51
|
Wang YZ, Wang SW, Zhang YC, Sun ZJ. Protective effect of exogenous IGF-I on the intestinalmucosal barrier in rats with severe acute pancreatitis. World J Emerg Med 2012; 3:213-20. [PMID: 25215066 PMCID: PMC4129782 DOI: 10.5847/wjem.j.issn.1920-8642.2012.03.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Accepted: 07/20/2012] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Severe acute pancreatitis (SAP) can result in intestinal mucosal barrier (IMB) dysfunction. This study was undertaken to demonstrate the effect of IGF-I on the intestinal mucosal barrier in rats with SAP and its possible mechanisms. METHODS Seventy-two male Wistar rats were randomly divided into three groups: a sham operation (SO group, n=24), a SAP group not treated with IGF-I (SAP group, n=24), and a SAP group treated with IGF-I (IGF-I group, n=24). SAP was induced in the rats by injecting 5.0% sodium taurocholate into the biliary-pancreatic duct. The SO rats were given an infusion of normal saline instead. The rats in the IGF-I group underwent the SAP procedure and were given a subcutaneous injection of IGF-I at 30 minutes before the operation and at 3 hours after the operation. Eight rats in each group were sacrificed at 6, 12 and 24 hours after operation. Apoptosis of mucosal cells in the small intestine was determined by TUNEL. The levels of endotoxin and DAO and serum amylase were also measured. Pathologic changes in the small intestine were monitored. Changes of bax and bcl-2 mRNA expression in the small intestine were determined by reverse transcription polymerase chain reaction (RT-PCR). RESULTS The levels of serum amylase were lower in the IGF-I group than in the SAP group at all three time points (P<0.05). The levels of endotoxin in the IGF-I group were higher than those in the SAP group at 6 hours, but lower in the IGF-I group than in the SAP group at 12 and 24 hours (P<0.05). The levels of diamine oxidase were higher in the IGF-I group at 6 hours but lower than those in the SAP group at 12 and 24 hours. The pathological score of the small intestine was lower in the IGF-I group than in the SAP group, and the difference was statistically significant at 12 and 24 hours. The pathologic changes observed under electron microscopy were better in the IGF-I group than those in the SAP group. The apoptosis index of intestinal epithelial cells was significantly decreased in the IGF-I group compared with the SAP group. Compared with the SO group, the mRNA expression levels of bax were increased at each time point in the SAP group, and were significantly decreased in the IGF-I group as compared with the SAP group at each time point (P<0.05). The expression levels of bcl-2 were weak and not different between the SO group and the SAP group (P>0.05). They were significantly increased in the IGF-I group versus the SO and SAP groups (P<0.05). The ratio of bax and bcl-2 mRNA expression levels at each time point in the SAP group were significantly higher than those in the SO group, but they were obviously decreased in the IGF-I group. CONCLUSIONS Exogenous IGF-I seems to protect mucosal cells in the small intestine against SAP-induced apoptosis and could alleviate SAP-induced injury of the intestinal mucosa. The underlying mechanisms include enhanced mRNA expression of bcl-2 and inhibition of bax mRNA expression.
Collapse
Affiliation(s)
- Ying-zhen Wang
- Intensive Care Unit, Second Hospital of Gansu Province, Lanzhou 730000, China
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Shi-wen Wang
- Intensive Care Unit, Second Hospital of Gansu Province, Lanzhou 730000, China
| | - You-cheng Zhang
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Zhi-jiang Sun
- Intensive Care Unit, General Hospital of Lanzhou Petrochemical, Lanzhou 730060, China
| |
Collapse
|
52
|
Abstract
PURPOSE Reactive oxygen species (ROS) are thought to contribute to the pathogenesis of necrotizing enterocolitis (NEC). Mitochondria as a major source of intracellular ROS and apoptotic signaling during oxidative stress in NEC have not been investigated. We sought to determine: (1) the effects of oxidative stress on intestinal mitochondrial apoptotic signaling, and (2) the role of growth factors in this process. METHODS We used Swiss-Webster mice pups, and rat intestinal epithelial (RIE)-1, mitochondrial DNA-depleted RIE-1 cell line (RIE-1-ρ°) and human fetal intestinal epithelial cells (FHs74 Int) for our studies. RESULTS H(2)O(2) induced apoptosis and ROS production. ROS-mediated activation of apoptotic signaling was significantly attenuated with mitochondrial silencing in RIE-1-ρ° cells. Growth factors, especially IGF-1, attenuated this response to H(2)O(2) in intestinal epithelial cells. CONCLUSIONS Our findings suggest that mitochondria are a major source of intestinal apoptotic signaling during oxidative stress, and modulating mitochondrial apoptotic responses may help ameliorate the effects of NEC.
