51
|
Youdim MBH. Why do we need multifunctional neuroprotective and neurorestorative drugs for Parkinson's and Alzheimer's disorders? Rambam Maimonides Med J 2010; 1:e0011. [PMID: 23908783 PMCID: PMC3678780 DOI: 10.5041/rmmj.10011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Parkinson's disease (PD) and Alzheimer's disease (AD) are severe neurodegenerative disorders, with no drugs that are currently approved to prevent the neuronal cell loss characteristic in brains of patients suffering from PD and AD, and all drug treatments are symptomatic and monomodal in their action. Due to the complex pathophysiology, including a cascade of neurotoxic molecular events that result in neuronal death and predisposition to depression and eventual dementia, and etiology of these disorders, an innovative approach towards neuroprotection or neurorestoration (neurorescue) is the development and use of multifunctional pharmaceuticals which can act at different brain regions and neurons. Such drugs target an array of pathological pathways, each of which is believed to contribute to the cascades that ultimately lead to neuronal cell death. In this short review, we discuss examples of novel multifunctional ligands that may have potential as neuroprotective-neurorestorative therapeutics in PD and AD, some of which are under development. The compounds discussed originate from synthetic chemistry as well as from natural sources.
Collapse
|
52
|
Melgar GZ, Wendler EP, dos Santos AA, Porto AL. First stereocontrolled acetylation of a hydroxypropargylpiperidone by lipase CALB. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.tetasy.2010.07.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
53
|
Rivera-Mancía S, Pérez-Neri I, Ríos C, Tristán-López L, Rivera-Espinosa L, Montes S. The transition metals copper and iron in neurodegenerative diseases. Chem Biol Interact 2010; 186:184-99. [DOI: 10.1016/j.cbi.2010.04.010] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 01/22/2010] [Accepted: 04/08/2010] [Indexed: 12/14/2022]
|
54
|
Youdim MBH. Why do we need multifunctional neuroprotective and neurorestorative drugs for Parkinson's and Alzheimer's diseases as disease modifying agents. Exp Neurobiol 2010; 19:1-14. [PMID: 22110336 PMCID: PMC3214798 DOI: 10.5607/en.2010.19.1.1] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Accepted: 06/20/2010] [Indexed: 01/01/2023] Open
Abstract
Parkinson's disease (PD) and Alzheimer's Disease (AD) are severe neurodegenerative disorders, with no drugs that are currently approved to prevent the neuronal cell loss characteristic in brains of patients suffering from PD and AD and all drug treatment are synptomactic. Due to the complex pathophysiology, including a cascade of neurotoxic molecular events that results in neuronal death and predisposition to depression and eventual dementia and etiology of these disorders, an innovative approach towards neuroprotection or neurorestoration (neurorescue) may be the development and use of multifunctional pharmaceuticals. Such drugs target an array of pathological pathways, each of which is believed to contribute to the cascades that ultimately lead to neuronal cell death. In this short review, we discuss examples of novel multifunctional ligands that may have potential as neuroprotective-neurorestorative therapeutics in PD and AD. The compounds discussed originate from synthetic chemistry as well as from natural sources.
Collapse
Affiliation(s)
- Moussa B H Youdim
- Eve Topf and US National Parkinson Foundation Centers of Excellence for Neurodegenerative Diseases, Technion-Faculty of Medicine, Efron St., Haifa 31096, Israel
| |
Collapse
|
55
|
Benkler C, Offen D, Melamed E, Kupershmidt L, Amit T, Mandel S, Youdim MBH, Weinreb O. Recent advances in amyotrophic lateral sclerosis research: perspectives for personalized clinical application. EPMA J 2010; 1:343-61. [PMID: 23199069 PMCID: PMC3405320 DOI: 10.1007/s13167-010-0026-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2010] [Accepted: 05/19/2010] [Indexed: 12/13/2022]
Abstract
Treatment of amyotrophic lateral sclerosis (ALS) has been fueled, in part, by frustration over the shortcomings of the symptomatic drugs available, since these do not impede the progression of this disease. Currently, over 150 different potential therapeutic agents or strategies have been tested in preclinical models of ALS. Unfortunately, therapeutic modifiers of murine ALS have failed to be successfully translated into strategies for patients, probably because of differences in pharmacokinetics of the therapeutic agents, route of delivery, inefficiency of the agents to affect the distinct pathologies of the disease or inherent limitations of the available animal models. Given the multiplicity of the pathological mechanisms implicated in ALS, new therapies should consider the simultaneous manipulation of multiple targets. Additionally, a better management of ALS therapy should include understanding the interactions between potential risk factors, biomarkers and heterogeneous clinical features of the patients, aiming to manage their adverse events or personalize the safety profile of these agents. This review will discuss novel pharmacological approaches concerning adjusted therapy for ALS patients: iron-binding brain permeable multimodal compounds, genetic manipulation and cell-based treatment.
Collapse
Affiliation(s)
- Chen Benkler
- Felsenstein Medical Research Center, Tel Aviv University, Tel-Aviv, Israel
| | - Daniel Offen
- Felsenstein Medical Research Center, Tel Aviv University, Tel-Aviv, Israel
| | - Eldad Melamed
- Felsenstein Medical Research Center, Tel Aviv University, Tel-Aviv, Israel
| | - Lana Kupershmidt
- Eve Topf Centers of Excellence for Neurodegenerative Diseases Research and Department of Pharmacology, Rappaport Family Research Institute, Technion-Faculty of Medicine, P.O.B. 9649, Haifa, 31096 Israel
| | - Tamar Amit
- Eve Topf Centers of Excellence for Neurodegenerative Diseases Research and Department of Pharmacology, Rappaport Family Research Institute, Technion-Faculty of Medicine, P.O.B. 9649, Haifa, 31096 Israel
| | - Silvia Mandel
- Eve Topf Centers of Excellence for Neurodegenerative Diseases Research and Department of Pharmacology, Rappaport Family Research Institute, Technion-Faculty of Medicine, P.O.B. 9649, Haifa, 31096 Israel
| | - Moussa B. H. Youdim
- Eve Topf Centers of Excellence for Neurodegenerative Diseases Research and Department of Pharmacology, Rappaport Family Research Institute, Technion-Faculty of Medicine, P.O.B. 9649, Haifa, 31096 Israel
| | - Orly Weinreb
- Eve Topf Centers of Excellence for Neurodegenerative Diseases Research and Department of Pharmacology, Rappaport Family Research Institute, Technion-Faculty of Medicine, P.O.B. 9649, Haifa, 31096 Israel
| |
Collapse
|
56
|
Scott LE, Orvig C. Medicinal Inorganic Chemistry Approaches to Passivation and Removal of Aberrant Metal Ions in Disease. Chem Rev 2009; 109:4885-910. [DOI: 10.1021/cr9000176] [Citation(s) in RCA: 266] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Lauren E. Scott
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, Vancouver, Canada
| | - Chris Orvig
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, Vancouver, Canada
| |
Collapse
|
57
|
Why should we use multifunctional neuroprotective and neurorestorative drugs for Parkinson's disease? Parkinsonism Relat Disord 2009; 13 Suppl 3:S281-91. [PMID: 18267251 DOI: 10.1016/s1353-8020(08)70017-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Parkinson's disease (PD) is a severe neurodegenerative disorder, with no available drugs able to prevent the neuronal cell loss characteristic in brains of patients suffering from PD. Due to the complex cascade of molecular events involved in the etiology of PD, an innovative approach towards neuroprotection or neurorescue may entail the use of multifunctional pharmaceuticals that target an array of pathological pathways, each of which is believed to contribute to events that ultimately lead to neuronal cell death. Here we discuss examples of novel multifunctional ligands that may have potential as neuroprotective and neurorestorative therapeutics in PD. The compounds discussed originate from synthetic chemistry as well as from natural sources where various moieties, identified in research to possess neuroprotective and neurorestorative properties, have been introduced into the structures of several monomodal drugs, some of which are used in the clinic.
