51
|
Abstract
Breast cancer incidence is rising worldwide with an increase in aggressive neoplasias in young women. Possible factors involved include lifestyle changes, notably diet that is known to make an impact on gene transcription. However, among dietary factors, there is sufficient support for only greater body weight and alcohol consumption whereas numerous studies revealing an impact of specific diets and nutrients on breast cancer risk show conflicting results. Also, little information is available from middle- and low-income countries. The diversity of gene expression profiles found in breast cancers indicates that transcription control is critical for the outcome of the disease. This suggests the need for studies on nutrients that affect epigenetic mechanisms of transcription, such as DNA methylation and post-translational modifications of histones. In the present review, a new examination of the relationship between diet and breast cancer based on transcription control is proposed in light of epidemiological, animal and clinical studies. The mechanisms underlying the impact of diets on breast cancer development and factors that impede reaching clear conclusions are discussed. Understanding the interaction between nutrition and epigenetics (gene expression control via chromatin structure) is critical in light of the influence of diet during early stages of mammary gland development on breast cancer risk, suggesting a persistent effect on gene expression as shown by the influence of certain nutrients on DNA methylation. Successful development of breast cancer prevention strategies will require appropriate models, identification of biological markers for rapid assessment of preventive interventions, and coordinated worldwide research to discern the effects of diet.
Collapse
|
52
|
Vitamin D and breast cancer: emerging concepts. Cancer Lett 2012; 334:95-100. [PMID: 23142286 DOI: 10.1016/j.canlet.2012.10.034] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 10/19/2012] [Accepted: 10/26/2012] [Indexed: 11/20/2022]
Abstract
The benefit of vitamin D in cancer prevention and to certain extent therapy has been well recognized. The active form of vitamin D, 1,25-dihydroxycholecalciferol (1,25(OH)2 D3) is a natural ligand for vitamin D receptor (VDR). Since 1,25(OH)2D3 exerts toxic effects at a concentration that is beneficial, nearly 1500 analogs of vitamin D have been synthesized and evaluated for their efficacy in a variety of carcinogenesis and human cancer models both in vitro and in vivo. Among these only a handful of them have been approved for evaluation in clinical trials for leukemia, breast, prostate and colon cancers. The mechanism of vitamin D action is mediated by the nuclear VDR and the signaling cascade for its action is extensively reported. In this review we focus on the newer concepts for vitamin D action. These include (1) differential effects of vitamin D in maintaining cell proliferation when the cells are under stress but suppressing cell growth when the cells are transformed; (2) functional significance of VDR polymorphism in potential vitamin D responsiveness; (3) regulation of constitutive splicing of vitamin D target gene, CYP24a, by the hormone and its significance; and (4) regulation of microRNA by vitamin D in breast cancer. It is anticipated that the new work in these selective areas would expand the understanding of vitamin D in breast cancer prevention and therapy.
Collapse
|
53
|
Cheung FSG, Lovicu FJ, Reichardt JKV. Current progress in using vitamin D and its analogs for cancer prevention and treatment. Expert Rev Anticancer Ther 2012; 12:811-37. [PMID: 22716497 DOI: 10.1586/era.12.53] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Vitamin D has long been known for its physiological role in mineral homeostasis through its actions on the intestines, kidneys, parathyroid glands and bone. However, recent observations of antiproliferative, prodifferentiating and antiangiogenic effects elicited by the bioactive form of vitamin D (1,25[OH](2)D(3)) in a broad range of cancers is less well understood. Here, we review the increasing epidemiological and experimental evidence that supports the development of 1,25(OH)(2)D(3) and vitamin D analogs as preventative and therapeutic anticancer agents. Furthermore, this review summarizes the preclinical and clinical studies of vitamin D and its analogs over the past decade, indicating the current problems of dose-limiting toxicity from hypercalcemia and large interpatient variability in pharmacokinetics. A better understanding of how genetic variants influence vitamin D status should not only improve cancer risk predictions, but also promote the development of vitamin D analogs with more specific actions to improve therapeutic outcomes.
Collapse
|
54
|
Halicka HD, Zhao H, Li J, Traganos F, Studzinski GP, Darzynkiewicz Z. Attenuation of constitutive DNA damage signaling by 1,25-dihydroxyvitamin D3. Aging (Albany NY) 2012; 4:270-8. [PMID: 22498490 PMCID: PMC3371762 DOI: 10.18632/aging.100450] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In addition to its traditional role in the regulation of calcium homeostasis and bone metabolism, vitamin D also exhibits immunomodulatory, anti-proliferative and cancer preventive activities. Molecular mechanisms that confer the chemo-preventive properties to vitamin D are poorly understood. We previously reported that constitutive phosphorylation of histone H2AX on Ser139 (γH2AX) and activation of ATM (Ser1981 phosphorylation), seen in untreated normal or tumor cells predominantly in S phase of the cell cycle, is to a large extent indicative of DNA replication stress occurring as a result of persistent DNA damage caused by endogenous oxidants, by-products of oxidative metabolism. In the present study we observed that exposure of mitogenically stimulated human lymphocytes, pulmonary carcinoma A549 and lymphoblastoid TK6 cells to 1,25-dihydroxyvitamin D3 (1,25-VD) reduced the level of constitutive expression of γH2AX and ATM-S1981P. We also observed that the H2O2-induced rise in the level of γH2AX in lymphocytes was attenuated by 1,25-VD. Whereas in lymphocytes 1,25-VD reduced by 50-70% the level of endogenous oxidants as determined by their ability to oxidize 2,7-dichlorodihydrofluorescein (DCFH) in A549 and TK6 cells the attenuation of DNA damage signaling by 1,25-VD was seen in the absence of detectable reduction in DCFH oxidation. These findings suggest that while the anti-oxidant activity of 1,25-VD may contribute to a reduction in the intensity of DNA replication stress in lymphocytes, other factors play a role in the 1,25-VD effects seen in A549 and TK6 cells. The data are consistent with the recent report on the interaction between DNA damage signaling (ATM activation) and 1,25D receptor (VDR) phosphorylation that lead to enhancement of DNA repair efficiency, and provide further support for the chemo-preventive and anti-aging properties of this vitamin/hormone.
Collapse
Affiliation(s)
- H Dorota Halicka
- Brander Cancer Research Institute and Department of Pathology, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | | | | | |
Collapse
|
55
|
Wolden-Kirk H, Gysemans C, Verstuyf A, Mathieu C. Extraskeletal effects of vitamin D. Endocrinol Metab Clin North Am 2012; 41:571-94. [PMID: 22877430 DOI: 10.1016/j.ecl.2012.05.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The presence of vitamin D receptors in diverse tissues like immune cells, beta-cells in the pancreas, and cardiac myocytes has prompted research to evaluate the impact of vitamin D deficiency on the occurrence of immune diseases, diabetes, and cardiovascular disease (CVD). The expression of receptors not only in normal cells, but also in cancer cells including breast, prostate, and colon cancer cells has moreover opened the path to therapeutic exploitation of vitamin D or its metabolites and hypocalcemic structural analogues as pharmaceutical tools in the fight against chronic non-communicable diseases like diabetes, CVD, and cancer.
Collapse
MESH Headings
- Angiogenesis Inhibitors/metabolism
- Angiogenesis Inhibitors/therapeutic use
- Animals
- Autoimmune Diseases/etiology
- Autoimmune Diseases/metabolism
- Autoimmune Diseases/prevention & control
- Calcitriol/metabolism
- Calcitriol/therapeutic use
- Cardiovascular Diseases/etiology
- Cardiovascular Diseases/genetics
- Cardiovascular Diseases/metabolism
- Cardiovascular Diseases/prevention & control
- Diabetes Mellitus, Type 1/etiology
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/prevention & control
- Diabetes Mellitus, Type 2/etiology
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/prevention & control
- Dietary Supplements
- Genetic Variation
- Humans
- Immune System/drug effects
- Immune System/metabolism
- Neoplasms/drug therapy
- Neoplasms/etiology
- Neoplasms/metabolism
- Neoplasms/prevention & control
- Organ Specificity
- Receptors, Calcitriol/deficiency
- Receptors, Calcitriol/genetics
- Receptors, Calcitriol/metabolism
- Signal Transduction
- Vitamin D/metabolism
- Vitamin D/therapeutic use
- Vitamin D Deficiency/metabolism
- Vitamin D Deficiency/physiopathology
Collapse
Affiliation(s)
- Heidi Wolden-Kirk
- Laboratory for Clinical and Experimental Endocrinology, Catholic University Leuven (KUL), O&N I Herestraat 49 - bus 902, Leuven 3000, Belgium
| | | | | | | |
Collapse
|
56
|
Clinckspoor I, Hauben E, Verlinden L, Van den Bruel A, Vanwalleghem L, Vander Poorten V, Delaere P, Mathieu C, Verstuyf A, Decallonne B. Altered expression of key players in vitamin D metabolism and signaling in malignant and benign thyroid tumors. J Histochem Cytochem 2012; 60:502-11. [PMID: 22511602 DOI: 10.1369/0022155412447296] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
1,25-Dihydroxyvitamin D(3) (1,25(OH)(2)D(3)), the active form of vitamin D, mediates antitumor effects in various cancers. The expression of key players in vitamin D signaling in thyroid tumors was investigated. Vitamin D receptor (VDR) and CYP27B1 and CYP24A1 (respectively activating and catabolizing vitamin D) expression was studied (RT-PCR, immunohistochemistry) in normal thyroid, follicular adenoma (FA), differentiated thyroid cancer (DTC) consisting of the papillary (PTC) and follicular (FTC) subtype, and anaplastic thyroid cancer (ATC). VDR, CYP27B1, and CYP24A1 expression was increased in FA and DTC compared with normal thyroid. However, in PTC with lymph node metastasis, VDR and CYP24A1 were decreased compared with non-metastasized PTC. In ATC, VDR expression was often lost, whereas CYP27B1/CYP24A1 expression was comparable to DTC. Moreover, ATC with high Ki67 expression (>30%) or distant metastases at diagnosis was characterized by more negative VDR/CYP24A1/CYP27B1 staining. In conclusion, increased expression of key players involved in local 1,25(OH)(2)D(3) signaling was demonstrated in benign and differentiated malignant thyroid tumors, but a decrease was observed for local nodal and especially distant metastasis, suggesting a local antitumor response of 1,25(OH)(2)D(3) in early cancer stages. These findings advocate further studies with 1,25(OH)(2)D(3) and analogs in persistent and recurrent iodine-refractory DTC.
