51
|
Rahman F, Tabrez S, Ali R, Akand SK, Zahid M, Alaidarous MA, Alsaweed M, Alshehri BM, Banawas S, Bin Dukhyil AA, Rub A. Virtual screening of natural compounds for potential inhibitors of Sterol C-24 methyltransferase of Leishmania donovani to overcome leishmaniasis. J Cell Biochem 2021; 122:1216-1228. [PMID: 33955051 DOI: 10.1002/jcb.29944] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/05/2021] [Accepted: 04/12/2021] [Indexed: 12/23/2022]
Abstract
Leishmaniasis is a neglected tropical disease caused by trypanosomatid parasite belonging to the genera Leishmania. Leishmaniasis is transmitted from one human to other through the bite of sandflies. It is endemic in around 98 countries including tropical and subtropical regions of Asia, Africa, Southern America, and the Mediterranean region. Sterol C-24 methyltransferase (LdSMT) of Leishmania donovani (L. donovani) mediates the transfer of CH3-group from S-adenosyl methionine to C-24 position of sterol side chain which makes the ergosterol different from cholesterol. Absence of ortholog in human made it potential druggable target. Here, we performed virtual screening of library of natural compounds against LdSMT to identify the potential inhibitor for it and to fight leishmaniasis. Gigantol, flavan-3-ol, and parthenolide showed the best binding affinity towards LdSMT. Further, based on absorption, distribution, metabolism, and excretion properties and biological activity prediction, gigantol showed the best lead-likeness and drug-likeness properties. Therefore, we further elucidated its antileishmanial properties. We found that gigantol inhibited the growth and proliferation of promastigotes as well as intra-macrophagic amastigotes. Gigantol exerted its antileishmanial action through the induction of reactive oxygen species in dose-dependent manner. Our study, suggested the possible use of gigantol as antileishmanial drug after further validations to overcome leishmaniasis.
Collapse
Affiliation(s)
- Fazlur Rahman
- Department of Biotechnology, Infection and Immunity Lab (414), Jamia Millia Islamia (A Central University), New Delhi, India
| | - Shams Tabrez
- Department of Biotechnology, Infection and Immunity Lab (414), Jamia Millia Islamia (A Central University), New Delhi, India
| | - Rahat Ali
- Department of Biotechnology, Infection and Immunity Lab (414), Jamia Millia Islamia (A Central University), New Delhi, India
| | - Sajjadul Kadir Akand
- Department of Biotechnology, Infection and Immunity Lab (414), Jamia Millia Islamia (A Central University), New Delhi, India
| | - Mariya Zahid
- Department of Biotechnology, Infection and Immunity Lab (414), Jamia Millia Islamia (A Central University), New Delhi, India
| | - Mohammed A Alaidarous
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah, Saudi Arabia
- Department of Vice Rector for Graduate Studies and Scientific Research, Health and Basic Sciences Research Center, Majmaah University, Al Majmaah, Saudi Arabia
| | - Mohammed Alsaweed
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah, Saudi Arabia
| | - Bader Mohammed Alshehri
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah, Saudi Arabia
| | - Saeed Banawas
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah, Saudi Arabia
- Department of Vice Rector for Graduate Studies and Scientific Research, Health and Basic Sciences Research Center, Majmaah University, Al Majmaah, Saudi Arabia
| | - Abdul Aziz Bin Dukhyil
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah, Saudi Arabia
| | - Abdur Rub
- Department of Biotechnology, Infection and Immunity Lab (414), Jamia Millia Islamia (A Central University), New Delhi, India
| |
Collapse
|
52
|
Grabowski M, Macnar JM, Cymborowski M, Cooper DR, Shabalin IG, Gilski M, Brzezinski D, Kowiel M, Dauter Z, Rupp B, Wlodawer A, Jaskolski M, Minor W. Rapid response to emerging biomedical challenges and threats. IUCRJ 2021; 8:395-407. [PMID: 33953926 PMCID: PMC8086160 DOI: 10.1107/s2052252521003018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/22/2021] [Indexed: 05/13/2023]
Abstract
As part of the global mobilization to combat the present pandemic, almost 100 000 COVID-19-related papers have been published and nearly a thousand models of macromolecules encoded by SARS-CoV-2 have been deposited in the Protein Data Bank within less than a year. The avalanche of new structural data has given rise to multiple resources dedicated to assessing the correctness and quality of structural data and models. Here, an approach to evaluate the massive amounts of such data using the resource https://covid19.bioreproducibility.org is described, which offers a template that could be used in large-scale initiatives undertaken in response to future biomedical crises. Broader use of the described methodology could considerably curtail information noise and significantly improve the reproducibility of biomedical research.
