51
|
Zhu W, Liu P, Yu L, Chen Q, Liu Z, Yan K, Lee WM, Cheng CY, Han D. p204-Initiated Innate Antiviral Response in Mouse Leydig Cells1. Biol Reprod 2014; 91:8. [DOI: 10.1095/biolreprod.114.119396] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
52
|
Zhao S, Zhu W, Xue S, Han D. Testicular defense systems: immune privilege and innate immunity. Cell Mol Immunol 2014; 11:428-37. [PMID: 24954222 DOI: 10.1038/cmi.2014.38] [Citation(s) in RCA: 200] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 05/03/2014] [Accepted: 05/04/2014] [Indexed: 01/12/2023] Open
Abstract
The mammalian testis possesses a special immunological environment because of its properties of remarkable immune privilege and effective local innate immunity. Testicular immune privilege protects immunogenic germ cells from systemic immune attack, and local innate immunity is important in preventing testicular microbial infections. The breakdown of local testicular immune homeostasis may lead to orchitis, an etiological factor of male infertility. The mechanisms underlying testicular immune privilege have been investigated for a long time. Increasing evidence shows that both a local immunosuppressive milieu and systemic immune tolerance are involved in maintaining testicular immune privilege status. The mechanisms underlying testicular innate immunity are emerging based on the investigation of the pattern recognition receptor-mediated innate immune response in testicular cells. This review summarizes our current understanding of testicular defense mechanisms and identifies topics that merit further investigation.
Collapse
|
53
|
Collodel G, Moretti E, Del Vecchio MT, Biagi M, Cardinali R, Mazzi L, Brecchia G, Maranesi M, Manca D, Castellini C. Effect of chocolate and Propolfenol on rabbit spermatogenesis and sperm quality following bacterial lipopolysaccharide treatment. Syst Biol Reprod Med 2014; 60:217-26. [PMID: 24785944 DOI: 10.3109/19396368.2014.911392] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The aims of the study were to evaluate the effects of chocolate and propolis-enriched diets on rabbit spermatogenesis, sperm motility, and ultrastructure following bacterial lipopolysaccharide (LPS) treatment. Thirty-two New Zealand White rabbits were divided into four groups. The LPS-Propolfenol(®) group received propolis (500 mg/kg/day) in their diet for 15 days, while the LPS-chocolate group was fed 70% cacao chocolate (1 g/1 kg/day) for the same period. Following the diet treatments, rabbits in the LPS-Propolfenol(®) and LPS-chocolate groups, and an LPS group received a single intraperitoneal dose of 50 μg/kg LPS, and the control group received only saline. Kinematic sperm traits were evaluated with a computer assisted sperm analyzer (CASA) system, and ultrastructural characteristics were examined by transmission electron microscopy (TEM). Testicular and epididymal tissues were observed by light microscopy and TEM and multiplex real time reverse transcriptase-polymerase chain reaction (RT-PCR) assay was used to detect and quantify toll-like receptor-4 (TLR-4) gene expression. The values of the analyzed semen parameters of rabbits treated with LPS-Propolfenol(®) and LPS-chocolate did not show any variations compared with the control group, but they were lower in rabbits treated only with LPS. Alterations observed in the testicular tissue of LPS treated-rabbits were not detected in specimens from the LPS-chocolate and LPS-Propolfenol(®) groups, which showed normal spermatogenesis. The TLR-4 mRNA expression was similar in controls, in LPS treated, and in LPS-chocolate groups, but it was significantly (p < 0.01) decreased in LPS-Propolfenol(®) rabbits. In conclusion, a chocolate and propolis-enriched diet showed a protective effect on the spermatogenetic process of buck rabbits following LPS treatment.
