoptosis by reducing ROS production and ER stress. However, Kaem and DIM effectively inhibited TCS and BPA-induced anti-apoptotic processes in VM7Luc4E2 cells. Overall, TCS and BPA were revealed to be distinct xenoestrogens that enhanced proliferation and anti-apoptosis, while Kaem and DIM were identified as natural chemopreventive compounds that effectively inhibited breast cancer cell proliferation and increased anti-apoptosis induced by TCS and BPA.
Collapse
Affiliation(s)
- Geum-A Lee
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Kyung-A Hwang
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| |
Collapse
|
80
|
Younas M, Hano C, Giglioli-Guivarc'h N, Abbasi BH. Mechanistic evaluation of phytochemicals in breast cancer remedy: current understanding and future perspectives. RSC Adv 2018; 8:29714-29744. [PMID: 35547279 PMCID: PMC9085387 DOI: 10.1039/c8ra04879g] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/15/2018] [Indexed: 12/30/2022] Open
Abstract
Breast cancer is one of the most commonly diagnosed cancers around the globe and accounts for a large proportion of fatalities in women. Despite the advancement in therapeutic and diagnostic procedures, breast cancer still represents a major challenge. Current anti-breast cancer approaches include surgical removal, radiotherapy, hormonal therapy and the use of various chemotherapeutic drugs. However, drug resistance, associated serious adverse effects, metastasis and recurrence complications still need to be resolved which demand safe and alternative strategies. In this scenario, phytochemicals have recently gained huge attention due to their safety profile and cost-effectiveness. These phytochemicals modulate various genes, gene products and signalling pathways, thereby inhibiting breast cancer cell proliferation, invasion, angiogenesis and metastasis and inducing apoptosis. Moreover, they also target breast cancer stem cells and overcome drug resistance problems in breast carcinomas. Phytochemicals as adjuvants with chemotherapeutic drugs have greatly enhanced their therapeutic efficacy. This review focuses on the recently recognized molecular mechanisms underlying breast cancer chemoprevention with the use of phytochemicals such as curcumin, resveratrol, silibinin, genistein, epigallocatechin gallate, secoisolariciresinol, thymoquinone, kaempferol, quercetin, parthenolide, sulforaphane, ginsenosides, naringenin, isoliquiritigenin, luteolin, benzyl isothiocyanate, α-mangostin, 3,3'-diindolylmethane, pterostilbene, vinca alkaloids and apigenin.
Collapse
Affiliation(s)
- Muhammad Younas
- Department of Biotechnology, Quaid-i-Azam University Islamabad-45320 Pakistan +92-51-90644121 +92-51-90644121 +33-767-97-0619
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), Plant Lignans Team, UPRES EA 1207, Université d'Orléans F 28000 Chartres France
| | | | - Bilal Haider Abbasi
- Department of Biotechnology, Quaid-i-Azam University Islamabad-45320 Pakistan +92-51-90644121 +92-51-90644121 +33-767-97-0619
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), Plant Lignans Team, UPRES EA 1207, Université d'Orléans F 28000 Chartres France
- EA2106 Biomolecules et Biotechnologies Vegetales, Universite Francois-Rabelais de Tours Tours France
| |
Collapse
|
81
|
Caleja C, Ribeiro A, Barreiro MF, Ferreira ICFR. Phenolic Compounds as Nutraceuticals or Functional Food Ingredients. Curr Pharm Des 2018; 23:2787-2806. [PMID: 28025943 DOI: 10.2174/1381612822666161227153906] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 12/24/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND Nowadays, the functional foods represent one the most promising, interesting and innovative areas in the food industry. Various components are being added to foods in order to render them functional. METHODS One example of these components are plant naturally occurring phenolic compounds, which are associated with a high antioxidant capacity and thus with benefits in relation to human health. RESULTS However, despite the huge number of scientific studies and patents on this topic and their natural presence in foods, namely in the ones from plant origin, there are still few marketable products enriched with these compounds. The commercialization of this type of functional products needs to go through various regulations, proving that they are safe and present the ascribed health benefits, conquering the target audience. In this review the growing interest of industry and consumers' appetence for functional foods and nutraceuticals is highlighted, focusing especially on phenolic compounds. CONCLUSION Although several published works show the multitude of bioactive properties of these compounds, ensuring their use as bioactive ingredients in food, they present inherent stability issues needing to be solved. However, considerable research is presently ongoing to overcome this problem, making viable the development of new products to be launched in the market.
