51
|
Gelb MH. Newborn Screening for Lysosomal Storage Diseases: Methodologies, Screen Positive Rates, Normalization of Datasets, Second-Tier Tests, and Post-Analysis Tools. Int J Neonatal Screen 2018; 4:23. [PMID: 30882045 PMCID: PMC6419971 DOI: 10.3390/ijns4030023] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
All of the worldwide newborn screening (NBS) for lysosomal storage diseases (LSDs) is done by measurement of lysosomal enzymatic activities in dried blood spots (DBS). Substrates used for these assays are discussed. While the positive predictive value (PPV) is the gold standard for evaluating medical tests, current PPVs for NBS of LSDs cannot be used as a performance metric due to statistical sampling errors and uncertainty in the onset of disease symptoms. Instead, we consider the rate of screen positives as the only currently reliable way to compare LSD NBS results across labs worldwide. It has been suggested that the expression of enzymatic activity data as multiple-of-the-mean is a way to normalize datasets obtained using different assay platforms, so that results can be compared, and universal cutoffs can be developed. We show that this is often not the case, and normalization is currently not feasible. We summarize the recent use of pattern matching statistical analysis together with measurement of an expanded group of enzymatic activities and biomarkers to greatly reduce the number of false positives for NBS of LSDs. We provide data to show that these post-enzymatic activity assay methods are more powerful than genotype analysis for the stratification of NBS for LSDs.
Collapse
Affiliation(s)
- Michael H Gelb
- Departments of Chemistry, University of Washington, Seattle, WA 98195, USA;
- Departments of Biochemistry, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
52
|
Chuang CK, Lin HY, Wang TJ, Huang YH, Chan MJ, Liao HC, Lo YT, Wang LY, Tu RY, Fang YY, Chen TL, Ho HC, Chiang CC, Lin SP. Status of newborn screening and follow up investigations for Mucopolysaccharidoses I and II in Taiwan. Orphanet J Rare Dis 2018; 13:84. [PMID: 29801497 PMCID: PMC5970538 DOI: 10.1186/s13023-018-0816-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 04/26/2018] [Indexed: 11/24/2022] Open
Abstract
Background Mucopolysaccharidoses (MPS) are lysosomal storage diseases in which mutations of genes encoding for lysosomal enzymes cause defects in the degradation of glycosaminoglycans (GAGs). The accumulation of GAGs in lysosomes results in cellular dysfunction and clinical abnormalities. The early initiation of enzyme replacement therapy (ERT) can slow or prevent the development of severe clinical manifestations. MPS I and II newborn screening has been available in Taiwan since August 2015. Infants who failed the recheck at recall were referred to MacKay Memorial Hospital for a detailed confirmatory diagnosis. Methods From August 2015 to November 2017, 294,196 and 153,032 infants were screened using tandem mass spectrometry for MPS I and MPS II, respectively. Of these infants, 84 suspected cases (eight for MPS I; 76 for MPS II) were referred for confirmation. Urinary first-line biochemistry examinations were performed first, including urinary GAG quantification, two-dimensional electrophoresis, and tandem mass spectrometry assay for predominant disaccharides derived from GAGs. If the results were positive, a confirmative diagnosis was made according to the results of leukocyte enzymatic assay and molecular DNA analysis. Leukocyte pellets were isolated from EDTA blood and used for fluorescent α-iduronidase (IDUA) or iduronate-2-sulfatase (IDS) enzymatic assay. DNA sequencing analysis was also performed. Results Normal IDS and IDUA enzyme activities were found in most of the referred cases except for four who were strongly suspected of having MPS I and three who were strongly suspected of having MPS II. Of these infants, three with novel mutations of the IDS gene (c.817C > T, c.1025A > G, and c.311A > T) and four with two missense mutations of the IDUA gene (C.300-3C > G, c.1874A > C; c.1037 T > G, c.1091C > T) showed significant deficiencies in IDS and IDUA enzyme activities (< 5% of mean normal activity), respectively. Urinary dermatan sulfate and heparan sulfate quantitative analyses by tandem mass spectrometry also demonstrated significant elevations. The prevalence rates of MPS I and MPS II in Taiwan were 1.35 and 1.96 per 100,000 live births, respectively. Conclusions The early initiation of ERT for MPS can result in better clinical outcomes. An early confirmatory diagnosis increases the probability of receiving appropriate medical care such as ERT quickly enough to avoid irreversible manifestations. All high risk infants identified in this study so far remain asymptomatic and are presumed to be affected with the attenuated disease variants.
Collapse
Affiliation(s)
- Chih-Kuang Chuang
- Division of Genetics and Metabolism, Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan.,College of Medicine, Fu-Jen Catholic University, Taipei, Taiwan
| | - Hsiang-Yu Lin
- Division of Genetics and Metabolism, Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan.,Department of Pediatrics, MacKay Memorial Hospital, Taipei, Taiwan.,The Rare Disease Center, MacKay Memorial Hospital, Taipei, Taiwan.,Department of Early Childhood Care and Education, Mackay Junior College of Medicine, Nursing and Management, Taipei, Taiwan.,Department of Medicine, MacKay Medical College, Taipei, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Tuan-Jen Wang
- Department of Laboratory Medicine, MacKay Memorial Hospital, Taipei, Taiwan
| | - You-Hsin Huang
- The Rare Disease Center, MacKay Memorial Hospital, Taipei, Taiwan
| | - Min-Ju Chan
- The Chinese Foundation of Health, Neonatal Screening Center, Taipei, Taiwan
| | - Hsuan-Chieh Liao
- The Chinese Foundation of Health, Neonatal Screening Center, Taipei, Taiwan
| | - Yun-Ting Lo
- Department of Laboratory Medicine, MacKay Memorial Hospital, Taipei, Taiwan
| | - Li-Yun Wang
- Taipei Institute of Pathology, Neonatal Screening Center, Taipei, Taiwan
| | - Ru-Yi Tu
- Division of Genetics and Metabolism, Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Yi-Ya Fang
- Division of Genetics and Metabolism, Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Tzu-Lin Chen
- Department of Laboratory Medicine, MacKay Memorial Hospital, Taipei, Taiwan
| | - Hui-Chen Ho
- Taipei Institute of Pathology, Neonatal Screening Center, Taipei, Taiwan
| | - Chuan-Chi Chiang
- The Chinese Foundation of Health, Neonatal Screening Center, Taipei, Taiwan.
| | - Shuan-Pei Lin
- Division of Genetics and Metabolism, Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan. .,Department of Pediatrics, MacKay Memorial Hospital, Taipei, Taiwan. .,The Rare Disease Center, MacKay Memorial Hospital, Taipei, Taiwan. .,Department of Early Childhood Care and Education, Mackay Junior College of Medicine, Nursing and Management, Taipei, Taiwan. .,Department of Infant and Child Care, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan. .,Departments of Pediatrics and Medical Research, MacKay Memorial Hospital, No. 92, Sec. 2, Chung-Shan N. Rd, Taipei, 10449, Taiwan.
| |
Collapse
|
53
|
Affiliation(s)
- Gere Sunder-Plassmann
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna, Vienna, Austria
| | - Raphael Schiffmann
- Institute of Metabolic Disease, Baylor Research Institute, Dallas, TX, USA
| | - Kathleen Nicholls
- Royal Melbourne Hospital, University of Melbourne, Parkville, Australia
| |
Collapse
|
54
|
Abstract
Infiltrative cardiomyopathies are characterized by abnormal accumulation or deposition of substances in cardiac tissue leading to cardiac dysfunction. These can be inherited, resulting from mutations in specific genes, which engender a diverse array of extracardiac features but overlapping cardiac phenotypes. This article provides an overview of each inherited infiltrative cardiomyopathy, describing the causative genes, the pathologic mechanisms involved, the resulting cardiac manifestations, and the therapies currently offered or being developed.
Collapse
|
55
|
Piraud M, Pettazzoni M, Lavoie P, Ruet S, Pagan C, Cheillan D, Latour P, Vianey-Saban C, Auray-Blais C, Froissart R. Contribution of tandem mass spectrometry to the diagnosis of lysosomal storage disorders. J Inherit Metab Dis 2018; 41:457-477. [PMID: 29556840 DOI: 10.1007/s10545-017-0126-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/25/2017] [Accepted: 12/11/2017] [Indexed: 02/07/2023]
Abstract
Tandem mass spectrometry (MS/MS) is a highly sensitive and specific technique. Thanks to the development of triple quadrupole analyzers, it is becoming more widely used in laboratories working in the field of inborn errors of metabolism. We review here the state of the art of this technique applied to the diagnosis of lysosomal storage disorders (LSDs) and how MS/MS has changed the diagnostic rationale in recent years. This fine technology brings more sensitive, specific, and reliable methods than the previous biochemical ones for the analysis of urinary glycosaminoglycans, oligosaccharides, and sialic acid. In sphingolipidoses, the quantification of urinary sphingolipids (globotriaosylceramide, sulfatides) is possible. The measurement of new plasmatic biomarkers such as oxysterols, bile acids, and lysosphingolipids allows the screening of many sphingolipidoses and related disorders (Niemann-Pick type C), replacing tedious biochemical techniques. Applied to amniotic fluid, a more reliable prenatal diagnosis or screening of LSDs is now available for fetuses presenting with antenatal manifestations. Applied to enzyme measurements, it allows high throughput assays for the screening of large populations, even newborn screening. The advent of this new method can modify the diagnostic rationale behind LSDs.
Collapse
Affiliation(s)
- Monique Piraud
- Unité Maladies Héréditaires du Métabolisme, Service de Biochimie et Biologie Moléculaire Grand Est, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, 59 boulevard Pinel, 69677, Bron cedex, France.
| | - Magali Pettazzoni
- Unité Maladies Héréditaires du Métabolisme, Service de Biochimie et Biologie Moléculaire Grand Est, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, 59 boulevard Pinel, 69677, Bron cedex, France
| | - Pamela Lavoie
- Service de Génétique Médicale, Département de Pédiatrie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Séverine Ruet
- Unité Maladies Héréditaires du Métabolisme, Service de Biochimie et Biologie Moléculaire Grand Est, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, 59 boulevard Pinel, 69677, Bron cedex, France
| | - Cécile Pagan
- Unité Maladies Héréditaires du Métabolisme, Service de Biochimie et Biologie Moléculaire Grand Est, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, 59 boulevard Pinel, 69677, Bron cedex, France
| | - David Cheillan
- Unité Maladies Héréditaires du Métabolisme, Service de Biochimie et Biologie Moléculaire Grand Est, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, 59 boulevard Pinel, 69677, Bron cedex, France
| | - Philippe Latour
- Unité de Neurogénétique Moléculaire, Service de Biochimie et Biologie Moléculaire Grand Est, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, Lyon, France
| | - Christine Vianey-Saban
- Unité Maladies Héréditaires du Métabolisme, Service de Biochimie et Biologie Moléculaire Grand Est, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, 59 boulevard Pinel, 69677, Bron cedex, France
| | - Christiane Auray-Blais
- Service de Génétique Médicale, Département de Pédiatrie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Roseline Froissart
- Unité Maladies Héréditaires du Métabolisme, Service de Biochimie et Biologie Moléculaire Grand Est, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, 59 boulevard Pinel, 69677, Bron cedex, France
| |
Collapse
|
56
|
Prosser LA, Lam KK, Grosse SD, Casale M, Kemper AR. Using Decision Analysis to Support Newborn Screening Policy Decisions: A Case Study for Pompe Disease. MDM Policy Pract 2018; 3. [PMID: 30123835 PMCID: PMC6095138 DOI: 10.1177/2381468318763814] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Background: Newborn screening is a public health program to identify conditions associated with significant morbidity or mortality that benefit from early intervention. Policy decisions about which conditions to include in newborn screening are complex because data regarding epidemiology and outcomes of early identification are often incomplete. Objectives: To describe expected outcomes of Pompe disease newborn screening and how a decision analysis informed recommendations by a federal advisory committee. Methods: We developed a decision tree to compare Pompe disease newborn screening with clinical identification of Pompe disease in the absence of screening. Cases of Pompe disease were classified into three types: classic infantile-onset disease with cardiomyopathy, nonclassic infantile-onset disease, and late-onset disease. Screening results and 36-month health outcomes were projected for classic and nonclassic infantile-onset cases. Input parameters were based on published and unpublished data supplemented by expert opinion. Results: We estimated that screening 4 million babies born each year in the United States would detect 40 cases (range: 13–56) of infantile-onset Pompe disease compared with 36 cases (range: 13–56) detected clinically without screening. Newborn screening would also identify 94 cases of late-onset Pompe disease that might not become symptomatic for decades. By 36 months, newborn screening would avert 13 deaths (range: 8–19) and decrease the number of individuals requiring mechanical ventilation by 26 (range: 20–28). Conclusions: Pompe disease is a rare condition, but early identification can improve health outcomes. Decision analytic modeling provided a quantitative data synthesis that informed the recommendation of Pompe disease newborn screening.
