51
|
Guedes M, Pecoits-Filho R. Can we cure diabetic kidney disease? Present and future perspectives from a nephrologist's point of view. J Intern Med 2022; 291:165-180. [PMID: 34914852 DOI: 10.1111/joim.13424] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Diabetic kidney disease (DKD) is the leading cause of chronic kidney disease (CKD) worldwide, contributing to a great burden across a variety of patient-reported and clinical outcomes. New interventions for DKD management have been established in recent years, unleashing a novel paradigm, in which kidney-dedicated trials yield informative and robust data to guide optimal clinical management. After unprecedented results from groundbreaking randomized controlled trials were released, a new scenario of evidence-based recommendations has evolved for the management of diabetic patients with CKD. The current guidelines place great emphasis on multidimensional and interdisciplinary approaches, but the challenges of implementation are just starting and will be pivotal to optimize clinical results and to understand the new threshold for residual risk in DKD. We thereby provide an updated review on recent advances in DKD management based on new guideline recommendations, summarizing recent evidence while projecting the landscape for innovative ongoing initiatives in the field. Specifically, we review current insights on the natural history, epidemiology, pathogenesis, and therapeutics of DKD, mapping the new scientific information into the recently released Kidney Disease - Improving Global Outcomes Guidelines translating results from major novel randomized controlled trials to the clinical practice. Additionally, we approach the landscape of new therapeutics in the field, summarizing ongoing phase IIb and III trials focused on DKD. Finally, reflecting on the past and looking into the future, we highlight unmet needs in the current DKD management based on real-world evidence and offer a nephrologist's perspective into the challenge of fostering continuous improvement on clinical and patient-reported outcomes for individuals living with DKD.
Collapse
Affiliation(s)
- Murilo Guedes
- School of Medicine, Pontificia Universidade Catolica do Parana, Curitiba, Parana, Brazil
| | - Roberto Pecoits-Filho
- School of Medicine, Pontificia Universidade Catolica do Parana, Curitiba, Parana, Brazil.,DOPPS Program Area, Arbor Research Collaborative for Health, Ann Arbor, Michigan, USA
| |
Collapse
|
52
|
Nephron overload as a therapeutic target to maximize kidney lifespan. Nat Rev Nephrol 2021; 18:171-183. [PMID: 34880459 DOI: 10.1038/s41581-021-00510-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2021] [Indexed: 12/27/2022]
Abstract
Kidney lifespan is a patient-oriented outcome that provides much needed context for understanding chronic kidney disease (CKD). Nephron endowment, age-associated decline in nephron number, kidney injury history and the intrinsic capacity of nephrons to adapt to haemodynamic and metabolic overload vary widely within the population. Defining percentiles of kidney function might therefore help to predict individual kidney lifespan and distinguish healthy ageing from progressive forms of CKD. In response to nephron loss, the remaining nephrons undergo functional and structural adaptations to meet the ongoing haemodynamic and metabolic demands of the organism. When these changes are no longer sufficient to maintain kidney cell homeostasis, remnant nephron demise occurs and CKD progression ensues. An individual's trajectory of glomerular filtration rate and albuminuria reflects the extent of nephron loss and adaptation of the remaining nephrons. Nephron overload represents the final common pathway of CKD progression and is largely independent of upstream disease mechanisms. Thus, interventions that efficiently attenuate nephron overload in early disease stages can protect remnant kidney cells and nephrons, and delay CKD progression. This Review provides a conceptual framework for individualized diagnosis, monitoring and treatment of CKD with the goal of maximizing kidney lifespan.