Collapse
|
58
|
Kell DB. Iron behaving badly: inappropriate iron chelation as a major contributor to the aetiology of vascular and other progressive inflammatory and degenerative diseases. BMC Med Genomics 2009; 2:2. [PMID: 19133145 PMCID: PMC2672098 DOI: 10.1186/1755-8794-2-2] [Citation(s) in RCA: 376] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Accepted: 01/08/2009] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular 'reactive oxygen species' (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. REVIEW We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation).The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible.This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, since in some circumstances (especially the presence of poorly liganded iron) molecules that are nominally antioxidants can actually act as pro-oxidants. The reduction of redox stress thus requires suitable levels of both antioxidants and effective iron chelators. Some polyphenolic antioxidants may serve both roles.Understanding the exact speciation and liganding of iron in all its states is thus crucial to separating its various pro- and anti-inflammatory activities. Redox stress, innate immunity and pro- (and some anti-)inflammatory cytokines are linked in particular via signalling pathways involving NF-kappaB and p38, with the oxidative roles of iron here seemingly involved upstream of the IkappaB kinase (IKK) reaction. In a number of cases it is possible to identify mechanisms by which ROSs and poorly liganded iron act synergistically and autocatalytically, leading to 'runaway' reactions that are hard to control unless one tackles multiple sites of action simultaneously. Some molecules such as statins and erythropoietin, not traditionally associated with anti-inflammatory activity, do indeed have 'pleiotropic' anti-inflammatory effects that may be of benefit here. CONCLUSION Overall we argue, by synthesising a widely dispersed literature, that the role of poorly liganded iron has been rather underappreciated in the past, and that in combination with peroxide and superoxide its activity underpins the behaviour of a great many physiological processes that degrade over time. Understanding these requires an integrative, systems-level approach that may lead to novel therapeutic targets.
Collapse
Affiliation(s)
- Douglas B Kell
- School of Chemistry and Manchester Interdisciplinary Biocentre, The University of Manchester, 131 Princess St, Manchester, M1 7DN, UK.
| |
Collapse
|
59
|
Corson TW, Aberle N, Crews CM. Design and Applications of Bifunctional Small Molecules: Why Two Heads Are Better Than One. ACS Chem Biol 2008; 3:677-692. [PMID: 19112665 DOI: 10.1021/cb8001792] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Induction of protein--protein interactions is a daunting challenge, but recent studies show promise for small molecules that specifically bring two or more protein molecules together for enhanced or novel biological effect. The first such bifunctional molecules were the rapamycin- and FK506-based "chemical inducers of dimerization", but the field has since expanded with new molecules and new applications in chemical genetics and cell biology. Examples include coumermycin-mediated gyrase B dimerization, proteolysis targeting chimeric molecules (PROTACs), drug hybrids, and strategies for exploiting multivalency in toxin binding and antibody recruitment. This Review discusses these and other advances in the design and use of bifunctional small molecules and potential strategies for future systems.
Collapse
Affiliation(s)
| | | | - Craig M. Crews
- Department of Molecular, Cellular & Developmental Biology
- Departments of Chemistry and Pharmacology, Yale University, New Haven, Connecticut 06511
| |
Collapse
|
60
|
Gerhardsson L, Lundh T, Minthon L, Londos E. Metal concentrations in plasma and cerebrospinal fluid in patients with Alzheimer's disease. Dement Geriatr Cogn Disord 2008; 25:508-15. [PMID: 18463412 DOI: 10.1159/000129365] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS The homeostasis of essential metals such as copper, iron, selenium and zinc may be altered in the brain of subjects with Alzheimer's disease (AD). METHODS Concentrations of metals (magnesium, calcium, vanadium, manganese, iron, cobalt, nickel, copper, zinc, selenium, rubidium, strontium, molybdenum, cadmium, tin, antimony, cesium, mercury and lead) were determined in plasma and cerebrospinal fluid (CSF) by inductively coupled plasma mass spectrometry in 173 patients with AD and in 87 patients with the combination of AD and minor vascular components (AD + vasc). Comparison was made with 54 healthy controls. RESULTS The plasma concentrations of manganese and total mercury were significantly higher in subjects with AD (p < 0.001) and AD + vasc (p <or= 0.013) than in controls. In CSF, however, the concentrations of vanadium, manganese, rubidium, antimony, cesium and lead were significantly lower among subjects with AD (p <or= 0.010) and AD + vasc (p <or= 0.047) than in controls. Strong positive correlations were noted between plasma Cs versus CSF Cs in subjects with AD (r(s) = 0.50; p < 0.001), and AD + vasc (r(s) = 0.68; p < 0.001). CONCLUSION Besides the raised plasma mercury concentrations, no consistent metal pattern in plasma or CSF was observed in patients with AD.