Collapse
Affiliation(s)
- Cristina Caleja
- Mountain Research Centre (CIMO), ESA, Polytechnic Institute of Braganca, Braganca, Portugal
| | - Andreia Ribeiro
- Laboratory of Separation and Reaction Engineering (LSRE), Associate Laboratory LSRE/LCM, IPB, Braganca, Portugal
| | - Maria Filomena Barreiro
- Laboratory of Separation and Reaction Engineering (LSRE), Associate Laboratory LSRE/LCM, IPB, Braganca, Portugal
| | - Isabel C F R Ferreira
- Mountain Research Centre (CIMO), ESA, Polytechnic Institute of Braganca, Braganca, Portugal
| |
Collapse
|
82
|
Bartkiene E, Sakiene V, Bartkevics V, Wiacek C, Rusko J, Lele V, Ruzauskas M, Juodeikiene G, Klupsaite D, Bernatoniene J, Jakstas V, Braun PG. Nutraceuticals in gummy candies form prepared from lacto-fermented lupine protein concentrates, as high-quality protein source, incorporated withCitrus paradiseL. essential oil and xylitol. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.13819] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Elena Bartkiene
- Lithuanian University of Health Sciences; Tilzes g. 18 Kaunas LT-47181 Lithuania
| | - Vytaute Sakiene
- Lithuanian University of Health Sciences; Tilzes g. 18 Kaunas LT-47181 Lithuania
| | - Vadims Bartkevics
- University of Latvia; Jelgavas iela 1 Riga LV-1004 Latvia
- Institute of Food Safety, Animal Health and Environment; Lejupes iela 3 Riga LV-1076 Latvia
| | - Claudia Wiacek
- Institute of Food Hygiene; Universität Leipzig; An den Tierkliniken 1 Leipzig 04103 Germany
| | - Janis Rusko
- Institute of Food Safety, Animal Health and Environment; Lejupes iela 3 Riga LV-1076 Latvia
| | - Vita Lele
- Lithuanian University of Health Sciences; Tilzes g. 18 Kaunas LT-47181 Lithuania
| | - Modestas Ruzauskas
- Lithuanian University of Health Sciences; Tilzes g. 18 Kaunas LT-47181 Lithuania
| | | | - Dovile Klupsaite
- Kaunas University of Technology; Radvilenu pl. 19 Kaunas LT-50254 Lithuania
| | - Jurga Bernatoniene
- Lithuanian University of Health Sciences; Tilzes g. 18 Kaunas LT-47181 Lithuania
| | - Valdas Jakstas
- Lithuanian University of Health Sciences; Tilzes g. 18 Kaunas LT-47181 Lithuania
| | - Peggy G. Braun
- Institute of Food Hygiene; Universität Leipzig; An den Tierkliniken 1 Leipzig 04103 Germany
| |
Collapse
|
83
|
Ren W, Zhang Y, Zhang L, Lin Q, Zhang J, Xu G. Overexpression of collagen type V α1 chain in human breast invasive ductal carcinoma is mediated by TGF-β1. Int J Oncol 2018; 52:1694-1704. [PMID: 29568948 DOI: 10.3892/ijo.2018.4317] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 03/13/2018] [Indexed: 11/06/2022] Open
Abstract
Collagen type V α1 chain (COL5A1) is a minor fibrillar collagen in mammals that co-polymerizes with type I collagen to adjust the diameter of collagen molecules. However, the function of COL5A1 in invasive ductal carcinoma (IDC) of the human breast remains unknown. In the present study, our group examined the expression of COL5A1 in IDC compared with its adjacent normal tissue and fibroadenoma of the breast. COL5A1 was revealed to be overexpressed in IDC compared with benign tumor and adjacent normal control tissues, and was associated with the expression of estrogen receptor and progesterone receptor. No association between COL5A1 expression and tumor size, lymph node metastasis, clinical stage, age, or Her2 expression was identified. High expression of COL5A1 mRNA was associated with distant metastasis free survival in patients with breast cancer. Knockdown of COL5A1 led to a decrease of cell viability, as detected by the WST-1 assay, and an inhibition of migration and invasion, as detected by wound healing and Transwell assays, respectively, in the breast cancer cell line MCF-7. The expression of COL5A1 in MCF-7 cells was downregulated by transforming growth factor (TGF)‑β1, which was abolished in the presence of SB-431542, an inhibitor of TGF-β type I receptor. In conclusion, these data indicated that COL5A1 is overexpressed in IDC and regulated by TGF-β1, suggesting that an increase of COL5A1 reflects tumor progression and may serve as a novel biomarker and therapeutic target for the treatment of breast IDC.