Collapse
|
54
|
Chen Q, Zhu W, Liu Z, Yan K, Zhao S, Han D. Toll-like receptor 11-initiated innate immune response in male mouse germ cells. Biol Reprod 2014; 90:38. [PMID: 24403550 DOI: 10.1095/biolreprod.113.114421] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Toxoplasma gondii and uropathogenic Escherichia coli (UPEC) may infect the testis and impair testicular function. Mechanisms underlying testicular innate immune response to these two pathogens remain to be clarified. The present study examined the function of TLR11, which can be recognized by T. gondii-derived profilin and UPEC, in initiating innate immune response in male mouse germ cells. TLR11 is predominantly expressed in spermatids. Profilin and UPEC induced the expressions of different inflammatory cytokine profiles in the germ cells. In particular, profilin induced the expressions of macrophage chemotactic protein 1 (MCP1), interleukin 12 (IL12), and interferon gamma (IFNG) through nuclear factor KB (NFKB) activation. UPEC induced the expressions of MCP1, IL12, and IFNG, as well as tumor necrosis factor alpha (TNFA), IL6, and IFNB, through the activation of NFKB, IFN regulatory factor 3, and mitogen-activated protein kinases. Evidence showed that profilin induced the innate response in male germ cells through TLR11 signaling, and UPEC triggered the response through TLR11 and other TLR-signaling pathways. We also provided evidence that local injection of profilin or UPEC induces the innate immune response in the germ cells. Data describe TLR11-mediated innate immune function of male germ cells in response to T. gondii profilin and UPEC stimulations. This system may play a role in testicular defense against T. gondii and UPEC infections in mice.
Collapse
Affiliation(s)
- Qiaoyuan Chen
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing, China
| | | | | | | | | | | |
Collapse
|
55
|
Zhu W, Chen Q, Yan K, Liu Z, Li N, Zhang X, Yu L, Chen Y, Han D. RIG-I-like receptors mediate innate antiviral response in mouse testis. Mol Endocrinol 2013; 27:1455-67. [PMID: 23820901 DOI: 10.1210/me.2013-1075] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The testis is an immune privileged organ in which the tissue-specific cells have adopted effective innate immune functions against microbial pathogens. Toll-like receptors (TLRs) mediate innate immune response in the testis. The current study demonstrates that melanoma differentiation-associated protein 5 (MDA5) and retinoic acid-inducible gene I (RIG-I) initiate the testicular innate antiviral response. Both MDA5 and RIG-I are expressed in Leydig cells, and MDA5 is also expressed in spermatids. Polyinosinic-polycytidylic acid [poly(I:C)], a common agonist of MDA5 and RIG-I, significantly induces the expression of type I interferons (IFN-α/β) and antiviral proteins, including IFN-stimulated gene 15, 2'5'-oligoadenylate synthetase 1, and Mx GTPase 1, in primary TLR3-deficient (TLR3(-/-)) Leydig and germ cells. Moreover, major proinflammatory cytokines, including TNF-α and IL-6, are significantly up-regulated by poly(I:C) in these testicular cells. The poly(I:C)-induced innate antiviral response in the testicular cells is significantly reduced by knockdown of individual MDA5 and RIG-I using specific small interfering RNA. We also provide evidence that local injection of poly(I:C) induces antiviral response in the testis of TLR3(-/-) mice. These data provide novel insights into the mechanisms underlying testicular antiviral response.