Collapse
Affiliation(s)
- Lars Gerhardsson
- Department of Occupational and Environmental Medicine, Sahlgrenska Academy and University Hospital, Göteborg, Sweden.
| | | | | | | |
Collapse
|
61
|
Perez CA, Tong Y, Guo M. Iron Chelators as Potential Therapeutic Agents for Parkinson's Disease. ACTA ACUST UNITED AC 2008; 4:150-158. [PMID: 19809592 DOI: 10.2174/157340708786305952] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Parkinson's disease (PD) is a neurological disorder characterized by the progressive impairment of motor skills in patients. Growing evidence suggests that abnormal redox-active metal accumulation, caused by dysregulation, plays a central role in the neuropathology of PD. Redox-active metals (e.g. Fe and Cu) catalyze essential reactions for brain function. However, these metals can also participate in the generation of highly toxic free radicals that can cause oxidative damage to cells and ultimately lead to the death of dopamine-containing neurons. The emergence of redox-active metals as key players in the pathogenesis of PD strongly suggests that metal-chelators could be beneficial in the treatment of this condition. This mini-review summarizes major recent developments on natural, synthetic iron chelating compounds and hydrogen peroxide-triggered prochelators as potential candidates for PD treatment.
Collapse
Affiliation(s)
- Carlos A Perez
- Department of Chemistry and Biochemistry, University of Massachusetts, Dartmouth, MA 02747-2300
| | | | | |
Collapse
|
62
|
Metals in Alzheimer's and Parkinson's diseases. Curr Opin Chem Biol 2008; 12:222-8. [PMID: 18342639 DOI: 10.1016/j.cbpa.2008.02.019] [Citation(s) in RCA: 537] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2008] [Revised: 02/04/2008] [Accepted: 02/17/2008] [Indexed: 12/31/2022]
Abstract
There has been steadily growing interest in the participation of metal ions (especially, zinc, copper, and iron) in neurobiological processes, such as the regulation of synaptic transmission. Recent descriptions of the release of zinc and copper in the cortical glutamatergic synapse, and influencing the response of the NMDA receptor underscore the relevance of understanding the inorganic milieu of the synapse to neuroscience. Additionally, major neurodegenerative disorders, including Alzheimer's disease and Parkinson's disease, are characterized by elevated tissue iron, and miscompartmentalization of copper and zinc (e.g. accumulation in amyloid). Increasingly sophisticated medicinal chemistry approaches, which correct these metal abnormalities without causing systemic disturbance of these essential minerals, are being tested. These small molecules show promise of being disease-modifying.
Collapse
|
63
|
|
64
|
Chinta SJ, Andersen JK. Redox imbalance in Parkinson's disease. Biochim Biophys Acta Gen Subj 2008; 1780:1362-7. [PMID: 18358848 DOI: 10.1016/j.bbagen.2008.02.005] [Citation(s) in RCA: 204] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Revised: 02/14/2008] [Accepted: 02/24/2008] [Indexed: 12/18/2022]
Abstract
Parkinson's disease (PD) is an adult-onset neurodegenerative disorder characterized by preferential loss of dopaminergic neurons in an area of the midbrain called the substantia nigra (SN) along with occurrence of intraneuronal inclusions called Lewy bodies. The majority of cases of PD are sporadic in nature with late onset (95% of patients); however a few PD cases (5%) are seen in familial clusters with generally earlier onset. Although PD has been heavily researched, so far the exact cause of the rather selective cell death is unknown. Multiple lines of evidence suggest an important role for oxidative stress. Dopaminergic neurons (DA) are particularly prone to oxidative stress due to DA metabolism and auto-oxidation combined with increased iron, decreased total glutathione levels and mitochondrial complex I inhibition-induced ROS production in the SN which can lead to cell death by exceeding the oxidative capacity of DA-containing cells in the region. Enhancing antioxidant capabilities and chelating labile iron pools in this region therefore constitutes a rational approach to prevent or slow ongoing damage of DA neurons. In this review, we summarize the various sources of reactive oxygen species that may cause redox imbalance in PD as well as potential therapeutic targets for attenuation of oxidative stress associated with PD.
Collapse
|
65
|
Bogaerts V, Theuns J, van Broeckhoven C. Genetic findings in Parkinson's disease and translation into treatment: a leading role for mitochondria? GENES, BRAIN, AND BEHAVIOR 2008; 7:129-51. [PMID: 17680806 PMCID: PMC2268956 DOI: 10.1111/j.1601-183x.2007.00342.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2007] [Revised: 06/06/2007] [Accepted: 06/25/2007] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative movement disorder and in most patients its aetiology remains unknown. Molecular genetic studies in familial forms of the disease identified key proteins involved in PD pathogenesis, and support a major role for mitochondrial dysfunction, which is also of significant importance to the common sporadic forms of PD. While current treatments temporarily alleviate symptoms, they do not halt disease progression. Drugs that target the underlying pathways to PD pathogenesis, including mitochondrial dysfunction, therefore hold great promise for neuroprotection in PD. Here we summarize how the proteins identified through genetic research (alpha-synuclein, parkin, PINK1, DJ-1, LRRK2 and HTRA2) fit into and add to our current understanding of the role of mitochondrial dysfunction in PD. We highlight how these genetic findings provided us with suitable animal models and critically review how the gained insights will contribute to better therapies for PD.
Collapse
Affiliation(s)
- V Bogaerts
- Neurodegenerative Brain Diseases Group, Department of Molecular Genetics, VIBAntwerpen, Belgium
- Laboratory of Neurogenetics, Institute Born-BungeAntwerpen, Belgium
- University of AntwerpAntwerpen, Belgium
| | - J Theuns
- Neurodegenerative Brain Diseases Group, Department of Molecular Genetics, VIBAntwerpen, Belgium
- Laboratory of Neurogenetics, Institute Born-BungeAntwerpen, Belgium
- University of AntwerpAntwerpen, Belgium
| | - C van Broeckhoven
- Neurodegenerative Brain Diseases Group, Department of Molecular Genetics, VIBAntwerpen, Belgium
- Laboratory of Neurogenetics, Institute Born-BungeAntwerpen, Belgium
- University of AntwerpAntwerpen, Belgium
| |
Collapse
|
66
|
Brand A, Schonfeld E, Isharel I, Yavin E. Docosahexaenoic acid-dependent iron accumulation in oligodendroglia cells protects from hydrogen peroxide-induced damage. J Neurochem 2008; 105:1325-35. [PMID: 18208540 DOI: 10.1111/j.1471-4159.2008.05234.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Iron, a transition metal and essential nutrient, is a typical pro-oxidant forming free radicals, lipid peroxides and causing cell damage when added at high (> or = 50 microM) concentrations to oligodendroglia-like OLN-93 cells that have been enriched for 3 days with 10 microM docosahexaenoic acid (DHA, 22 : 6 n-3). At low (5 microM) iron concentrations lipid peroxides were still formed, but cells turned resistant to 250 microM H2O2, a secondary genotoxic stress. This has been attributed most likely to a time-dependent (16 h preconditioning) increase of cellular antioxidant enzyme activities i.e., glutathione peroxidase (38%) and glutathione reductase (26%). DHA but not arachidonic acid (20 : 4 n-6) supplements induced 3-fold increase in gene expression of divalent metal transporter-1, a transporter protein presumably responsible for the increase in intracellular iron. Elevated iron levels triggered a transient scrambling of membrane lipid asymmetry as evident by an accelerated ethanolamine phosphoglyceride translocation to the outer cell surface. Ethanolamine phosphoglyceride reorientation is proposed to activate certain signaling cascades leading to changes in nuclear transcription, a reaction that could represent a mechanism of preconditioning. These findings may have important implications for understanding the interactive role of iron and DHA in nutritional deficiencies, losses of polyunsaturated fatty acids in the aging brain or excessive iron accumulation in degenerative disorders.