Collapse
Affiliation(s)
- Lisa A Prosser
- Child Health Evaluation and Research (CHEAR) Center, Division of General Pediatrics, University of Michigan, Ann Arbor, MI, USA (LAP), Duke Clinical and Translational Science Institute, Duke University, Durham, NC, USA (KKL), National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA, USA (SDG), Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA (MC), Division of Ambulatory Pediatrics, Nationwide Children's Hospital, Columbus, OH (ARK)
| | - K K Lam
- Child Health Evaluation and Research (CHEAR) Center, Division of General Pediatrics, University of Michigan, Ann Arbor, MI, USA (LAP), Duke Clinical and Translational Science Institute, Duke University, Durham, NC, USA (KKL), National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA, USA (SDG), Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA (MC), Division of Ambulatory Pediatrics, Nationwide Children's Hospital, Columbus, OH (ARK)
| | - Scott D Grosse
- Child Health Evaluation and Research (CHEAR) Center, Division of General Pediatrics, University of Michigan, Ann Arbor, MI, USA (LAP), Duke Clinical and Translational Science Institute, Duke University, Durham, NC, USA (KKL), National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA, USA (SDG), Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA (MC), Division of Ambulatory Pediatrics, Nationwide Children's Hospital, Columbus, OH (ARK)
| | - Mia Casale
- Child Health Evaluation and Research (CHEAR) Center, Division of General Pediatrics, University of Michigan, Ann Arbor, MI, USA (LAP), Duke Clinical and Translational Science Institute, Duke University, Durham, NC, USA (KKL), National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA, USA (SDG), Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA (MC), Division of Ambulatory Pediatrics, Nationwide Children's Hospital, Columbus, OH (ARK)
| | - Alex R Kemper
- Child Health Evaluation and Research (CHEAR) Center, Division of General Pediatrics, University of Michigan, Ann Arbor, MI, USA (LAP), Duke Clinical and Translational Science Institute, Duke University, Durham, NC, USA (KKL), National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA, USA (SDG), Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA (MC), Division of Ambulatory Pediatrics, Nationwide Children's Hospital, Columbus, OH (ARK)
| |
Collapse
|
57
|
Poletto E, Pasqualim G, Giugliani R, Matte U, Baldo G. Worldwide distribution of common IDUA
pathogenic variants. Clin Genet 2018; 94:95-102. [DOI: 10.1111/cge.13224] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 01/09/2018] [Accepted: 01/23/2018] [Indexed: 12/13/2022]
Affiliation(s)
- E. Poletto
- Gene Therapy Center; Hospital de Clínicas de Porto Alegre; Porto Alegre Brazil
- Postgraduate Program in Genetics and Molecular Biology; Universidade Federal do Rio Grande do Sul; Porto Alegre Brazil
| | - G. Pasqualim
- Gene Therapy Center; Hospital de Clínicas de Porto Alegre; Porto Alegre Brazil
- Postgraduate Program in Genetics and Molecular Biology; Universidade Federal do Rio Grande do Sul; Porto Alegre Brazil
| | - R. Giugliani
- Gene Therapy Center; Hospital de Clínicas de Porto Alegre; Porto Alegre Brazil
- Postgraduate Program in Genetics and Molecular Biology; Universidade Federal do Rio Grande do Sul; Porto Alegre Brazil
- Medical Genetics Service; Hospital de Clínicas de Porto Alegre; Porto Alegre Brazil
- Department of Genetics; Universidade Federal do Rio Grande do Sul; Porto Alegre Brazil
- INAGEMP; National Institute of Population Medical Genetics; Porto Alegre Brazil
| | - U. Matte
- Gene Therapy Center; Hospital de Clínicas de Porto Alegre; Porto Alegre Brazil
- Postgraduate Program in Genetics and Molecular Biology; Universidade Federal do Rio Grande do Sul; Porto Alegre Brazil
- Department of Genetics; Universidade Federal do Rio Grande do Sul; Porto Alegre Brazil
| | - G. Baldo
- Gene Therapy Center; Hospital de Clínicas de Porto Alegre; Porto Alegre Brazil
- Postgraduate Program in Genetics and Molecular Biology; Universidade Federal do Rio Grande do Sul; Porto Alegre Brazil
- Department of Physiology; Universidade Federal do Rio Grande do Sul; Porto Alegre Brazil
| |
Collapse
|
58
|
Fabry disease in the Spanish population: observational study with detection of 77 patients. Orphanet J Rare Dis 2018; 13:52. [PMID: 29631605 PMCID: PMC5891901 DOI: 10.1186/s13023-018-0792-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 03/22/2018] [Indexed: 12/26/2022] Open
Abstract
Background Fabry disease is a multisystemic lysosomal storage disorder caused by the impairment of α-galactosidase A. The incidence of this rare disease is underestimated due to delayed diagnosis. Moreover, the management of the identified subjects is often complicated by the detection of variants of unclear diagnostic interpretation, usually identified in screening studies. We performed an observational study based on biochemical and genetic analysis of 805 dried blood spot samples from patients with clinical symptoms or family history of this pathology, which were collected from 109 Spanish hospitals, all over the country. Results We identified 77 new diagnosed patients with mutations related to classical Fabry disease, as well as 2 subjects with c.374A > T; p.His125Leu, a possible new mutation that need to be confirmed. Additionally, we detected 8 subjects carrying genetic variants possibly linked to late onset Fabry disease (p.Arg118Cys and p.Ala143Thr), 4 cases with polymorphism p.Asp313Tyr and 36 individuals with single nucleotide polymorphisms in intronic regions of GLA. Five of the identified mutations (c.431delG; c.1182delA; c.374A > T; c.932 T > C; c.125 T > A; c.778G > A), which were associated with a classical phenotype have not been previously described. Moreover 3 subjects presenting complex haplotypes made up by the association of intronic variants presented impaired levels of GLA transcripts and Gb3 deposits in skin biopsy. Conclusions Enzymatic screening for Fabry Disease in risk population (2 or more clinical manifestations or family history of the disease) helped to identify undiagnosed patients and unravel the impairment of GLA expression in some subjects with complex haplotypes. Electronic supplementary material The online version of this article (10.1186/s13023-018-0792-8) contains supplementary material, which is available to authorized users.
Collapse
|
59
|
Ou L, Przybilla MJ, Whitley CB. SAAMP 2.0: An algorithm to predict genotype-phenotype correlation of lysosomal storage diseases. Clin Genet 2018; 93:1008-1014. [PMID: 29396849 DOI: 10.1111/cge.13226] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 01/26/2018] [Accepted: 01/30/2018] [Indexed: 01/28/2023]
Abstract
Lysosomal storage diseases (LSDs) are a group of genetic disorders, resulting from deficiencies of lysosomal enzyme. Genotype-phenotype correlation is essential for timely and proper treatment allocation. Recently, by integrating prediction outcomes of 7 bioinformatics tools, we developed a SAAMP algorithm to predict the impact of individual amino-acid substitution. To optimize this approach, we evaluated the performance of these bioinformatics tools in a broad array of genes. PolyPhen and PROVEAN had the best performances, while SNP&GOs, PANTHER and I-Mutant had the worst performances. Therefore, SAAMP 2.0 was developed by excluding 3 tools with worst performance, yielding a sensitivity of 94% and a specificity of 90%. To generalize the guideline to proteins without known structures, we built the three-dimensional model of iduronate-2-sulfatase by homology modeling. Further, we investigated the phenotype severity of known disease-causing mutations of the GLB1 gene, which lead to 2 LSDs (GM1 gangliosidosis and Morquio disease type B). Based on the previous literature and structural analysis, we associated these mutations with disease subtypes and proposed a theory to explain the complicated genotype-phenotype correlation. Collectively, an updated guideline for phenotype prediction with SAAMP 2.0 was proposed, which will provide essential information for early diagnosis and proper treatment allocation, and they may be generalized to many monogenic diseases.
Collapse
Affiliation(s)
- L Ou
- Department of Pediatrics, Gene Therapy Center, Minneapolis, Minnesota, USA
| | - M J Przybilla
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota
| | - C B Whitley
- Department of Pediatrics, Gene Therapy Center, Minneapolis, Minnesota, USA.,Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
60
|
Burlina AB, Polo G, Salviati L, Duro G, Zizzo C, Dardis A, Bembi B, Cazzorla C, Rubert L, Zordan R, Desnick RJ, Burlina AP. Newborn screening for lysosomal storage disorders by tandem mass spectrometry in North East Italy. J Inherit Metab Dis 2018; 41:209-219. [PMID: 29143201 DOI: 10.1007/s10545-017-0098-3] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/21/2017] [Accepted: 09/25/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND Lysosomal storage diseases (LSDs) are inborn errors of metabolism resulting from 50 different inherited disorders. The increasing availability of treatments and the importance of early intervention have stimulated newborn screening (NBS) to diagnose LSDs and permit early intervention to prevent irreversible impairment or severe disability. We present our experience screening newborns in North East Italy to identify neonates with Mucopolysaccharidosis type I (MPS I) and Pompe, Fabry, and Gaucher diseases. METHODS Activities of acid β-glucocerebrosidase (ABG; Gaucher), acid α-glucosidase (GAA; Pompe), acid α-galactosidase (GLA; Fabry), and acid α-L-iduronidase (IDUA; MPS-I) in dried blood spots (DBS) from all newborns during a 17-month period were determined by multiplexed tandem mass spectrometry (MS/MS) using the NeoLSD® assay system. Enzymatic activity cutoff values were determined from 3500 anonymous newborn DBS. In the screening study, samples were retested if the value was below cutoff and a second spot was requested, with referral for confirmatory testing and medical evaluation if a low value was obtained. RESULTS From September 2015 to January 2017, 44,411 newborns were screened for the four LSDs. We recalled 40 neonates (0.09%) for collection of a second DBS. Low activity was confirmed in 20, who had confirmatory testing. Ten of 20 had pathogenic mutations: two Pompe, two Gaucher, five Fabry, and one MPS-I. The incidences of Pompe and Gaucher diseases were similar (1/22,205), with Fabry disease the most frequent (1/8882) and MPS-I the rarest (1/44411). The combined incidence of the four disorders was 1/4411 births. CONCLUSIONS Simultaneously determining multiple enzyme activities by MS/MS, with a focus on specific biochemical markers, successfully detected newborns with LSDs. The high incidence of these disorders supports this screening program.
Collapse
Affiliation(s)
- Alberto B Burlina
- Division of Inherited Metabolic Diseases, Regional Center for Expanded Neonatal Screening Department of Women and Children's Health, University Hospital of Padova, Via Orus 2/B, 35129, Padova, Italy.
| | - Giulia Polo
- Division of Inherited Metabolic Diseases, Regional Center for Expanded Neonatal Screening Department of Women and Children's Health, University Hospital of Padova, Via Orus 2/B, 35129, Padova, Italy
| | - Leonardo Salviati
- Clinical Genetics Unit, Department of Women's and Children's Health, University of Padova, Via Giustiniani, 3, 35128, Padova, Italy
- IRP Città della Speranza, Corso Stati Uniti, 4, 35129, Padova, Italy
| | - Giovanni Duro
- Institute of Biomedicine and Molecular Immunology (IBIM), National Research Council, Via Ugo La Malfa, 153, 90146, Palermo, Italy
| | - Carmela Zizzo
- Institute of Biomedicine and Molecular Immunology (IBIM), National Research Council, Via Ugo La Malfa, 153, 90146, Palermo, Italy
| | - Andrea Dardis
- Regional Coordinator Centre for Rare Diseases, Scientific Coordinator - Academic Medical Center Hospital, Udine, Italy
| | - Bruno Bembi
- Regional Coordinator Centre for Rare Diseases, Scientific Coordinator - Academic Medical Center Hospital, Udine, Italy
| | - Chiara Cazzorla
- Division of Inherited Metabolic Diseases, Regional Center for Expanded Neonatal Screening Department of Women and Children's Health, University Hospital of Padova, Via Orus 2/B, 35129, Padova, Italy
| | - Laura Rubert
- Division of Inherited Metabolic Diseases, Regional Center for Expanded Neonatal Screening Department of Women and Children's Health, University Hospital of Padova, Via Orus 2/B, 35129, Padova, Italy
| | - Roberta Zordan
- Clinical Genetics Unit, Department of Women's and Children's Health, University of Padova, Via Giustiniani, 3, 35128, Padova, Italy
- IRP Città della Speranza, Corso Stati Uniti, 4, 35129, Padova, Italy
| | - Robert J Desnick
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alessandro P Burlina
- Neurological Unit, St. Bassiano Hospital, Via dei Lotti, 40, 36061, Bassano del Grappa, Italy
| |
Collapse
|
61
|
Mashima R, Ohira M, Okuyama T, Tatsumi A. Quantification of the enzyme activities of iduronate-2-sulfatase, N-acetylgalactosamine-6-sulfatase and N-acetylgalactosamine-4-sulfatase using liquid chromatography-tandem mass spectrometry. Mol Genet Metab Rep 2017; 14:36-40. [PMID: 29326871 PMCID: PMC5758840 DOI: 10.1016/j.ymgmr.2017.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/05/2017] [Accepted: 12/05/2017] [Indexed: 12/20/2022] Open
Abstract
Mucopolysaccharidosis (MPS) is a genetic disorder characterized by the accumulation of glycosaminoglycans in the body. Of the multiple MPS disease subtypes, several are caused by defects in sulfatases. Specifically, a defect in iduronate-2-sulfatase (ID2S) leads to MPS II, whereas N-acetylgalactosamine-6-sulfatase (GALN) and N-acetylgalactosamine-4-sulfatase (ARSB) defects relate to MPS IVA and MPS VI, respectively. A previous study reported a combined assay for these three disorders in a 96-well plate using a liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based technique (Kumar et al., Clin Chem 2015 61(11):1363-1371). In our study, we applied this methodology to a Japanese population to examine the assay precision and the separation of populations between disease-affected individuals and controls for these three disorders. Within our assay conditions, the coefficient of variation (CV, %) values for an interday assay of ID2S, GALN, and ARSB were 9%, 18%, and 9%, respectively (n = 7). The average enzyme activities of ID2S, GALN, and ARSB in random neonates were 19.6 ± 5.8, 1.7 ± 0.7, and 13.4 ± 5.2 μmol/h/L (mean ± SD, n = 240), respectively. In contrast, the average enzyme activities of ID2S, GALN, and ARSB in disease-affected individuals were 0.5 ± 0.2 (n = 6), 0.3 ± 0.1 (n = 3), and 0.3 (n = 1) μmol/h/L, respectively. The representative analytical range values corresponding to ID2S, GALN, and ARSB were 39, 17, and 168, respectively. These results raise the possibility that the population of disease-affected individuals could be separated from that of healthy individuals using the LC-MS/MS-based technique.