Collapse
|
53
|
Ortiz A, Fernandez-Fernandez B. Atrasentan: The Difficult Task of Integrating Endothelin A Receptor Antagonists into Current Treatment Paradigm for Diabetic Kidney Disease. Clin J Am Soc Nephrol 2021; 16:1775-1778. [PMID: 34853063 PMCID: PMC8729503 DOI: 10.2215/cjn.13601021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Alberto Ortiz
- Nephrology Department, Fundación Jimenez Díaz Health Research Institute, Madrid, Spain,Department of Medicine, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Beatriz Fernandez-Fernandez
- Nephrology Department, Fundación Jimenez Díaz Health Research Institute, Madrid, Spain,Department of Medicine, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
54
|
Ahmad N, Veerapalli H, Lankala CR, Castaneda EE, Aziz A, Rockferry AG, Hamid P. Endothelin Receptor Antagonists as a Potential Treatment of Diabetic Nephropathy: A Systematic Review. Cureus 2021; 13:e19325. [PMID: 34909290 PMCID: PMC8653857 DOI: 10.7759/cureus.19325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/07/2021] [Indexed: 11/05/2022] Open
Abstract
Diabetic nephropathy is becoming a more predominant cause of end-stage renal disease, as the prevalence of diabetes mellitus worldwide is on the rise. In this systematic review, we aimed to define the role of endothelin receptor antagonists, in the prevention and treatment of diabetic nephropathy, in addition to determining their safety. For this review, PubMed, Google Scholar, and Cochrane Library databases, in addition to ClinicalTrials.gov, were searched for publications in the last 20 years. We included 14 studies, seven randomized control trials, and seven post hoc analyses in this paper. Atrasentan decreased albuminuria, reduced blood pressure, and improved lipid profiles with more manageable fluid overload-related adverse events than avosentan and bosentan. Overall, endothelin receptor antagonists, in combination with renin-angiotensin-aldosterone system inhibitors, effectively reduce albuminuria and prevent the progression of diabetic kidney disease. However, more extensive clinical trials still need to be conducted to confirm these relationships and to learn more about the specific factors affecting their efficacy in individual patients.
Collapse
Affiliation(s)
- Noorain Ahmad
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Harish Veerapalli
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Chetan Reddy Lankala
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Everardo E Castaneda
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Afia Aziz
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Amy G Rockferry
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Pousette Hamid
- Neurology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
55
|
Matoba K, Sekiguchi K, Nagai Y, Takeda Y, Takahashi H, Yokota T, Utsunomiya K, Nishimura R. Renal ROCK Activation and Its Pharmacological Inhibition in Patients With Diabetes. Front Pharmacol 2021; 12:738121. [PMID: 34557101 PMCID: PMC8454778 DOI: 10.3389/fphar.2021.738121] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/26/2021] [Indexed: 11/30/2022] Open
Abstract
Rho-associated coiled-coil-containing protein kinase (ROCK) is a serine/threonine kinase with essential roles in cytoskeletal functions. Substantial evidence implicates ROCK as a critical regulator in the inception and progression of diabetic nephropathy through a mechanism involving mesangial fibrosis, podocyte apoptosis, and endothelial inflammation. Despite these experimental observations, human data is lacking. Here we show that the phosphorylated form of myosin phosphatase targeting subunit 1 (MYPT1), a ROCK substrate, was increased in both the glomerular and tubulointerstitial areas in patients with histologically confirmed diabetic nephropathy. We also conducted a retrospective pilot analysis of data from patients with diabetes to assess the renoprotective effects of fasudil, an ATP-competitive ROCK inhibitor licensed in Japan for the prevention of vasospasm following subarachnoid hemorrhage. Fifteen subjects (male, n = 8; female, n = 7; age 65.7 ± 14.7 years; body height, 161.1 ± 12.6 cm; body weight, 57.6 ± 13.7 kg; body mass index, 22.4 ± 3.7 kg/m2) were enrolled to evaluate blood pressure and the renal outcome after fasudil treatment. Of note, proteinuria was significantly reduced at the end of the fasudil treatment without affecting the blood pressure or estimated glomerular filtration rate. Taken together, these findings suggest that the administration of fasudil could be associated with a better renal outcome by inhibiting the ROCK activity in patients with diabetes.