Collapse
Affiliation(s)
- Annette Brand
- Department of Neurobiology, The Weizmann Institute of Science, Rehovot, Israel.
| | | | | | | |
Collapse
|
67
|
Blat D, Weiner L, Youdim MBH, Fridkin M. A Novel Iron-Chelating Derivative of the Neuroprotective Peptide NAPVSIPQ Shows Superior Antioxidant and Antineurodegenerative Capabilities. J Med Chem 2007; 51:126-34. [DOI: 10.1021/jm070800l] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Dan Blat
- Department of Organic Chemistry and Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel, and Eve Topf and U.S.A. National Parkinson Foundation Centers for Neurodegenerative Diseases and Department of Pharmacology, Faculty of Medicine, Technion, Haifa, Israel
| | - Lev Weiner
- Department of Organic Chemistry and Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel, and Eve Topf and U.S.A. National Parkinson Foundation Centers for Neurodegenerative Diseases and Department of Pharmacology, Faculty of Medicine, Technion, Haifa, Israel
| | - Moussa B. H. Youdim
- Department of Organic Chemistry and Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel, and Eve Topf and U.S.A. National Parkinson Foundation Centers for Neurodegenerative Diseases and Department of Pharmacology, Faculty of Medicine, Technion, Haifa, Israel
| | - Mati Fridkin
- Department of Organic Chemistry and Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel, and Eve Topf and U.S.A. National Parkinson Foundation Centers for Neurodegenerative Diseases and Department of Pharmacology, Faculty of Medicine, Technion, Haifa, Israel
| |
Collapse
|
68
|
Van der Schyf CJ, Gal S, Geldenhuys WJ, Youdim MBH. Multifunctional neuroprotective drugs targeting monoamine oxidase inhibition, iron chelation, adenosine receptors, and cholinergic and glutamatergic action for neurodegenerative diseases. Expert Opin Investig Drugs 2007; 15:873-86. [PMID: 16859391 DOI: 10.1517/13543784.15.8.873] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A new paradigm is emerging in the targeting of multiple disease aetiologies that collectively lead to neurodegenerative disorders such as Parkinson's disease, Alzheimer's disease, post-stroke neurodegeneration and others. This paradigm challenges the widely held assumption that 'silver bullet' agents are superior to 'dirty drugs' when it comes to drug therapy. Accumulating evidence in the literature suggests that many neurodegenerative diseases have multiple mechanisms in their aetiologies, thus suggesting that a drug with at least two mechanisms of action targeted at multiple aetiologies of the same disease may offer more therapeutic benefit in certain disorders compared with a drug that only targets one disease aetiology. This review offers a synopsis of therapeutic strategies and novel investigative drugs developed in the authors' own and other laboratories that modulate multiple disease targets associated with neurodegenerative diseases.
Collapse
Affiliation(s)
- Cornelis J Van der Schyf
- Texas Tech University Health Sciences Center, Department of Pharmaceutical Sciences, School of Pharmacy, 1300 Coulter Drive, Amarillo, TX 79106, USA
| | | | | | | |
Collapse
|
69
|
Van der Schyf CJ, Geldenhuys WJ, Youdim MBH. Multifunctional neuroprotective–neurorescue drugs for Parkinson’s disease. FUTURE NEUROLOGY 2007. [DOI: 10.2217/14796708.2.4.411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Parkinson’s disease (PD) is a severe neurodegenerative disorder, with no drugs currently approved to prevent the neuronal cell loss characteristic of brains of patients suffering from PD. Owing to the complex etiology of PD, an innovative approach towards neuroprotection or neurorescue may be the use of multifunctional pharmaceuticals that target an array of pathological pathways, each of which is believed to contribute to the cascade that ultimately leads to neuronal cell death. In this review, we discuss examples of novel multifunctional ligands that may have potential as neuroprotective–neurorescue therapeutics in PD. The compounds discussed originate from synthetic chemistry as well as from natural sources.
Collapse
Affiliation(s)
- Cornelis J Van der Schyf
- Northeastern Ohio Universities College of Pharmacy, 4209 State Route 44, Rootstown, OH 44272, USA
| | - Werner J Geldenhuys
- Northeastern Ohio Universities College of Pharmacy, 4209 State Route 44, Rootstown, OH 44272, USA
| | - Moussa BH Youdim
- Eve Topf and National Parkinson Foundation (US) Centers of Excellence for Neurodegenerative Diseases, Technion-Faculty of Medicine, Efron St, PO Box 9697, Haifa 31096, Israel
| |
Collapse
|
70
|
Aguirre P, Valdés P, Aracena-Parks P, Tapia V, Núñez MT. Upregulation of γ-glutamate-cysteine ligase as part of the long-term adaptation process to iron accumulation in neuronal SH-SY5Y cells. Am J Physiol Cell Physiol 2007; 292:C2197-203. [PMID: 17344309 DOI: 10.1152/ajpcell.00620.2006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Reactive iron is an important prooxidant factor, whereas GSH is a crucial component of a long-term adaptive system that allows cells to function during extended periods of high oxidative stress. In this work, the adaptive response of the GSH system to prolonged iron loads was characterized in human dopaminergic SH-SY5Y neuroblastoma cells. After the initial death of a substantial portion of the cell population, the surviving cells increased their GSH content by up to fivefold. This increase was traced to increased expression of the catalytic and modulatory subunits of γ-glutamate-cysteine ligase. Under conditions of high iron load, cells maintained a low GSSG content through two mechanisms: 1) GSSG reductase-mediated recycling of GSSG to GSH and 2) multidrug resistant protein 1-mediated extrusion of GSSG. Increased GSH synthesis and low GSSG levels contributed to recover the cell reduction potential from −290 mV at the time of cell death to about −320 mV. These results highlight the fundamental role of GSH homeostasis in the antioxidant response to cellular iron accumulation and provide novel insights into the adaptive mechanisms of neurons subjected to increased iron loads, such as those observed in Parkinson's disease.