Collapse
Affiliation(s)
- Ryuichi Mashima
- Department of Clinical Laboratory Medicine, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Mari Ohira
- Department of Clinical Laboratory Medicine, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Torayuki Okuyama
- Department of Clinical Laboratory Medicine, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Akiya Tatsumi
- Department of Clinical Laboratory Medicine, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| |
Collapse
|
62
|
Eyskens F, Devos S. Newborn Screening for Lysosomal Storage Disorders in Belgium. JOURNAL OF INBORN ERRORS OF METABOLISM AND SCREENING 2017. [DOI: 10.1177/2326409817744231] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Francois Eyskens
- Provinciaal Centrum voor Opsporing Metabole Ziekten, Antwerp, Belgium
| | - Sylvie Devos
- Provinciaal Centrum voor de Opsporing van Metabole Aandoeningen, Antwerp, Belgium
| |
Collapse
|
63
|
Improvement in the sensitivity of newborn screening for Fabry disease among females through the use of a high-throughput and cost-effective method, DNA mass spectrometry. J Hum Genet 2017; 63:1-8. [PMID: 29215092 DOI: 10.1038/s10038-017-0366-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 08/07/2017] [Accepted: 09/06/2017] [Indexed: 11/08/2022]
Abstract
Many female carriers of Fabry disease are likely to develop severe morbidity and mortality. However, by our own estimation, around 80% of female newborns are missed by our current enzyme-based screening approach. Our team's aim was to develop an improved cost-effective screening method that is able to detect Fabry disease among female newborns. In Taiwan, based on a database of 916,000 newborns, ~98% of Fabry patients carry mutations out of a pool of only 21 pathogenic mutations. An Agena iPLEX platform was designed to detect these 21 pathogenic mutations using only a single-assay panel. A total of 54,791 female infants were screened and 136 female newborns with the IVS4 + 919G > A mutation and one female newborn with the c.656T > C mutation were identified. Using the current enzyme-based newborn screening approach as baseline, around 83% of female newborns are being missed. Through a family study of the IVS4 female newborns, 30 IVS4 adult family members were found to have left ventricular hypertrophy. Ten patients received endomyocardial biopsy and all were found to have significant globotriaosylceramide (Gb3) accumulation in their cardiomyocytes. All of these individuals now receive enzyme replacement therapy. We have demonstrated that the Agena iPLEX assay is a powerful tool for detecting females with Fabry disease. Furthermore, through this screening, we also have been able to identify many disease-onset adult family members who were originally undiagnosed for Fabry disease. This screening helps them to receive treatment in time before severe and irreversible cardiac damage has occurred.
Collapse
|
64
|
Orsini JJ, Saavedra-Matiz CA, Gelb MH, Caggana M. Newborn screening for Krabbe's disease. J Neurosci Res 2017; 94:1063-75. [PMID: 27638592 DOI: 10.1002/jnr.23781] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 04/27/2016] [Accepted: 05/09/2016] [Indexed: 11/10/2022]
Abstract
Live newborn screening for Krabbe's disease (KD) was initiated in New York on August 7, 2006, and started in Missouri in August, 2012. As of August 7, 2015, nearly 2.5 million infants had been screened, and 443 (0.018%) infants had been referred for followup clinical evaluation; only five infants had been determined to have KD. As of August, 2015, the combined incidence of infantile KD in New York and Missouri is ∼1 per 500,000; however, patients who develop later-onset forms of KD may still emerge. This Review provides an overview of the processes used to develop the screening and followup algorithms. It also includes updated results from screening and discussion of observations, lessons learned, and suggested areas for improvement that will reduce referral rates and the number of infants defined as at risk for later-onset forms of KD. Although current treatment options for infants with early-infantile Krabbe's disease are not curative, over time treatment options should improve; in the meantime, it is essential to evaluate the lessons learned and to ensure that screening is completed in the best possible manner until these improvements can be realized. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Joseph J Orsini
- Laboratory of Human Genetics, Wadsworth Center, New York State Department of Health, Albany, New York.
| | - Carlos A Saavedra-Matiz
- Laboratory of Human Genetics, Wadsworth Center, New York State Department of Health, Albany, New York
| | - Michael H Gelb
- Departments of Chemistry and Biochemistry, University of Washington, Seattle, Washington
| | - Michele Caggana
- Laboratory of Human Genetics, Wadsworth Center, New York State Department of Health, Albany, New York
| |
Collapse
|
65
|
Tortorelli S, Eckerman JS, Orsini JJ, Stevens C, Hart J, Hall PL, Alexander JJ, Gavrilov D, Oglesbee D, Raymond K, Matern D, Rinaldo P. Moonlighting newborn screening markers: the incidental discovery of a second-tier test for Pompe disease. Genet Med 2017; 20:840-846. [PMID: 29095812 DOI: 10.1038/gim.2017.190] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 09/20/2017] [Indexed: 01/14/2023] Open
Abstract
PURPOSE To describe a novel biochemical marker in dried blood spots suitable to improve the specificity of newborn screening for Pompe disease. METHODS The new marker is a ratio calculated between the creatine/creatinine (Cre/Crn) ratio as the numerator and the activity of acid α-glucosidase (GAA) as the denominator. Using Collaborative Laboratory Integrated Reports (CLIR), the new marker was incorporated in a dual scatter plot that can achieve almost complete segregation between Pompe disease and false-positive cases. RESULTS The (Cre/Crn)/GAA ratio was measured in residual dried blood spots of five Pompe cases and was found to be elevated (range 4.41-13.26; 99%ile of neonatal controls: 1.10). Verification was by analysis of 39 blinded specimens that included 10 controls, 24 samples with a definitive classification (16 Pompe, 8 false positives), and 5 with genotypes of uncertain significance. The CLIR tool showed 100% concordance of classification for the 24 known cases. Of the remaining five cases, three p.V222M homozygotes, a benign variant, were classified by CLIR as false positives; two with genotypes of unknown significance, one likely informative, were categorized as Pompe disease. CONCLUSION The CLIR tool inclusive of the new ratio could have prevented at least 12 of 13 (92%) false-positive outcomes.
Collapse
Affiliation(s)
- Silvia Tortorelli
- Biochemical Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA.
| | - Jason S Eckerman
- Biochemical Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Joseph J Orsini
- Laboratory of Human Genetics, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Colleen Stevens
- Laboratory of Human Genetics, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Jeremy Hart
- Division of Laboratory Services, Kentucky Department for Public Health, Frankfort, Kentucky, USA.,Department of Pathology & Laboratory Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Patricia L Hall
- EGL Genetics, Tucker, Georgia, USA.,Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - John J Alexander
- EGL Genetics, Tucker, Georgia, USA.,Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Dimitar Gavrilov
- Biochemical Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Devin Oglesbee
- Biochemical Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Kimiyo Raymond
- Biochemical Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Dietrich Matern
- Biochemical Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Piero Rinaldo
- Biochemical Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| |
Collapse
|
66
|
Low frequency of Fabry disease in patients with common heart disease. Genet Med 2017; 20:754-759. [PMID: 29227985 DOI: 10.1038/gim.2017.175] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 09/05/2017] [Indexed: 12/23/2022] Open
Abstract
PURPOSE To test the hypothesis that undiagnosed patients with Fabry disease exist among patients affected by common heart disease. METHODS Globotriaosylceramide in random whole urine using tandem mass spectroscopy, α-galactosidase A activity in dried blood spots, and next-generation sequencing of pooled or individual genomic DNA samples supplemented by Sanger sequencing. RESULTS We tested 2,256 consecutive patients: 852 women (median age 65 years (19-95)) and 1,404 men (median age 65 years (21-92)). The primary diagnoses were coronary artery disease (n = 994), arrhythmia (n = 607), cardiomyopathy (n = 138), and valvular disease (n = 568). Urinary globotriaosylceramide was elevated in 15% of patients and 15 males had low α-galactosidase A activity. GLA variants found included R118C (n = 2), D83N, and D313Y (n = 7); IVS6-22 C>T, IVS4-16 A>G, IVS2+990C>A, 5'UTR-10 C>T (n = 4), IVS1-581 C>T, IVS1-1238 G>A, 5'UTR-30 G>A, IVS2+590C>T, IVS0-12 G>A, IVS4+68A>G, IVS0-10 C>T, IVS2-81-77delCAGCC, IVS2-77delC. Although the pathogenicity of several of these missense mutations and complex intronic haplotypes has been controversial, none of the patients screened in this study were diagnosed definitively with Fabry disease. CONCLUSION This population of patients with common heart disease did not contain a substantial number of patients with undiagnosed Fabry disease. GLA gene sequencing is superior to urinary globotriaosylceramide or α-galactosidase A activity in the screening for Fabry disease.
Collapse
|
67
|
E-Learning for Rare Diseases: An Example Using Fabry Disease. Int J Mol Sci 2017; 18:ijms18102049. [PMID: 28946642 PMCID: PMC5666731 DOI: 10.3390/ijms18102049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 09/20/2017] [Accepted: 09/21/2017] [Indexed: 12/23/2022] Open
Abstract
Background: Rare diseases represent a challenge for physicians because patients are rarely seen, and they can manifest with symptoms similar to those of common diseases. In this work, genetic confirmation of diagnosis is derived from DNA sequencing. We present a tutorial for the molecular analysis of a rare disease using Fabry disease as an example. Methods: An exonic sequence derived from a hypothetical male patient was matched against human reference data using a genome browser. The missense mutation was identified by running BlastX, and information on the affected protein was retrieved from the database UniProt. The pathogenic nature of the mutation was assessed with PolyPhen-2. Disease-specific databases were used to assess whether the missense mutation led to a severe phenotype, and whether pharmacological therapy was an option. Results: An inexpensive bioinformatics approach is presented to get the reader acquainted with the diagnosis of Fabry disease. The reader is introduced to the field of pharmacological chaperones, a therapeutic approach that can be applied only to certain Fabry genotypes. Conclusion: The principle underlying the analysis of exome sequencing can be explained in simple terms using web applications and databases which facilitate diagnosis and therapeutic choices.
Collapse
|
68
|
Chuang CK, Lin HY, Wang TJ, Huang SF, Lin SP. Bio-Plex immunoassay measuring the quantity of lysosomal N-acetylgalactosamine-6-sulfatase protein in dried blood spots for the screening of mucopolysaccharidosis IVA in newborn: a pilot study. BMJ Open 2017; 7:e014410. [PMID: 28710204 PMCID: PMC5734244 DOI: 10.1136/bmjopen-2016-014410] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE Mucopolysaccharidosis (MPS) IVA (Morquio syndrome A) is an autosomal-recessive lysosomal storage disorder caused by the deficiency of N-acetylgalactosamine-6-sulfatase (GALNS) resulting in excessive lysosomal storage of keratan sulfate. Treatments for MPS IVA have recently become available with optimal outcomes associated with early diagnosis and treatment which can be achieved by newborn screening. DESIGN Newborn screening programme for MPS IVA pilot study. SETTING MacKay Memorial Hospital (MMH), Taipei and another three branch hospitals in Taiwan. PARTICIPANTS A total of 7415 newborns were born in four branch hospitals of MMH and had joined the MPS IVA newborn screening programme. Written informed consents were obtained from parents prior to the screening process (12MMHIS188 approved by MacKay Memorial Hospital Institutional Review Board). OUTCOME MEASURES An alternative newborn screening method for MPS IVA has been performed. Screening involved measuring the quantity of GALNS in dried blood spot (DBS) from newborn infants using the Bio-Plex immunoassay. The amount of fluorescence sorting detected by yttrium aluminium garnet laser was proportional to the quantity of GALNS protein. RESULTS Of the 7415 neonates analysed, eight infants whose GALNS levels were below the cut-off value of 8.30 µg/L had been recalled for a second DBS collection. The reference values were 8.30-27.43 µg/L. In patients with confirmed MPS IVA (n=11), the GALNS quantities were far below 5% of the normal population. CONCLUSION The Bio-Plex immunoassay is a validated method used for measuring GALNS protein in DBS and has the potential to be adopted for MPS IVA newborn screening study design.