Collapse
Affiliation(s)
- Weimin Ren
- Center Laboratory, Jinshan Hospital, Fudan University, Shanghai 201508, P.R. China
| | - Youyuan Zhang
- Department of Pathology, Jinshan Hospital, Fudan University, Shanghai 201508, P.R. China
| | - Lingyun Zhang
- Center Laboratory, Jinshan Hospital, Fudan University, Shanghai 201508, P.R. China
| | - Qunbo Lin
- Center Laboratory, Jinshan Hospital, Fudan University, Shanghai 201508, P.R. China
| | - Jinguo Zhang
- Center Laboratory, Jinshan Hospital, Fudan University, Shanghai 201508, P.R. China
| | - Guoxiong Xu
- Center Laboratory, Jinshan Hospital, Fudan University, Shanghai 201508, P.R. China
| |
Collapse
|
84
|
Zhu L, Xue L. Kaempferol Suppresses Proliferation and Induces Cell Cycle Arrest, Apoptosis, and DNA Damage in Breast Cancer Cells. Oncol Res 2018; 27:629-634. [PMID: 29739490 PMCID: PMC7848404 DOI: 10.3727/096504018x15228018559434] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Kaempferol is a flavonoid that has been extensively investigated owing to its antitumor effects. Nevertheless, little is known about its underlying mechanisms of action. We aimed to explore the role of kaempferol in breast cancer (BC), and thus we investigated how kaempferol suppresses the growth of BC cells. The cells were treated with kaempferol, and the effects on multiple cancer-associated pathways were evaluated. The MTS assay was used to study the cell growth inhibition induced by kaempferol. The cell cycle was analyzed by flow cytometry. Western blotting was used to analyze cellular apoptosis and DNA damage. We found that the proliferation of the triple-negative BC (TNBC) MDA-MB-231 cells was suppressed effectively by kaempferol. Interestingly, the suppressive effect of kaempferol on cell proliferation was stronger in MDA-MB-231 cells than in the estrogen receptor-positive BT474 cell line. Furthermore, after the treatment with kaempferol for 48 h, the population of cells in the G1 phase was significantly reduced, from 85.48% to 51.35%, and the population of cells in the G2 phase increased markedly from 9.27% to 37.5%, which indicated that kaempferol contributed to the induction of G2/M arrest. Kaempferol also induced apoptosis and DNA damage in MDA-MB-231 cells. Kaempferol increased the expression levels of γH2AX, cleaved caspase 9, cleaved caspase 3, and p-ATM compared to those of the control group. Collectively, these results showed that kaempferol may be a potential drug for the effective treatment of TNBC.
Collapse
Affiliation(s)
- Li Zhu
- Department of Medical Laboratory, Shanghai Second People's Hospital, Shanghai, P.R. China
| | - Lijun Xue
- Madonna University, Livonia, MI, USA
| |
Collapse
|
85
|
Bartkiene E, Sakiene V, Bartkevics V, Rusko J, Lele V, Juodeikiene G, Wiacek C, Braun PG. Lupinus angustifolius L. lactofermentation and protein isolation: effects on phenolic compounds and genistein, antioxidant properties, trypsin inhibitor activity, and protein digestibility. Eur Food Res Technol 2018. [DOI: 10.1007/s00217-018-3066-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
86
|
Exploring the Pharmacological Mechanism of Danzhi Xiaoyao Powder on ER-Positive Breast Cancer by a Network Pharmacology Approach. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:5059743. [PMID: 29692855 PMCID: PMC5859839 DOI: 10.1155/2018/5059743] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 01/16/2018] [Indexed: 12/14/2022]
Abstract
Background Breast cancer is the most common malignancy among women worldwide, but the long-term endocrine therapy is frequently associated with adverse side effects. Danzhi Xiaoyao powder (DXP) is a herbal formula that has an effect on breast cancer, especially ER-positive breast cancer. However, the active compounds, potential targets, and pharmacological and molecular mechanism of its action against cancer remain unclear. Methods A network pharmacology approach comprising drug-likeness evaluation, oral bioavailability prediction, Caco-2 permeability prediction, multiple compound target prediction, multiple known target collection, breast cancer genes collection, and network analysis has been used in this study. Results Four networks are set up—namely, ER-positive breast cancer network, compound-compound target network of DXP, DXP-ER-positive breast cancer network, and compound-known target-ER-positive breast cancer network. Some ER-positive breast cancer and DXP related targets, clusters, biological processes, and pathways, and several potential anticancer compounds are found. Conclusion This network analysis successfully predicted, illuminated, and confirmed the molecular synergy of DXP for ER-positive breast cancer, got potential anticancer active compounds, and found the potential ER-positive breast cancer associated targets, cluster, biological processes, and pathways. This work also provides clues to the researcher who explores ethnopharmacological or/and herbal medicine's or even multidrugs' various synergies.
Collapse
|
87
|
Kim BG, Kim JW, Kim SM, Go RE, Hwang KA, Choi KC. 3,3'-Diindolylmethane Suppressed Cyprodinil-Induced Epithelial-Mesenchymal Transition and Metastatic-Related Behaviors of Human Endometrial Ishikawa Cells via an Estrogen Receptor-Dependent Pathway. Int J Mol Sci 2018; 19:ijms19010189. [PMID: 29316692 PMCID: PMC5796138 DOI: 10.3390/ijms19010189] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 01/02/2018] [Accepted: 01/05/2018] [Indexed: 01/10/2023] Open
Abstract
Cyprodinil (CYP) is a pyrimidine amine fungicide that has been extensively used in agricultural areas. 3,3′-Diindolylmethane (DIM) is a derivative of the dietary phytoestrogen, indole-3-carbinol (I3C), which is derived from cruciferous vegetables and considered to be a cancer-preventive phytonutrient agent. In this study, the effects of CYP and DIM were examined on the cell viability, invasion, and metastasis of human endometrial cancer cells, Ishikawa, via epithelial mesenchymal transition (EMT). CYP increased the level of cell viability of Ishikawa cells compared to DMSO as a control, as did E2. Ishikawa cells lost cell-to-cell contact and obtained a spindle-shaped or fibroblast-like morphology in response to the application of E2 or CYP by the cell morphology assay. In the cell migration and invasion assay, CYP enhanced the ability of migration and invasion of Ishikawa cells, as did E2. E2 and CYP increased the expressions of N-cadherin and Snail proteins, while decreasing the expression of E-cadherin protein as EMT-related markers. In addition, E2 and CYP increased the protein expressions of cathepsin D and MMP-9, metastasis-related markers. Conversely, CYP-induced EMT, cell migration, and invasion were reversed by fulvestrant (ICI 182,780) as an estrogen receptor (ER) antagonist, indicating that CYP exerts estrogenic activity by mediating these processes via an ER-dependent pathway. Similar to ICI 182,780, DIM significantly suppressed E2 and CYP-induced proliferation, EMT, migration, and invasion of Ishikawa cancer cells. Overall, the present study revealed that DIM has an antiestrogenic chemopreventive effect to withdraw the cancer-enhancing effect of E2 and CYP, while CYP has the capacity to enhance the metastatic potential of estrogen-responsive endometrial cancer.