Collapse
Affiliation(s)
- Pabla Aguirre
- Department of Biology, University of Chile, Santiago, Chile
| | | | | | | | | |
Collapse
|
71
|
Budni P, de Lima MNM, Polydoro M, Moreira JCF, Schroder N, Dal-Pizzol F. Antioxidant Effects of SelegilIne in Oxidative Stress Induced by Iron Neonatal Treatment in Rats. Neurochem Res 2007; 32:965-72. [PMID: 17401681 DOI: 10.1007/s11064-006-9249-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Accepted: 12/01/2006] [Indexed: 11/26/2022]
Abstract
Increased levels of iron in specific brain regions have been reported in neurodegenerative disorders. It has been postulated that iron exerts its deleterious effects on the nervous system by inducing oxidative damage. In a previous study, we have shown that iron administered during a particular period of the neonatal life induces oxidative damage in brain regions in adult rats. The aim of the present study was to evaluate the possible protective effect of selegiline, a monoamino-oxidase B (MAO-B) inhibitor used in pharmacotherapy of Parkinson's disease, against iron-induced oxidative stress in the brain. Results have shown that selegiline (1.0 and 10.0 mg/kg), when administered early in life was able to protect the substantia nigra as well as the hippocampus against iron-induced oxidative stress, without affecting striatum. When selegiline (10.0 mg/kg) was administered in the adult life to iron-treated rats, oxidative stress was reduced only in the substantia nigra.
Collapse
Affiliation(s)
- Patrícia Budni
- Laboratório de Fisiopatologia Experimental, Universidade do Extremo Sul Catarinense, Criciuma, Brazil
| | | | | | | | | | | |
Collapse
|
72
|
Guay DRP. Rasagiline (TVP-1012): a new selective monoamine oxidase inhibitor for Parkinson's disease. ACTA ACUST UNITED AC 2007; 4:330-46. [PMID: 17296539 DOI: 10.1016/j.amjopharm.2006.12.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2006] [Indexed: 01/01/2023]
Abstract
OBJECTIVE This article reviews the chemistry, pharmacodynamics, pharmacokinetics, clinical efficacy, tolerability, drug-interaction potential, indications, dosing, and potential role of rasagiline mesylate, a new selective monoamine oxidase (MAO) type B (MAO-B) inhibitor, in the treatment of Parkinson's disease. METHODS A MEDLINE/PUBMED search (1986 through September 2006) was conducted to identify studies involving rasagiline written in English. Additional references were obtained from the bibliographies of these studies. All studies evaluating any aspect of rasagiline, including in vitro, in vivo (animal), and human studies, were reviewed. RESULTS Rasagiline mesylate was developed with the goal of producing a selective MAO-B inhibitor that is not metabolized to (presumed) toxic metabolites (eg, amphetamine and methamphetamine, which are byproducts of the metabolism of selegiline, another selective MAO-B inhibitor). In vitro and in vivo data have confirmed the drug's selectivity for MAO-B. Rasagiline is almost completely eliminated by oxidative metabolism (catalyzed by cytochrome P-450 [CYP] isozyme 1A2) followed by renal excretion of conjugated parent compound and metabolites. Drug clearance is sufficiently slow to allow once-daily dosing. Several studies have documented its efficacy as monotherapy for early-stage disease and as adjunctive therapy in L-dopa recipients with motor fluctuations. As monotherapy, rasagiline is well tolerated with an adverse-effect profile similar to that of placebo. As adjunctive therapy, it exhibits the expected adverse effects of dopamine excess, which can be ameliorated by reducing the L-dopa dosage. CYP1A2 inhibitors slow the elimination of rasagiline and mandate dosage reduction. Hepatic impairment has an analogous effect. The recommended dosage regimens for monotherapy and adjunctive therapy are 1 and 0.5 mg PO QD, respectively. CONCLUSIONS Despite the well-documented selectivity of rasagiline, the manufacturer recommends virtually all of the dietary (vis-à-vis tyramine) and drug restrictions of the nonselective MAO inhibitors. Although useful, selective MAO-B inhibitors have a limited role in Parkinson's disease. Of greater interest is the potential neuroprotective effect of rasagiline and its major metabolite, 1(R)-aminoindan, which may have great utility in a wide variety of neurodegenerative disorders of aging. In addition, bifunctional molecules combining selective MAO-B inhibition (based on the active moiety of rasagiline) with acetylcholinesterase inhibition or iron chelation may eventually be useful in Alzheimer's disease.
Collapse
Affiliation(s)
- David R P Guay
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| |
Collapse
|
73
|
Abstract
Currently, there are no disease-modifying therapies available for Alzheimer's disease (AD). Acetylcholinesterase inhibitors and memantine are licensed for AD and have moderate symptomatic benefits. Epidemiological studies have suggested that NSAIDs, estrogen, HMG-CoA reductase inhibitors (statins) or tocopherol (vitamin E) can prevent AD. However, prospective, randomised studies have not convincingly been able to demonstrate clinical efficacy. Major progress in molecular medicine suggests further drug targets. The metabolism of the amyloid-precursor protein and the aggregation of its Abeta fragment are the focus of current studies. Abeta peptides are produced by the enzymes beta- and gamma-secretase. Inhibition of gamma-secretase has been shown to reduce Abeta production. However, gamma-secretase activity is also involved in other vital physiological pathways. Involvement of gamma-secretase in cell differentiation may preclude complete blockade of gamma-secretase for prolonged times in vivo. Inhibition of beta-secretase seems to be devoid of serious adverse effects according to studies with knockout animals. However, targeting beta-secretase is hampered by the lack of suitable inhibitors to date. Other approaches focus on enzymes that cut inside the Abeta sequence such as alpha-secretase and neprilysin. Stimulation of the expression or activity of alpha-secretase or neprilysin has been shown to enhance Abeta degradation. Furthermore, inhibitors of Abeta aggregation have been described and clinical trials have been initiated. Peroxisome proliferator activated receptor-gamma agonists and selected NSAIDs may be suitable to modulate both Abeta production and inflammatory activation. On the basis of autopsy reports, active immunisation against Abeta in humans seems to have proven its ability to clear amyloid deposits from the brain. However, a first clinical trial with active vaccination against the full length Abeta peptide has been halted because of adverse effects. Further trials with vaccination or passive transfer of antibodies are planned.
