51
|
Salmon M, Johnston WF, Woo A, Pope NH, Su G, Upchurch GR, Owens GK, Ailawadi G. KLF4 regulates abdominal aortic aneurysm morphology and deletion attenuates aneurysm formation. Circulation 2013; 128:S163-74. [PMID: 24030402 PMCID: PMC3922284 DOI: 10.1161/circulationaha.112.000238] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND KLF4 mediates inflammatory responses after vascular injury/disease; however, the role of KLF4 in abdominal aortic aneurysms (AAAs) remains unknown. The goals of the present study were to (1) determine the role of KLF4 in experimental AAA; and (2) determine the effect of KLF4 on smooth muscle (SM) cells in AAAs. METHODS AND RESULTS KLF4 expression progressively increased at days 3, 7, and 14 after aortic elastase perfusion in C57BL/6 mice. Separately, loss of a KLF4 allele conferred AAA protection using ERTCre+ KLF4 flx/wt mice in the elastase AAA model. In a third set of experiments, SM-specific loss of 1 and 2 KLF4 alleles resulted in progressively greater protection using novel transgenic mice (MYHCre+ flx/flx, flx/wt, and wt/wt) in the elastase AAA model compared with control. Elastin degradation, MAC2, and cytokine production (MCP1, tumor necrosis factor-α, and interleukin-23) were significantly attenuated, whereas α-actin staining was increased in KLF4 knockout mice versus controls. Results were verified in global KLF4 and SM-specific knockout mice using an angiotensin II model of aneurysm formation. KLF4 inhibition with siRNA attenuated downregulation of SM gene expression in vitro, whereas in vivo studies demonstrated that KLF4 binds to promoters of SM genes by chromatin immunoprecipitation analysis. Finally, human aortic aneurysms demonstrated significantly higher KLF4 expression that was localized to SM cells. CONCLUSIONS KLF4 plays a critical role in aortic aneurysm formation via effects on SM cells. These results suggest that KLF4 regulates SM cell phenotypic switching and could be a potential therapeutic target for AAA disease.
Collapse
Affiliation(s)
- Morgan Salmon
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, VA
| | - William F. Johnston
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, VA
| | - Andrew Woo
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, VA
| | - Nicolas H. Pope
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, VA
| | - Gang Su
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, VA
| | - Gilbert R. Upchurch
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, VA
- The Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA
| | - Gary K. Owens
- The Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA
| | - Gorav Ailawadi
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, VA
- The Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA
| |
Collapse
|
52
|
Bhamidipati CM, Mehta GS, Moehle CW, Meher AK, Su G, Vigneshwar NG, Barbery C, Sharma AK, Kron IL, Laubach VE, Owens GK, Upchurch GR, Ailawadi G. Adenosine 2A receptor modulates inflammation and phenotype in experimental abdominal aortic aneurysms. FASEB J 2013; 27:2122-31. [PMID: 23413358 DOI: 10.1096/fj.12-214197] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Activation of the adenosine 2A receptor (A2AR) reduces inflammation in models of acute injury but contribution in development of chronic abdominal aortic aneurysms (AAAs) is unknown. Elastase perfusion to induce AAA formation in A2AR-knockout (A2ARKO) and C57BL6/J wild-type (WT) mice resulted in nearly 100% larger aneurysms in A2ARKO compared to WT at d 14 (P<0.05), with evidence of greater elastin fragmentation, more immune cell infiltration, and increased matrix metallatoproteinase (MMP) 9 expression (P<0.05). Separately, exogenous A2AR antagonism in elastase-perfused WT mice also resulted in larger aneurysms (P<0.05), while A2AR agonism limited aortic dilatation (P<0.05). Activated Thy-1.2(+) T lymphocytes from WT mice treated in vitro with A2AR antagonist increased cytokine production, and treatment with A2AR agonist decreased cytokine production (P<0.05 for all). Primary activated CD4(+) T lymphocytes from A2ARKO mice exhibited greater chemotaxis (P<0.05). A2AR antagonist increased chemotaxis of activated CD4(+) cells from WT mice in vitro, and A2AR agonist reduced this effect (P<0.05). A2AR activation attenuates AAA formation partly by inhibiting immune cell recruitment and reducing elastin fragmentation. These findings support augmenting A2AR signaling as a putative target for limiting aneurysm formation.