Collapse
Affiliation(s)
- Isabelle Clinckspoor
- Laboratory for Experimental Medicine and Endocrinology, KU Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Yao S, Zirpoli G, Bovbjerg DH, Jandorf L, Hong CC, Zhao H, Sucheston LE, Tang L, Roberts M, Ciupak G, Davis W, Hwang H, Johnson CS, Trump DL, McCann SE, Ademuyiwa F, Pawlish KS, Bandera EV, Ambrosone CB. Variants in the vitamin D pathway, serum levels of vitamin D, and estrogen receptor negative breast cancer among African-American women: a case-control study. Breast Cancer Res 2012; 14:R58. [PMID: 22480149 PMCID: PMC3446393 DOI: 10.1186/bcr3162] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 02/07/2012] [Accepted: 04/04/2012] [Indexed: 11/10/2022] Open
Abstract
Introduction American women of African ancestry (AA) are more likely than European Americans (EA) to have estrogen receptor (ER)-negative breast cancer. 25-hydroxyvitamin D (25OHD) is low in AAs, and was associated with ER-negative tumors in EAs. We hypothesized that racial differences in 25OHD levels, as well as in inherited genetic variations, may contribute, in part, to the differences in tumor characteristics. Methods In a case (n = 928)-control (n = 843) study of breast cancer in AA and EA women, we measured serum 25OHD levels in controls and tested associations between risk and tag single nucleotide polymorphisms (SNPs) in VDR, CYP24A1 and CYP27B1, particularly by ER status. Results More AAs had severe vitamin D deficiency (< 10 ng/ml) than EAs (34.3% vs 5.9%), with lowest levels among those with the highest African ancestry. Associations for SNPs differed by race. Among AAs, VDR SNP rs2239186, associated with higher serum levels of 25OHD, decreased risk after correction for multiple testing (OR = 0.53, 95% CI = 0.31-0.79, p by permutation = 0.03), but had no effect in EAs. The majority of associations were for ER-negative breast cancer, with seven differential associations between AA and EA women for CYP24A1 (p for interaction < 0.10). SNP rs27622941 was associated with a > twofold increased risk of ER-negative breast cancer among AAs (OR = 2.62, 95% CI = 1.38-4.98), but had no effect in EAs. rs2209314 decreased risk among EAs (OR = 0.38, 95% CI = 0.20-0.73), with no associations in AAs. The increased risk of ER-negative breast cancer in AAs compared to EAs was reduced and became non-significant (OR = 1.20, 95% CI = 0.80-1.79) after adjusting for these two CYP24A1 SNPs. Conclusions These data suggest that genetic variants in the vitamin D pathway may be related to the higher prevalence of ER-negative breast cancer in AA women.
Collapse
Affiliation(s)
- Song Yao
- Department of Cancer Prevention & Control, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Abstract
The population-based association between low vitamin D status and increased cancer risk can be inconsistent, but it is now generally accepted. These relationships link low serum 25OHD (25-hydroxyvitamin D) levels to cancer, whereas cell-based studies show that the metabolite 1,25(OH)2D (1,25-dihydroxyvitamin D) is a biologically active metabolite that works through vitamin D receptor to regulate gene transcription. In the present review we discuss the literature relevant to the molecular events that may account for the beneficial impact of vitamin D on cancer prevention or treatment. These data show that although vitamin D-induced growth arrest and apoptosis of tumour cells or their non-neoplastic progenitors are plausible mechanisms, other chemoprotective mechanisms are also worthy of consideration. These alternative mechanisms include enhancing DNA repair, antioxidant protection and immunomodulation. In addition, other cell targets, such as the stromal cells, endothelial cells and cells of the immune system, may be regulated by 1,25(OH)2D and contribute to vitamin D-mediated cancer prevention.
Collapse
|
59
|
Ting HJ, Yasmin-Karim S, Yan SJ, Hsu JW, Lin TH, Zeng W, Messing J, Sheu TJ, Bao BY, Li WX, Messing E, Lee YF. A positive feedback signaling loop between ATM and the vitamin D receptor is critical for cancer chemoprevention by vitamin D. Cancer Res 2011; 72:958-68. [PMID: 22207345 DOI: 10.1158/0008-5472.can-11-0042] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Both epidemiologic and laboratory studies have shown the chemopreventive effects of 1α,25-dihydroxyvitamin D(3) (1,25-VD) in tumorigenesis. However, understanding of the molecular mechanism by which 1,25-VD prevents tumorigenesis remains incomplete. In this study, we used an established mouse model of chemical carcinogenesis to investigate how 1,25-VD prevents malignant transformation. In this model, 1,25-VD promoted expression of the DNA repair genes RAD50 and ATM, both of which are critical for mediating the signaling responses to DNA damage. Correspondingly, 1,25-VD protected cells from genotoxic stress and growth inhibition by promoting double-strand break DNA repair. Depletion of the vitamin D receptor (VDR) reduced these genoprotective effects and drove malignant transformation that could not be prevented by 1,25-VD, defining an essential role for VDR in mediating the anticancer effects of 1,25-VD. Notably, genotoxic stress activated ATM and VDR through phosphorylation of VDR. Mutations in VDR at putative ATM phosphorylation sites impaired the ability of ATM to enhance VDR transactivation activity, diminishing 1,25-VD-mediated induction of ATM and RAD50 expression. Together, our findings identify a novel vitamin D-mediated chemopreventive mechanism involving a positive feedback loop between the DNA repair proteins ATM and VDR.
Collapse
Affiliation(s)
- Huei-Ju Ting
- Department of Urology, University of Rochester, Rochester, New York, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Ditsch N, Toth B, Mayr D, Lenhard M, Gallwas J, Weissenbacher T, Dannecker C, Friese K, Jeschke U. The association between vitamin D receptor expression and prolonged overall survival in breast cancer. J Histochem Cytochem 2011; 60:121-9. [PMID: 22108646 DOI: 10.1369/0022155411429155] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In this study, we analyzed vitamin D receptor (VDR) expression and survival in a breast cancer patient cohort of 82 breast cancer patients. Immunohistochemical analysis was possible in 91.5% of the patients (75/82). Staining was evaluated using the semi-quantitative assay according to Remmele and Stegner (immunoreactivity score [IRS]). IRS 0-1 was negative/very low, IRS 2-4 was moderate to high, and IRS 6-12 was high. Statistical analysis was performed by Spearman's correlation test (p<0.05 significant). Overall survival was analyzed using Kaplan-Meier estimations. Only 6 patients had a negative IRS. Moderate IRS values were present in 20 patients. Most of the patients had a high IRS (49). For survival analysis, data were dichotomized (IRS 0-4: negative to moderate and IRS 6-12: high VDR expression). In univariate analysis, VDR expression showed significant differences in progression-free survival (PFS) and overall survival (OS). Patients with high IRS scores showed significantly better PFS and OS than patients with moderate/negative IRS scores for VDR expression. Tumor size was significantly correlated to PFS. When analyzed separately, the three different IRS groups showed significant differences in VDR expression. The present data suggest that VDR expression in breast cancer tissue may be of clinical significance, and the results provide evidence that VDR may be a factor with prognostic relevance.