Collapse
|
53
|
Wang Z, Yang X, Yang S, Ren G, Ferreri M, Su Y, Chen L, Han B. Sodium fluoride suppress proliferation and induce apoptosis through decreased insulin-like growth factor-I expression and oxidative stress in primary cultured mouse osteoblasts. Arch Toxicol 2011; 85:1407-17. [PMID: 21461751 DOI: 10.1007/s00204-011-0697-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2010] [Accepted: 03/14/2011] [Indexed: 12/22/2022]
Abstract
It has been reported that sodium fluoride suppressed proliferation and induced apoptosis in osteoblasts. However, the details about the mechanism at work in bone metabolism are limited. In this study, we further investigated the mechanisms of NaF on proliferation and apoptosis in the primary cultured mouse osteoblasts, which were exposed to different concentration of NaF (10(-6)-5 × 10(-4) M). We examined the effect of NaF on proliferation, cell cycle, apoptosis, oxidative stress, and the protein level of insulin-like growth factor-I (IGF-I) in osteoblasts. All the tested NaF inhibited proliferation and arrested cell cycle at S phase in osteoblasts, and further demonstrated to induce apoptosis in osteoblasts. On the other hand, we found that NaF increased oxidative stress and decreased protein expression of IGF-I. Our study herein suggested that NaF caused proliferation suppression, and apoptosis may contribute to decrease IGF-I expression and increased oxidative stress damage by NaF in the primary mouse osteoblasts.
Collapse
Affiliation(s)
- Zhi Wang
- College of Veterinary Medicine, China Agricultural University, Yuan Ming Yuan West Road No. 2, Haidian District, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
54
|
Swanson JR, Jilling T, Lu J, Landseadel JB, Marcinkiewicz M, Gordon PV. Ileal Immunoglobulin Binding by the Neonatal Fc Receptor: A Previously Unrecognized Mechanism of Protection in the Neonatal Rat Model of Necrotizing Enterocolitis? THE E-JOURNAL OF NEONATOLOGY RESEARCH 2011; 1:eJNR21606072v1i1p2y2011. [PMID: 25105063 PMCID: PMC4122316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
BACKGROUND Mucosal apoptosis is the initiating event in models of necrotizing enterocolitis (NEC) within rodents. It is possible there are species-specific differences that make apoptosis a more prominent feature of NEC in rodents than in humans. HYPOTHESIS A lower threshold for mucosal apoptosis in the rodent distal intestine might have evolutionary advantages (via enhanced opsonization with the neonatal Fc receptor [FcRn]), since many short-gestation mammals are comparatively premature (histomorphologically) but are protected from NEC by breast milk. METHODS We utilized a rat intestinal epithelial cell (IEC-18) model to determine if cell death alters FcRn - IgG binding, and rodent models of NEC to determine if cell death results in increased opsonization of IgG. Cultured IEC-18 cells were treated with H2O2 and analyzed. Neonatal Sprague-Dawley rats were cold and hypoxia stressed and intestinal sections were frozen for analysis. RESULTS IgG binding was increased in H2O2-treated cells. Co-incubation of treated cells with either insulin-like growth factor or tunicamycin decreased IgG binding. Sprague-Dawley rats formula fed with exogenous bacteria showed a significant decrease in intestinal FcRn mRNA but increased ileal IgG binding. CONCLUSIONS We speculate that FcRn plays a role in passive opsonization and subsequent bacterial pathogen clearance, making rodents resistant to NEC.