Collapse
Affiliation(s)
- Castigliano M Bhamidipati
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Iida Y, Xu B, Xuan H, Glover KJ, Tanaka H, Hu X, Fujimura N, Wang W, Schultz JR, Turner CR, Dalman RL. Peptide inhibitor of CXCL4-CCL5 heterodimer formation, MKEY, inhibits experimental aortic aneurysm initiation and progression. Arterioscler Thromb Vasc Biol 2013; 33:718-26. [PMID: 23288157 DOI: 10.1161/atvbaha.112.300329] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Macrophages are critical contributors to abdominal aortic aneurysm (AAA) disease. We examined the ability of MKEY, a peptide inhibitor of CXCL4-CCL5 interaction, to influence AAA progression in murine models. APPROACH AND RESULTS AAAs were created in 10-week-old male C57BL/6J mice by transient infrarenal aortic porcine pancreatic elastase infusion. Mice were treated with MKEY via intravenous injection either (1) before porcine pancreatic elastase infusion or (2) after aneurysm initiation. Immunostaining demonstrated CCL5 and CCR5 expression on aneurysmal aortae and mural monocytes/macrophages, respectively. MKEY treatment partially inhibited migration of adaptively transferred leukocytes into aneurysmal aortae in recipient mice. Although all vehicle-pretreated mice developed AAAs, aneurysms formed in only 60% (3/5) and 14% (1/7) of mice pretreated with MKEY at 10 and 20 mg/kg, respectively. MKEY pretreatment reduced aortic diameter enlargement, preserved medial elastin fibers and smooth muscle cells, and attenuated mural macrophage infiltration, angiogenesis, and aortic metalloproteinase 2 and 9 expression after porcine pancreatic elastase infusion. MKEY initiated after porcine pancreatic elastase infusion also stabilized or reduced enlargement of existing AAAs. Finally, MKEY treatment was effective in limiting AAA formation after angiotensin II infusion in apolipoprotein E-deficient mice. CONCLUSIONS MKEY suppresses AAA formation and progression in 2 complementary experimental models. Peptide inhibition of CXCL4-CCL5 interactions may represent a viable translational strategy to limit progression of human AAA disease.
Collapse
Affiliation(s)
- Yasunori Iida
- Division of Vascular Surgery, Stanford University School of Medicine, Stanford, CA 94305-5102, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Iida Y, Xu B, Schultz GM, Chow V, White JJ, Sulaimon S, Hezi-Yamit A, Peterson SR, Dalman RL. Efficacy and mechanism of angiotensin II receptor blocker treatment in experimental abdominal aortic aneurysms. PLoS One 2012; 7:e49642. [PMID: 23226500 PMCID: PMC3513299 DOI: 10.1371/journal.pone.0049642] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 10/16/2012] [Indexed: 11/18/2022] Open
Abstract
Background Despite the importance of the renin-angiotensin (Ang) system in abdominal aortic aneurysm (AAA) pathogenesis, strategies targeting this system to prevent clinical aneurysm progression remain controversial and unproven. We compared the relative efficacy of two Ang II type 1 receptor blockers, telmisartan and irbesartan, in limiting experimental AAAs in distinct mouse models of aneurysm disease. Methodology/Principal Findings AAAs were induced using either 1) Ang II subcutaneous infusion (1000 ng/kg/min) for 28 days in male ApoE−/− mice, or 2) transient intra-aortic porcine pancreatic elastase infusion in male C57BL/6 mice. One week prior to AAA creation, mice started to daily receive irbesartan (50 mg/kg), telmisartan (10 mg/kg), fluvastatin (40 mg/kg), bosentan (100 mg/kg), doxycycline (100 mg/kg) or vehicle alone. Efficacy was determined via serial in vivo aortic diameter measurements, histopathology and gene expression analysis at sacrifice. Aortic aneurysms developed in 67% of Ang II-infused ApoE−/− mice fed with standard chow and water alone (n = 15), and 40% died of rupture. Strikingly, no telmisartan-treated mouse developed an AAA (n = 14). Both telmisartan and irbesartan limited aneurysm enlargement, medial elastolysis, smooth muscle attenuation, macrophage infiltration, adventitial neocapillary formation, and the expression of proteinases and proinflammatory mediators. Doxycycline, fluvastatin and bosentan did not influence aneurysm progression. Telmisartan was also highly effective in intra-aortic porcine pancreatic elastase infusion-induced AAAs, a second AAA model that did not require exogenous Ang II infusion. Conclusion/Significance Telmisartan suppresses experimental aneurysms in a model-independent manner and may prove valuable in limiting clinical disease progression.