Collapse
Affiliation(s)
- Michael Hüll
- Department of Psychiatry and Psychotherapy, University of Freiburg, Hauptstrasse 5, D-79108 Freiburg, Germany.
| | | | | |
Collapse
|
74
|
Abstract
Growing evidence suggests an involvement of iron in the pathophysiology of neurodegenerative diseases. Several of the diseases are associated with parkinsonian syndromes, induced by degeneration of basal ganglia regions that contain the highest amount of iron within the brain. The group of neurodegenerative disorders associated with parkinsonian syndromes with increased brain iron content can be devided into two groups: (1) parkinsonian syndromes associated with brain iron accumulation, including Parkinson's disease, diffuse Lewy body disease, parkinsonian type of multiple system atrophy, progressive supranuclear palsy, corticobasal ganglionic degeneration, and Westphal variant of Huntington's disease; and (2) monogenetically caused disturbances of brain iron metabolism associated with parkinsonian syndromes, including aceruloplasminemia, hereditary ferritinopathies affecting the basal ganglia, and panthotenate kinase associated neurodegeneration type 2. Although it is still a matter of debate whether iron accumulation is a primary cause or secondary event in the first group, there is no doubt that iron-induced oxidative stress contributes to neurodegeneration. Parallels concerning pathophysiological as well as clinical aspects can be drawn between disorders of both groups. Results from animal models and reduction of iron overload combined with at least partial relief of symptoms by application of iron chelators in patients of the second group give hope that targeting the iron overload might be one possibility to slow down the neurodegenerative cascade also in the first group of inevitably progressive neurodegenerative disorders.
Collapse
Affiliation(s)
- Daniela Berg
- Hertie Institute of Clinical Brain Research and Department of Medical Genetics, University of Tübingen, Germany.
| | | |
Collapse
|
75
|
Singh N, Pillay V, Choonara YE. Advances in the treatment of Parkinson's disease. Prog Neurobiol 2007; 81:29-44. [PMID: 17258379 DOI: 10.1016/j.pneurobio.2006.11.009] [Citation(s) in RCA: 180] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Revised: 11/14/2006] [Accepted: 11/22/2006] [Indexed: 11/21/2022]
Abstract
Parkinson's disease (PD) affects one in every 100 persons above the age of 65 years, making it the second most common neurodegenerative disease after Alzheimer's disease. PD is a disease of the central nervous system that leads to severe difficulties with body motions. The currently available therapies aim to improve the functional capacity of the patient for as long as possible; however they do not modify the progression of the neurodegenerative process. The need for newer and more effective agents is consequently receiving a great deal of attention and consequently being subjected to extensive research. This review concisely compiles the limitations of currently available therapies and the most recent research regarding neuroprotective agents, antioxidants, stem cell research, vaccines and various surgical techniques available and being developed for the management of PD.
Collapse
Affiliation(s)
- Neha Singh
- University of the Witwatersrand, Department of Pharmacy and Pharmacology, 7 York Road, Parktown 2193, Johannesburg, Gauteng, South Africa
| | | | | |
Collapse
|
76
|
Avramovich-Tirosh Y, Amit T, Bar-Am O, Zheng H, Fridkin M, Youdim MBH. Therapeutic targets and potential of the novel brain- permeable multifunctional iron chelator?monoamine oxidase inhibitor drug, M-30, for the treatment of Alzheimer's disease. J Neurochem 2007; 100:490-502. [PMID: 17144902 DOI: 10.1111/j.1471-4159.2006.04258.x] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Novel therapeutic approaches for the treatment of neurodegenerative disorders comprise drug candidates designed specifically to act on multiple CNS targets. We have synthesized a multifunctional non-toxic, brain permeable iron chelator drug, M-30, possessing propargyl monoamine oxidase (MAO) inhibitory neuroprotective and iron-chelating moieties, from our prototype iron chelator VK-28. In the present study M-30 was shown to possess a wide range of pharmacological activities, including pro-survival neurorescue effects, induction of neuronal differentiation and regulation of amyloid precursor protein (APP) and beta-amyloid (Abeta) levels. M-30 was found to decrease apoptosis of SH-SY5Y neuroblastoma cells in a neurorescue, serum deprivation model, via reduction of the pro-apoptotic proteins Bad and Bax, and inhibition of the apoptosis-associated phosphorylated H2A.X protein (Ser 139) and caspase 3 activation. In addition, M-30 induced the outgrowth of neurites, triggered cell cycle arrest in G(0)/G(1) phase and enhanced the expression of growth associated protein-43. Furthermore, M-30 markedly reduced the levels of cellular APP and beta-C-terminal fragment (beta-CTF) and the levels of the amyloidogenic Abeta peptide in the medium of SH-SY5Y cells and Chinese hamster ovary cells stably transfected with the APP 'Swedish' mutation. Levels of the non-amyloidogenic soluble APPalpha and alpha-CTF in the medium and cell lysate respectively were coordinately increased. These properties, together with its brain selective MAO inhibitory and propargylamine- dependent neuroprotective effects, suggest that M-30 might serve as an ideal drug for neurodegenerative disorders, such as Parkinson's and Alzheimer's diseases, in which oxidative stress and iron dysregulation have been implicated.
Collapse
Affiliation(s)
- Yael Avramovich-Tirosh
- Eve Topf Centers of Excellence, Technion-Rappaport Family Faculty of Medicine and Department of Pharmacology, Haifa, Israel
| | | | | | | | | | | |
Collapse
|
77
|
Brooks PJ. The case for 8,5'-cyclopurine-2'-deoxynucleosides as endogenous DNA lesions that cause neurodegeneration in xeroderma pigmentosum. Neuroscience 2006; 145:1407-17. [PMID: 17184928 PMCID: PMC2430073 DOI: 10.1016/j.neuroscience.2006.10.025] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Revised: 09/28/2006] [Accepted: 10/02/2006] [Indexed: 12/14/2022]
Abstract
Patients with the genetic disease xeroderma pigmentosum (XP) lack the capacity to carry out a specific type of DNA repair process called nucleotide excision repair (NER). The NER pathway plays a critical role in the repair of DNA damage resulting from ultraviolet (UV) radiation. A subset of XP patients develops a profound neurodegenerative condition known as XP neurological disease. Robbins and colleagues [Andrews A, Barrett S, Robbins J (1978) Xeroderma pigmentosum neurological abnormalities correlate with the colony forming ability after ultraviolet irradiation. Proc Natl Acad Sci U S A 75:1984-1988] hypothesized that since UV light cannot reach into the human brain, XP neurological disease results from some form of endogenous DNA damage that is normally repaired by the NER pathway. In the absence of NER, the damage accumulates, causing neuronal death by blocking transcription. In this manuscript, I consider the evidence that a particular class of oxidative DNA lesions, the 8,5'-cyclopurine-2'-deoxynucleosides, fulfills many of the criteria expected of neurodegenerative DNA lesions in XP. Specifically, these lesions are chemically stable, endogenous DNA lesions that are repaired by the NER pathway but not by any other known process, and strongly block transcription by RNA polymerase II in cells from XP patients. A similar set of criteria might be used to evaluate other candidate DNA lesions responsible for neurological diseases resulting from defects in other DNA repair mechanisms as well.