Collapse
Affiliation(s)
- Nina Ditsch
- Department of Obstetrics and Gynecology-Großhadern, Ludwig-Maximilians-University, Munich, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Jones G, Prosser DE, Kaufmann M. 25-Hydroxyvitamin D-24-hydroxylase (CYP24A1): its important role in the degradation of vitamin D. Arch Biochem Biophys 2011; 523:9-18. [PMID: 22100522 DOI: 10.1016/j.abb.2011.11.003] [Citation(s) in RCA: 339] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 10/19/2011] [Accepted: 11/01/2011] [Indexed: 01/08/2023]
Abstract
CYP24A1 is the cytochrome P450 component of the 25-hydroxyvitamin D(3)-24-hydroxylase enzyme that catalyzes the conversion of 25-hydroxyvitamin D(3) (25-OH-D(3)) and 1,25-dihydroxyvitamin D(3) (1,25-(OH)(2)D(3)) into 24-hydroxylated products, which constitute the degradation of the vitamin D molecule. This review focuses on recent data in the CYP24A1 field, including biochemical, physiological and clinical developments. Notable among these are: the first crystal structure for rat CYP24A1; mutagenesis studies which change the regioselectivity of the enzyme; and the finding that natural inactivating mutations of CYP24A1 cause the genetic disease idiopathic infantile hypercalcemia (IIH). The review also discusses the emerging correlation between rising serum phosphate/FGF-23 levels and increased CYP24A1 expression in chronic kidney disease, which in turn underlies accelerated degradation of both serum 25-OH-D(3) and 1,25-(OH)(2)D(3) in this condition. This review concludes by evaluating the potential clinical utility of blocking this enzyme with CYP24A1 inhibitors in various disease states.
Collapse
Affiliation(s)
- Glenville Jones
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada K7L 3N6.
| | | | | |
Collapse
|
62
|
Baek S, Lee YS, Shim HE, Yoon S, Baek SY, Kim BS, Oh SO. Vitamin D3 regulates cell viability in gastric cancer and cholangiocarcinoma. Anat Cell Biol 2011; 44:204-9. [PMID: 22025972 PMCID: PMC3195824 DOI: 10.5115/acb.2011.44.3.204] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 09/06/2011] [Accepted: 09/07/2011] [Indexed: 11/27/2022] Open
Abstract
A low serum level of vitamin D has been associated with an increased incidence of gastrointestinal tract cancers. However, the effects of vitamin D3 have not been investigated in gastric cancer and cholangiocarcinoma. In the present study, we found that vitamin D3 treatment significantly suppressed the viability of gastric cancer and cholangiocarcinoma cells. Moreover, vitamin D3 had a synergistic effect with other anti-cancer drugs, such as paclitaxel, adriamycin, and vinblastine, for suppressing cell viability. To determine the underlying mechanism involved in the regulation of viability by vitamin D3, we examined the effects of vitamin D3 on expression of hedgehog signaling target genes, which has been associated with gastric cancer and cholangiocarcinoma. Vitamin D3 treatment decreased the level of mRNA expression of patched1, Gli1, cyclin D1, and Bcl2, suggesting the possibility that vitamin D3 may act through regulation of hedgehog signaling. From the above results, we conclude that vitamin D3 regulates cell viability in gastric cancer and cholangiocarcinoma.
Collapse
Affiliation(s)
- Sungmin Baek
- Department of Anatomy, Pusan National University School of Medicine, Yangsan, Korea
| | | | | | | | | | | | | |
Collapse
|
63
|
Kovalenko PL, Zhang Z, Yu JG, Li Y, Clinton SK, Fleet JC. Dietary vitamin D and vitamin D receptor level modulate epithelial cell proliferation and apoptosis in the prostate. Cancer Prev Res (Phila) 2011; 4:1617-25. [PMID: 21836023 DOI: 10.1158/1940-6207.capr-11-0035] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Low vitamin D (VD) status may increase prostate cancer risk but experimental evidence for this relationship is modest. We tested whether low VD status or VD receptor (VDR) deletion influences prostate epithelial cell (PEC) biology using intact mice, castrated mice, or castrated mice treated with testosterone propionate (TP, 2.5 mg/kg BW). PEC proliferation (Ki-67 staining) and apoptosis (TUNEL method) were determined in the anterior prostate (AP). In study 1, wild-type (WT) and TgAPT(121) mice (a model of prostate intraepithelial neoplasia) were fed diets with 25, 200 (reference diet), or 10,000 IU VD/kg diet (as vitamin D(3)) prior to castration/repletion. Serum 25 hydroxyvitamin D levels were 26, 78, and 237 nmol/L in the three diet groups, respectively. Castration reduced proliferation and increased apoptosis in the AP while TP reversed these effects. Low VD diet increased proliferation in WT (+82%) and TgAPT(121) (+24%) mice while it suppressed apoptosis in WT (-29%) and TgAPT(121) (-37%) mice. This diet also increased the severity of prostate intraepithelial neoplastic lesions in the AP of intact TgAPT(121) mice. In study 2, mice with PEC-specific VDR deletion (PEC VDR KO) were examined after castration/repletion. TUNEL staining was 60% lower in castrated PEC VDR KO mice compared with castrated WT mice. In castrated mice given TP, Ki-67 staining was 2-fold higher in PEC VDR KO compared with WT mice. Our data show that low diet VDR or VDR deletion provide a prostate environment that is permissive to early procarcinogenic events that enhance prostate cancer risk.
Collapse
Affiliation(s)
- Pavlo L Kovalenko
- Center for Cancer Research, Department of Foods and Nutrition, Purdue University, West Lafayette, Indiana, USA.
| | | | | | | | | | | |
Collapse
|
64
|
Abstract
In recent years, vitamin D has received increased attention due to the resurgence of vitamin D deficiency and rickets in developed countries together with the identification of extraskeletal vitamin D receptor-mediated actions, suggesting unexpected benefits of vitamin D in health and diseases. Although there is increased awareness of the importance of vitamin D, the role of vitamin D in extraskeletal health has been a matter of debate. In this review, we will summarize what is known and indicate the questions that remain and need to be addressed.
Collapse
Affiliation(s)
- Sylvia Christakos
- Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, 185 South Orange Avenue E609, Newark, New Jersey 07103, USA.
| | | |
Collapse
|
65
|
Vanoirbeek E, Krishnan AV, Eelen IG, Verlinden L, Bouillon R, Feldman D, Verstuyf A. The anti-cancer and anti-inflammatory actions of 1,25(OH)₂D₃. Best Pract Res Clin Endocrinol Metab 2011; 25:593-604. [PMID: 21872801 PMCID: PMC3164534 DOI: 10.1016/j.beem.2011.05.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Various epidemiological studies have shown an aetiological link between vitamin D deficiency and cancer incidence. The active metabolite of vitamin D, 1,25-dihydroxyvitamin D₃ [1,25(OH)₂D₃], has potent anti-cancer activities both in vitro and in vivo. These anti-cancer effects are attained by regulating the transcription of numerous genes that are involved in different pathways to reduce tumorigenesis and are dependent on the cancer cell type. Besides reducing cell growth and inducing apoptosis, 1,25(OH)₂D₃ also inhibits angiogenesis and metastasis. Moreover, its potency to inhibit inflammation also contributes to its anti-tumoral activity. Here, we report the different ways in which 1,25(OH)₂D₃ interferes with the malignant processes that are activated in cancer cells.