Collapse
Affiliation(s)
| | - Tamas Jilling
- Department of Pediatrics, Evanston Northwestern Healthcare Research Institute, Evanston, IL
| | - Jing Lu
- Department of Pediatrics, Evanston Northwestern Healthcare Research Institute, Evanston, IL
| | - Jessica B Landseadel
- Department of Pediatrics, University of Virginia Children's Hospital, Charlottesville, VA
| | - Marek Marcinkiewicz
- Department of Pediatrics, University of Virginia Children's Hospital, Charlottesville, VA
| | | |
Collapse
|
55
|
Baregamian N, Song J, Bailey CE, Papaconstantinou J, Evers BM, Chung DH. Tumor necrosis factor-alpha and apoptosis signal-regulating kinase 1 control reactive oxygen species release, mitochondrial autophagy, and c-Jun N-terminal kinase/p38 phosphorylation during necrotizing enterocolitis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2011; 2:297-306. [PMID: 20716917 PMCID: PMC2835918 DOI: 10.4161/oxim.2.5.9541] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background: Oxidative stress and inflammation may contribute to the disruption of the protective gut barrier through various mechanisms; mitochondrial dysfunction resulting from inflammatory and oxidative injury may potentially be a significant source of apoptosis during necrotizing enterocolitis (NEC). Tumor necrosis factor (TNF)α is thought to generate reactive oxygen species (ROS) and activate the apoptosis signal-regulating kinase 1 (ASK1)-c-Jun N-terminal kinase (JNK)/p38 pathway. Hence, the focus of our study was to examine the effects of TNFα/ROs on mitochondrial function, ASK1-JNK/p38 cascade activation in intestinal epithelial cells during NEC. Results: We found (a) abundant tissue TNFα and ASK1 expression throughout all layers of the intestine in neonates with NEC, suggesting that TNFα/ASK1 may be a potential source (indicators) of intestinal injury in neonates with NEC; (b) TNFα-induced rapid and transient activation of JNK/p38 apoptotic signaling in all cell lines suggests that this may be an important molecular characteristic of NEC; (c) TNFα-induced rapid and transient ROs production in RIe-1 cells indicates that mitochondria are the predominant source of ROS, demonstrated by significantly attenuated response in mitochondrial DNA-depleted (RIE-1-ρ°) intestinal epithelial cells; (d) further studies with mitochondria-targeted antioxidant PBN supported our hypothesis that effective mitochondrial ROS trapping is protective against TNFα/ROs-induced intestinal epithelial cell injury; (e) TNFα induces significant mitochondrial dysfunction in intestinal epithelial cells, resulting in increased production of mtROS, drop in mitochondrial membrane potential (MMP) and decreased oxygen consumption; (f) although the significance of mitochondrial autophagy in NEC has not been unequivocally shown, our studies provide a strong preliminary indication that TNFα/ROs-induced mitochondrial autophagy may play a role in NeC, and this process is a late phenomenon. Methods: Paraffin-embedded intestinal sections from neonates with NEC and non-inflammatory condition of the gastrointestinal tract undergoing bowel resections were analyzed for TNFα and ASK1 expression. Rat (RIE-1) and mitochondrial DNA-depleted (RIE-1-ρ°) intestinal epithelial cells were used to determine the effects of TNFα on mitochondrial function. Conclusions: Our findings suggest that TNFα induces significant mitochondrial dysfunction and activation of mitochondrial apoptotic responses, leading to intestinal epithelial cell apoptosis during NeC. Therapies directed against mitochondria/ROS may provide important therapeutic options, as well as ameliorate intestinal epithelial cell apoptosis during NeC.
Collapse
Affiliation(s)
- Naira Baregamian
- Departments of Surgery, University of Texas Medical Branch, Galveston, Texas, USA
| | | | | | | | | | | |
Collapse
|
56
|
Can we protect the gut in critical illness? The role of growth factors and other novel approaches. Crit Care Clin 2010; 26:549-65, x. [PMID: 20643306 DOI: 10.1016/j.ccc.2010.04.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The intestine plays a central role in the pathophysiology of critical illness and is frequently called the "motor" of the systemic inflammatory response. Perturbations to the intestinal barrier can lead to distant organ damage and multiple organ failure. Therefore, identifying ways to preserve intestinal integrity may be of paramount importance. Growth factors and other peptides have emerged as potential tools for modulation of intestinal inflammation and repair due to their roles in cellular proliferation, differentiation, migration, and survival. This review examines the involvement of growth factors and other peptides in intestinal epithelial repair during critical illness and their potential use as therapeutic targets.
Collapse
|
57
|
|
58
|
Comparative effects of probiotics, prebiotics, and synbiotics on growth factors in the large bowel in a rat model of formula-induced bowel inflammation. J Pediatr Gastroenterol Nutr 2010; 51:507-13. [PMID: 20683203 DOI: 10.1097/mpg.0b013e3181df5ff2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES Supplementation with probiotics has been shown to prevent gastrointestinal damage possibly through preservation of growth factors. We tested the hypothesis that probiotics, prebiotics, or synbiotics supplementation preserves intestinal insulin-like growth factors (IGFs) and epidermal growth factors (EGFs) in formula-fed neonatal rats. MATERIALS AND METHODS At birth (postnatal day 0 [P0]), neonatal rat pups (n = 18 pups/group) were either maternally fed or hand-gavaged with formula supplemented with probiotics (Pro-Fed), prebiotics, or synbiotics from P0 to P3. A formula-fed control group received formula without supplementation. At P4, large bowel samples were assessed histologically and assayed for vascular endothelial growth factor (VEGF), soluble VEGF receptor-1, IGF-I, IGF-II, and EGF. RESULTS All formula-fed groups were severely growth suppressed with comparable mortalities. Moderate preservation of bowel integrity was noted in the Pro-Fed group. In contrast, severe inflammation was seen in all of the other formula groups. This was associated with significant increases in VEGF levels in all of the formula groups (P < 0.05) except the Pre-Fed group. Similar elevations in soluble VEGF receptor-1 (P < 0.05), IGF-I (P < 0.05), and EGF (P < 0.05) were noted, but statistical significance was achieved only in the Pro-Fed group. CONCLUSIONS Induction of IGF-I and EGF with moderate bowel integrity may represent a protective effect of probiotics against formula-induced inflammation. These data, taken collectively, suggest that probiotics may provide more beneficial effects on the developing large bowel than prebiotics and synbiotics.