Collapse
Affiliation(s)
- Chih-Kuang Chuang
- Division of Genetics and Metabolism, Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan
- College of Medicine, Fu-Jen Catholic University, Taipei, Taiwan
- Departmentof Chemical Engineering and Biotechnology, Institute of Chemical Engineering. National Taipei University of Technology, Taipei, Taiwan., Taipei, Taiwan
| | - Hsiang-Yu Lin
- Division of Genetics and Metabolism, Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan
- Department of Pediatrics, Mackay Memorial Hospital, Taipei, Taiwan
- Mackay Junior College of Medicine, Nursing and Management, Taipei, Taiwan
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Tuan-Jen Wang
- Department of Laboratory Medicine, Mackay Memorial Hospital, Taipei, Taiwan
| | - Sung-Fa Huang
- Department of Laboratory Medicine, Mackay Memorial Hospital, Taipei, Taiwan
| | - Shuan-Pei Lin
- Division of Genetics and Metabolism, Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan
- Department of Pediatrics, Mackay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
- Department of Infant and Child Care, National Taipei University of Nursing and Health Science, Taipei, Taiwan
| |
Collapse
|
69
|
Bravo H, Neto EC, Schulte J, Pereira J, Filho CS, Bittencourt F, Sebastião F, Bender F, de Magalhães APS, Guidobono R, Trapp FB, Michelin-Tirelli K, Souza CF, Rojas Málaga D, Pasqualim G, Brusius-Facchin AC, Giugliani R. Investigation of newborns with abnormal results in a newborn screening program for four lysosomal storage diseases in Brazil. Mol Genet Metab Rep 2017; 12:92-97. [PMID: 28721335 PMCID: PMC5498414 DOI: 10.1016/j.ymgmr.2017.06.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/15/2017] [Accepted: 06/16/2017] [Indexed: 12/27/2022] Open
Abstract
Lysosomal storage diseases (LSDs) are genetic disorders, clinically heterogeneous, mainly caused by defects in genes encoding lysosomal enzymes that degrade macromolecules. Several LSDs already have specific therapies that may improve clinical outcomes, especially if introduced early in life. With this aim, screening methods have been established and newborn screening (NBS) for some LSDs has been developed. Such programs should include additional procedures for the confirmation (or not) of the cases that had an abnormal result in the initial screening. We present here the methods and results of the additional investigation performed in four babies with positive initial screening results in a program of NBS for LSDs performed by a private laboratory in over 10,000 newborns in Brazil. The suspicion in these cases was of Mucopolysaccharidosis I - MPS I (in two babies), Pompe disease and Gaucher disease (one baby each). One case of pseudodeficiency for MPS I, 1 carrier for MPS I, 1 case of pseudodeficiency for Pompe disease and 1 carrier for Gaucher disease were identified. This report illustrates the challenges that may be encountered by NBS programs for LSDs, and the need of a comprehensive protocol for the rapid and precise investigation of the babies who have an abnormal screening result.
Collapse
Affiliation(s)
- Heydy Bravo
- Post-Graduate Program of Genetics and Molecular Biology, UFRGS, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS, Brazil
| | | | - Jaqueline Schulte
- CTN Diagnósticos, Av. Ipiranga 5000, Porto Alegre, RS 90610-000, Brazil
| | - Jamile Pereira
- CTN Diagnósticos, Av. Ipiranga 5000, Porto Alegre, RS 90610-000, Brazil
| | | | - Fernanda Bittencourt
- Medical Genetics Service, HCPA, Rua Ramiro Barcelos 2350, Porto Alegre, RS 90035-903, Brazil
| | - Fernanda Sebastião
- Medical Genetics Service, HCPA, Rua Ramiro Barcelos 2350, Porto Alegre, RS 90035-903, Brazil
| | - Fernanda Bender
- Medical Genetics Service, HCPA, Rua Ramiro Barcelos 2350, Porto Alegre, RS 90035-903, Brazil
| | | | - Régis Guidobono
- Medical Genetics Service, HCPA, Rua Ramiro Barcelos 2350, Porto Alegre, RS 90035-903, Brazil
| | - Franciele Barbosa Trapp
- Medical Genetics Service, HCPA, Rua Ramiro Barcelos 2350, Porto Alegre, RS 90035-903, Brazil
| | | | - Carolina F.M. Souza
- Medical Genetics Service, HCPA, Rua Ramiro Barcelos 2350, Porto Alegre, RS 90035-903, Brazil
| | - Diana Rojas Málaga
- Post-Graduate Program of Genetics and Molecular Biology, UFRGS, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS, Brazil
| | - Gabriela Pasqualim
- Post-Graduate Program of Genetics and Molecular Biology, UFRGS, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS, Brazil
- Gene Therapy Center, Experimental Research Center, HCPA, Rua Ramiro Barcelos 2350, Porto Alegre, RS 90035-903, Brazil
| | | | - Roberto Giugliani
- Post-Graduate Program of Genetics and Molecular Biology, UFRGS, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS, Brazil
- Medical Genetics Service, HCPA, Rua Ramiro Barcelos 2350, Porto Alegre, RS 90035-903, Brazil
- Post-Graduate Program in Medical Sciences, UFRGS, Rua Ramiro Barcelos 2400, 90035-003 Porto Alegre, RS, Brazil
- Gene Therapy Center, Experimental Research Center, HCPA, Rua Ramiro Barcelos 2350, Porto Alegre, RS 90035-903, Brazil
- Corresponding author at: Medical Genetics Service, HCPA, Rua Ramiro Barcelos 2350, Porto Alegre, RS, Brazil.Medical Genetics ServiceHCPARua Ramiro Barcelos 2350Porto AlegreRSBrazil
| |
Collapse
|
70
|
Liao HC, Chan MJ, Yang CF, Chiang CC, Niu DM, Huang CK, Gelb MH. Mass Spectrometry but Not Fluorimetry Distinguishes Affected and Pseudodeficiency Patients in Newborn Screening for Pompe Disease. Clin Chem 2017; 63:1271-1277. [PMID: 28450385 PMCID: PMC5524447 DOI: 10.1373/clinchem.2016.269027] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 03/09/2017] [Indexed: 11/06/2022]
Abstract
BACKGROUND Deficiency of the lysosomal enzyme acid α-glucosidase (GAA) causes Pompe disease. Newborn screening for Pompe disease is ongoing, and improved methods for distinguishing affected patients from those with pseudodeficiency, especially in the Asian population, would substantially reduce the number of patient referrals for clinical follow-up. METHODS We measured the enzymatic activity of GAA in dried blood spots on newborn screening cards (DBS) using a tandem mass spectrometry (MS/MS) assay. The assay displayed a relatively large analytical range compared to the fluorimetric assay with 4-methylumbelliferyl-α-glucoside. DBS from newborns confirmed to have infantile-onset Pompe disease (IOPD, n = 11) or late-onset Pompe disease (LOPD) (n = 12) and those from patients bearing pseudodeficiency alleles with or without Pompe mutations, or Pompe disease carriers (n = 230) were studied. RESULTS With use of the MS/MS GAA assay in DBS, 96% of the pseudodeficiency newborns and all of the Pompe disease carriers were well separated from the IOPD and LOPD newborns. The fluorimetric assay separated <10% of the pseudodeficiencies from the IOPD/LOPD group. CONCLUSIONS The relatively large analytical range MS/MS GAA assay but not the fluorimetric assay in DBS provides a robust approach to reduce the number of referrals and should dramatically facilitate newborn screening of Pompe disease.
Collapse
Affiliation(s)
- Hsuan-Chieh Liao
- The Chinese Foundation of Health, Neonatal Screening Center, Taipei, Taiwan; .,Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Min-Ju Chan
- The Chinese Foundation of Health, Neonatal Screening Center, Taipei, Taiwan
| | - Chia-Feng Yang
- Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan,Institute of Environmental and Occupational Health Sciences, National Yang-Ming University
| | - Chuan-Chi Chiang
- The Chinese Foundation of Health, Neonatal Screening Center, Taipei, Taiwan
| | - Dau-Ming Niu
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan,Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chun-Kai Huang
- Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Michael H. Gelb
- Depts. of Chemistry and Biochemistry, University of Washington, Seattle, WA 98115 USA,Address correspondence to Hsuan-Chieh Liao, The Chinese Foundation of Health, Neonatal Screening Center, Taipei, Taiwan, phone + 886-8768-1020#25, fax + 886-8768-1021, or Michael H. Gelb, Univ. of Washington, phone 1-206 543-7142, fax 1-206-685-8665,
| |
Collapse
|
71
|
Khan SA, Peracha H, Ballhausen D, Wiesbauer A, Rohrbach M, Gautschi M, Mason RW, Giugliani R, Suzuki Y, Orii KE, Orii T, Tomatsu S. Epidemiology of mucopolysaccharidoses. Mol Genet Metab 2017; 121:227-240. [PMID: 28595941 PMCID: PMC5653283 DOI: 10.1016/j.ymgme.2017.05.016] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/22/2017] [Accepted: 05/22/2017] [Indexed: 12/15/2022]
Abstract
The aim of this study was to obtain data about the epidemiology of the different types of mucopolysaccharidoses in Japan and Switzerland and to compare with similar data from other countries. Data for Japan was collected between 1982 and 2009, and 467 cases with MPS were identified. The combined birth prevalence was 1.53 per 100,000 live births. The highest birth prevalence was 0.84 for MPS II, accounting for 55% of all MPS. MPS I, III, and IV accounted for 15, 16, and 10%, respectively. MPS VI and VII were more rare and accounted for 1.7 and 1.3%, respectively. A retrospective epidemiological data collection was performed in Switzerland between 1975 and 2008 (34years), and 41 living MPS patients were identified. The combined birth prevalence was 1.56 per 100,000 live births. The highest birth prevalence was 0.46 for MPS II, accounting for 29% of all MPS. MPS I, III, and IV accounted for 12, 24, and 24%, respectively. As seen in the Japanese population, MPS VI and VII were more rare and accounted for 7.3 and 2.4%, respectively. The high birth prevalence of MPS II in Japan was comparable to that seen in other East Asian countries where this MPS accounted for approximately 50% of all forms of MPS. Birth prevalence was also similar in some European countries (Germany, Northern Ireland, Portugal and the Netherlands) although the prevalence of other forms of MPS is also reported to be higher in these countries. Birth prevalence of MPS II in Switzerland and other European countries is comparatively lower. The birth prevalence of MPS III and IV in Switzerland is higher than in Japan but comparable to that in most other European countries. Moreover, the birth prevalence of MPS VI and VII was very low in both, Switzerland and Japan. Overall, the frequency of MPS varies for each population due to differences in ethnic backgrounds and/or founder effects that affect the birth prevalence of each type of MPS, as seen for other rare genetic diseases. Methods for identification of MPS patients are not uniform across all countries, and consequently, if patients are not identified, recorded prevalence rates will be aberrantly low.
Collapse
Affiliation(s)
- Shaukat A Khan
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States
| | - Hira Peracha
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States
| | - Diana Ballhausen
- Centre for Molecular Diseases, Service for Genetic Medicine, University Hospital Lausanne, Switzerland
| | - Alfred Wiesbauer
- Institute of Social and Preventive Medicine, University of Bern, Switzerland
| | - Marianne Rohrbach
- Division of Metabolism and Children's Research Centre (CRC), University Children's Hospital, Zurich, Switzerland
| | - Matthias Gautschi
- Division of Endocrinology, Diabetology and Metabolism, University Children's Hospital, University Institute of Clinical Chemistry, Inselspital, University of Bern, Bern, Switzerland
| | - Robert W Mason
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States
| | - Roberto Giugliani
- Medical Genetics Service, HCPA, Dep. Genetics, UFRGS, and INAGEMP, Porto Alegre, Brazil
| | | | - Kenji E Orii
- Department of Pediatrics, Gifu University, Gifu, Japan
| | - Tadao Orii
- Department of Pediatrics, Gifu University, Gifu, Japan
| | - Shunji Tomatsu
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States; Department of Pediatrics, Gifu University, Gifu, Japan; Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA, United States.
| |
Collapse
|
72
|
Abstract
Started in 1963 by Robert Guthrie, newborn screening (NBS) is considered to be one of the great public health achievements. Its original goal was to screen newborns for conditions that could benefit from presymptomatic treatment, thereby reducing associated morbidity and mortality. With advances in technology, the number of disorders included in NBS programs increased. Pompe disease is a good candidate for NBS. Because decisions regarding which diseases should be included in NBS panels are made regionally and locally, programs and efforts for NBS for Pompe disease have been inconsistent both in the United States and globally. In this article, published in the "Newborn Screening, Diagnosis, and Treatment for Pompe Disease" guidance supplement, the Pompe Disease Newborn Screening Working Group, an international group of experts in both NBS and Pompe disease, review the methods used for NBS for Pompe disease and summarize results of current and ongoing NBS programs in the United States and other countries. Challenges and potential drawbacks associated with NBS also are discussed.
Collapse
Affiliation(s)
- Olaf A Bodamer
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts;
| | - C Ronald Scott
- Division of Molecular Medicine, Department of Pediatrics, University of Washington, Seattle, Washington; and
| | - Roberto Giugliani
- Medical Genetics Service, Hospital de Clinicas de Porto Alegre (HCPA) and Department of Genetics, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | | |
Collapse
|
73
|
|
74
|
Schielen PCJI, Kemper EA, Gelb MH. Newborn Screening for Lysosomal Storage Diseases: A Concise Review of the Literature on Screening Methods, Therapeutic Possibilities and Regional Programs. Int J Neonatal Screen 2017; 3:6. [PMID: 28730181 PMCID: PMC5515486 DOI: 10.3390/ijns3020006] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Newborn screening for lysosomal storage diseases (LSDs) is increasingly being considered as an option. The development of analytical screening methods, of second-tier methods, and of therapeutic possibilities, are paving the way for routine screening for LSDs in the coming years. Here, we give a brief description of the current status quo, what screening methods are currently available or are in the pipeline, what is the current status of therapeutic possibilities for LSDs, what LSDs are the most obvious candidates for introduction in screening programs, and what LSDs are already part of regional or national pilot or routine screening programs worldwide.
