51
|
Liu H, Qin S, Sirohi R, Ahluwalia V, Zhou Y, Sindhu R, Binod P, Rani Singhnia R, Kumar Patel A, Juneja A, Kumar D, Zhang Z, Kumar J, Taherzadeh MJ, Kumar Awasthi M. Sustainable blueberry waste recycling towards biorefinery strategy and circular bioeconomy: A review. BIORESOURCE TECHNOLOGY 2021; 332:125181. [PMID: 33888357 DOI: 10.1016/j.biortech.2021.125181] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/09/2021] [Accepted: 04/10/2021] [Indexed: 06/12/2023]
Abstract
Waste valorization using biological methods for value addition as well as environmental management is becoming popular approach for sustainable development. The present review addresses the availability of blueberry crop residues (BCR), applications of this feedstock in bioprocess for obtaining range of value-added products, to offer economic viability, business development and market potential, challenges and future perspectives. To the best of our knowledge, this is the first article addressing the blueberry waste valorization for a sustainable circular bioeconomy. Furthermore, it covers the information on the alternative BCR valorization methods and production of biochar for environmental management through removal or mitigation of organic and inorganic pollutants from contaminated sites. The review also discusses the ample opportunities of strategic utilization of BCR to offer solutions for environmental sustenance, covers the emerging trends to produce multi-products and techno-economic prospective for sustainable agronomy.
Collapse
Affiliation(s)
- Huimin Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Shiyi Qin
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Ranjna Sirohi
- Department of Chemical and Biological Engineering, Korea University, Seoul, South Korea
| | - Vivek Ahluwalia
- Institute of Pesticide Formulation Technology, Gurugram, Haryana 122 016, India
| | - Yuwen Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala 695019, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala 695019, India
| | - Reeta Rani Singhnia
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Anil Kumar Patel
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Ankita Juneja
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana Champaign, 1304 W. Pennsylvania Avenue, Urbana, IL 61801, USA
| | - Deepak Kumar
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, 402 Walters Hall, 1 Forestry Drive, Syracuse, NY 13210, USA
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Jitendra Kumar
- Institute of Pesticide Formulation Technology, Gurugram, Haryana 122 016, India
| | | | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Swedish Centre for Resource Recovery, University of Borås, Borås 50190, Sweden.
| |
Collapse
|
52
|
Das Q, Shay J, Gauthier M, Yin X, Hasted TL, Ross K, Julien C, Yacini H, Kennes YM, Warriner K, Marcone MF, Diarra MS. Effects of Vaccination Against Coccidiosis on Gut Microbiota and Immunity in Broiler Fed Bacitracin and Berry Pomace. Front Immunol 2021; 12:621803. [PMID: 34149685 PMCID: PMC8213364 DOI: 10.3389/fimmu.2021.621803] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 05/04/2021] [Indexed: 11/13/2022] Open
Abstract
Feeding practices have been found to influence gut microbiota which play a major role in immunity of poultry. In the present study, changes in cecal microbiota and humoral responses resulting in the 55 ppm bacitracin (BACI), 1% each of cranberry (CP1) and wild blueberry (BP1) pomace alone or in combination (CP+BP) feeding in broiler Cobb 500 vaccinated or not against coccidiosis were investigated. In the non-vaccinated group, no significant treatment effects were observed on performance parameters. Vaccination significantly affected bird's performance parameters particularly during the growing phase from 10 to 20 days of age. In general, the prevalence of coccidiosis and necrotic enteritis (NE) was reduced by vaccination (P < 0.05). BACI-treated birds showed low intestinal lesion scores, and both CP1 and BP1 feed supplementations reduced Eimeria acervulina and Clostridium perfringens incidences similar to BACI. Vaccination induced change in serum enzymes, minerals, and lipid levels in 21-day old birds while, levels of triglyceride (TRIG) and non-esterified fatty acids (NEFA) were higher (P < 0.05) in CP1 treated non-vaccinated group than in the control. The levels of NEFA were lower in BACI- and CP1-fed birds than in the control in non-vaccinated day 28 old birds. The highest levels of all estimated three immunoglobulins (IgY, IgM, and IgA) were found in the vaccinated birds. Metagenomics analysis of the cecal bacterial community in 21-day old birds showed the presence of Firmicutes (90%), Proteobacteria (5%), Actinobacteria (2%), and Bacteroidetes (2%). In the vaccinated group, an effect of BACI was noted on Proteobacteria (P = 0.03). Vaccination and/or dietary treatments influenced the population of Lactobacillaceae, Enterobacteriaceae, Clostridiaceae, and Streptococcaceae which were among the most abundant families. Overall, this study revealed that besides their beneficial effects on performance, alike bacitracin, berry pomaces in poultry feed have profound impacts on the chicken cecal microbiota and blood metabolites that could be influenced by vaccination against coccidiosis.