Collapse
Affiliation(s)
- Els Vanoirbeek
- Laboratory for Experimental Medicine and Endocrinology (LEGENDO), Katholieke Universiteit Leuven, Herestraat 49 bus 901 O&NI, Leuven, Belgium, tel. +32 16 347145, fax +32 16 345934
| | - Aruna V Krishnan
- Dept. of Medicine, Division of Endocrinology, Stanford University School of Medicine 300 Pasteur Drive, Stanford, CA 94305-5103, USA, tel: 650-725-2910, fax: 650-725-7085
| | - Ir Guy Eelen
- Laboratory for Experimental Medicine and Endocrinology (LEGENDO), Katholieke Universiteit Leuven, Herestraat 49 bus 901 O&NI, Leuven, Belgium, tel. +32 16 347145, fax +32 16 345934
| | - Lieve Verlinden
- Laboratory for Experimental Medicine and Endocrinology (LEGENDO), Katholieke Universiteit Leuven, Herestraat 49 bus 901 O&NI, Leuven, Belgium, tel. +32 16 347145, fax +32 16 345934
| | - Roger Bouillon
- Laboratory for Experimental Medicine and Endocrinology (LEGENDO), Katholieke Universiteit Leuven, Herestraat 49 bus 901 O&NI, Leuven, Belgium, tel. +32 16 345970, fax +32 16 345934
| | - David Feldman
- Dept. of Medicine, Division of Endocrinology, Stanford University School of Medicine 300 Pasteur Drive, Stanford, CA 94305-5103, USA, tel: 650-725-2910, fax: 650-725-7085
| | - Annemieke Verstuyf
- Laboratory for Experimental Medicine and Endocrinology (LEGENDO), Katholieke Universiteit Leuven, Herestraat 49 bus 901 O&NI, Leuven, Belgium, tel. +32 16 346209, fax +32 16 345934
| |
Collapse
|
66
|
Yao S, Sucheston LE, Millen AE, Johnson CS, Trump DL, Nesline MK, Davis W, Hong CC, McCann SE, Hwang H, Kulkarni S, Edge SB, O'Connor TL, Ambrosone CB. Pretreatment serum concentrations of 25-hydroxyvitamin D and breast cancer prognostic characteristics: a case-control and a case-series study. PLoS One 2011; 6:e17251. [PMID: 21386992 PMCID: PMC3046139 DOI: 10.1371/journal.pone.0017251] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Accepted: 01/24/2011] [Indexed: 12/31/2022] Open
Abstract
Background Results from epidemiologic studies on the relationship between vitamin D and breast cancer risk are inconclusive. It is possible that vitamin D may be effective in reducing risk only of specific subtypes due to disease heterogeneity. Methods and Findings In case-control and case-series analyses, we examined serum concentrations of 25-hydroxyvitamin D (25OHD) in relation to breast cancer prognostic characteristics, including histologic grade, estrogen receptor (ER), and molecular subtypes defined by ER, progesterone receptor (PR) and HER2, among 579 women with incident breast cancer and 574 controls matched on age and time of blood draw enrolled in the Roswell Park Cancer Institute from 2003 to 2008. We found that breast cancer cases had significantly lower 25OHD concentrations than controls (adjusted mean, 22.8 versus 26.2 ng/mL, p<0.001). Among premenopausal women, 25OHD concentrations were lower in those with high- versus low-grade tumors, and ER negative versus ER positive tumors (p≤0.03). Levels were lowest among women with triple-negative cancer (17.5 ng/mL), significantly different from those with luminal A cancer (24.5 ng/mL, p = 0.002). In case-control analyses, premenopausal women with 25OHD concentrations above the median had significantly lower odds of having triple-negative cancer (OR = 0.21, 95% CI = 0.08–0.53) than those with levels below the median; and every 10 ng/mL increase in serum 25OHD concentrations was associated with a 64% lower odds of having triple-negative cancer (OR = 0.36, 95% CI = 0.22–0.56). The differential associations by tumor subtypes among premenopausal women were confirmed in case-series analyses. Conclusion In our analyses, higher serum levels of 25OHD were associated with reduced risk of breast cancer, with associations strongest for high grade, ER negative or triple negative cancers in premenopausal women. With further confirmation in large prospective studies, these findings could warrant vitamin D supplementation for reducing breast cancer risk, particularly those with poor prognostic characteristics among premenopausal women.
Collapse
Affiliation(s)
- Song Yao
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, New York, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Ademuyiwa FO, Edge SB, Erwin DO, Orom H, Ambrosone CB, Underwood W. Breast cancer racial disparities: unanswered questions. Cancer Res 2011; 71:640-4. [PMID: 21135114 DOI: 10.1158/0008-5472.can-10-3021] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Breast cancer is the most common noncutaneous cancer diagnosed in women in the United States and is second only to lung cancer as the leading cause of cancer-related mortality. Although mortality rates have been dropping steadily due to a variety of factors including improved treatment modalities and screening, substantial racial differences in outcome between blacks and whites persist. Although differences in health care utilization and access, tumor biology, and cancer management have been elucidated as possible reasons for disparities seen, it is likely that other interactions exist. The purpose of this review is, therefore, to present a comprehensive overview of the literature on racial disparities in breast cancer outcome and highlight potential causative factors that may contribute to disparities seen among blacks and whites with breast cancer. In addition, we make research recommendations by discussing some of the remaining gaps in knowledge that may lead to further understanding of disparities and consequently improved outcomes for all women with breast cancer.
Collapse
Affiliation(s)
- Foluso O Ademuyiwa
- Department of Medicine, Division of Cancer Prevention and Population Sciences, Roswell Park Cancer Institute, Buffalo, New York 14263, USA.
| | | | | | | | | | | |
Collapse
|
68
|
Age-related changes in the epithelial and stromal compartments of the mammary gland in normocalcemic mice lacking the vitamin D3 receptor. PLoS One 2011; 6:e16479. [PMID: 21298063 PMCID: PMC3027678 DOI: 10.1371/journal.pone.0016479] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 12/29/2010] [Indexed: 12/31/2022] Open
Abstract
The vitamin D3 receptor (VDR) serves as a negative growth regulator during mammary gland development via suppression of branching morphogenesis during puberty and modulation of differentiation and apoptosis during pregnancy, lactation and involution. To assess the role of the VDR in the aging mammary gland, we utilized 12, 14, and 16 month old VDR knockout (KO) and wild type (WT) mice for assessment of integrity of the epithelial and stromal compartments, steroid hormone levels and signaling pathways. Our data indicate that VDR ablation is associated with ductal ectasia of the primary mammary ducts, loss of secondary and tertiary ductal branches and atrophy of the mammary fat pad. In association with loss of the white adipose tissue compartment, smooth muscle actin staining is increased in glands from VDR KO mice, suggesting a change in the stromal microenviroment. Activation of caspase-3 and increased Bax expression in mammary tissue of VDR KO mice suggests that enhanced apoptosis may contribute to loss of ductal branching. These morphological changes in the glands of VDR KO mice are associated with ovarian failure and reduced serum 17β-estradiol. VDR KO mice also exhibit progressive loss of adipose tissue stores, hypoleptinemia and increased metabolic rate with age. These developmental studies indicate that, under normocalcemic conditions, loss of VDR signaling is associated with age-related estrogen deficiency, disruption of epithelial ductal branching, abnormal energy expenditure and atrophy of the mammary adipose compartment.
Collapse
|
69
|
Abstract
The discovery of the vitamin D endocrine system and a receptor for the hormonal form, 1α,25-dihydroxyvitamin D(3), has brought a new understanding of the relationship between vitamin D and metabolic bone diseases, and has also established the functions of vitamin D beyond the skeleton. This has ushered in many investigations into the possible roles of vitamin D in autoimmune diseases, cardiovascular disorders, infectious diseases, cancers and granuloma-forming diseases. This article presents an evaluation of the possible roles of vitamin D in these diseases. The potential of vitamin D-based therapies in treating diseases for which the evidence is most compelling is also discussed.
Collapse
Affiliation(s)
- Lori A Plum
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, Wisconsin 53706-1544, USA
| | | |
Collapse
|
70
|
Bergren T, Heuberger R. Vitamin D and breast cancer prevention: practical guidelines for clinicians. Nurs Womens Health 2010; 14:368-375. [PMID: 20955525 DOI: 10.1111/j.1751-486x.2010.01575.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
|
71
|
The Vitamin D and Cancer Conundrum: Aiming at a Moving Target. ACTA ACUST UNITED AC 2010; 110:1492-500. [DOI: 10.1016/j.jada.2010.07.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Accepted: 03/31/2010] [Indexed: 12/31/2022]
|
72
|
Pinczewski J, Slominski A. The potential role of vitamin D in the progression of benign and malignant melanocytic neoplasms. Exp Dermatol 2010; 19:860-4. [PMID: 20872994 PMCID: PMC2947742 DOI: 10.1111/j.1600-0625.2010.01169.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Hormonally active vitamin D3, 1,25-(OH)2D3, is believed to have a role in the prevention of cancer formation and in limiting the aggressiveness of cancers that do arise. Therefore,much interest is presently being focused on 1,25-(OH)2D3 and its analogues as potential treatments for various cancers including melanoma. This article discusses the evidence in favour of a role for 1,25-(OH)2D3 in protection against the progression of melanocytic lesions and also summarizes the mechanisms by which 1,25-(OH)2D3 may act to protect against melanoma development and progression.