Collapse
Affiliation(s)
- Keiichiro Matoba
- Department of Internal Medicine, Division of Diabetes, Metabolism, and Endocrinology, The Jikei University School of Medicine, Tokyo, Japan
| | - Kensuke Sekiguchi
- Department of Internal Medicine, Division of Diabetes, Metabolism, and Endocrinology, The Jikei University School of Medicine, Tokyo, Japan
| | - Yosuke Nagai
- Department of Internal Medicine, Division of Diabetes, Metabolism, and Endocrinology, The Jikei University School of Medicine, Tokyo, Japan
| | - Yusuke Takeda
- Department of Internal Medicine, Division of Diabetes, Metabolism, and Endocrinology, The Jikei University School of Medicine, Tokyo, Japan
| | - Hiroshi Takahashi
- Department of Internal Medicine, Division of Diabetes, Metabolism, and Endocrinology, The Jikei University School of Medicine, Tokyo, Japan
| | - Tamotsu Yokota
- Department of Internal Medicine, Division of Diabetes, Metabolism, and Endocrinology, The Jikei University School of Medicine, Tokyo, Japan
| | - Kazunori Utsunomiya
- Center for Preventive Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Rimei Nishimura
- Department of Internal Medicine, Division of Diabetes, Metabolism, and Endocrinology, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
56
|
Lassén E, Daehn IS. Clues to Glomerular Cell Chatter in Focal Segmental Glomerulosclerosis : Via Endothelin-1/ET A R. Kidney Int Rep 2021; 6:1758-1760. [PMID: 34307972 PMCID: PMC8258585 DOI: 10.1016/j.ekir.2021.05.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 11/04/2022] Open
Affiliation(s)
- Emelie Lassén
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Ilse S. Daehn
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| |
Collapse
|
57
|
Nicholas SB. Novel Anti-inflammatory and Anti-fibrotic Agents for Diabetic Kidney Disease-From Bench to Bedside. Adv Chronic Kidney Dis 2021; 28:378-390. [PMID: 34922694 DOI: 10.1053/j.ackd.2021.09.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/30/2021] [Accepted: 09/17/2021] [Indexed: 02/08/2023]
Abstract
Chronic low-grade inflammation, now coined by the new paradigm as "metaflammation" or "metainflammation", has been linked to chronic kidney disease and its progression. In diabetes, altered metabolism denotes factors associated with the metabolic syndrome and hyperglycemia, among others. The interplay among hyperglycemia, oxidative stress, and inflammation in the pathogenesis of diabetic kidney disease (DKD) has been broadly explored. Identification of mediators of inflammatory processes involving macrophage infiltration, production of inflammasomes, release of cytokines, and activation of pertinent signaling pathways including mitogen-activated protein kinase, Jun N-terminal kinase, Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway (JAK/STAT), and apoptosis signal-regulating kinase 1 signaling mechanisms have enabled the development of therapeutic agents for DKD. This review describes the evidence supporting the contribution of the inflammatory response and fibrotic changes and focuses on selected, novel, promising drugs as well as repurposed drugs that have made it to phase 2, 3, or 4 of clinical trials in adults with type 2 diabetes mellitus and their potential to become an important part of our armamentarium to improve the management of DKD. Importantly, drugs that solely target inflammatory processes may be insufficient to fully optimize care of patients with DKD because of the complex nature of the disease.
Collapse
|
58
|
Endothelin receptor antagonists for the treatment of diabetic and nondiabetic chronic kidney disease. Curr Opin Nephrol Hypertens 2021; 30:456-465. [PMID: 33990507 DOI: 10.1097/mnh.0000000000000716] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE OF REVIEW To summarize new clinical findings of endothelin receptor antagonists (ERA) in various etiologies of kidney disease targeted in clinical trials. RECENT FINDINGS Endothelin-1 is a multifunctional peptide with potential relevance to glomerular and tubulointerstitial kidney diseases. The phase 3 SONAR trial demonstrated a significant reduction in clinically relevant kidney outcomes for patients with diabetic kidney disease (DKD) after long-term treatment with the ERA, atrasentan, in addition to blockade of the renin-angiotensin-aldosterone system. Promising preclinical disease models and small clinical trials in non-DKD resulted in the initiation of phase 3 trials investigating the effects of long-term treatment with ERA in patients with immunoglobulin A (IgA) nephropathy and focal segmental glomeruloscelerosis (FSGS). The mechanisms by which ERA protects the kidneys have been extensively studied with evidence for the protection of tubule cells, podocytes, mesangial cells, the endothelial glycocalyx, and a reduction in glomerular perfusion pressure. The occurrence of fluid retention during ERA treatment, particularly in susceptible populations, necessitates strategies to support safe and effective treatment. SUMMARY Treatment with ERA induces long-term kidney protection in DKD. Phase 3 trials are underway to investigate ERA effects in patients with IgA nephropathy and FSGS.