Collapse
|
59
|
To Y, Ito K, Kizawa Y, Failla M, Ito M, Kusama T, Elliott WM, Hogg JC, Adcock IM, Barnes PJ. Targeting phosphoinositide-3-kinase-delta with theophylline reverses corticosteroid insensitivity in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2010; 182:897-904. [PMID: 20224070 DOI: 10.1164/rccm.200906-0937oc] [Citation(s) in RCA: 257] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
RATIONALE Patients with chronic obstructive pulmonary disease (COPD) show a poor response to corticosteroids. This has been linked to a reduction of histone deacetylase-2 as a result of oxidative stress and is reversed by theophylline. OBJECTIVES To determine the role of phosphoinositide-3-kinase-delta (PI3K-δ) on the development of corticosteroid insensitivity in COPD and under oxidative stress, and as a target for theophylline. METHODS Corticosteroid sensitivity was determined as the 50% inhibitory concentration of dexamethasone on tumor necrosis factor-α-induced interleukin-8 release in peripheral blood mononuclear cells from patients with COPD (n = 17) and compared with that of nonsmoking (n = 8) and smoking (n = 7) control subjects. The effect of theophylline and a selective PI3K-δ inhibitor (IC87114) on restoration of corticosteroid sensitivity was confirmed in cigarette smoke-exposed mice. MEASUREMENTS AND MAIN RESULTS Peripheral blood mononuclear cells of COPD (50% inhibitory concentration of dexamethasone: 156.8 ± 32.6 nM) were less corticosteroid sensitive than those of nonsmoking (41.2 ± 10.5 nM; P = 0.018) and smoking control subjects (47.5 ± 19.6 nM; P = 0.031). Corticosteroid insensitivity and reduced histone deacetylase-2 activity after oxidative stress were reversed by a non-selective PI3K inhibitor (LY294002) and low concentrations of theophylline. Theophylline was a potent selective inhibitor of oxidant-activated PI3K-δ, which was up-regulated in peripheral lung tissue of patients with COPD. Furthermore, cells with knock-down of PI3K-δ failed to develop corticosteroid insensitivity with oxidative stress. Both theophylline and IC87114, combined with dexamethasone, inhibited corticosteroid-insensitive lung inflammation in cigarette-smoke-exposed mice in vivo. CONCLUSIONS Inhibition of oxidative stress dependent PI3K-δ activation by a selective inhibitor or theophylline provides a novel approach to reversing corticosteroid insensitivity in COPD.
Collapse
Affiliation(s)
- Yasuo To
- Airway Disease Section, NHLI Imperial College, London, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Cordisco S, Maurelli R, Bondanza S, Stefanini M, Zambruno G, Guerra L, Dellambra E. Bmi-1 reduction plays a key role in physiological and premature aging of primary human keratinocytes. J Invest Dermatol 2009; 130:1048-62. [PMID: 19907431 DOI: 10.1038/jid.2009.355] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Accumulation of senescent cells contributes to the reduced regenerative capacity in aged tissues. By evaluating the molecular pathways of senescence in relation to proliferative potential of primary keratinocyte cultures from young and old healthy donors, and from young patients with inherited defects leading to premature aging, we demonstrated that p16(INK4a) is a reliable marker of both physiological and premature epidermal aging. Analysis of the expression and activity of p16(INK4a) regulators showed that stem cell depletion, reduced proliferation, and p16(INK4a) upregulation in keratinocytes derived from the chronologically and prematurely aged epidermis strongly correlate with Bmi-1 downregulation. In highly proliferative tissues, replicative and premature senescence participate in determining senescent cell accumulation. Our findings demonstrated that Bmi-1 is downregulated in human keratinocytes during both in vitro processes, in parallel with p16(INK4a) upregulation and accomplishment of clonal conversion. When premature senescence was induced by specific exogenous stimuli, concomitant Ets-1 upregulation was also observed. Moreover, Bmi-1 inhibited Ets-1-mediated p16(INK4a) upregulation. Finally, Bmi-1 overexpression reduced p16(INK4a) promoter activity and decreased protein expression in aged and diseased keratinocytes, inducing a delay of clonal conversion and an increase of cell clonogenic ability. Altogether these findings underline a key role of Bmi-1 downregulation in enforcing aging in primary human keratinocytes.