Collapse
Affiliation(s)
- Joel Pinczewski
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
- Division of Dermatology and Department of Pathology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Andrzej Slominski
- Division of Dermatology and Department of Pathology, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
73
|
Lopes N, Sousa B, Martins D, Gomes M, Vieira D, Veronese LA, Milanezi F, Paredes J, Costa JL, Schmitt F. Alterations in Vitamin D signalling and metabolic pathways in breast cancer progression: a study of VDR, CYP27B1 and CYP24A1 expression in benign and malignant breast lesions. BMC Cancer 2010; 10:483. [PMID: 20831823 PMCID: PMC2945944 DOI: 10.1186/1471-2407-10-483] [Citation(s) in RCA: 146] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 09/11/2010] [Indexed: 11/23/2022] Open
Abstract
Background Breast cancer is a heterogeneous disease associated with different patient prognosis and responses to therapy. Vitamin D has been emerging as a potential treatment for cancer, as it has been demonstrated that it modulates proliferation, apoptosis, invasion and metastasis, among others. It acts mostly through the Vitamin D receptor (VDR) and the synthesis and degradation of this hormone are regulated by the enzymes CYP27B1 and CYP24A1, respectively. We aimed to study the expression of these three proteins by immunohistochemistry in a series of breast lesions. Methods We have used a cohort comprising normal breast, benign mammary lesions, carcinomas in situ and invasive carcinomas and assessed the expression of the VDR, CYP27B1 and CYP24A1 by immunohistochemistry. Results The results that we have obtained show that all proteins are expressed in the various breast tissues, although at different amounts. The VDR was frequently expressed in benign lesions (93.5%) and its levels of expression were diminished in invasive tumours (56.2%). Additionally, the VDR was strongly associated with the oestrogen receptor positivity in breast carcinomas. CYP27B1 expression is slightly lower in invasive carcinomas (44.6%) than in benign lesions (55.8%). In contrast, CYP24A1 expression was augmented in carcinomas (56.0% in in situ and 53.7% in invasive carcinomas) when compared with that in benign lesions (19.0%). Conclusions From this study, we conclude that there is a deregulation of the Vitamin D signalling and metabolic pathways in breast cancer, favouring tumour progression. Thus, during mammary malignant transformation, tumour cells lose their ability to synthesize the active form of Vitamin D and respond to VDR-mediated Vitamin D effects, while increasing their ability to degrade this hormone.
Collapse
Affiliation(s)
- Nair Lopes
- Institute of Molecular Pathology and Immunology of the University of Porto, Porto 4200-465, Portugal
| | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Goltzman D. Emerging roles for calcium-regulating hormones beyond osteolysis. Trends Endocrinol Metab 2010; 21:512-8. [PMID: 20605729 DOI: 10.1016/j.tem.2010.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 04/21/2010] [Accepted: 04/22/2010] [Indexed: 01/08/2023]
Abstract
Parathyroid hormone (PTH), the active form of vitamin D, 1,25-dihydroxyvitamin D [1,25(OH)2D], and PTH-related peptide (PTHrP), the mediator of hypercalcemia of malignancy, are all osteolytic hormones. Recent studies have demonstrated that endogenous PTH and PTHrP also exert bone anabolic activity and that PTHrP is a crucial modulator of growth plate development. At least part of these PTHrP functions can be mediated by intracrine effects, involving a unique interplay of cell surface membrane and intracellular signaling. 1,25(OH)2D also exerts bone anabolic effects and, as with PTHrP, acts on multiple extraskeletal tissues. The skeletal functions of these hormones now extend beyond modulating bone resorption, and important extraskeletal activities have been discovered which involve unique local modes of action.
Collapse
Affiliation(s)
- David Goltzman
- Calcium Research Laboratory, Departments of Medicine, McGill University and McGill University Health Centre, Montreal, QC H3A1A1, Canada.
| |
Collapse
|
75
|
Norman AW, Bouillon R. Vitamin D nutritional policy needs a vision for the future. Exp Biol Med (Maywood) 2010; 235:1034-45. [PMID: 20667908 DOI: 10.1258/ebm.2010.010014] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Historically vitamin D is known to be essential for normal bone growth and quality, and thus appropriate dietary vitamin D supplementation can eliminate vitamin D deficiency childhood rickets and adult osteomalacia. In spite of many government and medical associations' worldwide guidelines for the reference daily intake (RDI) of vitamin D, scientists and nutritionists from many countries agree that at present about half of elderly North Americans and Western Europeans and probably also of the rest of the world are not receiving enough vitamin D to maintain healthy bone. In addition, over the past decade there has been a dramatic increase in our understanding of the many biological actions that result from vitamin D acting through its daughter steroid hormone, 1alpha,25-dihydroxyvitamin D(3) [1alpha,25(OH)(2)D(3)] in collaboration with its cognate vitamin D receptor (VDR). Consequently, evidence has accumulated that beside intestine and bone, there are five additional physiological systems where the VDR with 1alpha,25(OH)(2)D generates biological responses. These include the immune system (both the innate and adaptive), pancreas and metabolic homeostasis, heart-cardiovascular, muscle and brain systems as well as the control of the cell cycle, and thus of the disease process of cancer. Acting through the VDR, 1alpha,25(OH)(2)D(3) can produce a wide array of favorable biological effects that collectively are projected to contribute to the improvement of human health. Responsible medicine demands that worldwide vitamin D nutritional guidelines reflect current scientific knowledge about vitamin D's spectrum of activities. Thus, worldwide vitamin D nutritional policy is now at a crossroads. This paper presents several proposed policy changes with regard to the amount of vitamin D daily intake that if implemented will maximize vitamin D's contribution to reducing the frequency of many diseases, which would then increase the quality and longevity of life and significantly reduce the cost of medical care worldwide.
Collapse
Affiliation(s)
- Anthony W Norman
- Department of Biochemistry and Division of Biomedical Sciences, University of California, Riverside, CA 92521, USA.
| | | |
Collapse
|
76
|
Matthews D, LaPorta E, Zinser GM, Narvaez CJ, Welsh J. Genomic vitamin D signaling in breast cancer: Insights from animal models and human cells. J Steroid Biochem Mol Biol 2010; 121:362-7. [PMID: 20412854 PMCID: PMC2906670 DOI: 10.1016/j.jsbmb.2010.03.061] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Revised: 03/18/2010] [Accepted: 03/22/2010] [Indexed: 11/18/2022]
Abstract
These studies focus on identification of vitamin D regulated pathways that impact development or progression of breast cancer. In mouse experiments, we assessed genomic profiles of glandular tissue and established tumors from MMTV-neu mice fed adequate (250 IU/kg) or high (5000 IU/kg) vitamin D (cholecalciferol). Genomic profiles were also obtained in murine mammary cells that differentially express VDR that were cultured in vitro with 100 nM 1,25-dihydroxyvitamin D (1,25D). Ten candidate genes were identified that were commonly regulated in murine cells treated with 1,25D in vitro and in mammary gland of mice fed high dietary vitamin D. In complementary studies, the vitamin D pathway was evaluated in human mammary epithelial cells as a function of transformation. Genes regulated by 1,25D in human mammary epithelial cells included those involved in innate immunity (CD14), differentiation (Bmp6), extracellular matrix remodeling (Plau) and cell survival (Birc3). Transformation reduced VDR content and blunted the induction of some, but not all, target genes by 1,25D in human mammary cells. Collectively, these in vivo and in vitro data demonstrate that vitamin D signaling impacts on common pathways that drive differentiation, alter metabolism, remodel the extracellular matrix and trigger innate immunity in mammary tissue.
Collapse
Affiliation(s)
- Donald Matthews
- Department of Biomedical Sciences, School of Public Health, State University of New York at Albany, Rensselaer, NY 12144, United States
| | | | | | | | | |
Collapse
|
77
|
Chatterjee M, Janarthan M, Manivannan R, Rana A, Chatterjee M. Combinatorial effect of fish oil (Maxepa) and 1alpha,25-dihydroxyvitamin D(3) in the chemoprevention of DMBA-induced mammary carcinogenesis in rats. Chem Biol Interact 2010; 188:102-10. [PMID: 20599847 DOI: 10.1016/j.cbi.2010.06.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 06/15/2010] [Accepted: 06/15/2010] [Indexed: 12/20/2022]
Abstract
The present study demonstrates the anti-tumor effects of combined supplementations of dietary fish oil (Maxepa) and 1alpha,25-dihydroxyvitamin D(3) (vitamin D(3)) on 7,12-dimethylbenz(alpha)anthracene (DMBA)-induced rat mammary carcinogenesis. Female Sprague-Dawley rats at 50 days of age were treated with 7,12-dimethylbenz(alpha)anthracene (DMBA; 0.5mg/100g body weight) by a single tail vein injection in an oil emulsion. Both fish oil (rich in EPA and DHA) and vitamin D(3) were administered orally at a dose of 0.5 ml/day/rat and 0.3 microg/100 microL propylene glycol twice a week respectively and continued to 35 weeks after DMBA administration. Fish oil in combination with vitamin D(3) resulted in a significant reduction in incidence, multiplicity and volume of mammary tumors. These supplementation also inhibited DMBA-induced mammary 7-methylguanine DNA adducts formation, which was measured by HPLC-fluorescence assay (at four sequential time points; ANOVA, F=42.56, P<0.0001). Immunohistochemical analysis revealed that the effect of fish oil and vitamin D(3) occurred through suppression of cell proliferation (BrdU-LI: P<0.0001). Fish oil and vitamin D(3) together also reduced the mRNA expression of iNOS (84%, P<0.05). In view of their natural availability, non-toxicity and acceptability; combined supplementation of fish oil and vitamin D(3) might be effective for chemoprevention of mammary carcinogenesis.