Collapse
|
59
|
Pafundi PC, Garofalo C, Galiero R, Borrelli S, Caturano A, Rinaldi L, Provenzano M, Salvatore T, De Nicola L, Minutolo R, Sasso FC. Role of Albuminuria in Detecting Cardio-Renal Risk and Outcome in Diabetic Subjects. Diagnostics (Basel) 2021; 11:290. [PMID: 33673215 PMCID: PMC7918197 DOI: 10.3390/diagnostics11020290] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 12/29/2022] Open
Abstract
The clinical significance of albuminuria in diabetic subjects and the impact of its reduction on the main cardiorenal outcomes by different drug classes are among the most interesting research focuses of recent years. Although nephrologists and cardiologists have been paying attention to the study of proteinuria for years, currently among diabetics, increased urine albumin excretion ascertains the highest cardio-renal risk. In fact, diabetes is a condition by itself associated with a high-risk of both micro/macrovascular complications. Moreover, proteinuria reduction in diabetic subjects by several treatments lowers both renal and cardiovascular disease progression. The 2019 joint ESC-EASD guidelines on diabetes, prediabetes and cardiovascular (CV) disease assign to proteinuria a crucial role in defining CV risk level in the diabetic patient. In fact, proteinuria by itself allows the diabetic patient to be staged at very high CV risk, thus affecting the choice of anti-hyperglycemic drug class. The purpose of this review is to present a clear update on the role of albuminuria as a cardio-renal risk marker, starting from pathophysiological mechanisms in support of this role. Besides this, we will show the prognostic value in observational studies, as well as randomized clinical trials (RCTs) demonstrating the potential improvement of cardio-renal outcomes in diabetic patients by reducing proteinuria.
Collapse
Affiliation(s)
- Pia Clara Pafundi
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, 80138 Naples, Italy; (P.C.P.); (C.G.); (R.G.); (S.B.); (A.C.); (L.R.); (L.D.N.)
| | - Carlo Garofalo
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, 80138 Naples, Italy; (P.C.P.); (C.G.); (R.G.); (S.B.); (A.C.); (L.R.); (L.D.N.)
| | - Raffaele Galiero
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, 80138 Naples, Italy; (P.C.P.); (C.G.); (R.G.); (S.B.); (A.C.); (L.R.); (L.D.N.)
| | - Silvio Borrelli
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, 80138 Naples, Italy; (P.C.P.); (C.G.); (R.G.); (S.B.); (A.C.); (L.R.); (L.D.N.)
| | - Alfredo Caturano
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, 80138 Naples, Italy; (P.C.P.); (C.G.); (R.G.); (S.B.); (A.C.); (L.R.); (L.D.N.)
| | - Luca Rinaldi
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, 80138 Naples, Italy; (P.C.P.); (C.G.); (R.G.); (S.B.); (A.C.); (L.R.); (L.D.N.)
| | - Michele Provenzano
- Renal Unit, Department of Health Sciences, “Magna Graecia” University, Viale Europa, 88100 Catanzaro, Italy;
| | - Teresa Salvatore
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via De Crecchio 7, 80138 Naples, Italy;
| | - Luca De Nicola
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, 80138 Naples, Italy; (P.C.P.); (C.G.); (R.G.); (S.B.); (A.C.); (L.R.); (L.D.N.)
| | - Roberto Minutolo
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, 80138 Naples, Italy; (P.C.P.); (C.G.); (R.G.); (S.B.); (A.C.); (L.R.); (L.D.N.)
| | - Ferdinando Carlo Sasso
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, 80138 Naples, Italy; (P.C.P.); (C.G.); (R.G.); (S.B.); (A.C.); (L.R.); (L.D.N.)
| |
Collapse
|
60
|
Therapeutic transformation for diabetic kidney disease. Kidney Int 2021; 99:301-303. [PMID: 33509348 DOI: 10.1016/j.kint.2020.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 10/05/2020] [Indexed: 11/23/2022]
Abstract
Risks of kidney failure and heart failure are markedly reduced by inhibition of the sodium glucose cotransporter 2 (SGLT2) in patients with diabetic kidney disease. In a post hoc analysis of the Study of Diabetic Nephropathy with Atrasentan (SONAR) trial, drop-in SGLT2 inhibitor usage during the atrasentan enrichment period led to greater reduction in albuminuria compared with atrasentan alone. These data support the hypothesis of greater longer-term kidney protection by combination SGLT2 inhibition and endothelin A receptor antagonism that could be tested in future clinical trials.
Collapse
|