Collapse
Affiliation(s)
- Quail Das
- Department of Food Science, University of Guelph, Guelph, ON, Canada.,Guelph Research and Development Centre, Agriculture and Agri-Food Canada (AAFC), Guelph, ON, Canada
| | - Julie Shay
- Ottawa Laboratory (Carling) - Research and Development, Canadian Food Inspection Agency, Ottawa, ON, Canada
| | - Martin Gauthier
- Biological Informatics Centre of Excellence, AAFC, Saint-Hyacinthe, QC, Canada
| | - Xianhua Yin
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada (AAFC), Guelph, ON, Canada
| | - Teri-Lyn Hasted
- Department of Food Science, University of Guelph, Guelph, ON, Canada.,Guelph Research and Development Centre, Agriculture and Agri-Food Canada (AAFC), Guelph, ON, Canada
| | - Kelly Ross
- Summerland Research and Development Centre, AAFC, Summerland, BC, Canada
| | - Carl Julien
- Centre de recherche en sciences animales de Deschambault, Deschambault, QC, Canada
| | - Hassina Yacini
- Centre de recherche en sciences animales de Deschambault, Deschambault, QC, Canada
| | - Yan Martel Kennes
- Centre de recherche en sciences animales de Deschambault, Deschambault, QC, Canada
| | - Keith Warriner
- Department of Food Science, University of Guelph, Guelph, ON, Canada
| | - Massimo F Marcone
- Department of Food Science, University of Guelph, Guelph, ON, Canada
| | - Moussa S Diarra
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada (AAFC), Guelph, ON, Canada
| |
Collapse
|
53
|
Natural deep eutectic solvent enhanced pulse-ultrasonication assisted extraction as a multi-stability protective and efficient green strategy to extract anthocyanin from blueberry pomace. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111220] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
54
|
Shahbazi R, Sharifzad F, Bagheri R, Alsadi N, Yasavoli-Sharahi H, Matar C. Anti-Inflammatory and Immunomodulatory Properties of Fermented Plant Foods. Nutrients 2021; 13:1516. [PMID: 33946303 PMCID: PMC8147091 DOI: 10.3390/nu13051516] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 12/11/2022] Open
Abstract
Fermented plant foods are gaining wide interest worldwide as healthy foods due to their unique sensory features and their health-promoting potentials, such as antiobesity, antidiabetic, antihypertensive, and anticarcinogenic activities. Many fermented foods are a rich source of nutrients, phytochemicals, bioactive compounds, and probiotic microbes. The excellent biological activities of these functional foods, such as anti-inflammatory and immunomodulatory functions, are widely attributable to their high antioxidant content and lactic acid-producing bacteria (LAB). LAB contribute to the maintenance of a healthy gut microbiota composition and improvement of local and systemic immunity. Besides, antioxidant compounds are involved in several functional properties of fermented plant products by neutralizing free radicals, regulating antioxidant enzyme activities, reducing oxidative stress, ameliorating inflammatory responses, and enhancing immune system performance. Therefore, these products may protect against chronic inflammatory diseases, which are known as the leading cause of mortality worldwide. Given that a large body of evidence supports the role of fermented plant foods in health promotion and disease prevention, we aim to discuss the potential anti-inflammatory and immunomodulatory properties of selected fermented plant foods, including berries, cabbage, and soybean products, and their effects on gut microbiota.