Collapse
Affiliation(s)
- Sonia Cordisco
- Laboratory of Tissue Engineering and Cutaneous Physiopathology, IDI, Istituto Dermopatico dell'Immacolata, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
61
|
State-Based Analysis of Necrotizing Enterocolitis Outcomes. J Surg Res 2009; 157:21-9. [DOI: 10.1016/j.jss.2008.11.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2008] [Revised: 10/27/2008] [Accepted: 11/05/2008] [Indexed: 12/23/2022]
|
62
|
Avila-Gomez IC, Velez-Pardo C, Jimenez-Del-Rio M. Effects of insulin-like growth factor-1 on rotenone-induced apoptosis in human lymphocyte cells. Basic Clin Pharmacol Toxicol 2009; 106:53-61. [PMID: 19874289 DOI: 10.1111/j.1742-7843.2009.00472.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human peripheral blood lymphocytes have been useful as a putative model of oxidative stress-induced apoptosis for Parkinson's disease. The present work shows that rotenone, a mitochondrial complex I inhibitor, induced time- and concentration-dependent apoptosis in lymphocytes which was mediated by anion superoxide radicals (O(2)*(-))/hydrogen peroxide, depolarization of mitochondria, caspase-3 activation, concomitantly with the nuclear translocation of transcription factors such as NF-kappaB, p53, c-Jun and nuclei fragmentation. Since insulin-like growth factor-1 (IGF-1) interferes with a cell's apoptotic machinery when subjected to several stressful conditions, it is demonstrated here for the first time that IGF-1 effectively protects lymphocytes against rotenone through PI-3K/Akt activation, down-regulation of p53 and maintenance of mitochondrial membrane potential independently of ROS generation. These data might contribute to understanding the role played by IGF-1 against oxidative stress stimuli.
Collapse
Affiliation(s)
- Isabel Cristina Avila-Gomez
- School of Medicine, Medical Research Institute, Neuroscience Research Program, University of Antioquia, Medellin, Colombia
| | | | | |
Collapse
|
63
|
PI3K p110 alpha and p110 beta have differential effects on Akt activation and protection against oxidative stress-induced apoptosis in myoblasts. Cell Death Differ 2009; 17:677-88. [PMID: 19834495 PMCID: PMC2839024 DOI: 10.1038/cdd.2009.150] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Catalytic subunits of PI3K play a critical role in growth factor signaling and survival by phosphorylating inositol lipids. We found that PI3K Class IA p110α and p110β have distinct functions in myoblasts. Inhibition of p110α reduced IGF-I-stimulated Akt activity and prevented IGF-I-mediated survival in H2O2-treated cells; in contrast, siRNA knockdown of p110β increased IGF-I-stimulated Akt activity. However, inhibition of p110β catalytic activity did not increase IGF-I-stimulated Akt activity, suggesting a role for p110β protein interactions rather than decreased generation of phosphoinositides in this effect. Increased Akt activity in p110β-deficient myoblasts was associated with diminished ERK activation as well as ERK-dependent IRS-1 636/639 phosphorylation, findings we show to be independent of p110β catalytic function, but associated with IGF-IR endocytosis. We also report that IGF-I protects myoblasts from H2O2-induced apoptosis through a mechanism that requires p110α, but may be independent of Akt or ERK under conditions of Akt and ERK inhibition. These observations suggest that both p110α and p110β are essential for growth and metabolism in myoblasts. Overall, our results provide new evidence for the roles of p110 isoforms in promoting cellular proliferation and homeostasis, IGF-IR internalization, and in opposing apoptosis.
Collapse
|
64
|
Matheny RW, Adamo ML. Role of Akt isoforms in IGF-I-mediated signaling and survival in myoblasts. Biochem Biophys Res Commun 2009; 389:117-21. [PMID: 19703413 DOI: 10.1016/j.bbrc.2009.08.101] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Accepted: 08/19/2009] [Indexed: 10/20/2022]
Abstract
Oxidative stress has been shown to induce apoptosis in a variety of tissues, while insulin-like growth factor-I (IGF-I) can oppose this effect. We found that H(2)O(2) promoted cell death and apoptosis in C2C12 myoblasts, an effect that was completely prevented by exogenous IGF-I. One downstream mediator of IGF-I survival signaling is the serine/threonine kinase Akt, of which three isoforms have been identified in mammals. We found that Akt1 and Akt3 act on pro-apoptotic target molecules in an isoform-specific manner. Both Akt1 and Akt3 were responsible for phosphorylating FoxO3a at S253 and FoxO1 at T24, while Akt1 alone phosphorylated Bad at S136 and FoxO3a at T32. Our results provide evidence for IGF-I-stimulated isoform-specific actions of Akt on molecules involved in promoting apoptosis.
