51
|
Shima H, Inagaki A, Imura T, Yamagata Y, Watanabe K, Igarashi K, Goto M, Murayama K. Collagen V Is a Potential Substrate for Clostridial Collagenase G in Pancreatic Islet Isolation. J Diabetes Res 2016; 2016:4396756. [PMID: 27195301 PMCID: PMC4852369 DOI: 10.1155/2016/4396756] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 03/27/2016] [Indexed: 01/19/2023] Open
Abstract
The clostridial collagenases, H and G, play key roles in pancreatic islet isolation. Collagenases digest the peptide bond between Yaa and the subsequent Gly in Gly-Xaa-Yaa repeats. To fully understand the pancreatic islet isolation process, identification of the collagenase substrates in the tissue is very important. Although collagen types I and III were reported as possible substrates for collagenase H, the substrate for collagenase G remains unknown. In this study, collagen type V was focused upon as the target for collagenases. In vitro digestion experiments for collagen type V were performed and analyzed by SDS-PAGE and mass spectrometry. Porcine pancreatic tissues were digested in vitro under three conditions and observed during digestion. The results revealed that collagen type V was only digested by collagenase G and that the digestion was initiated from the N-terminal part. Tissue degradation during porcine islet isolation was only observed in the presence of both collagenases H and G. These findings suggest that collagen type V is one of the substrates for collagenase G. The enzymatic activity of collagenase G appears to be more important for pancreatic islet isolation in large mammals such as pigs and humans.
Collapse
Affiliation(s)
- Hiroki Shima
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan
| | - Akiko Inagaki
- Division of Transplantation and Regenerative Medicine, Tohoku University School of Medicine, Sendai 980-8575, Japan
| | - Takehiro Imura
- Division of Transplantation and Regenerative Medicine, Tohoku University School of Medicine, Sendai 980-8575, Japan
- New Industry Creation Hatchery Center, Tohoku University, Sendai 980-8579, Japan
| | - Youhei Yamagata
- Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu 183-8509, Japan
| | - Kimiko Watanabe
- New Industry Creation Hatchery Center, Tohoku University, Sendai 980-8579, Japan
| | - Kazuhiko Igarashi
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan
- Center for Regulatory Epigenome and Diseases, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Masafumi Goto
- Division of Transplantation and Regenerative Medicine, Tohoku University School of Medicine, Sendai 980-8575, Japan
| | - Kazutaka Murayama
- Graduate School of Biomedical Engineering, Tohoku University, Sendai 980-8575, Japan
- *Kazutaka Murayama:
| |
Collapse
|
52
|
Schönauer E, Brandstetter H. Inhibition and Activity Regulation of Bacterial Collagenases. TOPICS IN MEDICINAL CHEMISTRY 2016. [DOI: 10.1007/7355_2016_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
53
|
Eckhard U, Marino G, Abbey SR, Matthew I, Overall CM. TAILS N-terminomic and proteomic datasets of healthy human dental pulp. Data Brief 2015; 5:542-8. [PMID: 26587561 PMCID: PMC4625376 DOI: 10.1016/j.dib.2015.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 10/03/2015] [Accepted: 10/06/2015] [Indexed: 11/04/2022] Open
Abstract
The Data described here provide the in depth proteomic assessment of the human dental pulp proteome and N-terminome (Eckhard et al., 2015) [1]. A total of 9 human dental pulps were processed and analyzed by the positional proteomics technique TAILS (Terminal Amine Isotopic Labeling of Substrates) N-terminomics. 38 liquid chromatography tandem mass spectrometry (LC-MS/MS) datasets were collected and analyzed using four database search engines in combination with statistical downstream evaluation, to yield the by far largest proteomic and N-terminomic dataset of any dental tissue to date. The raw mass spectrometry data and the corresponding metadata have been deposited in ProteomeXchange with the PXD identifier <PXD002264>; Supplementary Tables described in this article are available via Mendeley Data (10.17632/555j3kk4sw.1).