Collapse
Affiliation(s)
- Bo-Gyoung Kim
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Chungbuk, Korea.
| | - Jin-Wook Kim
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Chungbuk, Korea.
| | - Soo-Min Kim
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Chungbuk, Korea.
| | - Ryeo-Eun Go
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Chungbuk, Korea.
| | - Kyung-A Hwang
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Chungbuk, Korea.
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Chungbuk, Korea.
| |
Collapse
|
88
|
Fang J, Wu Z, Cai C, Wang Q, Tang Y, Cheng F. Quantitative and Systems Pharmacology. 1. In Silico Prediction of Drug-Target Interactions of Natural Products Enables New Targeted Cancer Therapy. J Chem Inf Model 2017; 57:2657-2671. [PMID: 28956927 DOI: 10.1021/acs.jcim.7b00216] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Natural products with diverse chemical scaffolds have been recognized as an invaluable source of compounds in drug discovery and development. However, systematic identification of drug targets for natural products at the human proteome level via various experimental assays is highly expensive and time-consuming. In this study, we proposed a systems pharmacology infrastructure to predict new drug targets and anticancer indications of natural products. Specifically, we reconstructed a global drug-target network with 7,314 interactions connecting 751 targets and 2,388 natural products and built predictive network models via a balanced substructure-drug-target network-based inference approach. A high area under receiver operating characteristic curve of 0.96 was yielded for predicting new targets of natural products during cross-validation. The newly predicted targets of natural products (e.g., resveratrol, genistein, and kaempferol) with high scores were validated by various literature studies. We further built the statistical network models for identification of new anticancer indications of natural products through integration of both experimentally validated and computationally predicted drug-target interactions of natural products with known cancer proteins. We showed that the significantly predicted anticancer indications of multiple natural products (e.g., naringenin, disulfiram, and metformin) with new mechanism-of-action were validated by various published experimental evidence. In summary, this study offers powerful computational systems pharmacology approaches and tools for the development of novel targeted cancer therapies by exploiting the polypharmacology of natural products.
Collapse
Affiliation(s)
- Jiansong Fang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine , 12 Jichang Road, Guangzhou 510405, China
| | - Zengrui Wu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology , 130 Meilong Road, Shanghai 200237, China
| | - Chuipu Cai
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine , 12 Jichang Road, Guangzhou 510405, China
| | - Qi Wang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine , 12 Jichang Road, Guangzhou 510405, China
| | - Yun Tang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology , 130 Meilong Road, Shanghai 200237, China
| | - Feixiong Cheng
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Harvard Medical School , Boston, Massachusetts 02215, United States.,Center for Complex Networks Research (CCNR), Northeastern University , Boston, Massachusetts 02115, United States
| |
Collapse
|
89
|
Guo H, Lin W, Zhang X, Zhang X, Hu Z, Li L, Duan Z, Zhang J, Ren F. Kaempferol induces hepatocellular carcinoma cell death via endoplasmic reticulum stress-CHOP-autophagy signaling pathway. Oncotarget 2017; 8:82207-82216. [PMID: 29137257 PMCID: PMC5669883 DOI: 10.18632/oncotarget.19200] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 06/11/2017] [Indexed: 12/22/2022] Open
Abstract
Kaempferol is a flavonoid compound that has gained widespread attention due to its antitumor functions. However, the underlying mechanisms are still not clear. The present study investigated the effect of kaempferol on hepatocellular carcinoma and its underlying mechanisms. Kaempferol induced autophagy in a concentration- and time-dependent manner in HepG2 or Huh7 cells, which was evidenced by the significant increase of autophagy-related genes. Inhibition of autophagy pathway, through 3-methyladenine or Atg7 siRNA, strongly diminished kaempferol-induced apoptosis. We further hypothesized that kaempferol can induce autophagy via endoplasmic reticulum (ER) stress pathway. Indeed, blocking ER stress by 4-phenyl butyric acid (4-PBA) or knockdown of CCAAT/enhancer-binding protein homologous protein (CHOP) with siRNA alleviated kaempferol-induced HepG2 or Huh7 cells autophagy; while transfection with plasmid overexpressing CHOP reversed the effect of 4-PBA on kaempferol-induced autophagy. Our results demonstrated that kaempferol induced hepatocarcinoma cell death via ER stress and CHOP-autophagy signaling pathway; kaempferol may be used as a potential chemopreventive agent for patients with hepatocellular carcinoma.