Collapse
Affiliation(s)
- Marek Grabowski
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| | - Joanna M. Macnar
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
- College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, Warsaw, Poland
- Faculty of Chemistry, Biological and Chemical Research Center, University of Warsaw, Warsaw, Poland
| | - Marcin Cymborowski
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| | - David R. Cooper
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| | - Ivan G. Shabalin
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| | - Miroslaw Gilski
- Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Poznan, Poland
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Dariusz Brzezinski
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Institute of Computing Science, Poznan University of Technology, Poznan, Poland
| | - Marcin Kowiel
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Zbigniew Dauter
- Center for Structural Biology, National Cancer Institute, Frederick, Maryland, USA
| | - Bernhard Rupp
- k.-k Hofkristallamt, San Diego, California, USA
- Institute of Genetic Epidemiology, Medical University Innsbruck, Innsbruck, Austria
| | - Alexander Wlodawer
- Center for Structural Biology, National Cancer Institute, Frederick, Maryland, USA
| | - Mariusz Jaskolski
- Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Poznan, Poland
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Wladek Minor
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
53
|
Tabrez S, Rahman F, Ali R, Muhammad F, Alshehri BM, Alaidarous MA, Banawas S, Dukhyil AAB, Rub A. Repurposing of FDA-approved drugs as inhibitors of sterol C-24 methyltransferase of Leishmania donovani to fight against leishmaniasis. Drug Dev Res 2021; 82:1154-1161. [PMID: 33929761 DOI: 10.1002/ddr.21820] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/08/2021] [Accepted: 04/15/2021] [Indexed: 12/30/2022]
Abstract
Leishmaniasis is a vector-borne disease caused by around 20 species of Leishmania. The main clinical forms of leishmaniasis are cutaneous leishmaniasis (CL) and visceral leishmaniasis (VL). VL is caused by Leishmania infantum in Central and South America, Mediterranean Basin, Middle East, and by L. donovani in Asia and Africa. Sterol C-24 methyltransferase (LdSMT) of L. donovani is a transferase enzyme of the sterol biosynthesis pathway. This pathway is one of the major targets for drug developments in Leishmania. Due to insufficient evidence about the exact function of SMT inside the cell and the uniqueness of the SMT enzyme in the Leishmania parasites made it a significant target for an effective drug development approach. We performed virtual screening of the Food and Drug Administration (FDA)-approved drug library against LdSMT and found simeprevir, an antiviral drug on top in the binding score. It showed a significant binding affinity with LdSMT. The binding was supported by hydrogen bonds and several other interactions. Simeprevir inhibited L. donovani growth of promastigotes with 50% inhibitory concentration (IC50 ) of 51.49 ± 5.87 μM. Further studies showed that simeprevir induced ROS generation in 44.7% of parasites at 125-μM concentration. Here, we for the first time reported simeprevir as an antileishmanial lead molecule using a drug repurposing approach.