Collapse
Affiliation(s)
- Peter C. J. I. Schielen
- Reference Laboratory for Neonatal Screening, Centre for Infectious Diseases Research, Diagnostics and Screening, National Institute for Public Health and the Environment, 3720 BA Bilthoven, The Netherlands
- Correspondence: ; Tel.: +31-30-274-3534
| | - Evelien A. Kemper
- Department of Clinical Chemistry, IJsselland Hospital, 2906 ZC Capelle ad IJssel, The Netherlands
| | - Michael H. Gelb
- Departments of Chemistry and Biochemistry, University of Washington, Seattle, WD 98195, USA
| |
Collapse
|
75
|
Liu Y, Yi F, Kumar AB, Kumar Chennamaneni N, Hong X, Scott CR, Gelb MH, Turecek F. Multiplex Tandem Mass Spectrometry Enzymatic Activity Assay for Newborn Screening of the Mucopolysaccharidoses and Type 2 Neuronal Ceroid Lipofuscinosis. Clin Chem 2017; 63:1118-1126. [PMID: 28428354 PMCID: PMC5545178 DOI: 10.1373/clinchem.2016.269167] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 02/14/2017] [Indexed: 11/06/2022]
Abstract
BACKGROUND We expanded the use of tandem mass spectrometry combined with liquid chromatography (LC-MS/MS) for multiplex newborn screening of seven lysosomal enzymes in dried blood spots (DBS). The new assays are for enzymes responsible for the mucopolysaccharidoses (MPS-I, -II, -IIIB, -IVA, -VI, and -VII) and type 2 neuronal ceroid lipofuscinosis (LINCL). METHODS New substrates were prepared and characterized for tripeptidyl peptidase 1 (TPP1), α-N-acetylglucosaminidase (NAGLU), and lysosomal β-glucuronidase (GUSB). These assays were combined with previously developed assays to provide a multiplex LC-MS/MS assay of 7 lysosomal storage diseases. Multiple reaction monitoring of ion dissociations for enzyme products and deuterium-labeled internal standards was used to quantify the enzyme activities. RESULTS Deidentified DBS samples from 62 nonaffected newborns were analyzed to simultaneously determine (run time 2 min per DBS) the activities of TPP1, NAGLU, and GUSB, along with those for α-iduronidase (IDUA), iduronate-2-sulfatase (I2S), N-acetylgalactosamine-6-sulfatase (GALNS), and N-acetylgalactosamine-4-sulfatase (ARSB). The activities measured in the 7-plex format showed assay response-to-blank-activity ratios (analytical ranges) of 102-909 that clearly separated healthy infants from affected children. CONCLUSIONS The new multiplex assay provides a robust comprehensive newborn screening assay for the mucopolysaccharidoses. The method has been expanded to include additional lysosomal storage diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Michael H Gelb
- Departments of Chemistry,
- Biochemistry, University of Washington, Seattle, WA
| | | |
Collapse
|
76
|
Abstract
Lysosomes are cytoplasmic organelles that contain a variety of different hydrolases. A genetic deficiency in the enzymatic activity of one of these hydrolases will lead to the accumulation of the material meant for lysosomal degradation. Examples include glycogen in the case of Pompe disease, glycosaminoglycans in the case of the mucopolysaccharidoses, glycoproteins in the cases of the oligosaccharidoses, and sphingolipids in the cases of Niemann-Pick disease types A and B, Gaucher disease, Tay-Sachs disease, Krabbe disease, and metachromatic leukodystrophy. Sometimes, the lysosomal storage can be caused not by the enzymatic deficiency of one of the hydrolases, but by the deficiency of an activator protein, as occurs in the AB variant of GM2 gangliosidosis. Still other times, the accumulated lysosomal material results from failed egress of a small molecule as a consequence of a deficient transporter, as in cystinosis or Salla disease. In the last couple of decades, enzyme replacement therapy has become available for a number of lysosomal storage diseases. Examples include imiglucerase, taliglucerase and velaglucerase for Gaucher disease, laronidase for Hurler disease, idursulfase for Hunter disease, elosulfase for Morquio disease, galsulfase for Maroteaux-Lamy disease, alglucosidase alfa for Pompe disease, and agalsidase alfa and beta for Fabry disease. In addition, substrate reduction therapy has been approved for certain disorders, such as eliglustat for Gaucher disease. The advent of treatment options for some of these disorders has led to newborn screening pilot studies, and ultimately to the addition of Pompe disease and Hurler disease to the Recommended Uniform Screening Panel (RUSP) in 2015 and 2016, respectively.
Collapse
Affiliation(s)
- Carlos R. Ferreira
- Division of Genetics and Metabolism, Children’s National Health System, Washington, DC, USA
- George Washington University School of Medicine & Health Sciences, Washington, DC, USA
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - William A. Gahl
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
77
|
Huang J, Khan A, Au BC, Barber DL, López-Vásquez L, Prokopishyn NL, Boutin M, Rothe M, Rip JW, Abaoui M, Nagree MS, Dworski S, Schambach A, Keating A, West ML, Klassen J, Turner PV, Sirrs S, Rupar CA, Auray-Blais C, Foley R, Medin JA. Lentivector Iterations and Pre-Clinical Scale-Up/Toxicity Testing: Targeting Mobilized CD34 + Cells for Correction of Fabry Disease. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2017; 5:241-258. [PMID: 28603745 PMCID: PMC5453867 DOI: 10.1016/j.omtm.2017.05.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 05/08/2017] [Indexed: 12/22/2022]
Abstract
Fabry disease is a rare lysosomal storage disorder (LSD). We designed multiple recombinant lentivirus vectors (LVs) and tested their ability to engineer expression of human α-galactosidase A (α-gal A) in transduced Fabry patient CD34+ hematopoietic cells. We further investigated the safety and efficacy of a clinically directed vector, LV/AGA, in both ex vivo cell culture studies and animal models. Fabry mice transplanted with LV/AGA-transduced hematopoietic cells demonstrated α-gal A activity increases and lipid reductions in multiple tissues at 6 months after transplantation. Next we found that LV/AGA-transduced Fabry patient CD34+ hematopoietic cells produced even higher levels of α-gal A activity than normal CD34+ hematopoietic cells. We successfully transduced Fabry patient CD34+ hematopoietic cells with “near-clinical grade” LV/AGA in small-scale cultures and then validated a clinically directed scale-up transduction process in a GMP-compliant cell processing facility. LV-transduced Fabry patient CD34+ hematopoietic cells were subsequently infused into NOD/SCID/Fabry (NSF) mice; α-gal A activity corrections and lipid reductions were observed in several tissues 12 weeks after the xenotransplantation. Additional toxicology studies employing NSF mice xenotransplanted with the therapeutic cell product demonstrated minimal untoward effects. These data supported our successful clinical trial application (CTA) to Health Canada and opening of a “first-in-the-world” gene therapy trial for Fabry disease.
Collapse
Affiliation(s)
- Ju Huang
- University Health Network, Toronto, ON M5G 1L7, Canada
| | - Aneal Khan
- Department of Medical Genetics, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Bryan C Au
- University Health Network, Toronto, ON M5G 1L7, Canada
| | - Dwayne L Barber
- University Health Network, Toronto, ON M5G 1L7, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Lucía López-Vásquez
- University Health Network, Toronto, ON M5G 1L7, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Nicole L Prokopishyn
- Department of Pathology and Laboratory Medicine, University of Calgary and Cellular Therapy Laboratory, Calgary Lab Services, Calgary, AB T2N 1N4, Canada
| | - Michel Boutin
- Division of Medical Genetics, Department of Pediatrics, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Michael Rothe
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Jack W Rip
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 5C1, Canada
| | - Mona Abaoui
- Division of Medical Genetics, Department of Pediatrics, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Murtaza S Nagree
- University Health Network, Toronto, ON M5G 1L7, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Shaalee Dworski
- University Health Network, Toronto, ON M5G 1L7, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany.,Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | - Michael L West
- Division of Nephrology, Department of Medicine, Dalhousie University, Halifax, NS B3H 1V8, Canada
| | - John Klassen
- Department of Hematology, University of Calgary, Foothills Hospital, Calgary, AB T2N 2T9, Canada
| | - Patricia V Turner
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Sandra Sirrs
- Division of Endocrinology, Department of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - C Anthony Rupar
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 5C1, Canada
| | - Christiane Auray-Blais
- Division of Medical Genetics, Department of Pediatrics, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Ronan Foley
- Juravinski Hospital and Cancer Centre, Hamilton, ON L8V 5C2, Canada
| | - Jeffrey A Medin
- University Health Network, Toronto, ON M5G 1L7, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada.,Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
78
|
Navarrete-Martínez JI, Limón-Rojas AE, Gaytán-García MDJ, Reyna-Figueroa J, Wakida-Kusunoki G, Delgado-Calvillo MDR, Cantú-Reyna C, Cruz-Camino H, Cervantes-Barragán DE. Newborn screening for six lysosomal storage disorders in a cohort of Mexican patients: Three-year findings from a screening program in a closed Mexican health system. Mol Genet Metab 2017; 121:16-21. [PMID: 28302345 DOI: 10.1016/j.ymgme.2017.03.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 02/28/2017] [Accepted: 03/01/2017] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To evaluate the results of a lysosomal newborn screening (NBS) program in a cohort of 20,018 Mexican patients over the course of 3years in a closed Mexican Health System (Petróleos Mexicanos [PEMEX] Health Services). STUDY DESIGN Using dried blood spots (DBS), we performed a multiplex tandem mass spectrometry enzymatic assay for six lysosomal storage disorders (LSDs) including Pompe disease, Fabry disease, Gaucher disease, mucopolysaccharidosis type I (MPS-I), Niemann-Pick type A/B, and Krabbe disease. Screen-positive cases were confirmed using leukocyte enzymatic activity and DNA molecular analysis. RESULTS From July 2012 to April 2016, 20,018 patients were screened; 20 patients were confirmed to have an LSD phenotype (99.9 in 100,000 newborns). Final distributions include 11 Pompe disease, five Fabry disease, two MPS-I, and two Niemann-Pick type A/B patients. We did not find any Gaucher or Krabbe patients. A final frequency of 1 in 1001 LSD newborn phenotypes was established. DISCUSSION NBS is a major public health achievement that has decreased the morbidity and mortality of inborn errors of metabolism. The introduction of NBS for LSD presents new challenges. This is the first multiplex Latin-American study of six LSDs detected through NBS.
Collapse
Affiliation(s)
| | - Ana Elena Limón-Rojas
- General Dictatorate, Hospital Central Sur de Alta Especialidad, PEMEX, Mexico City, Mexico
| | | | - Jesús Reyna-Figueroa
- Department of Medical Education and Research, Hospital Central Sur de Alta Especialidad, PEMEX, Mexico City, Mexico
| | | | | | - Consuelo Cantú-Reyna
- Genomi-k SAPI de CV. Monterrey, Nuevo León, Mexico; Escuela de Medicina Tecnológico de Monterrey, Monterrey, Nuevo León, Mexico
| | - Héctor Cruz-Camino
- Genomi-k SAPI de CV. Monterrey, Nuevo León, Mexico; Escuela de Biotecnología y Ciencias de la Salud, Tecnológico de Monterrey, Monterrey, Nuevo León, Mexico
| | - David Eduardo Cervantes-Barragán
- Department of Genetics, Hospital Central Sur de Alta Especialidad, PEMEX, Mexico City, Mexico; Facultad Mexicana de Medicina, Universidad La Salle, Mexico City, Mexico.
| |
Collapse
|
79
|
Politei J, Durand C, Schenone AB, Torres A, Mukdsi J, Thurberg BL. Chronic intestinal pseudo-obstruction. Did you search for lysosomal storage diseases? Mol Genet Metab Rep 2017; 11:8-11. [PMID: 28377888 PMCID: PMC5369854 DOI: 10.1016/j.ymgmr.2017.03.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 03/19/2017] [Indexed: 01/15/2023] Open
Abstract
Chronic intestinal pseudo-obstruction results in clinical manifestations that resemble intestinal obstruction but in the absence of any physical obstructive process. Fabry disease is an X-linked lysosomal storage disease characterized by the dysfunction of multiple systems, including significant gastrointestinal involvement. We report the occurrence of chronic intestinal pseudo-obstruction in two unrelated patients with Fabry disease and the possible explanation of a direct relation of these two disorders. In Fabry disease, gastrointestinal symptoms occur in approximately 70% of male patients, but the frequency ranges from 19% to 69% in different series. In some patients, colonic dysmotility due glycolipid deposition in autonomic plexus and ganglia can lead to the pseudo-obstruction syndrome, simulating intestinal necrosis. That is why up to this date colostomy has been performed in some cases, even for children with FD without cardiac, renal or cerebrovascular compromise. Early treatment with enzyme replacement therapy in asymptomatic or mildly symptomatic patients may be justified in order to prevent disease progression. Several studies have demonstrated that enzyme replacement therapy alleviates GI manifestations. Because of the non-specific nature of the gastrointestinal symptoms, diagnosis of Fabry disease is often delayed for several years. Gastrointestinal involvement is often misdiagnosed or under-reported. It is therefore very important to consider Fabry disease in the differential diagnosis of chronic intestinal pseudo-obstruction.