Collapse
Affiliation(s)
- Ronald W Matheny
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | | |
Collapse
|
65
|
Kim WS, Park BS, Sung JH. The wound-healing and antioxidant effects of adipose-derived stem cells. Expert Opin Biol Ther 2009; 9:879-87. [DOI: 10.1517/14712590903039684] [Citation(s) in RCA: 197] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
66
|
Protective role of adipose-derived stem cells and their soluble factors in photoaging. Arch Dermatol Res 2009; 301:329-36. [DOI: 10.1007/s00403-009-0951-9] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2008] [Revised: 03/11/2009] [Accepted: 03/24/2009] [Indexed: 01/09/2023]
|
67
|
Brady G, Crean SJ, Lorenzon A, Kapas S. IGF-I protects human oral buccal mucosal epithelial cells from sodium nitroprusside-induced apoptosis via PI3-kinase. Growth Horm IGF Res 2008; 18:298-306. [PMID: 18269934 DOI: 10.1016/j.ghir.2007.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2007] [Revised: 10/31/2007] [Accepted: 11/13/2007] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Cancers of the head and neck account for the vast majority of all malignancies of the oral cavity. The insulin-like growth factor (IGF) family of proteins is well documented to have an important role in rescuing cells from apoptosis. While it is known the IGF proteins are present in normal oral epithelial and cancer cells its role is not fully understood. Our aim was to study the ability of IGFs to rescue sodium nitroprusside (SNP)-induced apoptotic normal oral epithelial cells in vitro. DESIGN Cultured normal human oral keratinocytes (NOKs) or epithelial cells were used. Apoptosis was induced by SNP then cells were exposed to IGF-I or IGF-II to rescue them. Cell viability was assessed by ELISA (for cell death and caspase 3) and FACS analysis; post receptor effects of IGF-I or IGF-II were assessed by [(3)H] thymidine incorporation. Cell signaling events were measured by western blotting using antibodies against phosphorylated Akt or p42/p44 MAPK, and measuring PI3-K activity by ELISA. RESULTS SNP induced apoptosis of NOKs and activated the PI3-K/Akt survival pathway. Exposing cells to IGF proteins prevented their apoptosis. IGF-I and -II caused significant increases in PI3-K, but not MAPK, activity. SNP and LY294002, a PI3-K inhibitor, both caused a significant rise in caspase 3 release from NOKs which was reduced in the presence of IGFs. CONCLUSIONS The data establishes the importance of IGF-activated PI3-K in rescuing cells from apoptosis. It lends further evidence to the significance of IGF proteins in the possible development of oral cancer.
Collapse
Affiliation(s)
- Garrett Brady
- Maxillofacial Department, Leeds Dental Institute, Clarendon Way, Leeds LS2 9LU, UK.
| | | | | | | |
Collapse
|
68
|
Rowland KJ, Brubaker PL. Life in the crypt: a role for glucagon-like peptide-2? Mol Cell Endocrinol 2008; 288:63-70. [PMID: 18403107 DOI: 10.1016/j.mce.2008.02.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Revised: 01/31/2008] [Accepted: 02/25/2008] [Indexed: 12/27/2022]
Abstract
The epithelial layer of the intestinal tract serves as a model to study the mechanisms regulating tissue renewal. Central to this process is the intestinal stem cell and, thus, both the intrinsic and extrinsic factors that modulate the function of these cells must be understood. Amongst the intrinsic regulators, both the canonical wnt and bone morphogenic protein (bmp) signaling pathways have been shown to be essential determinants of stem cell dynamics and intestinal homeostasis. The intestinotrophic hormone, glucagon-like peptide-2 (GLP-2), has also recently been demonstrated to exert a variety of effects on the intestinal crypt cells, including enhancement of the putative stem cell marker, musashi-1, as well as stimulating intestinal proliferation. As the GLP-2 receptor is not expressed by the crypt cells, these actions have been hypothesized to be mediated indirectly, through other gut peptides and/or growth factors. Of these, recent studies have demonstrated a requirement for insulin-like growth factor-1 in the proliferative effects of GLP-2, through a pathway that involves activation of the canonical wnt signaling pathway. This extrinsic pathway represents a novel mechanism by which intestinal stem cell dynamics may be regulated.