Collapse
Affiliation(s)
- Haiqing Guo
- Department of Hepatitis C and Drug-Induced Liver Disease, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Wei Lin
- Department of Hepatitis C and Drug-Induced Liver Disease, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Xiangying Zhang
- Beijing Institute of Hepatology, Capital Medical University, Beijing 100069, China
| | - Xiaohui Zhang
- Department of Hepatitis C and Drug-Induced Liver Disease, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Zhongjie Hu
- Department of Hepatitis C and Drug-Induced Liver Disease, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Liying Li
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China
| | - Zhongping Duan
- Artificial Liver Center, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Jing Zhang
- Department of Hepatitis C and Drug-Induced Liver Disease, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Feng Ren
- Beijing Institute of Hepatology, Capital Medical University, Beijing 100069, China
| |
Collapse
|
90
|
Li S, Yan T, Deng R, Jiang X, Xiong H, Wang Y, Yu Q, Wang X, Chen C, Zhu Y. Low dose of kaempferol suppresses the migration and invasion of triple-negative breast cancer cells by downregulating the activities of RhoA and Rac1. Onco Targets Ther 2017; 10:4809-4819. [PMID: 29042792 PMCID: PMC5633285 DOI: 10.2147/ott.s140886] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Purpose Triple-negative breast cancer (TNBC) is an especially aggressive and hard-to-treat disease. Although the anticancer role of kaempferol has been reported in breast cancer, the effect of kaempferol on TNBC remains unclear. Materials and methods This experiment investigated the migration-suppressive role of a low dose of kaempferol in TNBC cells. Wound-healing assays and cell invasion assays were used to confirm the migration and invasion of cells treated with kaempferol or transfected indicated constructs. We evaluated the activations of RhoA, Rac1 and Cdc42 in TNBC cells with a Rho activation assay. A panel of inhibitors of estrogen receptor/progesterone receptor/human epidermal growth factor receptor 2 (ER/PR/HER2) treated non-TNBC (SK-BR-3 and MCF-7) cells and blocked the ER/PR/HER2 activity. Wound-healing assays and Rho activation assays were employed to measure the effect of kaempferol and ER/PR/HER2 inhibitors on Rho activation and cell migration rates. Results A low dose of kaempferol (20 μmol/L) had a potent inhibitory effect on the migration and invasion of TNBC cells, but not on the migration of non-TNBC (SK-BR-3 and MCF-7) cells. The low dose of kaempferol downregulated the activations of RhoA and Rac1 in TNBC cells. Moreover, the low dose of kaempferol also inhibited the migration and RhoA activations of HER2-silence SK-BR-3 and ER/PR-silence MCF-7 cells. Overexpressed HER2 rescued the cell migration and RhoA and Rac1 activations of kaempferol-treated MDA-MB-231 cells. Conclusion The low dose of kaempferol inhibits the migration and invasion of TNBC cells via blocking RhoA and Rac1 signaling pathway.
Collapse
Affiliation(s)
- Shoushan Li
- Department of Oncology, Traditional Chinese Medical Hospital of Siyang County
| | - Ting Yan
- Safety Assessment and Research Center for Drug, Pesticide and Veterinary Drug of Jiangsu Province, Nanjing Medical University
| | - Rong Deng
- Department of General Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital
| | - Xuesong Jiang
- Department of Radiotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital
| | - Huaping Xiong
- Department of Oncology, Traditional Chinese Medical Hospital of Siyang County
| | - Yuan Wang
- Department of Oncology, Traditional Chinese Medical Hospital of Siyang County
| | - Qiao Yu
- Department of General Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital
| | - Xiaohua Wang
- Department of Chemotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital
| | - Cheng Chen
- Department of Radiotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital
| | - Yichao Zhu
- Department of Physiology, Nanjing Medical University.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
91
|
Go RE, Hwang KA, Kim CW, Byun YS, Nam KH, Choi KC. Effect of dioxin and 17β-estradiol on the expression of cytochrome P450 1A1 gene via an estrogen receptor dependent pathway in cellular and xenografted models. ENVIRONMENTAL TOXICOLOGY 2017; 32:2225-2233. [PMID: 28618207 DOI: 10.1002/tox.22438] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 05/14/2017] [Accepted: 05/28/2017] [Indexed: 06/07/2023]
Abstract
Cytochrome P450 (CYP) 1A1 plays a major role in the metabolic activation of procarcinogens to carcinogens via aryl hydrocarbon receptor (AhR) pathway. Especially, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is known as an agonist of AhR. In estrogen responsive cancers, 17β-estradiol (E2) may influence on AhR dependent expression of CYP1 family via the interaction between estrogen receptor (ER) and AhR. In the present study, the effect of E2/ER on the expression of AhR and CYP1A1 genes was investigated for MCF-7 clonal variant (MCF-7 CV) breast cancer cells expressing ER. In reverse transcription-PCR and Western blot analysis, mRNA expression level of AhR was not altered, but its protein expression level was increased by TCDD or E2. The transcriptional and translational levels of CYP1A1 appeared to be increased by TCDD or E2. The increased expression of AhR and CYP1A1 induced by E2 was restored to the control level by the co-treatment of ICI 182,780, indicating that E2 induced the protein expression levels of AhR and CYP1A1 like TCDD via an ER dependent pathway. In an in vivo xenograft mouse model transplanted with MCF-7 CV cells, the protein expression levels of AhR and CYP1A1 of tumor masses were also increased by E2 or TCDD. Taken together, these results indicate that E2 may promote AhR dependent expression of CYP1A1 via ER dependent pathway in MCF-7 CV cells expressing ER in the absence of TCDD, an agonist of AhR. The relevance of E2 and ER in CYP1A1 activation of estrogen responsive cancers may be targeted for developing more effective cancer treatments.