Collapse
Affiliation(s)
- J Politei
- Neurology Department, Fundación para el Estudio de las Enfermedades Neurometabólicas, Buenos Aires, Argentina
| | - C Durand
- Neurology Department, Fundación para el Estudio de las Enfermedades Neurometabólicas, Buenos Aires, Argentina
| | - A B Schenone
- Neurology Department, Fundación para el Estudio de las Enfermedades Neurometabólicas, Buenos Aires, Argentina
| | - A Torres
- Electronic Microscopy Center, Research Institute in Health Sciences, INICSA-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - J Mukdsi
- Electronic Microscopy Center, Research Institute in Health Sciences, INICSA-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - B L Thurberg
- Department of Pathology, Sanofi Genzyme, Framingham, MA, USA
| |
Collapse
|
80
|
Clarke LA, Atherton AM, Burton BK, Day-Salvatore DL, Kaplan P, Leslie ND, Scott CR, Stockton DW, Thomas JA, Muenzer J. Mucopolysaccharidosis Type I Newborn Screening: Best Practices for Diagnosis and Management. J Pediatr 2017; 182:363-370. [PMID: 27939258 DOI: 10.1016/j.jpeds.2016.11.036] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 09/26/2016] [Accepted: 11/07/2016] [Indexed: 10/20/2022]
Affiliation(s)
- Lorne A Clarke
- Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada.
| | | | - Barbara K Burton
- Ann and Robert H. Lurie Children's Hospital and Northwestern University Feinberg School of Medicine, Chicago, IL
| | | | - Paige Kaplan
- The Children's Hospital of Philadelphia, Philadelphia, PA
| | | | | | - David W Stockton
- Children's Hospital of Michigan and Wayne State University, Detroit, MI
| | | | - Joseph Muenzer
- University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
81
|
Auray-Blais C, Lavoie P, Boutin M, Ntwari A, Hsu TR, Huang CK, Niu DM. Biomarkers associated with clinical manifestations in Fabry disease patients with a late-onset cardiac variant mutation. Clin Chim Acta 2017; 466:185-193. [PMID: 28108302 DOI: 10.1016/j.cca.2017.01.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 12/24/2016] [Accepted: 01/17/2017] [Indexed: 01/08/2023]
Abstract
BACKGROUND Fabry disease is a lysosomal storage disorder with an incidence of 1:1600 for the late-onset IVS4+919G>A cardiac variant mutation in Taiwan. Signs and symptoms of this cardiac variant include left ventricular hypertrophy, mitral insufficiency and/or arrhythmias. The search for biomarkers that might predict the clinical outcomes and guide treatment options is important. We thus investigated relationships between Fabry disease biomarkers (such as globotriaosylceramide (Gb3), globotriaosylsphingosine (lyso-Gb3)/related analogues) and age, gender, enzyme activity, clinical manifestations and severity of the disease in these patients. METHOD Urine and plasma biomarkers were analyzed using tandem mass spectrometry. A large cohort of 191 adult and pediatric Fabry patients carrying the IVS4+919G>A mutation was studied. Some patients were members of the same family. RESULTS Our results show that the plasma lyso-Gb3 level, and urinary analogue levels of lyso-Gb3 at m/z (+16), (+34), and (+50) adjusted for gender and age had a positive association with the left ventricular mass index, and/or the Mainz Severity Score Index. CONCLUSIONS It might thus be of particular interest to monitor children with high levels of these biomarkers, as part of a longitudinal study in order to determine if the excretion profile at a young age is predictive of the outcomes of disease severity in adulthood.
Collapse
Affiliation(s)
- Christiane Auray-Blais
- Division of Medical Genetics, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC J1H 5N4, Canada.
| | - Pamela Lavoie
- Division of Medical Genetics, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC J1H 5N4, Canada
| | - Michel Boutin
- Division of Medical Genetics, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC J1H 5N4, Canada
| | - Aimé Ntwari
- Division of Medical Genetics, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC J1H 5N4, Canada
| | - Ting-Rong Hsu
- Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan, ROC; Institute of Clinical Medicine, National Yang-Ming University, School of Medicine, Taipei, Taiwan, ROC
| | - Chun-Kai Huang
- Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Dau-Ming Niu
- Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan, ROC; Institute of Clinical Medicine, National Yang-Ming University, School of Medicine, Taipei, Taiwan, ROC
| |
Collapse
|
82
|
Kubaski F, Mason RW, Nakatomi A, Shintaku H, Xie L, van Vlies NN, Church H, Giugliani R, Kobayashi H, Yamaguchi S, Suzuki Y, Orii T, Fukao T, Montaño AM, Tomatsu S. Newborn screening for mucopolysaccharidoses: a pilot study of measurement of glycosaminoglycans by tandem mass spectrometry. J Inherit Metab Dis 2017; 40:151-158. [PMID: 27718145 PMCID: PMC5203965 DOI: 10.1007/s10545-016-9981-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 09/12/2016] [Accepted: 09/13/2016] [Indexed: 12/01/2022]
Abstract
BACKGROUND Mucopolysaccharidoses (MPS) are a group of inborn errors of metabolism that are progressive and usually result in irreversible skeletal, visceral, and/or brain damage, highlighting a need for early diagnosis. METHODS This pilot study analyzed 2862 dried blood spots (DBS) from newborns and 14 DBS from newborn patients with MPS (MPS I, n = 7; MPS II, n = 2; MPS III, n = 5). Disaccharides were produced from polymer GAGs by digestion with chondroitinase B, heparitinase, and keratanase II. Heparan sulfate (0S, NS), dermatan sulfate (DS) and mono- and di-sulfated KS were measured by liquid chromatography tandem mass spectrometry (LC-MS/MS). Median absolute deviation (MAD) was used to determine cutoffs to distinguish patients from controls. Cutoffs were defined as median + 7× MAD from general newborns. RESULTS The cutoffs were as follows: HS-0S > 90 ng/mL; HS-NS > 23 ng/mL, DS > 88 ng/mL; mono-sulfated KS > 445 ng/mL; di-sulfated KS > 89 ng/mL and ratio di-KS in total KS > 32 %. All MPS I and II samples were above the cutoffs for HS-0S, HS-NS, and DS, and all MPS III samples were above cutoffs for HS-0S and HS-NS. The rate of false positives for MPS I and II was 0.03 % based on a combination of HS-0S, HS-NS, and DS, and for MPS III was 0.9 % based upon a combination of HS-0S and HS-NS. CONCLUSIONS Combination of levels of two or more different GAGs improves separation of MPS patients from unaffected controls, indicating that GAG measurements are potentially valuable biomarkers for newborn screening for MPS.
Collapse
Affiliation(s)
- Francyne Kubaski
- Nemours/Alfred I. duPont Hospital for Children, 1600 Rockland Road, Wilmington, 19899, DE, USA
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Robert W Mason
- Nemours/Alfred I. duPont Hospital for Children, 1600 Rockland Road, Wilmington, 19899, DE, USA
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Akiko Nakatomi
- Department of Pediatrics, Nagasaki University, Nagasaki, Japan
| | - Haruo Shintaku
- Department of Pediatrics, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Li Xie
- Nemours/Alfred I. duPont Hospital for Children, 1600 Rockland Road, Wilmington, 19899, DE, USA
| | - Naomi N van Vlies
- Laboratory Genetic Metabolic Diseases Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Heather Church
- Willink Biochemical Genetics Unit Regional Genetics Laboratory Genetic Medicine, St Mary's Hospital Manchester, Manchester, UK
| | - Roberto Giugliani
- Medical Genetics Service, HCPA, Dep. Genetics, UFRGS, and INAGEMP, Porto Alegre, Brazil
| | | | | | - Yasuyuki Suzuki
- Medical Education Development Center, Gifu University, Gifu, Japan
| | - Tadao Orii
- Department of Pediatrics, Gifu University, Yanagido-1-1, Gifu, 501-1194, Japan
| | - Toshiyuki Fukao
- Department of Pediatrics, Gifu University, Yanagido-1-1, Gifu, 501-1194, Japan
| | - Adriana M Montaño
- Department of Pediatrics, Saint Louis University, St. Louis, MO, USA
- Department of Biochemistry and Molecular Biology, Saint Louis University, St. Louis, MO, USA
| | - Shunji Tomatsu
- Nemours/Alfred I. duPont Hospital for Children, 1600 Rockland Road, Wilmington, 19899, DE, USA.
- Department of Pediatrics, Shimane University, Izumo, Japan.
- Department of Pediatrics, Gifu University, Yanagido-1-1, Gifu, 501-1194, Japan.
| |
Collapse
|
83
|
Namazova-Baranova LS, Baranov AA, Pushkov AA, Savostyanov KV. Fabry disease in children: a federal screening programme in Russia. Eur J Pediatr 2017; 176:1385-1391. [PMID: 28871487 PMCID: PMC5602089 DOI: 10.1007/s00431-017-2992-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 08/03/2017] [Accepted: 08/04/2017] [Indexed: 11/06/2022]
Abstract
UNLABELLED Our objective was to examine the prevalence of Fabry disease in Russian children with chronic pain in the distal limbs. This non-interventional, multi-centre study included children 2-18 years of age with chronic recurrent unilateral or bilateral pain, burning, or acroparesthesia in the hands or feet. The presence of Fabry disease was defined by abnormal alpha-galactosidase A activity in males or alpha-galactosidase gene (GLA) mutation in females. Among 214 patients (110 males), 84.1% had bilateral limb pain and 31.8% had unilateral limb pain recorded at some time point; 61 (28.5%) patients had a positive family history possibly associated with Fabry disease. Alpha-galactosidase A activity was within the normal range in all 109 of the male patients tested. One female patient had a GLA mutation (C937G > T) and alpha-galactosidase A activity within the normal range. CONCLUSION We did not find definitive evidence of Fabry disease in these children with a history of chronic recurrent unilateral or bilateral limb pain or acroparesthesia. The presence of chronic limb pain does not appear to be highly predictive of a diagnosis of Fabry disease in Russian children and adolescents, suggesting that key early signs and symptoms of Fabry disease are not specific to the disease. What is Known: • Signs and symptoms of Fabry disease are seen in children < 10 years of age; pain in the distal limbs is a common early symptom. What is New: • Fabry disease was not diagnosed in this population of Russian children with a history of chronic limb pain. • The presence of acroparesthesia or chronic limb pain does not appear to be highly predictive of a diagnosis of Fabry disease in Russian children and adolescents, suggesting that these early symptoms of Fabry disease are not specific to the disease.
Collapse
Affiliation(s)
- Leyla Seymurovna Namazova-Baranova
- Institute of Paediatrics, Federal State Autonomous Institution "National Medical Research Center of Children's Health" of the Ministry of Health of the Russian Federation, Lomonosovsky prospekt, 2, b.1, 119991, Moscow, Russia.
| | - Alexander Alexandrovich Baranov
- 0000 0000 9216 2496grid.415738.cInstitute of Paediatrics, Federal State Autonomous Institution “National Medical Research Center of Children’s Health” of the Ministry of Health of the Russian Federation, Lomonosovsky prospekt, 2, b.1, 119991 Moscow, Russia
| | - Aleksander Alekseevich Pushkov
- 0000 0004 4914 227Xgrid.465370.3Laboratory of Molecular Genetics and Cell Biology, Federal State Autonomous Institution “Scientific Center of Children’s Health” of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Kirill Victorovich Savostyanov
- 0000 0004 4914 227Xgrid.465370.3Laboratory of Molecular Genetics and Cell Biology, Federal State Autonomous Institution “Scientific Center of Children’s Health” of the Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
84
|
Colon C, Ortolano S, Melcon-Crespo C, Alvarez JV, Lopez-Suarez OE, Couce ML, Fernández-Lorenzo JR. Newborn screening for Fabry disease in the north-west of Spain. Eur J Pediatr 2017; 176. [PMID: 28646478 PMCID: PMC5511307 DOI: 10.1007/s00431-017-2950-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
UNLABELLED Fabry disease is an X-linked lysosomal storage disorder caused by the impairment of α-galactosidase A. Enzyme replacement therapy is available to treat patients, who often experience delayed diagnosis. A newborn screening for Fabry disease was performed to study the prevalence of the pathology and to evaluate the possibility to implement the test in systematic screenings. We collected 14,600 dried blood spot samples (7575 males and 7025 females) and carried out a diagnostic study by fluorometric measurement of α-galactosidase A enzymatic activity and GLA gene sequencing. We detected one patient with a mutation in GLA associated with classical Fabry Disease (M290I), ten subjects carrying genetic variants of uncertain diagnosis (S126G, R118C, A143T), and a girl with the non-characterized variant F18Y, which was not previously described. Additional 25 samples presented nucleotide substitutions described as polymorphisms (D313Y, rs2071225, and rs2071397). The estimated prevalence for Fabry disease in north-western Spanish males is of 0.013%. CONCLUSION These results confirm that the prevalence of Fabry disease is underestimated and systematic screening is feasible; however, further characterization of variants of uncertain clinical significance is necessary to establish protocols of patients' management. What is Known: • Fabry disease is a rare disease of delayed diagnosis, whose prevalence is underestimated. However, early diagnosis is important for better efficiency of the current available treatment. What is New: • This newborn screening for Fabry disease performed on Spanish population reveals a prevalence of genetic alterations in GLA of 0.1% in males (0.013% with classic Fabry disease) and also characterizes these modifications in order to discriminate between pathogenic mutations and genetic variants of unknown significance.
Collapse
Affiliation(s)
- Cristobal Colon
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - Saida Ortolano
- Rare Diseases & Pediatric Medicine Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Hospital Álvaro Cunqueiro, Bloque técnico, pl2 zona A, Estrada Clara Campoamor 341, Vigo, 36312, Pontevedra, Spain.
| | - Cristina Melcon-Crespo
- Rare Diseases & Pediatric Medicine Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Hospital Álvaro Cunqueiro, Bloque técnico, pl2 zona A, Estrada Clara Campoamor 341, Vigo, 36312 Pontevedra Spain ,Pediatrics Department, Xerencia de Xestión Integrada de Vigo, SERGAS, Vigo, Spain
| | - Jose V. Alvarez
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - Olalla E. Lopez-Suarez
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - Maria L. Couce
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - José R. Fernández-Lorenzo
- Rare Diseases & Pediatric Medicine Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Hospital Álvaro Cunqueiro, Bloque técnico, pl2 zona A, Estrada Clara Campoamor 341, Vigo, 36312 Pontevedra Spain ,Pediatrics Department, Xerencia de Xestión Integrada de Vigo, SERGAS, Vigo, Spain
| |
Collapse
|
85
|
Peake RWA, Bodamer OA. Newborn Screening for Lysosomal Storage Disorders. J Pediatr Genet 2016; 6:51-60. [PMID: 28180027 DOI: 10.1055/s-0036-1593843] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 08/28/2015] [Indexed: 01/23/2023]
Abstract
Newborn screening is one of the most important public health initiatives to date, focusing on the identification of presymptomatic newborn infants with treatable conditions to reduce morbidity and mortality. The number of screening conditions continues to expand due to advances in screening technologies and the development of novel therapies. Consequently, some of the lysosomal storage disorders are now considered as candidates for newborn screening, although many challenges including identification of late-onset phenotypes remain. This review provides a critical appraisal of the current state of newborn screening for lysosomal storage disorders.