Collapse
Affiliation(s)
- Yasunori Iida
- Division of Vascular Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, United States of America
| | - Baohui Xu
- Division of Vascular Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, United States of America
| | - Geoffrey M. Schultz
- Division of Vascular Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, United States of America
| | - Vinca Chow
- Division of Vascular Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, United States of America
| | - Julie J. White
- Division of Vascular Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, United States of America
| | - Shola Sulaimon
- Medtronic Vascular Inc., Santa Rosa, California, United States of America
| | - Ayala Hezi-Yamit
- Medtronic Vascular Inc., Santa Rosa, California, United States of America
| | - Susan Rea Peterson
- Medtronic Vascular Inc., Santa Rosa, California, United States of America
| | - Ronald L. Dalman
- Division of Vascular Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
55
|
Sharma AK, Lu G, Jester A, Johnston WF, Zhao Y, Hajzus VA, Saadatzadeh MR, Su G, Bhamidipati CM, Mehta GS, Kron IL, Laubach VE, Murphy MP, Ailawadi G, Upchurch GR. Experimental abdominal aortic aneurysm formation is mediated by IL-17 and attenuated by mesenchymal stem cell treatment. Circulation 2012; 126:S38-45. [PMID: 22965992 DOI: 10.1161/circulationaha.111.083451] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Abdominal aortic aneurysm (AAA) formation is characterized by inflammation, smooth muscle activation and matrix degradation. This study tests the hypothesis that CD4+ T-cell-produced IL-17 modulates inflammation and smooth muscle cell activation, leading to the pathogenesis of AAA and that human mesenchymal stem cell (MSC) treatment can attenuate IL-17 production and AAA formation. METHODS AND RESULTS Human aortic tissue demonstrated a significant increase in IL-17 and IL-23 expression in AAA patients compared with control subjects as analyzed by RT-PCR and ELISA. AAA formation was assessed in C57BL/6 (wild-type; WT), IL-23(-/-) or IL-17(-/-) mice using an elastase-perfusion model. Heat-inactivated elastase was used as control. On days 3, 7, and 14 after perfusion, abdominal aorta diameter was measured by video micrometry, and aortic tissue was analyzed for cytokines, cell counts, and IL-17-producing CD4+ T cells. Aortic diameter and cytokine production (MCP-1, RANTES, KC, TNF-α, MIP-1α, and IFN-γ) was significantly attenuated in elastase-perfused IL-17(-/-) and IL-23(-/-) mice compared with WT mice on day 14. Cellular infiltration (especially IL-17-producing CD4+ T cells) was significantly attenuated in elastase-perfused IL-17(-/-) mice compared with WT mice on day 14. Primary aortic smooth muscle cells were significantly activated by elastase or IL-17 treatment. Furthermore, MSC treatment significantly attenuated AAA formation and IL-17 production in elastase-perfused WT mice. CONCLUSIONS These results demonstrate that CD4+ T-cell-produced IL-17 plays a critical role in promoting inflammation during AAA formation and that immunomodulation of IL-17 by MSCs can offer protection against AAA formation.
Collapse
Affiliation(s)
- Ashish K Sharma
- Department of Surgery, University of Virginia Health System, Charlottesville, VA 22908, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Morgan S, Yamanouchi D, Harberg C, Wang Q, Keller M, Si Y, Burlingham W, Seedial S, Lengfeld J, Liu B. Elevated protein kinase C-δ contributes to aneurysm pathogenesis through stimulation of apoptosis and inflammatory signaling. Arterioscler Thromb Vasc Biol 2012; 32:2493-502. [PMID: 22879584 DOI: 10.1161/atvbaha.112.255661] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Apoptosis of smooth muscle cells (SMCs) is a prominent pathological characteristic of abdominal aortic aneurysm (AAA). We have previously shown that SMC apoptosis stimulates proinflammatory signaling in a mouse model of AAA. Here, we test whether protein kinase C-δ (PKCδ), an apoptotic mediator, participates in the pathogenesis of AAA by regulating apoptosis and proinflammatory signals. METHODS AND RESULTS Mouse experimental AAA is induced by perivascular administration of CaCl(2). Mice deficient in PKCδ exhibit a profound reduction in aneurysmal expansion, SMC apoptosis, and transmural inflammation as compared with wild-type littermates. Delivery of PKCδ to the aortic wall of PKCδ(-/-) mice restores aneurysm, whereas overexpression of a dominant negative PKCδ mutant in the aorta of wild-type mice attenuates aneurysm. In vitro, PKCδ(-/-) aortic SMCs exhibit significantly impaired monocyte chemoattractant protein-1 production. Ectopic administration of recombinant monocyte chemoattractant protein-1 to the arterial wall of PKCδ(-/-) mice restores inflammatory response and aneurysm development. CONCLUSIONS PKCδ is an important signaling mediator for SMC apoptosis and inflammation in a mouse model of AAA. By stimulating monocyte chemoattractant protein-1 expression in aortic SMCs, upregulated PKCδ exacerbates the inflammatory process, in turn perpetuating elastin degradation and aneurysmal dilatation. Inhibition of PKCδ may serve as a potential therapeutic strategy for AAA.
Collapse
MESH Headings
- Animals
- Aortic Aneurysm, Abdominal/etiology
- Aortic Aneurysm, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/pathology
- Apoptosis/physiology
- Calcium Chloride/adverse effects
- Cell Movement/physiology
- Cells, Cultured
- Chemokine CCL2/metabolism
- Elastin/metabolism
- In Vitro Techniques
- Inflammation/physiopathology
- Macrophages/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Models, Animal
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Protein Kinase C-delta/deficiency
- Protein Kinase C-delta/genetics
- Protein Kinase C-delta/metabolism
- Signal Transduction/physiology
- Up-Regulation
Collapse
Affiliation(s)
- Stephanie Morgan
- Division of Vascular Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|