Collapse
|
69
|
Wheatley KE, Williams EA, Smith NCP, Dillard A, Park EY, Nunez NP, Hursting SD, Lane MA. Low-carbohydrate diet versus caloric restriction: effects on weight loss, hormones, and colon tumor growth in obese mice. Nutr Cancer 2008; 60:61-8. [PMID: 18444137 DOI: 10.1080/01635580701510150] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Our objective was to compare the effects of a low-carbohydrate diet to a high-carbohydrate/calorie-restricted diet on weight loss, hormones, and transplanted colon tumor growth. Eighty male C57BL/6 mice consumed a diet-induced obesity regimen (DIO) ad libitum for 7 weeks. From Weeks 8 to 14, the mice consumed a 1) DIO diet ad libitum (HF); 2) low-carbohydrate diet ad libitum (LC); 3) high-carbohydrate diet ad libitum (HC); or 4) HC calorie restricted diet (HC-CR). MC38 cells were injected at Week 15. At the time of injection, the HC-CR group displayed the lowest body weight (25.5 +/- 0.57 g), serum insulin-like growth factor I (IGF-I; 135 +/- 56.0 ng/ml), and leptin (1.0 +/- 0.3 ng/ml) levels. This group also exhibited the longest time to palpable tumor (20.1 +/- 0.9 days). Compared to the HF group, the HC group exhibited lower body weight (39.4 +/- 1.4 vs. 32.9 +/- 0.7 g, respectively), IGF-I (604 +/- 44.2 vs. 243.4 +/- 88.9 ng/ml, respectively), and leptin (15.6 +/- 2.2 vs. 7.0 +/- 0.7 ng/ml, respectively) levels but similar tumor growth. IGF-I levels were lower in the LC group (320.0 +/- 39.9 ng/ml) than the HF group, but tumor growth did not differ. These data suggest LC diets do not slow colon tumor growth in obese mice.
Collapse
Affiliation(s)
- Karrie E Wheatley
- Department of Human Ecology, Division of Nutritional Sciences, The University of Texas at Austin, TX 78712, USA
| | | | | | | | | | | | | | | |
Collapse
|
70
|
Wang YZ, Wang SW, Li PJ, Dang DF, Sun ZJ, Wang XK, Xu QJ. Effects of insulin-like growth factor -Ⅰ on bax and bcl-2 mRNA expression in intestinal mucosal epithelial cells of rats with severe acute pancreatitis. Shijie Huaren Xiaohua Zazhi 2008; 16:1396-1401. [DOI: 10.11569/wcjd.v16.i13.1396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effects of exogenous insulin-like growth factor-Ⅰ (IGF-Ⅰ) on the intestinal mucosal epithelial cell apoptosis and the associated genes bax and bcl-2 in rats with severe acute pancreatitis (SAP), and to explore the protective effect of IGF-Ⅰ on intestinal mucosal barrier function and its possible mechanisms.
METHODS: Seventy-two male Wistar rats were randomly divided into 3 groups: sham operation (SO) group, SAP group and IGF-Ⅰ treatment group. Eight rats were killed in each group at 6, 12, and 24 h, respectively. Serum amylase level was detected by iodine-starch colorimetry. Pathological changes in the small intestine were observed. Apoptosis of mucosal cells was detected by TUNEL methods, and the variation of the bax and bcl-2 gene expression in small intestinal tissue was detected by reverse transcription polymerase chain reaction (RT-PCR).
RESULTS: In the IGF-Ⅰ treatment group, the apoptosis index of intestinal epithelial cells was decreased significantly as compared with that in the SAP group (6 h: 13.88 ± 1.73 vs 19.00 ± 2.78; 12 h: 10.13 ± 1.55 vs 17.63 ± 1.60; 24 h: 9.50 ± 1.07 vs 17.25 ± 2.76; all P < 0.05), and the pathological changes in intestinal tissues were obviously improved. Compared with that in the SAP group, the bax mRNA expression was notably reduced in the IGF-Ⅰ treatment group (6 h: 1.10 ± 0.02 vs 1.19 ± 0.04; 12 h: 0.97 ± 0.04 vs 1.16 ± 0.02; 24 h, 0.87 ± 0.03 vs 1.14 ± 0.03; all P < 0.05), while, the bcl-2 mRNA expression was increased significantly in the IGF-Ⅰ treatment group (6 h: 0.65 ± 0.02 vs 0.57 ± 0.02; 12 h: 0.69 ± 0.04 vs 0.57 ± 0.01; 24 h: 0.72 ± 0.02 vs 0.58 ± 0.01; all P < 0.05).
CONCLUSION: Exogenous IGF-Ⅰ may alleviate SAP-induced injury of intestinal mucosa by altering the transcription of bax and bcl-2 genes.