Collapse
Affiliation(s)
- Ulrich Eckhard
- Centre for Blood Research, The Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada ; Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC, Canada
| | - Giada Marino
- Centre for Blood Research, The Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada ; Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC, Canada
| | - Simon R Abbey
- Centre for Blood Research, The Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada ; Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC, Canada
| | - Ian Matthew
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC, Canada
| | - Christopher M Overall
- Centre for Blood Research, The Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada ; Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC, Canada ; Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
54
|
Eckhard U, Huesgen PF, Schilling O, Bellac CL, Butler GS, Cox JH, Dufour A, Goebeler V, Kappelhoff R, Keller UAD, Klein T, Lange PF, Marino G, Morrison CJ, Prudova A, Rodriguez D, Starr AE, Wang Y, Overall CM. Active site specificity profiling of the matrix metalloproteinase family: Proteomic identification of 4300 cleavage sites by nine MMPs explored with structural and synthetic peptide cleavage analyses. Matrix Biol 2015; 49:37-60. [PMID: 26407638 DOI: 10.1016/j.matbio.2015.09.003] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 09/17/2015] [Accepted: 09/18/2015] [Indexed: 02/07/2023]
Abstract
Secreted and membrane tethered matrix metalloproteinases (MMPs) are key homeostatic proteases regulating the extracellular signaling and structural matrix environment of cells and tissues. For drug targeting of proteases, selectivity for individual molecules is highly desired and can be met by high yield active site specificity profiling. Using the high throughput Proteomic Identification of protease Cleavage Sites (PICS) method to simultaneously profile both the prime and non-prime sides of the cleavage sites of nine human MMPs, we identified more than 4300 cleavages from P6 to P6' in biologically diverse human peptide libraries. MMP specificity and kinetic efficiency were mainly guided by aliphatic and aromatic residues in P1' (with a ~32-93% preference for leucine depending on the MMP), and basic and small residues in P2' and P3', respectively. A wide differential preference for the hallmark P3 proline was found between MMPs ranging from 15 to 46%, yet when combined in the same peptide with the universally preferred P1' leucine, an unexpected negative cooperativity emerged. This was not observed in previous studies, probably due to the paucity of approaches that profile both the prime and non-prime sides together, and the masking of subsite cooperativity effects by global heat maps and iceLogos. These caveats make it critical to check for these biologically highly important effects by fixing all 20 amino acids one-by-one in the respective subsites and thorough assessing of the inferred specificity logo changes. Indeed an analysis of bona fide MEROPS physiological substrate cleavage data revealed that of the 37 natural substrates with either a P3-Pro or a P1'-Leu only 5 shared both features, confirming the PICS data. Upon probing with several new quenched-fluorescent peptides, rationally designed on our specificity data, the negative cooperativity was explained by reduced non-prime side flexibility constraining accommodation of the rigidifying P3 proline with leucine locked in S1'. Similar negative cooperativity between P3 proline and the novel preference for asparagine in P1 cements our conclusion that non-prime side flexibility greatly impacts MMP binding affinity and cleavage efficiency. Thus, unexpected sequence cooperativity consequences were revealed by PICS that uniquely encompasses both the non-prime and prime sides flanking the proteomic-pinpointed scissile bond.