Collapse
Affiliation(s)
- Ryeo-Eun Go
- Laboratory of Biochemistry and Immunology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Kyung-A Hwang
- Laboratory of Biochemistry and Immunology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Cho-Won Kim
- Laboratory of Biochemistry and Immunology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Yong-Sub Byun
- Laboratory of Biochemistry and Immunology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Ochang-eup, Cheongwon-gun, Chungbuk, Republic of Korea
| | - Ki-Hoan Nam
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Ochang-eup, Cheongwon-gun, Chungbuk, Republic of Korea
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| |
Collapse
|
92
|
Emerging Estrogenic Pollutants in the Aquatic Environment and Breast Cancer. Genes (Basel) 2017; 8:genes8090229. [PMID: 28914763 PMCID: PMC5615362 DOI: 10.3390/genes8090229] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/07/2017] [Accepted: 09/08/2017] [Indexed: 12/13/2022] Open
Abstract
The number and amount of man-made chemicals present in the aquatic environment has increased considerably over the past 50 years. Among these contaminants, endocrine-disrupting chemicals (EDCs) represent a significant proportion. This family of compounds interferes with normal hormonal processes through multiple molecular pathways. They represent a potential risk for human and wildlife as they are suspected to be involved in the development of diseases including, but not limited to, reprotoxicity, metabolic disorders, and cancers. More precisely, several studies have suggested that the increase of breast cancers in industrialized countries is linked to exposure to EDCs, particularly estrogen-like compounds. Estrogen receptors alpha (ERα) and beta (ERβ) are the two main transducers of estrogen action and therefore important targets for these estrogen-like endocrine disrupters. More than 70% of human breast cancers are ERα-positive and estrogen-dependent, and their development and growth are not only influenced by endogenous estrogens but also likely by environmental estrogen-like endocrine disrupters. It is, therefore, of major importance to characterize the potential estrogenic activity from contaminated surface water and identify the molecules responsible for the hormonal effects. This information will help us understand how environmental contaminants can potentially impact the development of breast cancer and allow us to fix a maximal limit to the concentration of estrogen-like compounds that should be found in the environment. The aim of this review is to provide an overview of emerging estrogen-like compounds in the environment, sum up studies demonstrating their direct or indirect interactions with ERs, and link their presence to the development of breast cancer. Finally, we emphasize the use of in vitro and in vivo methods based on the zebrafish model to identify and characterize environmental estrogens.
Collapse
|
93
|
Salaritabar A, Darvishi B, Hadjiakhoondi F, Manayi A, Sureda A, Nabavi SF, Fitzpatrick LR, Nabavi SM, Bishayee A. Therapeutic potential of flavonoids in inflammatory bowel disease: A comprehensive review. World J Gastroenterol 2017; 23:5097-5114. [PMID: 28811706 PMCID: PMC5537178 DOI: 10.3748/wjg.v23.i28.5097] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 05/12/2017] [Accepted: 07/04/2017] [Indexed: 02/06/2023] Open
Abstract
The inflammatory process plays a central role in the development and progression of numerous pathological situations, such as inflammatory bowel disease (IBD), autoimmune and neurodegenerative diseases, metabolic syndrome, and cardiovascular disorders. IBDs involve inflammation of the gastrointestinal area and mainly comprise Crohn’s disease (CD) and ulcerative colitis (UC). Both pathological situations usually involve recurring or bloody diarrhea, pain, fatigue and weight loss. There is at present no pharmacological cure for CD or UC. However, surgery may be curative for UC patients. The prescribed treatment aims to ameliorate the symptoms and prevent and/or delay new painful episodes. Flavonoid compounds are a large family of hydroxylated polyphenolic molecules abundant in plants, including vegetables and fruits which are the major dietary sources of these compounds for humans, together with wine and tea. Flavonoids are becoming very popular because they have many health-promoting and disease-preventive effects. Most interest has been directed towards the antioxidant activity of flavonoids, evidencing a remarkable free-radical scavenging capacity. However, accumulating evidence suggests that flavonoids have many other biological properties, including anti-inflammatory, antiviral, anticancer, and neuroprotective activities through different mechanisms of action. The present review analyzes the available data about the different types of flavonoids and their potential effectiveness as adjuvant therapy of IBDs.