Collapse
Affiliation(s)
- Roghayeh Shahbazi
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (R.S.); (F.S.); (N.A.); (H.Y.-S.)
| | - Farzaneh Sharifzad
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (R.S.); (F.S.); (N.A.); (H.Y.-S.)
| | - Rana Bagheri
- College of Liberal Art and Sciences, Portland State University, Portland, OR 97201, USA;
| | - Nawal Alsadi
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (R.S.); (F.S.); (N.A.); (H.Y.-S.)
| | - Hamed Yasavoli-Sharahi
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (R.S.); (F.S.); (N.A.); (H.Y.-S.)
| | - Chantal Matar
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (R.S.); (F.S.); (N.A.); (H.Y.-S.)
- School of Nutrition, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
55
|
Dong R, Liu S, Xie J, Chen Y, Zheng Y, Zhang X, Zhao E, Wang Z, Xu H, Yu Q. The recovery, catabolism and potential bioactivity of polyphenols from carrot subjected to in vitro simulated digestion and colonic fermentation. Food Res Int 2021; 143:110263. [PMID: 33992364 DOI: 10.1016/j.foodres.2021.110263] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 02/19/2021] [Accepted: 02/21/2021] [Indexed: 12/13/2022]
Abstract
Carrot powder digestion was researched utilizing an in vitro standardized static model associated with an in vitro colonic fermentation method to analyze the recovery, catabolism, and potential bioactivity of polyphenols from carrot. Twenty-seven polyphenols and their metabolites (hydroxybenzoic acids, hydroxycinnamic acids and its derivatives, etc.) were identified in samples before and after digestion/colonic fermentation, and the possible colonic pathways for major polyphenols were proposed. Polyphenols had low recovery during different phases of in vitro digestion (oral: -51.4%; gastric: -38%; intestinal: -35.3%, respectively). However, the concentration of polyphenols (p-hydroxybenzoic acid, gallic acid and protocatechuic acid) increased significantly after colonic fermentation for 12 h with 1391.7% recovery, then significantly declined after 48 h. Meanwhile, the released and catabolized polyphenols showed antioxidant activity and α-glucosidase inhibitory capacity (IC50 = 9.91 μg GAE/mL). The microbe community structure was regulated by fecal fermented carrot powder through improving relative abundance (RA) of beneficial microbiota and suppressed RA of various harmful bacteria. This work indicated that polyphenols from carrot potentially play a role in gastrointestinal and colonic health.
Collapse
Affiliation(s)
- Ruihong Dong
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Shuai Liu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Yi Chen
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Yuting Zheng
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Xingjie Zhang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - En Zhao
- School of Food Science and Technology, Nanchang University, Nanchang 330031, China
| | - Zipei Wang
- School of Food Science and Technology, Nanchang University, Nanchang 330031, China
| | - Hongyan Xu
- School of Food Science and Technology, Nanchang University, Nanchang 330031, China
| | - Qiang Yu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| |
Collapse
|
56
|
Cheng Y, Huang Y, Liu K, Pan S, Qin Z, Wu T, Xu X. Cardamine hupingshanensis aqueous extract improves intestinal redox status and gut microbiota in Se-deficient rats. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:989-996. [PMID: 32761836 DOI: 10.1002/jsfa.10707] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/06/2020] [Accepted: 08/06/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND As an essential trace element for mammalian species, selenium (Se) possesses powerful antioxidant properties and is a potential regulator of intestinal microbiota. However, effects of Cardamine hupingshanensis aqueous extract (CE), rich in Se, on balancing the intestinal redox status and regulating gut microbiota have been neglected. RESULTS An Se-deficient rat model was established by feeding a low-Se diet (LD) for 5 weeks and CE was then supplemented to LD or normal-Se-diet (ND) rats. Antioxidant enzyme activities and short-chain fatty acids (SCFA) concentration were increased by CE in both LD and ND rats. CE improved the intestinal morphology of LD rats impaired by deficient Se. Intestinal microbiota demonstrated various changes; for example, Butyrivibrio was increased in LD rats, while Bacteroides, Christensenellaceae, Clostridiaceae and Blautia were enhanced in ND rats. CONCLUSION Our findings provide evidence that CE shows potential in improving intestinal redox status and regulating gut microbiota. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuxin Cheng
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Yuting Huang
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Kunyuan Liu
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Siyi Pan
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Zhiguo Qin
- Enshi Institute of Natural Plant Selenium, Enshi, China
| | - Ting Wu
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Xiaoyun Xu