Collapse
Affiliation(s)
- Weiwei Zhu
- School of Basic Medicine, Peking Union Medical College, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing 100005 China
| | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Zhang Y, Li N, Chen Q, Yan K, Liu Z, Zhang X, Liu P, Chen Y, Han D. Breakdown of immune homeostasis in the testis of mice lacking Tyro3, Axl and Mer receptor tyrosine kinases. Immunol Cell Biol 2013; 91:416-26. [PMID: 23689306 DOI: 10.1038/icb.2013.22] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 04/16/2013] [Accepted: 04/17/2013] [Indexed: 12/22/2022]
Abstract
Tyro3, Axl and Mer (TAM) receptor tyrosine kinases triple knockout (TAM(-/-)) mice are male infertile due to impaired spermatogenesis. However, the mechanism by which TAM receptors regulate spermatogenesis remains unclear. In this study, we demonstrate that the testicular immune homeostasis was impaired in TAM(-/-) mice. As development after the onset of sexual maturity, germ cells were progressively degenerated. Macrophages and lymphocytes infiltrated into the testis as TAM(-/-) mice aged. Moreover, the integrity of blood-testis barrier was impaired, and the autoantibodies against germ cell antigens were produced. Major inflammatory cytokines, including tumor necrosis factor-α, interleukin-6 and monocyte chemotactic protein 1 were upregulated in the testis of TAM(-/-) mice, and predominantly located in Sertoli cells (SCs). In vitro assays showed that TAM(-/-) SCs secrete significantly high levels of inflammatory cytokines compared with wild-type SCs after coculture with apoptotic germ cells. These results suggest that TAM receptors are important in the maintenance of the immune homeostasis in the testis.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Cell Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Zhang X, Wang T, Deng T, Xiong W, Lui P, Li N, Chen Y, Han D. Damaged spermatogenic cells induce inflammatory gene expression in mouse Sertoli cells through the activation of Toll-like receptors 2 and 4. Mol Cell Endocrinol 2013; 365:162-73. [PMID: 23123736 DOI: 10.1016/j.mce.2012.10.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 09/13/2012] [Accepted: 10/16/2012] [Indexed: 11/27/2022]
Abstract
Testicular inflammation, including noninfectious inflammatory responses in the testis, may impair male fertility. Mechanisms underlying the initiation of noninfectious testicular inflammation are poorly understood. In the current study, we demonstrate that damaged spermatogenic cell products (DSCPs) induce expression of various inflammatory mediators, including TNF-α, IL-1β, IL-6, and macrophage chemotactic protein 1 (MCP-1), in Sertoli cells. Notably, the DSCP-induced inflammatory gene expression was significantly reduced by knockout Toll-like receptor (TLR)2 or TLR4, and abolished by double knockout TLR2 and TLR4 (TLR2(-/-)TLR4(-/-)). MCP-1 secreted by Sertoli cells after stimulation with DSCPs promotes macrophage migration. We also provide evidence that busulfan-induced spermatogenic cell damages in vivo upregulate TNF-α and MCP-1 expression in Sertoli cells, and facilitate macrophage infiltration into the testis in wild-type mice. These phenomena were not observed in TLR2(-/-)TLR4(-/-) mice. Data indicate that DSCPs induce inflammatory gene expression in Sertoli cells via the activation of TLR2 and TLR4, which may initiate noninfectious inflammatory responses in the testis. The results provide novel insights into the mechanisms underlying damaged spermatogenic cell-induced testicular inflammation.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- Department of Cell Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
58
|
Necrosis is the dominant cell death pathway in uropathogenic Escherichia coli elicited epididymo-orchitis and is responsible for damage of rat testis. PLoS One 2013; 8:e52919. [PMID: 23301002 PMCID: PMC3534655 DOI: 10.1371/journal.pone.0052919] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 11/22/2012] [Indexed: 11/19/2022] Open
Abstract
Male infertility is a frequent medical condition, compromising approximately one in twenty men, with infections of the reproductive tract constituting a major etiological factor. Bacterial epididymo-orchitis results in acute inflammation most often caused by ascending canalicular infections from the urethra via the continuous male excurrent ductal system. Uropathogenic Escherichia coli (UPEC) represent a relevant pathogen in urogenital tract infections. To explore how bacteria can cause damage and cell loss and thus impair fertility, an in vivo epididymo-orchitis model was employed in rats by injecting UPEC strain CFT073 into the vas deference in close proximity to the epididymis. Seven days post infection bacteria were found predominantly in the testicular interstitial space. UPEC infection resulted in severe impairment of spermatogenesis by germ cell loss, damage of testicular somatic cells, a decrease in sperm numbers and a significant increase in TUNEL (+) cells. Activation of caspase-8 (extrinsic apoptotic pathway), caspase-3/−6 (intrinsic apoptotic pathway), caspase-1 (pyroptosis pathway) and the presence of 180 bp DNA fragments, all of which serve as indicators of the classical apoptotic pathway, were not observed in infected testis. Notably, electron microscopical examination revealed degenerative features of Sertoli cells (SC) in UPEC infected testis. Furthermore, the passive release of high mobility group protein B1 (HMGB1), as an indication of necrosis, was observed in vivo in infected testis. Thus, necrosis appears to be the dominant cell death pathway in UPEC infected testis. Substantial necrotic changes seen in Sertoli cells will contribute to impaired spermatogenesis by loss of function in supporting the dependent germ cells.