Collapse
Affiliation(s)
- P J Brooks
- Section on Molecular Neurobiology, Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, 5625 Fishers Lane, Room 3S32, MSC 9412, Rockville, MD 20852, USA.
| |
Collapse
|
78
|
Van der Schyf CJ, Geldenhuys WJ, Youdim MBH. Multifunctional drugs with different CNS targets for neuropsychiatric disorders. J Neurochem 2006; 99:1033-48. [PMID: 17054441 DOI: 10.1111/j.1471-4159.2006.04141.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The multiple disease etiologies that lead to neuropsychiatric disorders, such as Parkinson's and Alzheimer's disease, amyotrophic lateral sclerosis, Huntington disease, schizophrenia, depressive illness and stroke, offer significant challenges to drug discovery efforts aimed at preventing or even reversing the progression of these disorders. Transcriptomic tools and proteomic profiling have clearly indicated that such diseases are multifactorial in origin. Further, they are thought to be initiated by a cascade of molecular events that involve several neurotransmitter systems. In response to this complexity, a new paradigm has recently emerged that challenges the widely held assumption that 'silver bullet' agents are superior to 'dirty drugs' in therapeutic approaches aimed at the prevention or treatment of neuropsychiatric diseases. A similar pattern of drug development has occurred in strategies for the treatment of cancer, AIDS and cardiovascular diseases. In this review, we offer an overview of therapeutic strategies and novel investigative drugs discovered or developed in our own and other laboratories, that address multiple CNS etiological targets associated with an array of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Cornelis J Van der Schyf
- Department of Pharmaceutical Sciences, Northeastern Ohio Universities College of Pharmacy, Rootstow, Ohio, USA
| | | | | |
Collapse
|
79
|
Gentili F, Pizzinat N, Ordener C, Marchal-Victorion S, Maurel A, Hofmann R, Renard P, Delagrange P, Pigini M, Parini A, Giannella M. 3-[5-(4,5-dihydro-1H-imidazol-2-yl)-furan-2-yl]phenylamine (Amifuraline), a promising reversible and selective peripheral MAO-A inhibitor. J Med Chem 2006; 49:5578-86. [PMID: 16942031 DOI: 10.1021/jm060605r] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
On the basis of the observation that the central side effects of MAO inhibitors may represent a major limit for their use in pathological processes involving peripheral MAOs, we investigated the possibility of generating novel inhibitors able to target specifically peripheral MAOs. To address this issue, we designed compounds 7-28. From biological results, the 2-(5-phenyl-furan-2-yl)-4,5-dihydro-1H-imidazole (Furaline, 17) proved to be a suitable lead. In fact, in enzyme assays on homogenate preparation from rat liver and HEK cells expressing MAO-A or MAO-B, compounds possessing the frame of 17 behaved as selective and reversible MAO-A inhibitors. Interestingly, in in vivo studies the amino derivative 21 (Amifuraline), endowed with good hydrophilic character, was able to significantly inhibit liver but not brain MAO-A.
Collapse
Affiliation(s)
- Francesco Gentili
- Dipartimento di Scienze Chimiche, Università degli Studi di Camerino, via S. Agostino 1, 62032 Camerino, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Millan MJ. Multi-target strategies for the improved treatment of depressive states: Conceptual foundations and neuronal substrates, drug discovery and therapeutic application. Pharmacol Ther 2006; 110:135-370. [PMID: 16522330 DOI: 10.1016/j.pharmthera.2005.11.006] [Citation(s) in RCA: 389] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Accepted: 11/28/2005] [Indexed: 12/20/2022]
Abstract
Major depression is a debilitating and recurrent disorder with a substantial lifetime risk and a high social cost. Depressed patients generally display co-morbid symptoms, and depression frequently accompanies other serious disorders. Currently available drugs display limited efficacy and a pronounced delay to onset of action, and all provoke distressing side effects. Cloning of the human genome has fuelled expectations that symptomatic treatment may soon become more rapid and effective, and that depressive states may ultimately be "prevented" or "cured". In pursuing these objectives, in particular for genome-derived, non-monoaminergic targets, "specificity" of drug actions is often emphasized. That is, priority is afforded to agents that interact exclusively with a single site hypothesized as critically involved in the pathogenesis and/or control of depression. Certain highly selective drugs may prove effective, and they remain indispensable in the experimental (and clinical) evaluation of the significance of novel mechanisms. However, by analogy to other multifactorial disorders, "multi-target" agents may be better adapted to the improved treatment of depressive states. Support for this contention is garnered from a broad palette of observations, ranging from mechanisms of action of adjunctive drug combinations and electroconvulsive therapy to "network theory" analysis of the etiology and management of depressive states. The review also outlines opportunities to be exploited, and challenges to be addressed, in the discovery and characterization of drugs recognizing multiple targets. Finally, a diversity of multi-target strategies is proposed for the more efficacious and rapid control of core and co-morbid symptoms of depression, together with improved tolerance relative to currently available agents.
Collapse
Affiliation(s)
- Mark J Millan
- Institut de Recherches Servier, Centre de Recherches de Croissy, Psychopharmacology Department, 125, Chemin de Ronde, 78290-Croissy/Seine, France.
| |
Collapse
|
81
|
Nordberg A. Mechanisms Behind the Neuroprotective Actions of Cholinesterase Inhibitors in Alzheimer Disease. Alzheimer Dis Assoc Disord 2006; 20:S12-8. [PMID: 16772751 DOI: 10.1097/01.wad.0000213804.59187.2d] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Inhibitors of the enzyme acetylcholinesterase (AChE) are presently used as long-term symptomatic treatments for patients with Alzheimer disease (AD), as they enhance central levels of synaptic acetylcholine. The accumulation of evidence implicating AChE in the pathogenesis of AD raises the question of whether, in addition to their palliative actions, inhibitors of this enzyme are able to act as disease-modifying agents. In addition to their catalytic effects, there is a suggestion that AChE inhibitors may influence expression of AChE isoforms and increase expression of nicotinic receptors, both of which correlate with cognitive improvements in AD patients. The neuroprotective effect of nicotine, presumably mediated via nicotinic receptors, against beta-amyloid (Abeta) toxicity and its effect on amyloid precursor protein (APP) and Abeta production has previously been established. It has also been shown that AChE inhibitors influence APP processing and attenuate Abeta-induced toxicity via mechanisms including interruption of the production of Abeta, alteration of the levels of Abeta 1-50 and 1-52, and formation of the soluble form of APP. Some of these effects seem to occur independently of nicotinic receptors, however. If such experimental in vitro observations can be extrapolated into clinical neuroprotective properties, AChE inhibitors could positively modulate the disease course of AD.