Collapse
Affiliation(s)
- Mary Chatterjee
- Chemical Carcinogenesis and Chemoprevention Laboratory, Division of Biochemistry, Department of Pharmaceutical Technology, Jadavpur University, Calcutta (Kolkata) 700 032, West Bengal, India.
| | | | | | | | | |
Collapse
|
78
|
|
79
|
Abstract
This paper reviews the current understanding of the vitamin D-induced differentiation of neoplastic cells, which results in the generation of cells that acquire near-normal, mature phenotype. Examples of the criteria by which differentiation is recognized in each cell type are provided, and only those effects of 1alpha,25-dihydroxyvitamin D(3) (1,25D) on cell proliferation and survival that are associated with the differentiation process are emphasized. The existing knowledge, often fragmentary, of the signaling pathways that lead to vitamin D-induced differentiation of colon, breast, prostate, squamous cell carcinoma, osteosarcoma, and myeloid leukemia cancer cells is outlined. The important distinctions between the different mechanisms of 1,25D-induced differentiation that are cell-type and cell-context specific are pointed out where known. There is a considerable body of evidence that the principal human cancer cells can be suitable candidates for chemoprevention or differentiation therapy with vitamin D. However, further studies are needed to fully understand the underlying mechanisms in order to improve the therapeutic approaches.
Collapse
Affiliation(s)
- Elzbieta Gocek
- Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | | |
Collapse
|
80
|
The yin and yang of vitamin D receptor (VDR) signaling in neoplastic progression: operational networks and tissue-specific growth control. Biochem Pharmacol 2009; 79:1-9. [PMID: 19737544 PMCID: PMC2824849 DOI: 10.1016/j.bcp.2009.09.005] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Revised: 08/24/2009] [Accepted: 09/01/2009] [Indexed: 12/21/2022]
Abstract
Substantive evidence implicates vitamin D receptor (VDR) or its natural ligand 1α,25-(OH)2 D3 in modulation of tumor growth. However, both human and animal studies indicate tissue-specificity of effect. Epidemiological studies show both inverse and direct relationships between serum 25(OH)D levels and common solid cancers. VDR ablation affects carcinogen-induced tumorigenesis in a tissue-specific manner in model systems. Better understanding of the tissue-specificity of vitamin D-dependent molecular networks may provide insight into selective growth control by the seco-steroid, 1α,25-(OH)2 D3. This commentary considers complex factors that may influence the cell- or tissue-specificity of 1α,25-(OH)2 D3/VDR growth effects, including local synthesis, metabolism and transport of vitamin D and its metabolites, vitamin D receptor (VDR) expression and ligand-interactions, 1α,25-(OH)2 D3 genomic and non-genomic actions, Ca2+ flux, kinase activation, VDR interactions with activating and inhibitory vitamin D responsive elements (VDREs) within target gene promoters, VDR coregulator recruitment and differential effects on key downstream growth regulatory genes. We highlight some differences of VDR growth control relevant to colonic, esophageal, prostate, pancreatic and other cancers and assess the potential for development of selective prevention or treatment strategies.
Collapse
|
81
|
Radisky DC, Hartmann LC. Mammary involution and breast cancer risk: transgenic models and clinical studies. J Mammary Gland Biol Neoplasia 2009; 14:181-91. [PMID: 19404726 PMCID: PMC2693781 DOI: 10.1007/s10911-009-9123-y] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Accepted: 04/16/2009] [Indexed: 12/15/2022] Open
Abstract
Postlactational involution is the process following weaning during which the mammary gland undergoes massive cell death and tissue remodeling as it returns to the pre-pregnant state. Lobular involution is the process by which the breast epithelial tissue is gradually lost with aging of the mammary gland. While postlactational involution and lobular involution are distinct processes, recent studies have indicated that both are related to breast cancer development. Experiments using a variety of rodent models, as well as observations in human populations, suggest that deregulation of postlactational involution may act to facilitate tumor formation. By contrast, new human studies show that completion of lobular involution protects against subsequent breast cancer incidence.
Collapse
Affiliation(s)
- Derek C. Radisky
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224 USA
| | | |
Collapse
|
82
|
Goltzman D. 25-Hydroxyvitamin D-1α Hydroxylase: Studies in Mouse Models and Implications for Human Disease. Clin Rev Bone Miner Metab 2009. [DOI: 10.1007/s12018-009-9032-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
83
|
Mercier I, Casimiro MC, Zhou J, Wang C, Plymire C, Bryant KG, Daumer KM, Sotgia F, Bonuccelli G, Witkiewicz AK, Lin J, Tran TH, Milliman J, Frank PG, Jasmin JF, Rui H, Pestell RG, Lisanti MP. Genetic ablation of caveolin-1 drives estrogen-hypersensitivity and the development of DCIS-like mammary lesions. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 174:1172-90. [PMID: 19342371 DOI: 10.2353/ajpath.2009.080882] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Caveolin-1 (Cav-1) loss-of-function mutations are exclusively associated with estrogen receptor-positive (ER(+)) human breast cancers. To dissect the role of Cav-1 loss-of-function in the pathogenesis of human breast cancers, we used Cav-1(-/-) null mice as a model system. First, we demonstrated that Cav-1(-/-) mammary epithelia overexpress two well-established ER co-activator genes, CAPER and Foxa1, in addition to ER-alpha. Thus, the functional loss of Cav-1 may be sufficient to confer estrogen-hypersensitivity in the mammary gland. To test this hypothesis directly, we subjected Cav-1(-/-) mice to ovariectomy and estrogen supplementation. As predicted, Cav-1(-/-) mammary glands were hyper-responsive to estrogen and developed dysplastic mammary lesions with adjacent stromal angiogenesis that resemble human ductal carcinoma in situ. Based on an extensive biomarker analysis, these Cav-1(-/-) mammary lesions contain cells that are hyperproliferative and stain positively with nucleolar (B23/nucleophosmin) and stem/progenitor cell markers (SPRR1A and beta-catenin). Genome-wide transcriptional profiling identified many estrogen-related genes that were over-expressed in Cav-1(-/-) mammary glands, including CAPER--an ER co-activator gene and putative stem/progenitor cell marker. Analysis of human breast cancer samples revealed that CAPER is overexpressed and undergoes a cytoplasmic-to-nuclear shift during the transition from pre-malignancy to ductal carcinoma in situ. Thus, Cav-1(-/-) null mice are a new preclinical model for studying the molecular paradigm of estrogen hypersensitivity and the development of estrogen-dependent ductal carcinoma in situ lesions.
Collapse
Affiliation(s)
- Isabelle Mercier
- Department of Cancer Biology, Kimmel Cancer Center, Thomas Jefferson University, 233 South 10th Street, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Lee HJ, Paul S, Atalla N, Thomas PE, Lin X, Yang I, Buckley B, Lu G, Zheng X, Lou YR, Conney AH, Maehr H, Adorini L, Uskokovic M, Suh N. Gemini vitamin D analogues inhibit estrogen receptor-positive and estrogen receptor-negative mammary tumorigenesis without hypercalcemic toxicity. Cancer Prev Res (Phila) 2009; 1:476-84. [PMID: 19138995 DOI: 10.1158/1940-6207.capr-08-0084] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Numerous preclinical, epidemiologic, and clinical studies have suggested the benefits of vitamin D and its analogues for the prevention and treatment of cancer. However, the hypercalcemic effects have limited the use of 1alpha,25(OH)(2)D(3), the hormonally active form of vitamin D. To identify vitamin D analogues with better efficacy and low toxicity, we have tested >60 novel Gemini vitamin D analogues with a unique structure of two side chains for growth inhibition of breast cancer cells. Our initial studies found that some Gemini analogues are 5-15 times more active than 1alpha,25(OH)(2)D(3) in growth inhibition assay. In vivo experiments were designed to study the inhibitory effect of selected Gemini vitamin D analogues against mammary carcinogenesis by using (a) an N-methyl-N-nitrosourea-induced estrogen receptor (ER)-positive mammary tumor model and (b) an MCF10DCIS.com xenograft model of ER-negative mammary tumors. Among vitamin D analogues we tested, Gemini 0072 [1alpha,25-dihydroxy-20S-21(3-trideuteromethyl-3-hydroxy-4,4,4-trideuterobutyl)-23-yne-26,27-hexafluoro-19-nor-cholecalciferol] and Gemini 0097 [1alpha,25-dihydroxy-20R-21(3-trideuteromethyl-3-hydroxy-4,4,4-trideuterobutyl)-23-yne-26,27-hexafluoro-19-nor-cholecalciferol] administration inhibited by 60% the NMU-induced mammary tumor burden compared with the NMU-treated control group, but these compounds were devoid of hypercalcemia toxicity. In an ER-negative xenograft model, Gemini 0097 significantly suppressed tumor growth without hypercalcemia toxicity. We found that the inhibitory effect of Gemini 0097 was associated with an increased level of cyclin-dependent kinase inhibitor p21 and the insulin-like growth factor binding protein 3 in both ER-positive and ER-negative mammary tumors. Our results suggest that Gemini vitamin D analogues may be potent agents for the prevention and treatment of both ER-positive and ER-negative breast cancer without hypercalcemia toxicity.