Collapse
Affiliation(s)
- Shams Tabrez
- Infection and Immunity Lab (414), Department of Biotechnology, Jamia Millia Islamia (A Central University), New Delhi, India
| | - Fazlur Rahman
- Infection and Immunity Lab (414), Department of Biotechnology, Jamia Millia Islamia (A Central University), New Delhi, India
| | - Rahat Ali
- Infection and Immunity Lab (414), Department of Biotechnology, Jamia Millia Islamia (A Central University), New Delhi, India
| | - Fida Muhammad
- Infection and Immunity Lab (414), Department of Biotechnology, Jamia Millia Islamia (A Central University), New Delhi, India
| | - Bader Mohammed Alshehri
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah, Saudi Arabia
| | - Mohammed A Alaidarous
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah, Saudi Arabia.,Health and Basic Sciences Research Center, Majmaah University, Al Majmaah, Saudi Arabia
| | - Saeed Banawas
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah, Saudi Arabia.,Health and Basic Sciences Research Center, Majmaah University, Al Majmaah, Saudi Arabia.,Department of Biomedical Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Abdul Aziz Bin Dukhyil
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah, Saudi Arabia
| | - Abdur Rub
- Infection and Immunity Lab (414), Department of Biotechnology, Jamia Millia Islamia (A Central University), New Delhi, India
| |
Collapse
|
54
|
Ali R, Tabrez S, Rahman F, Alouffi AS, Alshehri BM, Alshammari FA, Alaidarous MA, Banawas S, Dukhyil AAB, Rub A. Antileishmanial Evaluation of Bark Methanolic Extract of Acacia nilotica: In Vitro and In Silico Studies. ACS OMEGA 2021; 6:8548-8560. [PMID: 33817515 PMCID: PMC8015128 DOI: 10.1021/acsomega.1c00366] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/10/2021] [Indexed: 05/12/2023]
Abstract
Acacia nilotica (A. nilotica) is an important medicinal plant, found in Africa, the Middle East, and the Indian subcontinent. Every part of the plant possesses a wide array of biologically active and therapeutically important compounds. We reported the antileishmanial activity of A. nilotica bark methanolic extract through in vitro antileishmanial assays and dissected the mechanism of its action through in silico studies. Bark methanolic extract exhibited antipromastigote and antiamastigote potential in a time and dose-dependent manner with IC50 values of 19.6 ± 0.9037 and 77.52 ± 5.167 μg/mL, respectively. It showed cytotoxicity on THP-1-derived human macrophages at very high dose with a CC50 value of 432.7 ± 7.71 μg/mL. The major constituents identified by gas chromatography-mass spectrometry (GC-MS) analysis, 13-docosenoic acid, lupeol, 9,12-octadecadienoic acid, and 6-octadecanoic acid, showed effective binding with the potential drug targets of Leishmania donovani (L. donovani) including sterol 24-c-methyltransferase, trypanothione reductase, pteridine reductase, and adenine phosphoribosyltransferase, suggesting the possible mechanism of its antileishmanial action. Pharmacokinetic studies on major phytoconstituents analyzed by GC-MS supported their use as safe antileishmanial drug candidates. This study proved the antileishmanial potential of bark methanolic extract A. nilotica and its mechanism of action through the inhibition of potential drug targets of L. donovani.
Collapse
Affiliation(s)
- Rahat Ali
- Infection
and Immunity Laboratory (414), Department of Biotechnology, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Shams Tabrez
- Infection
and Immunity Laboratory (414), Department of Biotechnology, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Fazlur Rahman
- Infection
and Immunity Laboratory (414), Department of Biotechnology, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | | | - Bader M. Alshehri
- College
of Applied Medical Sciences, Majmaah University, Al Majmaah, Al-Majma’ah 11952, Saudi Arabia
| | - Fahdah Ayed Alshammari
- College
of Sciences and Literature Microbiology, Northern Border University, Arar 73222, Saudi Arabia
| | - Mohammed A. Alaidarous
- College
of Applied Medical Sciences, Majmaah University, Al Majmaah, Al-Majma’ah 11952, Saudi Arabia
- Deanship
of Scientific Research, Majmaah University, Al Majmaah, Al Majma’ah 11952, Saudi Arabia
| | - Saeed Banawas
- College
of Applied Medical Sciences, Majmaah University, Al Majmaah, Al-Majma’ah 11952, Saudi Arabia
- Deanship
of Scientific Research, Majmaah University, Al Majmaah, Al Majma’ah 11952, Saudi Arabia
- Department
of Biomedical Sciences, Oregon State University, Corvallis, Oregon 97331, United States
| | - Abdul Aziz Bin Dukhyil
- College
of Applied Medical Sciences, Majmaah University, Al Majmaah, Al-Majma’ah 11952, Saudi Arabia
| | - Abdur Rub
- Infection
and Immunity Laboratory (414), Department of Biotechnology, Jamia Millia Islamia (A Central University), New Delhi 110025, India
- . Phone: +91-9560887383
| |
Collapse
|