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
57
|
Luo J, Lin X, Bordiga M, Brennan C, Xu B. Manipulating effects of fruits and vegetables on gut microbiota – a critical review. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.14927] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jing Luo
- Food Science and Technology Program BNU–HKBU United International College Zhuhai China
| | - Xian Lin
- Food Science and Technology Program BNU–HKBU United International College Zhuhai China
- Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing Sericultural & Agri‐Food Research Institute Guangdong China
| | - Matteo Bordiga
- Dipartimento di Scienze del Farmaco Università degli Studi del Piemonte Orientale ‘A. Avogadro’ Novara Italy
| | - Charles Brennan
- Faculty of Agriculture and Life Sciences Lincoln University Christchurch New Zealand
| | - Baojun Xu
- Food Science and Technology Program BNU–HKBU United International College Zhuhai China
| |
Collapse
|
58
|
Sabater C, Ruiz L, Delgado S, Ruas-Madiedo P, Margolles A. Valorization of Vegetable Food Waste and By-Products Through Fermentation Processes. Front Microbiol 2020; 11:581997. [PMID: 33193217 PMCID: PMC7606337 DOI: 10.3389/fmicb.2020.581997] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/28/2020] [Indexed: 12/31/2022] Open
Abstract
There is a general interest in finding new ways of valorizing fruit and vegetable processing by-products. With this aim, applications of industrial fermentation to improve nutritional value, or to produce biologically active compounds, have been developed. In this sense, the fermentation of a wide variety of by-products including rice, barley, soya, citrus, and milling by-products has been reported. This minireview gives an overview of recent fermentation-based valorization strategies developed in the last 2 years. To aid the designing of new bioprocesses of industrial interest, this minireview also provides a detailed comparison of the fermentation conditions needed to produce specific bioactive compounds through a simple artificial neural network model. Different applications reported have been focused on increasing the nutritional value of vegetable by-products, while several lactic acid bacteria and Penicillium species have been used to produce high purity lactic acid. Bacteria and fungi like Bacillus subtilis, Rhizopus oligosporus, or Fusarium flocciferum may be used to efficiently produce protein extracts with high biological value and a wide variety of functional carbohydrates and glycosidases have been produced employing Aspergillus, Yarrowia, and Trichoderma species. Fermentative patterns summarized may guide the production of functional ingredients for novel food formulation and the development of low-cost bioprocesses leading to a transition toward a bioeconomy model.
Collapse
Affiliation(s)
- Carlos Sabater
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas, Villaviciosa, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| | - Lorena Ruiz
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas, Villaviciosa, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| | - Susana Delgado
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas, Villaviciosa, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| | - Patricia Ruas-Madiedo
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas, Villaviciosa, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| | - Abelardo Margolles
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas, Villaviciosa, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| |
Collapse
|
59
|
Valero-Cases E, Cerdá-Bernad D, Pastor JJ, Frutos MJ. Non-Dairy Fermented Beverages as Potential Carriers to Ensure Probiotics, Prebiotics, and Bioactive Compounds Arrival to the Gut and Their Health Benefits. Nutrients 2020; 12:E1666. [PMID: 32503276 PMCID: PMC7352914 DOI: 10.3390/nu12061666] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 12/17/2022] Open
Abstract
In alignment with Hippocrates' aphorisms "Let food be your medicine and medicine be your food" and "All diseases begin in the gut", recent studies have suggested that healthy diets should include fermented foods to temporally enhance live microorganisms in our gut. As a result, consumers are now demanding this type of food and fermented food has gained popularity. However, certain sectors of population, such as those allergic to milk proteins, lactose intolerant and strict vegetarians, cannot consume dairy products. Therefore, a need has arisen in order to offer consumers an alternative to fermented dairy products by exploring new non-dairy matrices as probiotics carriers. Accordingly, this review aims to explore the benefits of different fermented non-dairy beverages (legume, cereal, pseudocereal, fruit and vegetable), as potential carriers of bioactive compounds (generated during the fermentation process), prebiotics and different probiotic bacteria, providing protection to ensure that their viability is in the range of 106-107 CFU/mL at the consumption time, in order that they reach the intestine in high amounts and improve human health through modulation of the gut microbiome.