Collapse
Affiliation(s)
- Roy W A Peake
- Department of Laboratory Medicine, Boston Children's Hospital, Boston, Massachusetts, United States
| | - Olaf A Bodamer
- Division of Genetics and Genomics, Department of Medicine, Boston Children's Hospital, Boston, Massachusetts, United States; Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
86
|
Later Onset Fabry Disease, Cardiac Damage Progress in Silence. J Am Coll Cardiol 2016; 68:2554-2563. [DOI: 10.1016/j.jacc.2016.09.943] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 08/29/2016] [Accepted: 09/09/2016] [Indexed: 02/01/2023]
|
87
|
Lukacs Z, Schoser B. Meta-opinion: from screening to diagnosis of Pompe disease – a European perspective. Expert Opin Orphan Drugs 2016. [DOI: 10.1080/21678707.2016.1229180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
88
|
Mashima R, Sakai E, Kosuga M, Okuyama T. Levels of enzyme activities in six lysosomal storage diseases in Japanese neonates determined by liquid chromatography-tandem mass spectrometry. Mol Genet Metab Rep 2016; 9:6-11. [PMID: 27625992 PMCID: PMC5011175 DOI: 10.1016/j.ymgmr.2016.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 08/18/2016] [Accepted: 08/18/2016] [Indexed: 11/03/2022] Open
Abstract
Lysosomal storage disorders (LSDs) are caused by defective enzyme activities in lysosomes, characterized by the accumulation of glycolipids, oligosaccharides, mucopolysaccharides, sphingolipids, and other biological substances. Accumulating evidence has suggested that early detection of individuals with LSDs, followed by the immediate initiation of appropriate therapy during the presymptomatic period, usually results in better therapeutic outcomes. The activities of individual enzymes are measured using fluorescent substrates. However, the simultaneous determination of multiple enzyme activities has been awaited in neonatal screening of LSDs because the prevalence of individual LSDs is rare. In this study, the activities of six enzymes associated with LSDs were examined with 6-plex enzyme assay using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The accumulation of enzyme products was almost linear for 0-20 h at 37 °C. Dried blood spots (DBSs) provided by the Centers for Disease Control and Prevention (CDC) were used for quality control (QC). The intraday and interday coefficient of variance values were < 25%. The enzyme activities of healthy individuals were higher than those of LSD-confirmed individuals. These results suggest that the levels of enzyme activities of six LSDs in a Japanese population were comparable to those of a recent report [Elliott et al. Mol Genet Metab 118 (2016) 304-309], providing additional evidence that the 6-plex LSD enzyme assay is a reproducible analytical procedure for neonatal screening.
Collapse
Affiliation(s)
- Ryuichi Mashima
- Department of Clinical Laboratory Medicine, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Eri Sakai
- Department of Clinical Laboratory Medicine, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Motomichi Kosuga
- Department of Clinical Laboratory Medicine, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan; Center for Lysosomal Storage Disorders, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan; Division of Medical Genetics, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Torayuki Okuyama
- Department of Clinical Laboratory Medicine, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan; Center for Lysosomal Storage Disorders, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| |
Collapse
|
89
|
Elliott S, Buroker N, Cournoyer JJ, Potier AM, Trometer JD, Elbin C, Schermer MJ, Kantola J, Boyce A, Turecek F, Gelb MH, Scott CR. Pilot study of newborn screening for six lysosomal storage diseases using Tandem Mass Spectrometry. Mol Genet Metab 2016; 118:304-9. [PMID: 27238910 PMCID: PMC5318163 DOI: 10.1016/j.ymgme.2016.05.015] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 05/19/2016] [Accepted: 05/19/2016] [Indexed: 11/20/2022]
Abstract
BACKGROUND There is current expansion of newborn screening (NBS) programs to include lysosomal storage disorders because of the availability of treatments that produce an optimal clinical outcome when started early in life. OBJECTIVE To evaluate the performance of a multiplex-tandem mass spectrometry (MS/MS) enzymatic activity assay of 6 lysosomal enzymes in a NBS laboratory for the identification of newborns at risk for developing Pompe, Mucopolysaccharidosis-I (MPS-I), Fabry, Gaucher, Niemann Pick-A/B, and Krabbe diseases. METHODS AND RESULTS Enzyme activities (acid α-glucosidase (GAA), galactocerebrosidase (GALC), glucocerebrosidase (GBA), α-galactosidase A (GLA), α-iduronidase (IDUA) and sphingomyeline phosphodiesterase-1 (SMPD-1)) were measured on ~43,000 de-identified dried blood spot (DBS) punches, and screen positive samples were submitted for DNA sequencing to obtain genotype confirmation of disease risk. The 6-plex assay was efficiently performed in the Washington state NBS laboratory by a single laboratory technician at the bench using a single MS/MS instrument. The number of screen positive samples per 100,000 newborns were as follows: GAA (4.5), IDUA (13.6), GLA (18.2), SMPD1 (11.4), GBA (6.8), and GALC (25.0). DISCUSSION A 6-plex MS/MS assay for 6 lysosomal enzymes can be successfully performed in a NBS laboratory. The analytical ranges (enzyme-dependent assay response for the quality control HIGH sample divided by that for all enzyme-independent processes) for the 6-enzymes with the MS/MS is 5- to 15-fold higher than comparable fluorimetric assays using 4-methylumbelliferyl substrates. The rate of screen positive detection is consistently lower for the MS/MS assay compared to the fluorimetric assay using a digital microfluidics platform.
Collapse
Affiliation(s)
- Susan Elliott
- Department of Pediatrics, University of Washington, Seattle, WA 98195, United States
| | - Norman Buroker
- Department of Pediatrics, University of Washington, Seattle, WA 98195, United States
| | | | | | | | | | | | | | - Aaron Boyce
- Department of Pediatrics, University of Washington, Seattle, WA 98195, United States
| | - Frantisek Turecek
- Chemistry, University of Washington, Seattle, WA 98195, United States
| | - Michael H Gelb
- Chemistry, University of Washington, Seattle, WA 98195, United States; Biochemistry, University of Washington, Seattle, WA 98195, United States.
| | - C Ronald Scott
- Department of Pediatrics, University of Washington, Seattle, WA 98195, United States.
| |
Collapse
|
90
|
Zar-Kessler C, Karaa A, Sims KB, Clarke V, Kuo B. Understanding the gastrointestinal manifestations of Fabry disease: promoting prompt diagnosis. Therap Adv Gastroenterol 2016; 9:626-34. [PMID: 27366228 PMCID: PMC4913334 DOI: 10.1177/1756283x16642936] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Fabry disease is a rare X-linked lysosomal storage disease characterized by the dysfunction of multiple systems, including significant gastrointestinal involvement such as diarrhea, abdominal pain, early satiety and nausea. The gastrointestinal symptoms of Fabry disease are thought to be due to neuropathic and myopathic changes leading to symptoms of dysmotility that are encountered in many other disorders. The gastrointestinal symptoms can often be one of the presenting signs of the disease in childhood, but can be misdiagnosed by gastroenterologists for many years due to their nonspecific presentation. As the chief treatment for Fabry is enzyme-replacement therapy that has been shown to stabilize and possibly reverse disease course, recognition of these symptoms and early diagnosis in an attempt to prevent progression with treatment, is critical.
Collapse
Affiliation(s)
| | - Amel Karaa
- Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | | | - Virginia Clarke
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Braden Kuo
- MGH Center for Neurointestinal Health, GI Unit Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
91
|
Triplex tandem mass spectrometry assays for the screening of 3 lysosomal storage disorders in a Korean population. Clin Chim Acta 2016; 454:20-7. [DOI: 10.1016/j.cca.2015.12.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 12/14/2015] [Accepted: 12/15/2015] [Indexed: 01/15/2023]
|
92
|
Lévesque S, Auray-Blais C, Gravel E, Boutin M, Dempsey-Nunez L, Jacques PE, Chenier S, Larue S, Rioux MF, Al-Hertani W, Nadeau A, Mathieu J, Maranda B, Désilets V, Waters PJ, Keutzer J, Austin S, Kishnani P. Diagnosis of late-onset Pompe disease and other muscle disorders by next-generation sequencing. Orphanet J Rare Dis 2016; 11:8. [PMID: 26809617 PMCID: PMC4727295 DOI: 10.1186/s13023-016-0390-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 01/17/2016] [Indexed: 11/16/2022] Open
Abstract
Background Late-onset Pompe disease (LOPD) is a rare treatable lysosomal storage disorder characterized by progressive lysosomal glycogen accumulation and muscle weakness, with often a limb-girdle pattern. Despite published guidelines, testing for LOPD is often overlooked or delayed in adults, owing to its low frequency compared to other muscle disorders with similar muscle patterns. Next-generation sequencing has the capability to test concurrently for several muscle disorders. This could potentially lead to increased diagnosis of LOPD, disorders with non-specific muscle weakness or atypical patients. Methods We developed a gene panel to further study its clinical utility in a cohort of patients with suspected muscle disorders. We designed a gene panel to analyze the coding sequences and splice site junctions of GAA causing LOPD, along with 77 other genes causing muscle disorders with overlapping phenotypes. Results At a median coverage of ~200X (sequences per base), all GAA exons were successfully covered with >20X and only 0.3 % of exons across all genes were <20X. The panel showed an excellent sensitivity (100 %) and specificity (98 %) across all selected genes, using known variations in Pompe patients and controls. We determined its clinical utility by analyzing 34 patients with suspected muscle disorders of undetermined etiology and various muscle patterns, who were referred or followed in neuromuscular and genetics clinics. A putative diagnosis was found in up to 32 % of patients. The gene panel was instrumental in reaching a diagnosis in atypical patients, including one LOPD case. Acid alpha-glucosidase activity was used to confirm the molecular results in all patients. Conclusion This work highlights the high clinical utility of gene panels in patients with suspected muscle disorders and its potential to facilitate the diagnosis of patients showing non-specific muscle weakness or atypical phenotypes. We propose that gene panels should be used as a first-tier test in patients with suspected muscle disorders of undetermined etiology, which could further increase overall diagnosis of muscle conditions, and potentially reduce diagnostic delay. Further studies are necessary to determine the impact of first-tier gene panels on diagnostic delay and on treatment outcome for LOPD. Electronic supplementary material The online version of this article (doi:10.1186/s13023-016-0390-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sébastien Lévesque
- Department of Pediatrics, Division of Medical Genetics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, and Centre Hospitalier Universitaire de Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada.
| | - Christiane Auray-Blais
- Department of Pediatrics, Division of Medical Genetics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, and Centre Hospitalier Universitaire de Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada
| | - Elaine Gravel
- Department of Pediatrics, Division of Medical Genetics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, and Centre Hospitalier Universitaire de Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada
| | - Michel Boutin
- Department of Pediatrics, Division of Medical Genetics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, and Centre Hospitalier Universitaire de Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada
| | - Laura Dempsey-Nunez
- Department of Pediatrics, Division of Medical Genetics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, and Centre Hospitalier Universitaire de Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada
| | - Pierre-Etienne Jacques
- Departments of Biology and Computer Science, Faculty of Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Sébastien Chenier
- Department of Pediatrics, Division of Medical Genetics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, and Centre Hospitalier Universitaire de Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada
| | - Sandrine Larue
- Department of Neurology, Notre-Dame Hospital, Université de Montréal, Montreal, QC, Canada
| | - Marie-France Rioux
- Department of Neurology, Université de Sherbrooke, and Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Walla Al-Hertani
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, and Alberta Children's Hospital, Calgary, AB, Canada
| | - Amelie Nadeau
- Department of Pediatrics, Division of Pediatric Neurology, Université de Sherbrooke, and Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Jean Mathieu
- Neuromuscular Clinic, Centre de réadaptation en déficience physique de Jonquière, Saguenay, QC, Canada
| | - Bruno Maranda
- Department of Pediatrics, Division of Medical Genetics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, and Centre Hospitalier Universitaire de Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada
| | - Valérie Désilets
- Department of Pediatrics, Division of Medical Genetics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, and Centre Hospitalier Universitaire de Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada
| | - Paula J Waters
- Department of Pediatrics, Division of Medical Genetics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, and Centre Hospitalier Universitaire de Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada
| | - Joan Keutzer
- Genzyme Corporation, a Sanofi Company, Cambridge, MA, USA
| | - Stephanie Austin
- Department of Pediatrics, Division of Medical Genetics, Duke University Medical Center, Durham, NC, USA
| | - Priya Kishnani
- Department of Pediatrics, Division of Medical Genetics, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
93
|
Ombrone D, Giocaliere E, Forni G, Malvagia S, la Marca G. Expanded newborn screening by mass spectrometry: New tests, future perspectives. MASS SPECTROMETRY REVIEWS 2016; 35:71-84. [PMID: 25952022 DOI: 10.1002/mas.21463] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 01/09/2015] [Indexed: 05/02/2023]
Abstract
Tandem mass spectrometry (MS/MS) has become a leading technology used in clinical chemistry and has shown to be particularly sensitive and specific when used in newborn screening (NBS) tests. The success of tandem mass spectrometry is due to important advances in hardware, software and clinical applications during the last 25 years. MS/MS permits a very rapid measurement of many metabolites in different biological specimens by using filter paper spots or directly on biological fluids. Its use in NBS give us the chance to identify possible treatable metabolic disorders even when asymptomatic and the benefits gained by this type of screening is now recognized worldwide. Today the use of MS/MS for second-tier tests and confirmatory testing is promising especially in the early detection of new disorders such as some lysosomal storage disorders, ADA and PNP SCIDs, X-adrenoleucodistrophy (X-ALD), Wilson disease, guanidinoacetate methyltransferase deficiency (GAMT), and Duchenne muscular dystrophy. The new challenge for the future will be reducing the false positive rate by using second-tier tests, avoiding false negative results by using new specific biomarkers and introducing new treatable disorders in NBS programs.