Collapse
Affiliation(s)
- Ulrich Eckhard
- Centre for Blood Research, Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Pitter F Huesgen
- Centre for Blood Research, Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, BC, Canada; Present address: Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Germany
| | - Oliver Schilling
- Centre for Blood Research, Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, BC, Canada; Present address: Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany
| | - Caroline L Bellac
- Centre for Blood Research, Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, BC, Canada; Present address: Swissmedic, Swiss Agency for Therapeutic Products, Bern, Switzerland
| | - Georgina S Butler
- Centre for Blood Research, Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Jennifer H Cox
- Centre for Blood Research, Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, BC, Canada; Present address: Inception Sciences, Vancouver, BC, Canada
| | - Antoine Dufour
- Centre for Blood Research, Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Verena Goebeler
- Centre for Blood Research, Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Reinhild Kappelhoff
- Centre for Blood Research, Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Ulrich Auf dem Keller
- Centre for Blood Research, Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, BC, Canada; Present address: Institute of Molecular Health Sciences, ETH Zürich, Zürich, Switzerland
| | - Theo Klein
- Centre for Blood Research, Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Philipp F Lange
- Centre for Blood Research, Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, BC, Canada; Present address: Department of Pathology, University of British Columbia, Vancouver, BC, Canada
| | - Giada Marino
- Centre for Blood Research, Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Charlotte J Morrison
- Centre for Blood Research, Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, BC, Canada; Present address: Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Anna Prudova
- Centre for Blood Research, Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - David Rodriguez
- Centre for Blood Research, Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, BC, Canada; Present address: Department of Bioquímica y Biología Molecular, Universidad de Oviedo, Oviedo, Spain
| | - Amanda E Starr
- Centre for Blood Research, Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, BC, Canada; Present address: Ottawa Institute of Systems Biology, University of Ottawa, Canada
| | - Yili Wang
- Centre for Blood Research, Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Christopher M Overall
- Centre for Blood Research, Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, BC, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
55
|
Yang H, Shen Y, Xu Y, Maqueda AS, Zheng J, Wu Q, Tam JP. A novel strategy for the discrimination of gelatinous Chinese medicines based on enzymatic digestion followed by nano-flow liquid chromatography in tandem with orbitrap mass spectrum detection. Int J Nanomedicine 2015; 10:4947-55. [PMID: 26345994 PMCID: PMC4531023 DOI: 10.2147/ijn.s82291] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Gelatinous Chinese medicines made from mammalian skin or horn or reptile shell are a very important type of animal-derived Chinese medicine. They have been extensively used either as both hemopoietic and hemostatic agents to treat vertigo, palpitation, hematuria, and insomnia in traditional Chinese medicine clinics; consumed as a popular tonic for weaker persons such as the elderly or women after giving birth; or further manufactured to health supplements for certain populations. However, they cannot be discriminated from each other by only using the routine approach in the Chinese Pharmacopoeia, as it lacks enough specificity and, consequently, and the requirements can be met even by adding assayed ingredients. In this study, our efforts to differentiate three gelatinous Chinese medicines, Asini Corii Colla, Cervi Cornus Colla, and Testudinis Carapacis ET Plastri Colla, are presented, and a novel strategy based on enzymatic digestion followed by nano-flow liquid chromatography in tandem with orbitrap mass spectrum detector analysis is proposed herein. Fourteen diagnostic fragments identified from the digests of these medicines were exclusively selected for their discrimination. By taking advantage of the favorable features of this strategy, it is feasible and convenient to identify enzymatic-digested peptides originated from signature proteins in each medicine, which thus could be employed as potential biomarkers for their form of raw medicinal material, and the pulverized and the complex especially, that being the direct basis for authentication purpose.
Collapse
Affiliation(s)
- Huan Yang
- Department of Chinese Materia Medica and Pharmacy, School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China ; Division of Structural Biology and Biochemistry, School of Biological Sciences, College of Science, Nanyang Technological University, Singapore
| | - Yuping Shen
- Department of Chinese Materia Medica and Pharmacy, School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Ying Xu
- Department of Chinese Materia Medica and Pharmacy, School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Aida Serra Maqueda
- Division of Structural Biology and Biochemistry, School of Biological Sciences, College of Science, Nanyang Technological University, Singapore
| | - Jie Zheng
- Department of Chinese Materia Medica and Pharmacy, School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Qinan Wu
- Department of Chinese Medicine Authentication, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China
| | - James P Tam
- Division of Structural Biology and Biochemistry, School of Biological Sciences, College of Science, Nanyang Technological University, Singapore
| |
Collapse
|
56
|
Diversity, Structures, and Collagen-Degrading Mechanisms of Bacterial Collagenolytic Proteases. Appl Environ Microbiol 2015; 81:6098-107. [PMID: 26150451 DOI: 10.1128/aem.00883-15] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Bacterial collagenolytic proteases are important because of their essential role in global collagen degradation and because of their virulence in some human bacterial infections. Bacterial collagenolytic proteases include some metalloproteases of the M9 family from Clostridium or Vibrio strains, some serine proteases distributed in the S1, S8, and S53 families, and members of the U32 family. In recent years, there has been remarkable progress in discovering new bacterial collagenolytic proteases and in investigating the collagen-degrading mechanisms of bacterial collagenolytic proteases. This review provides comprehensive insight into bacterial collagenolytic proteases, especially focusing on the structures and collagen-degrading mechanisms of representative bacterial collagenolytic proteases in each family. The roles of bacterial collagenolytic proteases in human diseases and global nitrogen cycling, together with the biotechnological and medical applications for these proteases, are also briefly discussed.