Collapse
|
94
|
Oral administration of kaempferol inhibits bone loss in rat model of ovariectomy-induced osteopenia. Pharmacol Rep 2017; 69:1113-1119. [PMID: 29031689 DOI: 10.1016/j.pharep.2017.05.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 01/22/2017] [Accepted: 05/05/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND Postmenopausal osteoporosis and osteoporotic fractures constitute an increasing problem in developing countries. Kaempferol, isolated from seeds of Cuscuta chinensis, is an active flavonoid inhibiting in vitro osteoclast activity. The aim of the presented research was an assessment of kaempferol effect on estrogen-deficiency-induced bone structure disturbances in rats. METHODS The study was performed on 24 Wistar female rats divided into 3 groups: SHAM - rats undergoing a "sham" surgery, OVX-C - control group of animals that underwent ovariectomy, OVX-K - rats undergoing ovariectomy and receiving kaempferol for 8 weeks (from day 56 to day 112). RESULTS In the OVX-K group, contrary to the OVX-C one, there was no significant decrease in femoral bone mineral density (BMD). A significant increase in Young's modulus was observed in the OVX-K group compared to the OVX-C (15.33±2.51GPa vs. 11.14±1.93GPa, p<0.05). A decreased bone turnover was detected in the OVX-K group. Tissue volume ratio (BV/TV) and trabecular bone perimeter were increased in the OVX-K group compared to the OVX-C one (0.241±0.037 vs. 0.170±0.022, p<0.05 and 15.52±2.78mm vs. 9.67±3.07mm, p<0.05, respectively). CONCLUSION Kaempferol has a beneficial influence on estrogen-deficiency-induced disturbances of bone structure in rats.
Collapse
|
95
|
Patočka J, Navrátilová Z, Ovando M. BIOLOGICALLY ACTIVE COMPOUNDS OF KNOTWEED (Reynoutria spp.). ACTA ACUST UNITED AC 2017. [DOI: 10.31482/mmsl.2017.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
96
|
Kashyap D, Sharma A, Tuli HS, Sak K, Punia S, Mukherjee TK. Kaempferol - A dietary anticancer molecule with multiple mechanisms of action: Recent trends and advancements. J Funct Foods 2017; 30:203-219. [PMID: 32288791 PMCID: PMC7104980 DOI: 10.1016/j.jff.2017.01.022] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 01/01/2017] [Accepted: 01/09/2017] [Indexed: 02/08/2023] Open
Abstract
The consumption of diet-based naturally bioactive metabolites is preferred to synthetic material in order to avert health-associated disorders. Among the plant-derived polyphenols, kaempferol (KMF) is considered as a valuable functional food ingredient with a broad range of therapeutic applications such as anti-cancer, antioxidant and anti-inflammatory uses. KMF acts on a range of intracellular as well as extracellular targets involved in the cell signaling pathways that in turn are known to regulate the hallmarks of cancer growth progressions like apoptosis, cell cycle, invasion or metastasis, angiogenesis and inflammation. Importantly, the understanding of mechanisms of action of KMF-mediated therapeutic effects may help the scientific community to design novel strategies for the treatment of dreadful diseases. The current review summarizes the various types of molecular targets of KMF in cancer cells as well as other health-associated disorders. In addition, this review also highlights the absorption, metabolism and epidemiological findings.
Collapse
Affiliation(s)
- Dharambir Kashyap
- Department of Histopathology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, Punjab 160012, India
| | - Ajay Sharma
- Department of Chemistry, Career Point University, Tikker - kharwarian, Hamirpur, Himachal Pradesh 176041, India
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar University, Mullana-Ambala, Haryana, India
| | | | - Sandeep Punia
- Department of Biotechnology, Maharishi Markandeshwar University, Mullana-Ambala, Haryana, India
| | - Tapan K. Mukherjee
- Department of Biotechnology, Maharishi Markandeshwar University, Mullana-Ambala, Haryana, India
| |
Collapse
|
97
|
Islam MS, Segars JH, Castellucci M, Ciarmela P. Dietary phytochemicals for possible preventive and therapeutic option of uterine fibroids: Signaling pathways as target. Pharmacol Rep 2017; 69:57-70. [DOI: 10.1016/j.pharep.2016.10.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 10/03/2016] [Accepted: 10/19/2016] [Indexed: 02/07/2023]
|
98
|
Lee GA, Choi KC, Hwang KA. Kaempferol, a phytoestrogen, suppressed triclosan-induced epithelial-mesenchymal transition and metastatic-related behaviors of MCF-7 breast cancer cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 49:48-57. [PMID: 27902959 DOI: 10.1016/j.etap.2016.11.016] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 11/14/2016] [Accepted: 11/20/2016] [Indexed: 06/06/2023]
Abstract