Collapse
|
71
|
Kim WS, Park BS, Kim HK, Park JS, Kim KJ, Choi JS, Chung SJ, Kim DD, Sung JH. Evidence supporting antioxidant action of adipose-derived stem cells: protection of human dermal fibroblasts from oxidative stress. J Dermatol Sci 2007; 49:133-42. [PMID: 17870415 DOI: 10.1016/j.jdermsci.2007.08.004] [Citation(s) in RCA: 192] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Revised: 07/30/2007] [Accepted: 08/01/2007] [Indexed: 01/05/2023]
Abstract
BACKGROUND Mesenchymal stem cells within the stromal-vascular fraction of subcutaneous adipose tissue, adipose-derived stem cells (ADSCs), produced soluble factors and they exhibit diverse pharmacological effects in skin biology. OBJECTIVE The present study examines the protective effect of ADSCs for human dermal fibroblasts (HDFs) through anti-oxidation in a tert-butyl hydroperoxide (tbOOH) induced oxidative injury model. METHODS AND RESULTS The conditioned medium of ADSCs (ADSC-CM) was harvested and tested for antioxidant action. ADSC-CM had an antioxidant effect as potent as 100 microM ascorbic acid and various antioxidant proteins were detected in ADSC-CM by proteomic analysis. Morphological change and cell survival assay revealed that incubation with ADSC-CM aided HDFs to resist free radicals induced by tbOOH. In addition, activities of superoxide dismutase and glutathione peroxidase were enhanced in the ADSC-CM treated HDFs which confirmed the study hypothesis that ADSCs protect HDFs through antioxidant action. In a cell cycle analysis, ADSC-CM treatment reversed the apoptotic cell death induced by tbOOH and caused a decrease of sub-G1 cells with respect to untreated cells. The anti-apoptotic effect of ADSC-CM was also reproduced by caspase-3 activity assay. CONCLUSION These results suggest that ADSCs have potent antioxidant activity and protect HDFs from oxidative injury by decreasing apoptotic cells. Therefore, ADSCs and ADSC-CM are good candidates for control and prevention of skin damage from free radicals in various skin conditions.
Collapse
Affiliation(s)
- Won-Serk Kim
- Prostemics Research Institute, Division of Stem Cell Research, Kangnam-Gu, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Baregamian N, Rychahou PG, Hawkins HK, Evers MB, Chung DH. Phosphatidylinositol 3-kinase pathway regulates hypoxia-inducible factor-1 to protect from intestinal injury during necrotizing enterocolitis. Surgery 2007; 142:295-302. [PMID: 17689699 PMCID: PMC2613757 DOI: 10.1016/j.surg.2007.04.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Revised: 04/19/2007] [Accepted: 04/27/2007] [Indexed: 10/23/2022]
Abstract
BACKGROUND Hypoxia is an important risk factor for development of necrotizing enterocolitis (NEC) in premature infants. Hypoxia-inducible factor (HIF)-1 is a transcription factor that plays a critical role in cellular responses to hypoxia and can be induced by phosphatidylinositol 3-kinase (PI3-K) pathway. Activation of the PI3-K and regulation of HIF-1 during NEC have not been elucidated. METHODS NEC was induced in 3-day-old neonatal mice using hypoxia and artificial formula feedings. Mice were divided into 3 treatment groups: (1) NEC alone, (2) NEC with insulin-like growth factor (IGF)-I, or (3) NEC with Akt1 siRNA treatment. Animals were sacrificed, and intestinal sections were harvested for protein analysis, H&E, and immunohistochemical staining. RESULTS In vivo model of NEC produced intestinal injury associated with increased protein expression of HIF-1alpha, pAkt, PARP, and caspase-3 cleavage. Pretreatment with IGF-1 attenuated an HIF-1alpha response. In contrast, targeted inhibition of Akt1 completely abolished NEC-induced expression of pAkt and upregulated HIF-1alpha activation. CONCLUSIONS NEC activates important protective cellular responses to hypoxic injury such as HIF-1alpha and PI3-K/Akt in neonatal gut. Hypoxia-mediated activation of pro-survival signaling during NEC may be modulated with growth factors, which thus suggests a potential therapeutic option in the treatment of neonates with NEC.
Collapse
Affiliation(s)
- Naira Baregamian
- Department of Surgery, The University of Texas Medical Branch, Galveston, Texas 77555
| | - Piotr G. Rychahou
- Department of Surgery, The University of Texas Medical Branch, Galveston, Texas 77555
| | - Hal K. Hawkins
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas 77555
| | - Mark B. Evers
- Department of Surgery, The University of Texas Medical Branch, Galveston, Texas 77555
- Sealy Center for Cancer Cell Biology, The University of Texas Medical Branch, Galveston, Texas 77555
| | - Dai H. Chung
- Department of Surgery, The University of Texas Medical Branch, Galveston, Texas 77555
- Sealy Center for Cancer Cell Biology, The University of Texas Medical Branch, Galveston, Texas 77555
| |
Collapse
|