Collapse
|
57
|
Destructin-1 is a collagen-degrading endopeptidase secreted by Pseudogymnoascus destructans, the causative agent of white-nose syndrome. Proc Natl Acad Sci U S A 2015; 112:7478-83. [PMID: 25944934 DOI: 10.1073/pnas.1507082112] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Pseudogymnoascus destructans is the causative agent of white-nose syndrome, a disease that has caused the deaths of millions of bats in North America. This psychrophilic fungus proliferates at low temperatures and targets hibernating bats, resulting in their premature arousal from stupor with catastrophic consequences. Despite the impact of white-nose syndrome, little is known about the fungus itself or how it infects its mammalian host. P. destructans is not amenable to genetic manipulation, and therefore understanding the proteins involved in infection requires alternative approaches. Here, we identify hydrolytic enzymes secreted by P. destructans, and use a novel and unbiased substrate profiling technique to define active peptidases. These experiments revealed that endopeptidases are the major proteolytic activities secreted by P. destructans, and that collagen, the major structural protein in mammals, is actively degraded by the secretome. A serine endopeptidase, hereby-named Destructin-1, was subsequently identified, and a recombinant form overexpressed and purified. Biochemical analysis of Destructin-1 showed that it mediated collagen degradation, and a potent inhibitor of peptidase activity was identified. Treatment of P. destructans-conditioned media with this antagonist blocked collagen degradation and facilitated the detection of additional secreted proteolytic activities, including aminopeptidases and carboxypeptidases. These results provide molecular insights into the secretome of P. destructans, and identify serine endopeptidases that have the clear potential to facilitate tissue invasion and pathogenesis in the mammalian host.
Collapse
|
58
|
Barré O, Dufour A, Eckhard U, Kappelhoff R, Béliveau F, Leduc R, Overall CM. Cleavage specificity analysis of six type II transmembrane serine proteases (TTSPs) using PICS with proteome-derived peptide libraries. PLoS One 2014; 9:e105984. [PMID: 25211023 PMCID: PMC4161349 DOI: 10.1371/journal.pone.0105984] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 07/31/2014] [Indexed: 01/08/2023] Open
Abstract
Background Type II transmembrane serine proteases (TTSPs) are a family of cell membrane tethered serine proteases with unclear roles as their cleavage site specificities and substrate degradomes have not been fully elucidated. Indeed just 52 cleavage sites are annotated in MEROPS, the database of proteases, their substrates and inhibitors. Methodology/Principal Finding To profile the active site specificities of the TTSPs, we applied Proteomic Identification of protease Cleavage Sites (PICS). Human proteome-derived database searchable peptide libraries were assayed with six human TTSPs (matriptase, matriptase-2, matriptase-3, HAT, DESC and hepsin) to simultaneously determine sequence preferences on the N-terminal non-prime (P) and C-terminal prime (P’) sides of the scissile bond. Prime-side cleavage products were isolated following biotinylation and identified by tandem mass spectrometry. The corresponding non-prime side sequences were derived from human proteome databases using bioinformatics. Sequencing of 2,405 individual cleaved peptides allowed for the development of the family consensus protease cleavage site specificity revealing a strong specificity for arginine in the P1 position and surprisingly a lysine in P1′ position. TTSP cleavage between R↓K was confirmed using synthetic peptides. By parsing through known substrates and known structures of TTSP catalytic domains, and by modeling the remainder, structural explanations for this strong specificity were derived. Conclusions Degradomics analysis of 2,405 cleavage sites revealed a similar and characteristic TTSP family specificity at the P1 and P1′ positions for arginine and lysine in unfolded peptides. The prime side is important for cleavage specificity, thus making these proteases unusual within the tryptic-enzyme class that generally has overriding non-prime side specificity.