Collapse
|
59
|
Kaur G, Mital P, Dufour J. Testisimmune privilege - Assumptions versus facts. Anim Reprod 2013; 10:3-15. [PMID: 25309630 PMCID: PMC4192663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023] Open
Abstract
The testis has long enjoyed a reputation as an immunologically privileged site based on its ability to protect auto-antigenic germ cells and provide an optimal environment for the extended survival of transplanted allo- or xeno-grafts. Exploration of the role of anatomical, physiological, immunological and cellular components in testis immune privilege revealed that the tolerogenic environment of the testis is a result of the immunomodulatory factors expressed or secreted by testicular cells (mainly Sertoli cells, peritubular myoid cells, Leydig cells, and resident macrophages). The blood-testis barrier/Sertoli cell barrier, is also important to seclude advanced germ cells but its requirement in testis immune privilege needs further investigation. Testicular immune privilege is not permanent, as an effective immune response can be mounted against transplanted tissue, and bacterial/viral infections in the testis can be effectively eliminated. Overall, the cellular components control the fate of the immune response and can shift the response from immunodestructive to immunoprotective, resulting in immune privilege.
Collapse
Affiliation(s)
| | | | - J.M. Dufour
- Corresponding author: , Phone: +55(806)743-2616; Fax: +55(806)743-2990
| |
Collapse
|
60
|
Hedger MP, Winnall WR. Regulation of activin and inhibin in the adult testis and the evidence for functional roles in spermatogenesis and immunoregulation. Mol Cell Endocrinol 2012; 359:30-42. [PMID: 21964464 DOI: 10.1016/j.mce.2011.09.031] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 09/16/2011] [Accepted: 09/16/2011] [Indexed: 02/03/2023]
Abstract
Activin A provides a unique link between reproduction and immunity, which is especially significant in the adult testis. This cytokine, together with inhibin B and follistatin acting as regulators of activin A activity, is fundamentally involved in the regulation of spermatogenesis and testicular steroidogenesis. However, activin A also has a much broader role in control of inflammation, fibrosis and immunity. In the Sertoli cell, activin A is regulated by signalling pathways that normally regulate stress and inflammation, signalling pathways that intersect with the classical hormonal regulatory pathways mediated by FSH. Modulation of activin A production and activity during spermatogenesis is implicated in the fine control of the cycle of the seminiferous epithelium. The immunoregulatory properties of activin A also suggest that it may be involved in maintaining testicular immune privilege. Consequently, elevated activin A production within the testis during inflammation and infection may contribute to spermatogenic failure, fibrosis and testicular damage.
Collapse
Affiliation(s)
- Mark P Hedger
- Monash Institute of Medical Research, Monash University, Melbourne, Victoria, Australia.