Collapse
Affiliation(s)
- Daniela Ombrone
- Newborn screening, Clinical Chemistry and Pharmacology Lab, Meyer Children's University Hospital, Viale Pieraccini 24, Florence, 50139, Italy
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Viale Pieraccini 6, Florence, 50139, Italy
| | - Elisa Giocaliere
- Newborn screening, Clinical Chemistry and Pharmacology Lab, Meyer Children's University Hospital, Viale Pieraccini 24, Florence, 50139, Italy
| | - Giulia Forni
- Newborn screening, Clinical Chemistry and Pharmacology Lab, Meyer Children's University Hospital, Viale Pieraccini 24, Florence, 50139, Italy
| | - Sabrina Malvagia
- Newborn screening, Clinical Chemistry and Pharmacology Lab, Meyer Children's University Hospital, Viale Pieraccini 24, Florence, 50139, Italy
| | - Giancarlo la Marca
- Newborn screening, Clinical Chemistry and Pharmacology Lab, Meyer Children's University Hospital, Viale Pieraccini 24, Florence, 50139, Italy
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Viale Pieraccini 6, Florence, 50139, Italy
| |
Collapse
|
94
|
Llerena Junior JC, Nascimento OJM, Oliveira ASB, Dourado Junior MET, Marrone CD, Siqueira HH, Sobreira CFR, Dias-Tosta E, Werneck LC. Guidelines for the diagnosis, treatment and clinical monitoring of patients with juvenile and adult Pompe disease. ARQUIVOS DE NEURO-PSIQUIATRIA 2015; 74:166-76. [DOI: 10.1590/0004-282x20150194] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 09/25/2015] [Indexed: 01/30/2023]
Abstract
ABSTRACT Pompe disease (PD) is a potentially lethal illness involving irreversible muscle damage resulting from glycogen storage in muscle fiber and activation of autophagic pathways. A promising therapeutic perspective for PD is enzyme replacement therapy (ERT) with the human recombinant enzyme acid alpha-glucosidase (Myozyme®). The need to organize a diagnostic flowchart, systematize clinical follow-up, and establish new therapeutic recommendations has become vital, as ERT ensures greater patient longevity. A task force of experienced clinicians outlined a protocol for diagnosis, monitoring, treatment, genetic counseling, and rehabilitation for PD patients. The study was conducted under the coordination of REBREPOM, the Brazilian Network for Studies of PD. The meeting of these experts took place in October 2013, at L’Hotel Port Bay in São Paulo, Brazil. In August 2014, the text was reassessed and updated. Given the rarity of PD and limited high-impact publications, experts submitted their views.
Collapse
|
95
|
Chien YH, Hwu WL, Lee NC. Advances in newborn screening for Pompe disease and resulting clinical outcomes. Expert Opin Orphan Drugs 2015. [DOI: 10.1517/21678707.2016.1107472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
96
|
Bengtsson NE, Seto JT, Hall JK, Chamberlain JS, Odom GL. Progress and prospects of gene therapy clinical trials for the muscular dystrophies. Hum Mol Genet 2015; 25:R9-17. [PMID: 26450518 DOI: 10.1093/hmg/ddv420] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 09/30/2015] [Indexed: 12/16/2022] Open
Abstract
Clinical trials represent a critical avenue for new treatment development, where early phases (I, I/II) are designed to test safety and effectiveness of new therapeutics or diagnostic indicators. A number of recent advances have spurred renewed optimism toward initiating clinical trials and developing refined therapies for the muscular dystrophies (MD's) and other myogenic disorders. MD's encompass a heterogeneous group of degenerative disorders often characterized by progressive muscle weakness and fragility. Many of these diseases result from mutations in genes encoding proteins of the dystrophin-glycoprotein complex (DGC). The most common and severe form among children is Duchenne muscular dystrophy, caused by mutations in the dystrophin gene, with an average life expectancy around 25 years of age. Another group of MD's referred to as the limb-girdle muscular dystrophies (LGMDs) can affect boys or girls, with different types caused by mutations in different genes. Mutation of the α-sarcoglycan gene, also a DGC component, causes LGMD2D and represents the most common form of LGMD. Early preclinical and clinical trial findings support the feasibility of gene therapy via recombinant adeno-associated viral vectors as a viable treatment approach for many MDs. In this mini-review, we present an overview of recent progress in clinical gene therapy trials of the MD's and touch upon promising preclinical advances.
Collapse
Affiliation(s)
| | | | | | - Jeffrey S Chamberlain
- Department of Neurology and Department of Biochemistry, University of Washington School of Medicine, Seattle, WA 98195-7350, USA
| | | |
Collapse
|
97
|
Kumar AB, Masi S, Ghomashchi F, Chennamaneni NK, Ito M, Scott CR, Turecek F, Gelb MH, Spacil Z. Tandem Mass Spectrometry Has a Larger Analytical Range than Fluorescence Assays of Lysosomal Enzymes: Application to Newborn Screening and Diagnosis of Mucopolysaccharidoses Types II, IVA, and VI. Clin Chem 2015; 61:1363-71. [PMID: 26369786 DOI: 10.1373/clinchem.2015.242560] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 07/22/2015] [Indexed: 11/06/2022]
Abstract
BACKGROUND There is interest in newborn screening and diagnosis of lysosomal storage diseases because of the development of treatment options that improve clinical outcome. Assays of lysosomal enzymes with high analytical range (ratio of assay response from the enzymatic reaction divided by the assay response due to nonenzymatic processes) are desirable because they are predicted to lead to a lower rate of false positives in population screening and to more accurate diagnoses. METHODS We designed new tandem mass spectrometry (MS/MS) assays that give the largest analytical ranges reported to date for the use of dried blood spots (DBS) for detection of mucopolysaccharidoses type II (MPS-II), MPS-IVA, and MPS-VI. For comparison, we carried out fluorometric assays of 6 lysosomal enzymes using 4-methylumbelliferyl (4MU)-substrate conjugates. RESULTS The MS/MS assays for MPS-II, -IVA, and -VI displayed analytical ranges that are 1-2 orders of magnitude higher than those for the corresponding fluorometric assays. The relatively small analytical ranges of the 4MU assays are due to the intrinsic fluorescence of the 4MU substrates, which cause high background in the assay response. CONCLUSIONS These highly reproducible MS/MS assays for MPS-II, -IVA, and -VI can support multiplex newborn screening of these lysosomal storage diseases. MS/MS assays of lysosomal enzymes outperform 4MU fluorometric assays in terms of analytical range. Ongoing pilot studies will allow us to gauge the impact of the increased analytical range on newborn screening performance.
Collapse
Affiliation(s)
| | | | | | | | - Makoto Ito
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | | | | | - Michael H Gelb
- Departments of Chemistry, Biochemistry, University of Washington, Seattle, WA;
| | | |
Collapse
|
98
|
Potential missing steps for a wide use of dried matrix spots in biomedical analysis. Bioanalysis 2015; 7:2375-2385. [DOI: 10.4155/bio.15.166] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Microsampling, mainly as DBS, has been significantly expanded in the biomedical and pharmaceutical communities in the last 10 years. In parallel, technology and methodology have evolved to overcome some of the issues associated with this sampling procedure. Despite the continuous developments and interest, only a few validated and routinely implemented clinical applications have arisen beyond the initial inborn screening. Based on the latest developments in this field, this perspective aims to discuss some of the missing steps (i.e., the habits to change, the Health Authorities acceptance and the shift for dried plasma generation), which may turn the current use of microsampling into an established and standard procedure in clinical and pharmaceutical analysis.
Collapse
|
99
|
Cozma C, Eichler S, Wittmann G, Flores Bonet A, Kramp GJ, Giese AK, Rolfs A. Diagnosis of Morquio Syndrome in Dried Blood Spots Based on a New MRM-MS Assay. PLoS One 2015; 10:e0131228. [PMID: 26147980 PMCID: PMC4492791 DOI: 10.1371/journal.pone.0131228] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 05/29/2015] [Indexed: 11/18/2022] Open
Abstract
Background Mucopolysaccharidosis IVA (MPS IVA; Morquio A disease) is an autosomal recessive disease caused and characterized by a decreased activity of N-acetylgalactosamine-6-sulfate sulfatase (GALNS), resulting in accumulation of keratan sulfate and chondroitin-6-sulfate in tissues and secondary organ damage. Recently approved enzyme replacement therapy renders the easy and early identification of MPS IVA of out-most importance. Methodology We propose a completely new assay for the stable and reproducible detection of GALNS deficiency in dry blood spots (DBS). For the validation blood samples were taken from 59 healthy individuals and 24 randomly selected genetically confirmed MPS IVA patients. The material extracted from DBS was incubated with a 4-methylumbelliferyl-β-D-galactopyranoside-6-sulfate as a specific substrate. Final enzymatic product, 4-methylumbelliferone, obtained after adding exogenous beta-galactosidase, was quantified by LC/MRM-MS (liquid-chromatography/multiple-reaction-monitoring mass-spectrometry). 4-propyl-5-hydroxy-7-methyl-2h-chromen-2-one was used as internal standard, a compound with a similar molecular structure and fragmentation pattern in negative ion mode as 4-methylumbelliferone. Findings The enzymatic assay yielded a positive and negative predictive value of 1.0 for genetically confirmed MPS IVA patients (GALNS activity of 0.35 ± 0.21 μmol/L/h) and for controls with normal GALNS activity (23.1 ± 5.3 μmol/L /h). With present enzymatic conditions, the reaction yield in dried blood spots is at least 20 fold higher than any previously reported data with other assays. Interpretation The present LC/MRM-MS based assay for MPS IVA diagnosis provides an easy, highly-standardized, accurate and innovative quantification of the enzymatic product in vitro and distinguishes perfectly between MPS IVA affected patients and normal controls. This technique will significantly simplify the early detection of MPS IVA patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Arndt Rolfs
- Centogene AG, Rostock, Germany
- Albrecht-Kossel-Institute, University of Rostock, Rostock, Germany
- * E-mail:
| |
Collapse
|
100
|
Burlina AB, Corsello G. Survey of Italian pediatricians' perspectives and knowledge about neonatal screening. Ital J Pediatr 2015; 41:41. [PMID: 26021374 PMCID: PMC4462014 DOI: 10.1186/s13052-015-0147-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 05/11/2015] [Indexed: 11/11/2022] Open
Abstract
Background The goal of newborn screening is early identification of babies with a high risk for disorders that may not be clinically evident at birth, but have severe consequences if untreated. New insight into inherited diseases and the ability to test for numerous diseases using new technique such as tandem mass spectrometry have made it practical to greatly expand the number of conditions tested. The expanded neonatal screening is now available and relatively simple, but this represents only a part of the picture. Positive results require follow-up confirmation. Most disorders screened require confirmatory biochemical or genetic tests and specialist visits. An efficient system is needed for managing the care of affected newborns. Expanded newborn screening is not yet available in all Regions of Italy, but discussions aimed at organizing universal access are underway. If these are successful, the role of the pediatrician as the primary contact with the parents is expected to become even more important. Methods We have conducted a survey of Italian pediatricians to assess their familiarity and opinions on newborn screening in general and on expanded newborn screening. All members of the Italian Association of Pediatricians (n = 9000) were invited to compile a 10-item questionnaire online. Results The response rate was 10 %, corresponding to 605 of 6000 active members. Respondents were from all Regions of Italy, with the highest number of responses coming from Lombardy (138, 22.8 %), Campania and Puglia (n = 61; 10.1 %). Interestingly, expanded neonatal screening was not available in any of these Regions at the time of the survey. Regarding their understanding of neonatal screening in general, most respondents (n = 552; 91.1 %) considered that they had at least a sufficient level of knowledge; however, only 59.6 % thought they had sufficient knowledge of expanded newborn screening. Conclusions Successful implementation of a universal expanded NBS program will require efficient procedures for follow-up, diagnosis and treatment to prevent morbidity and mortality of infants and to reduce the period of uncertainty for unaffected families. Pediatricians may need additional training to allow them to fulfill their tasks of coordinating this process while keeping families informed and reassured. Electronic supplementary material The online version of this article (doi:10.1186/s13052-015-0147-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alberto B Burlina
- Division of Inherited Metabolic Diseases, Reference Centre Expanded Newborn Screening Regione Veneto, Department of Pediatrics, University Hospital, Padova, Italy.
| | - Giovanni Corsello
- Pediatrics and Neonatal Intensive Care Units, University of Palermo, Palermo, Italy.
| |
Collapse
|