Collapse
MESH Headings
- Animals
- Calcitriol/adverse effects
- Calcitriol/analogs & derivatives
- Calcitriol/pharmacology
- Calcitriol/therapeutic use
- Carcinoma/chemically induced
- Carcinoma/genetics
- Carcinoma/prevention & control
- Cell Transformation, Neoplastic/drug effects
- Cell Transformation, Neoplastic/genetics
- Cells, Cultured
- Female
- Humans
- Hypercalcemia/epidemiology
- Hypercalcemia/etiology
- Hypercalcemia/prevention & control
- Incidence
- Mammary Neoplasms, Experimental/chemically induced
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/prevention & control
- Methylnitrosourea
- Mice
- Mice, SCID
- Models, Biological
- Rats
- Rats, Sprague-Dawley
- Receptors, Estrogen/genetics
- Receptors, Estrogen/metabolism
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Hong Jin Lee
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
|
86
|
Dhawan P, Wieder R, Christakos S. CCAAT enhancer-binding protein alpha is a molecular target of 1,25-dihydroxyvitamin D3 in MCF-7 breast cancer cells. J Biol Chem 2009; 284:3086-3095. [PMID: 19054766 PMCID: PMC2631956 DOI: 10.1074/jbc.m803602200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2008] [Revised: 12/02/2008] [Indexed: 11/06/2022] Open
Abstract
Numerous studies have shown that the active form of vitamin D, 1,25(OH)(2)D(3), can exert growth inhibitory effects on human breast cancer cells and mammary tumor growth. However, the molecular mechanisms remain to be fully delineated. This study demonstrates for the first time that CCAAT enhancer-binding protein alpha (C/EBPalpha), a member of the C/EBP family of transcription factors, is induced by 1,25(OH)(2)D(3) and is a potent enhancer of VDR transcription in MCF-7 breast cancer cells. 1,25(OH)(2)D(3) was found to induce C/EBPalpha as well as VDR expression in MCF-7 cells. C/EBPalpha was not detected in MDA-MB-231 cells that are poorly responsive to 1,25(OH)(2)D(3). Antiproliferative effects of 1,25(OH)(2)D(3) and induction of VDR were observed in MDA-MB-231 cells transfected with C/EBPalpha, and knockdown of C/EBPalpha suppressed VDR and antiproliferative effects of 1,25(OH)(2)D(3) in MCF-7 cells. Transfection of C/EBPalpha in MCF-7 cells resulted in a dose-dependent enhancement of hVDR transcription. Our studies show that C/EBPalpha can bind to Brahma (Brm), an ATPase that is a component of the SWI/SNF complex, and cooperate with Brm in the regulation of hVDR transcription in MCF-7 cells. Because the levels of VDR in MCF-7 breast cancer cells correlate with the antiproliferative effects of 1,25(OH)(2)D(3) and because C/EBPalpha has been suggested as a potential tumor suppressor in breast cancer, these findings provide important mechanisms whereby 1,25(OH)(2)D(3) may act to inhibit growth of breast cancer cells. These findings also identify C/EBPalpha as a 1,25(OH)(2)D(3) target in breast cancer cells and provide evidence for C/EBPalpha as a candidate for breast cancer treatment.
Collapse
Affiliation(s)
- Puneet Dhawan
- Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark, New Jersey 07103
| | - Robert Wieder
- Department of Medicine, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark, New Jersey 07103
| | - Sylvia Christakos
- Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark, New Jersey 07103.
| |
Collapse
|
87
|
Lim U, Freedman DM, Hollis BW, Horst RL, Purdue MP, Chatterjee N, Weinstein SJ, Morton LM, Schatzkin A, Virtamo J, Linet MS, Hartge P, Albanes D. A prospective investigation of serum 25-hydroxyvitamin D and risk of lymphoid cancers. Int J Cancer 2009; 124:979-86. [PMID: 19035445 DOI: 10.1002/ijc.23984] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Studies indicate that higher sun exposure, especially in the recent past, is associated with reduced risk of non-Hodgkin lymphoma (NHL). Ultraviolet radiation-derived vitamin D may be protective against lymphomagenesis. We examined the relationship between prediagnostic serum 25-hydroxyvitamin D (25(OH)D) and lymphoid cancer risk in a case-control study nested within the Alpha-Tocopherol Beta-Carotene Cancer Prevention Study cohort (1985-2002) of 29,133 Finnish male smokers (ages 50-69). We identified 270 incident lymphoid cancer cases and matched them individually with 538 controls by birth-year and month of fasting blood draw at baseline. In conditional logistic regression models for 10 nmol/L increments or tertile comparisons, serum 25(OH)D was not associated with the risk of overall lymphoid cancers, NHL (n = 208) or multiple myeloma (n = 41). Odds ratios (OR) for NHL for higher tertiles were 0.75 (95% confidence interval (CI), 0.50, 1.14) and 0.82 (95% CI, 0.53, 1.26). The 25(OH)D-NHL association, however, differed by follow-up duration at diagnosis. Cases diagnosed less than 7 years from the baseline showed an inverse association (OR for highest vs. lowest tertile = 0.43; 95% CI: 0.23, 0.83; p for trend = 0.01), but not later diagnoses (OR = 1.52; 95% CI: 0.82, 2.80; p for trend = 0.17). The inverse association found for close exposure to diagnosis was not confounded by other risk factors for lymphoma or correlates of 25(OH)D. Although our findings suggest that circulating 25(OH)D is not likely associated with overall lymphoid cancer, they indicate a potentially protective effect on short-term risk of NHL.
Collapse
Affiliation(s)
- Unhee Lim
- Cancer Research Center of Hawaii, University of Hawaii, Honolulu, HI 96813, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Bouillon R, Carmeliet G, Verlinden L, van Etten E, Verstuyf A, Luderer HF, Lieben L, Mathieu C, Demay M. Vitamin D and human health: lessons from vitamin D receptor null mice. Endocr Rev 2008; 29:726-76. [PMID: 18694980 PMCID: PMC2583388 DOI: 10.1210/er.2008-0004] [Citation(s) in RCA: 1145] [Impact Index Per Article: 71.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Accepted: 07/08/2008] [Indexed: 02/06/2023]
Abstract
The vitamin D endocrine system is essential for calcium and bone homeostasis. The precise mode of action and the full spectrum of activities of the vitamin D hormone, 1,25-dihydroxyvitamin D [1,25-(OH)(2)D], can now be better evaluated by critical analysis of mice with engineered deletion of the vitamin D receptor (VDR). Absence of a functional VDR or the key activating enzyme, 25-OHD-1alpha-hydroxylase (CYP27B1), in mice creates a bone and growth plate phenotype that mimics humans with the same congenital disease or severe vitamin D deficiency. The intestine is the key target for the VDR because high calcium intake, or selective VDR rescue in the intestine, restores a normal bone and growth plate phenotype. The VDR is nearly ubiquitously expressed, and almost all cells respond to 1,25-(OH)(2)D exposure; about 3% of the mouse or human genome is regulated, directly and/or indirectly, by the vitamin D endocrine system, suggesting a more widespread function. VDR-deficient mice, but not vitamin D- or 1alpha-hydroxylase-deficient mice, and man develop total alopecia, indicating that the function of the VDR and its ligand is not fully overlapping. The immune system of VDR- or vitamin D-deficient mice is grossly normal but shows increased sensitivity to autoimmune diseases such as inflammatory bowel disease or type 1 diabetes after exposure to predisposing factors. VDR-deficient mice do not have a spontaneous increase in cancer but are more prone to oncogene- or chemocarcinogen-induced tumors. They also develop high renin hypertension, cardiac hypertrophy, and increased thrombogenicity. Vitamin D deficiency in humans is associated with increased prevalence of diseases, as predicted by the VDR null phenotype. Prospective vitamin D supplementation studies with multiple noncalcemic endpoints are needed to define the benefits of an optimal vitamin D status.