Collapse
Affiliation(s)
- Olivier Barré
- Centre for Blood Research, Department of Oral Biological & Medical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Antoine Dufour
- Centre for Blood Research, Department of Oral Biological & Medical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Ulrich Eckhard
- Centre for Blood Research, Department of Oral Biological & Medical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Reinhild Kappelhoff
- Centre for Blood Research, Department of Oral Biological & Medical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - François Béliveau
- Department of Pharmacology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Richard Leduc
- Department of Pharmacology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Christopher M. Overall
- Centre for Blood Research, Department of Oral Biological & Medical Sciences, University of British Columbia, Vancouver, BC, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
- * E-mail:
| |
Collapse
|
59
|
Wu C, Jiang J, Boye A, Jiang Y, Yang Y. Compound Astragalus and Salvia miltiorrhiza extract suppresses rabbits' hypertrophic scar by modulating the TGF-β/Smad signal. Dermatology 2014; 229:363-8. [PMID: 25171116 DOI: 10.1159/000365784] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 07/08/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Hypertrophic scar is a fibro-proliferative disease. Our previous studies demonstrate that compound Astragalus and Salvia miltiorrhiza extract (CASE) inhibits proliferation and invasion in keloid fibroblasts. OBJECTIVE To investigate the effects of CASE on hypertrophic scar. METHODS Rabbits were divided into the control, model and three dosage groups of CASE (0.94, 1.88, 3.76%). An animal model of hypertrophic scar was established and treated with CASE ointment or ointment base. The histopathological detection by hematoxylin & eosin and Masson's trichrome staining and protein expression of scars by Western blot were performed. RESULTS The hydroxyproline content was decreased under CASE treatment. Transforming growth factor beta 1 (TGF-β1) protein expression increased in the model group while it decreased under CASE treatment. The elevated expression of Smad4 protein was decreased under CASE treatment. Additionally, CASE promoted Smad7 protein expression. CONCLUSION CASE could inhibit formation of hypertrophic scar by modulating TGF-β/Smad signal and may be useful for the treatment of hyperplastic scars.
Collapse
Affiliation(s)
- Chao Wu
- Department of Pharmacology and Institute of Natural Medicine, Anhui Medical University, Hefei, China
| | | | | | | | | |
Collapse
|
60
|
Tokmina-Roszyk M, Tokmina-Roszyk D, Bhowmick M, Fields GB. Development of a Förster resonance energy transfer assay for monitoring bacterial collagenase triple-helical peptidase activity. Anal Biochem 2014; 453:61-9. [PMID: 24608089 DOI: 10.1016/j.ab.2014.02.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 01/30/2014] [Accepted: 02/23/2014] [Indexed: 11/25/2022]
Abstract
Due to their efficiency in the hydrolysis of the collagen triple helix, Clostridium histolyticum collagenases are used for isolation of cells from various tissues, including isolation of the human pancreatic islets. However, the instability of clostridial collagenase I (Col G) results in a degraded Col G that has weak collagenolytic activity and an adverse effect on islet isolation and viability. A Förster resonance energy transfer triple-helical peptide substrate (fTHP) has been developed for selective evaluation of bacterial collagenase activity. The fTHP [sequence: Gly-mep-Flp-(Gly-Pro-Hyp)4-Gly-Lys(Mca)-Thr-Gly-Pro-Leu-Gly-Pro-Pro-Gly-Lys(Dnp)-Ser-(Gly-Pro-Hyp)4-NH2] had a melting temperature (Tm) of 36.2°C and was hydrolyzed efficiently by bacterial collagenase (k(cat)/K(M)=25,000s(-1)M(-1)) but not by clostripain, trypsin, neutral protease, thermolysin, or elastase. The fTHP bacterial collagenase assay allows for rapid and specific assessment of enzyme activity toward triple helices and, thus, potential application for evaluating the efficiency of cell isolation by collagenases.
Collapse
Affiliation(s)
| | | | | | - Gregg B Fields
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, FL 34987, USA.
| |
Collapse
|