As a phytoestrogen, kaempferol is known to play a chemopreventive role inhibiting carcinogenesis and cancer progression. In this study, the influences of triclosan, an anti-bacterial agent recently known for an endocrine disrupting chemical (EDC), and kaempferol on breast cancer progression were examined by measuring their effects on epithelial-mesenchymal transition (EMT) and metastatic-related behaviors of MCF-7 breast cancer cells. Morphological changes of MCF-7 cells were observed, and a wound-healing assay was performed after the treatment of triclosan and kaempferol. The effects of triclosan and kaempferol on protein expression of EMT-related markers such as E-cadherin, N-cadherin, Snail, and Slug and metastasis-related markers such as cathepsin B, D, MMP-2 and -9 were investigated by Western blot assay. In microscopic observations, triclosan (10-6M) or E2 (10-9M) induced transition to mesenchymal phenotype of MCF-7 cells compared with the control. Co-treatment of ICI 182,780 (10-8M), an ER antagonist, or kaempferol (25μM) with E2 or triclosan restored the cellular morphology to an epithelial phenotype. In a wound-healing scratch and a transwell migration assay, triclosan enhanced migration and invasion of MCF-7 cells, but co-treatment of kaempferol or ICI 182,780 reduced the migration and invasion ability of MCF-7 cells to the control level. In addition, kaempferol effectively suppressed E2 or triclosan-induced protein expressions of EMT and metastasis promoting markers. Taken together, triclosan may be a distinct xenoestrogenic EDC to promote EMT, migration, and invasion of MCF-7 breast cancer cells through ER. On the other hand, kaempferol can be an alternative chemopreventive agent to effectively suppress the metastatic behavior of breast cancer induced by an endogenous estrogen as well as exogenous xenoestrogenic compounds including triclosan.
Collapse
Affiliation(s)
- Geum-A Lee
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.
| | - Kyung-A Hwang
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.
| |
Collapse
|
99
|
Kaempferol slows intervertebral disc degeneration by modifying LPS-induced osteogenesis/adipogenesis imbalance and inflammation response in BMSCs. Int Immunopharmacol 2016; 43:236-242. [PMID: 28043032 DOI: 10.1016/j.intimp.2016.12.020] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 11/25/2016] [Accepted: 12/15/2016] [Indexed: 12/21/2022]
Abstract
Intervertebral disc (IVD) degeneration is a common disease that represents a significant cause of socio-economic problems. Bone marrow-derived mesenchymal stem cells (BMSCs) are a potential autologous stem cell source for the nucleus pulposus regeneration. Kaempferol has been reported to exert protective effects against both osteoporosis and obesity. This study explored the effect of kaempferol on BMSCs differentiation and inflammation. The results demonstrated that kaempferol did not show any cytotoxicity at concentrations of 20, 60 and 100μM. Kaempferol enhanced cell viability by counteracting the lipopolysaccharide (LPS)-induced cell apoptosis and increasing cell proliferation. Western blot analysis of mitosis-associated nuclear antigen (Ki67) and proliferation cell nuclear antigen (PCNA) further confirmed the increased effect of kaempferol on LPS-induced decreased viability of BMSCs. Besides, kaempferol elevated LPS-induced reduced level of chondrogenic markers (SOX-9, Collagen II and Aggrecan), decreased the level of matrix-degrading enzymes, i.e., matrix metalloprotease (MMP)-3 and MMP-13, suggesting the osteogenesis of BMSC under kaempferol treatment. On the other hand, kaempferol enhanced LPS-induced decreased expression of lipid catabolism-related genes, i.e., carnitine palmitoyl transferase-1 (CPT-1). Kaempferol also suppressed the expression of lipid anabolism-related genes, i.e., peroxisome proliferators-activated receptor-γ (PPAR-γ). The Oil red O staining further convinced the inhibition effect of kaempferol on BMSCs adipogenesis. In addition, kaempferol alleviated inflammatory by reducing the level of pro-inflammatory cytokines (i.e., interleukin (IL)-6) and increasing anti-inflammatory cytokine (IL-10) via inhibiting the nucleus translocation of nuclear transcription factor (NF)-κB p65. Taken together, our research indicated that kaempferol may serve as a novel target for treatment of IVD degeneration.
Collapse
|
100
|
Natural Polyphenols for Prevention and Treatment of Cancer. Nutrients 2016; 8:nu8080515. [PMID: 27556486 PMCID: PMC4997428 DOI: 10.3390/nu8080515] [Citation(s) in RCA: 447] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/12/2016] [Accepted: 08/12/2016] [Indexed: 02/06/2023] Open
Abstract
There is much epidemiological evidence that a diet rich in fruits and vegetables could lower the risk of certain cancers. The effect has been attributed, in part, to natural polyphenols. Besides, numerous studies have demonstrated that natural polyphenols could be used for the prevention and treatment of cancer. Potential mechanisms included antioxidant, anti-inflammation as well as the modulation of multiple molecular events involved in carcinogenesis. The current review summarized the anticancer efficacy of major polyphenol classes (flavonoids, phenolic acids, lignans and stilbenes) and discussed the potential mechanisms of action, which were based on epidemiological, in vitro, in vivo and clinical studies within the past five years.
Collapse
|