Collapse
Affiliation(s)
- Roger Bouillon
- Katholieke Universiteit Leuven, Laboratory of Experimental Medicine and Endocrinology, Herestraat 49, O&N 1 bus 902, 3000 Leuven, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Valrance ME, Brunet AH, Acosta A, Welsh J. Dissociation of growth arrest and CYP24 induction by VDR ligands in mammary tumor cells. J Cell Biochem 2008; 101:1505-19. [PMID: 17286279 DOI: 10.1002/jcb.21263] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Murine mammary tumor cells with differential vitamin D receptor (VDR) expression were used to study the mechanisms of growth inhibition by vitamin D steroids. In VDR-expressing WT145 cells, 1,25D and its synthetic analog EB1089 induce growth arrest and transcriptionally upregulate the well-characterized VDR target gene CYP24. 1,25D also induces apoptosis in WT145 cells through activation of initiator and executioner caspases and the calcium-dependent protease calpain. We also demonstrate that WT145 cells express CYP27B1, the enzyme that converts 25-hydroxyvitamin D(3) (25D) to 1,25D, and that 25D inhibits growth of these cells but does not trigger apoptosis or induce CYP24 expression. Comparative studies were conducted in KO240 cells, which were derived from VDR knockout mice and found to retain expression of CYP27B1. KO240 cells were not growth inhibited nor rendered apoptotic by any of the tested vitamin D compounds. These data conclusively demonstrate that VDR mediates the anti-proliferative and pro-apoptotic effects of vitamin D metabolites and analogs, but that the potency of a vitamin D compound to induce the VDR target gene CYP24 does not accurately predict its potency in mediating growth regulation.
Collapse
Affiliation(s)
- Meggan E Valrance
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | | | | | |
Collapse
|
90
|
Mordan-McCombs S, Valrance M, Zinser G, Tenniswood M, Welsh J. Calcium, vitamin D and the vitamin D receptor: impact on prostate and breast cancer in preclinical models. Nutr Rev 2007; 65:S131-3. [PMID: 17867390 DOI: 10.1111/j.1753-4887.2007.tb00341.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Sarah Mordan-McCombs
- Biological Sciences Department, University of Notre Dame, 214 Galvin Life Sciences Building, Notre Dame, IN 46556, USA
| | | | | | | | | |
Collapse
|
91
|
Valrance ME, Brunet AH, Welsh J. Vitamin D receptor-dependent inhibition of mammary tumor growth by EB1089 and ultraviolet radiation in vivo. Endocrinology 2007; 148:4887-94. [PMID: 17628009 DOI: 10.1210/en.2007-0267] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
1,25-Dihydroxyvitamin D(3) (1,25D), the biologically active form of vitamin D(3), exerts antiproliferative and proapoptotic effects in multiple transformed cell types, and thus, the vitamin D signaling pathway represents a potential anticancer target. Although chronic treatment with 1,25D induces hypercalcemia, synthetic vitamin D analogs have been developed that inhibit tumor growth in vivo with minimal elevation of serum calcium. Furthermore, vitamin D is synthesized in skin exposed to UV light, and this route of vitamin D elevation is not associated with hypercalcemia. In this study, we examined whether enhancement of vitamin D status via exogenous (EB1089, a 1,25D analog) or endogenous (UV exposure) approaches could exert antitumor effects without hypercalcemia. We used mammary xenografts with differential vitamin D receptor (VDR) expression to examine whether the antitumor effects of either therapy are receptor mediated. We present evidence that both EB1089 and UV exposure inhibit tumor growth via induction of growth arrest and apoptosis. These antitumor effects were observed only in xenografts containing VDR-positive tumor cells; heterogeneous tumors containing VDR-negative tumor cells and VDR-positive stromal and endothelial cells were unresponsive to both therapies. No evidence for antiangiogenic effects of EB1089 were detected in this model system. Neither EB1089 nor UV was associated with overt toxicity, but keratinocyte proliferation was increased in UV-exposed skin. These data provide proof of principle that UV exposure modulates tumor growth via elevation of vitamin D signaling and that therapeutic approaches designed to target the vitamin D pathway will be effective only if tumor cells express functional VDR.
Collapse
Affiliation(s)
- Meggan E Valrance
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | | | | |
Collapse
|
92
|
Abstract
Epidemiologic data have demonstrated that breast cancer incidence is inversely correlated with indices of vitamin D status, including ultraviolet exposure, which enhances epidermal vitamin D synthesis. The vitamin D receptor (VDR) is expressed in mammary epithelial cells, suggesting that vitamin D may directly influence sensitivity of the gland to transformation. Consistent with this concept, in vitro studies have demonstrated that the VDR ligand, 1,25-dihydroxyvitamin D (1, 25D), exerts negative growth regulatory effects on mammary epithelial cells that contribute to maintenance of the differentiated phenotype. Furthermore, deletion of the VDR gene in mice alters the balance between proliferation and apoptosis in the mammary gland, which ultimately enhances its susceptibility to carcinogenesis. In addition, dietary supplementation with vitamin D, or chronic treatment with synthetic VDR agonists, reduces the incidence of carcinogen-induced mammary tumors in rodents. Collectively, these observations have reinforced the need to further define the human requirement for vitamin D and the molecular actions of the VDR in relation to prevention of breast cancer.
Collapse
Affiliation(s)
- JoEllen Welsh
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
93
|
Deeb KK, Trump DL, Johnson CS. Vitamin D signalling pathways in cancer: potential for anticancer therapeutics. Nat Rev Cancer 2007; 7:684-700. [PMID: 17721433 DOI: 10.1038/nrc2196] [Citation(s) in RCA: 990] [Impact Index Per Article: 58.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Epidemiological studies indicate that vitamin D insufficiency could have an aetiological role in various human cancers. Preclinical research indicates that the active metabolite of vitamin D, 1alpha,25(OH)2D3, also known as calcitriol, or vitamin D analogues might have potential as anticancer agents because their administration has antiproliferative effects, can activate apoptotic pathways and inhibit angiogenesis. In addition, 1alpha,25(OH)2D3 potentiates the anticancer effects of many cytotoxic and antiproliferative anticancer agents. Here, we outline the epidemiological, preclinical and clinical studies that support the development of 1alpha,25(OH)2D3 and vitamin D analogues as preventative and therapeutic anticancer agents.
Collapse
Affiliation(s)
- Kristin K Deeb
- Department of Pharmacology, Roswell Park Cancer Institute, Buffalo, New York, USA
| | | | | |
Collapse
|
94
|
Seubwai W, Wongkham C, Puapairoj A, Khuntikeo N, Wongkham S. Overexpression of vitamin D receptor indicates a good prognosis for cholangiocarcinoma: implications for therapeutics. Cancer 2007; 109:2497-505. [PMID: 17487855 DOI: 10.1002/cncr.22716] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Up-regulation of vitamin D receptor (VDR) expression has been shown in several tumors and is thought to represent an important endogenous response to tumor progression. The authors aimed to verify the expression of VDR and its clinical significance in histologically proven cholangiocarcinoma (CCA). METHODS The antiproliferative activity of vitamin D3 on CCA cell lines was explored. The immunohistochemistry of 111 paraffin-embedded CCA tissues showed that VDR expression gradually increased during CCA development. Normal bile duct epithelium rarely expresses VDR, whereas more than 74% of CCA tissues showed positive VDR staining, of which 40% were high. Approximately 80%-90%of CCA patients with papillary and well differentiated adenocarcinomas had positive VDR expression in tumor tissues, whereas 39% positive VDR expression was found in those with poorly differentiated CCAs (P < .001). RESULTS Expression of VDR was shown to be compatible with an overall favorable prognosis for CCA. Treatment with 1,25(OH)(2)D(3), an active metabolite of vitamin D3, in the CCA cell lines with high expression of VDR significantly reduced cell proliferation in a dose-dependent manner. The effect was not demonstrated in the CCA cell lines that had lower VDR expression. CONCLUSIONS These data indicated an active role for VDR in mediating the antiproliferative effects of 1,25(OH)(2)D(3) in CCA cell lines. VDR expression may constitute an important prerequisite for using vitamin D and/or its analogs in the treatment of CCA. Investigation of a mechanism by which VDR and its ligand mediate these processes is needed to provide the basis for the potential use of this hormone and its derivatives in the prevention and treatment of CCA.
Collapse
Affiliation(s)
- Wunchana Seubwai
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | | | | | | | | |
Collapse
|
95
|
Abstract
PURPOSE OF REVIEW This review focuses on recent developments in a number of areas to bring the reader up to the current state of knowledge in this field. RECENT FINDINGS A number of studies have revealed new insights into the regulation of the vitamin D receptor and new targets for its action. The mechanism by which a number of drugs can reduce circulating 25OHD has been clarified. New drug targets including increased bone by inhibition of osteoclasts, improvement in diabetes mellitus, and stimulation of innate immunity to combat infections such as tuberculosis have been found. SUMMARY The wide distribution of the vitamin D receptor provides a number of clinical targets for vitamin D and its analogs. The wide distribution of CYP27B1, the enzyme required to convert circulating 25OHD to 1,25(OH)2D enables a number of cells to make their own 1,25(OH)2D3 if circulating 25OHD levels are maintained. These newer studies emphasize that vitamin D is not just for bones, and maintaining adequate levels is important for many tissues.
Collapse
Affiliation(s)
- Daniel D Bikle
- Medicine and Dermatology, University of California and Veterans Affairs Medical Center, San Francisco, California, USA.
| |
Collapse
|