| | | |
Collapse
|
61
|
Li N, Wang T, Han D. Structural, cellular and molecular aspects of immune privilege in the testis. Front Immunol 2012; 3:152. [PMID: 22701457 PMCID: PMC3371599 DOI: 10.3389/fimmu.2012.00152] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 05/23/2012] [Indexed: 11/17/2022] Open
Abstract
The testis presents a special immunological environment, considering its property of immune privilege that tolerates allo- and auto-antigens. Testicular immune privilege was once believed to be mainly based on the sequestration of antigens from the immune system by the blood–testis barrier in the seminiferous epithelium. Substantial evidence supports the view that the combination of physical structure, testicular cells, and cytokines controls immune responses in the testis to preserve the structural and functional integrity of testicular immune privilege. Both systemic immune tolerance and local immunosuppression help maintain the immune privilege status. Constitutive expression of anti-inflammatory factors in testicular cells is critical for local immunosuppression. However, the testis locally generates an efficient innate immune system against pathogens. Disruption of these mechanisms may lead to orchitis and impair fertility. This review article highlights the current understanding of structural, cellular, and molecular mechanisms underlying the unique immune environment of the testis, particularly its immune privilege status.
Collapse
Affiliation(s)
- Nan Li
- Department of Cell Biology, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | | | | |
Collapse
|
62
|
Wang T, Zhang X, Chen Q, Deng T, Zhang Y, Li N, Shang T, Chen Y, Han D. Toll-like receptor 3-initiated antiviral responses in mouse male germ cells in vitro. Biol Reprod 2012; 86:106. [PMID: 22262694 DOI: 10.1095/biolreprod.111.096719] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The testis is an immunoprivileged site where local cell-initiated innate immunity plays a crucial role in antimicrobial responses. Toll-like receptors (TLRs) mediate innate immune responses in testicular somatic cells. Although several TLRs are expressed in some stages of male germ cells, the potential role of TLRs in triggering antimicrobial responses in the germ cells has yet to be exclusively studied. The current study demonstrates that TLR3 is constitutively expressed in spermatogonia and spermatocytes and can be activated by a synthetic double-strained RNA analog, polyinosinic-polycytidylic acid. TLR3 activation in these male germ cells up-regulates the expression of proinflammatory cytokines, such as interleukin IL1B, IL6, and tumor necrosis factor alpha, through activation of nuclear factor kappa B; it also induces production of type 1 interferons (IFNA and IFNB) through the activation of IFN regulatory factor 3. In addition, TLR3 activation increases the production of two major antiviral proteins, namely, double-stranded RNA-activated protein kinase and MX1 protein, by germ cells. Data in this article describe an antiviral response of male germ cells through the activation of TLR3 in vitro.
Collapse
Affiliation(s)
- Tao Wang
- Department of Cell Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Hedger MP. Immunophysiology and pathology of inflammation in the testis and epididymis. ACTA ACUST UNITED AC 2011; 32:625-40. [PMID: 21764900 PMCID: PMC7166903 DOI: 10.2164/jandrol.111.012989] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The ability of spermatogenic cells to evade the host immune system and the ability of systemic inflammation to inhibit male reproductive function represent two of the most intriguing conundrums of male reproduction. Clearly, an understanding of the underlying immunology of the male reproductive tract is crucial to resolving these superficially incompatible observations. One important consideration must be the very different immunological environments of the testis, where sperm develop, and the epididymis, where sperm mature and are stored. Compared with the elaborate blood-testis barrier, the tight junctions of the epididymis are much less effective. Unlike the seminiferous epithelium, immune cells are commonly observed within the epithelium, and can even be found within the lumen, of the epididymis. Crucially, there is little evidence for extended allograft survival (immune privilege) in the epididymis, as it exists in the testis, and the epididymis is much more susceptible to loss of immune tolerance. Moreover, the incidence of epididymitis is considerably greater than that of orchitis in humans, and susceptibility to sperm antibody formation after damage to the epididymis or vas deferens increases with increasing distance of the damage from the testis. Although we still know relatively little about testicular immunity, we know less about the interactions between the epididymis and the immune system. Given that the epididymis appears to be more susceptible to inflammation and immune reactions than the testis, and thereby represents the weaker link in protecting developing sperm from the immune system, it is probably time this imbalance in knowledge was addressed.
Collapse
Affiliation(s)
- Mark P Hedger
- Monash Institute of Medical Research, Monash University, 27-31 Wright St, Clayton, Victoria, Australia.
| |
Collapse
|