Collapse
Affiliation(s)
- Estefanía Valero-Cases
- Research Group on Quality and Safety, Food Technology Department, Miguel Hernández University, 03312 Orihuela, Spain; (E.V.-C.); (D.C.-B.)
| | - Débora Cerdá-Bernad
- Research Group on Quality and Safety, Food Technology Department, Miguel Hernández University, 03312 Orihuela, Spain; (E.V.-C.); (D.C.-B.)
| | | | - María-José Frutos
- Research Group on Quality and Safety, Food Technology Department, Miguel Hernández University, 03312 Orihuela, Spain; (E.V.-C.); (D.C.-B.)
| |
Collapse
|
60
|
Dong R, Liu S, Zheng Y, Zhang X, He Z, Wang Z, Wang Y, Xie J, Chen Y, Yu Q. Release and metabolism of bound polyphenols from carrot dietary fiber and their potential activity in in vitro digestion and colonic fermentation. Food Funct 2020; 11:6652-6665. [DOI: 10.1039/d0fo00975j] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Dietary fiber is a carrier of abundant polyphenols and the potential benefits have attracted increasing attention.
Collapse
|
61
|
Cheng Y, Tang S, Huang Y, Liang F, Fang Y, Pan S, Wu T, Xu X. Lactobacillus casei-fermented blueberry pomace augments sIgA production in high-fat diet mice by improving intestinal microbiota. Food Funct 2020; 11:6552-6564. [DOI: 10.1039/d0fo01119c] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Intestinal secretory immunoglobulin A (sIgA)-improving function of Lactobacillus casei-fermented blueberry pomace (FBP) was investigated in this study.
Collapse
Affiliation(s)
- Yuxin Cheng
- Key Laboratory of Environment Correlative Dietology (Ministry of Education)
- College of Food Science and Technology
- Huazhong Agricultural University
- Wuhan 430070
- People's Republic of China
| | - Shuxin Tang
- Key Laboratory of Environment Correlative Dietology (Ministry of Education)
- College of Food Science and Technology
- Huazhong Agricultural University
- Wuhan 430070
- People's Republic of China
| | - Yuting Huang
- Key Laboratory of Environment Correlative Dietology (Ministry of Education)
- College of Food Science and Technology
- Huazhong Agricultural University
- Wuhan 430070
- People's Republic of China
| | - Fuqiang Liang
- Nanjing University of Finance and Economics
- Nanjing
- People's Republic of China
| | - Yajing Fang
- Department of Food Science
- University of Copenhagen
- Copenhagen
- Denmark
| | - Siyi Pan
- Key Laboratory of Environment Correlative Dietology (Ministry of Education)
- College of Food Science and Technology
- Huazhong Agricultural University
- Wuhan 430070
- People's Republic of China
| | - Ting Wu
- Key Laboratory of Environment Correlative Dietology (Ministry of Education)
- College of Food Science and Technology
- Huazhong Agricultural University
- Wuhan 430070
- People's Republic of China
| | - Xiaoyun Xu
- Key Laboratory of Environment Correlative Dietology (Ministry of Education)
- College of Food Science and Technology
- Huazhong Agricultural University
- Wuhan 430070
- People's Republic of China
| |
Collapse
|