Collapse
Affiliation(s)
- Agneta Nordberg
- Neurotec Department, Division of Molecular Neuropharmacology, Karolinska Institutet, Karolinska University Hospital, Huddinge, Stockholm, Sweden.
| |
Collapse
|
82
|
Vlok N, Malan SF, Castagnoli N, Bergh JJ, Petzer JP. Inhibition of monoamine oxidase B by analogues of the adenosine A2A receptor antagonist (E)-8-(3-chlorostyryl)caffeine (CSC). Bioorg Med Chem 2006; 14:3512-21. [PMID: 16442801 DOI: 10.1016/j.bmc.2006.01.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2005] [Revised: 01/05/2006] [Accepted: 01/05/2006] [Indexed: 10/25/2022]
Abstract
The adenosine A2A receptor has emerged as a possible target for the treatment of Parkinson's disease (PD). Evidence suggests that antagonism of the A2A receptor not only improves the symptoms of the disease but may also protect against the underlying degenerative processes. We have recently reported that several known adenosine A2A receptor antagonists (A2A antagonists) also are moderate to very potent inhibitors of monoamine oxidase B (MAO-B). The most potent among these was (E)-8-(3-chlorostyryl)caffeine (CSC), a compound frequently used when examining the in vivo pharmacological effects of A2A antagonists. Since MAO-B inhibitors are also thought to possess antiparkinsonian properties, dual targeting drugs that block both MAO-B and A2A receptors may have enhanced therapeutic potential in the treatment of PD. In this study, we prepared selected analogues of CSC in an attempt to examine specific structural features that may be important for potent MAO-B inhibition. The results of a SAR study established that the potency of MAO-B inhibition by (E)-8-styrylcaffeinyl analogues depends upon the van der Waals volume (V(w)), lipophilicity (pi), and the Hammett constant (sigma(m)) of the substituents attached to C-3 of the phenyl ring of the styryl moiety. Potency also varies with substituents attached to C-4 with bulkiness (V(w)) and lipophilicity (pi) being the principal substituent descriptors.
Collapse
Affiliation(s)
- Nevil Vlok
- Pharmaceutical Chemistry, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| | | | | | | | | |
Collapse
|
83
|
Gütschow M, Meusel M. [Enzyme inhibitors in Parkinson treatment]. PHARMAZIE IN UNSERER ZEIT 2006; 35:218-25. [PMID: 16724525 DOI: 10.1002/pauz.200600169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
|
84
|
Salazar J, Mena N, Núñez MT. Iron dyshomeostasis in Parkinson's disease. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 2006:205-13. [PMID: 17447431 DOI: 10.1007/978-3-211-33328-0_22] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Owing to its ability to undergo one-electron reactions, iron transforms the mild oxidant hydrogen peroxide into hydroxyl radical, one of the most reactive species in nature. Deleterious effects of iron accumulation are dramatically evidenced in several neurodegenerative diseases. The work of Youdim and collaborators has been fundamental in describing the accumulation of iron confined to the substantia nigra (SN) in Parkinson's disease (PD) and to clarify iron toxicity pathways and oxidative damage in dopaminergic neurons. Nevertheless, how the mechanisms involved in normal neuronal iron homeostasis are surpassed, remain largely undetermined. How nigral neurons survive or succumb to iron-induced oxidative stress are relevant questions both to know about the etiology of the disease and to design neuroprotective strategies. In this work, we review the components of neural iron homeostasis and we summarize evidence from recent studies aimed to unravel the molecular basis of iron accumulation and dyshomeostasis in PD.
Collapse
Affiliation(s)
- J Salazar
- Department of Biology, and Cell Dynamic and Biotechnology Research Center, Faculty of Sciences, University of Chile, Santiago, Chile
| | | | | |
Collapse
|
85
|
Bolasco A, Fioravanti R, Carradori S. Recent development of monoamine oxidase inhibitors. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.15.12.1763] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
86
|
Chen JJ, Swope DM. Clinical pharmacology of rasagiline: a novel, second-generation propargylamine for the treatment of Parkinson disease. J Clin Pharmacol 2005; 45:878-94. [PMID: 16027398 DOI: 10.1177/0091270005277935] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Rasagiline is a novel second-generation propargylamine that irreversibly and selectively inhibits monoamine oxidase type B (MAO-B). For the management of Parkinson disease (PD), rasagiline is efficacious across the span of PD stages ranging from monotherapy in early disease to adjunctive treatment in patients with advancing disease and motor fluctuations. Rasagiline completely and selectively inhibits MAO-B with a potency 5 to 10 times greater than selegiline. Unlike the prototype propargylamine selegiline, which is metabolized to amphetamine derivatives, rasagiline is biotransformed to aminoindan, a non-amphetamine compound. Rasagiline is well tolerated with infrequent cardiovascular or psychiatric side effects, and at the recommended therapeutic dose of up to 1 mg once daily, tyramine restriction is unnecessary. In addition to MAO-B inhibition, the propargylamine chain also confers dose-related antioxidant and antiapoptotic effects, which have been associated with neuroprotection in multiple experimental models. Thus, in addition to symptomatic benefits, rasagiline offers the promise of clinically relevant neuroprotection.
Collapse
Affiliation(s)
- Jack J Chen
- Movement Disorders Center, Loma Linda University, Loma Linda, CA, USA
| | | |
Collapse
|
87
|
Abstract
There is increasing evidence that a programmed mechanism of cell death resembling apoptosis is responsible for motor-neuron degeneration in amyotrophic lateral sclerosis. Our understanding of the cell-death pathway has come from studies of both experimental models and human tissue. Here we examine in detail the in vitro and in vivo evidence for and against apoptosis in amyotrophic lateral sclerosis, looking at morphological changes, caspase activation, alterations in Bcl-2 oncoproteins, involvement of death receptors, expression of apoptosis-related molecules, and the role of the p53 pathway. Finally, we present evidence of potential therapeutic agents that could modulate the apoptotic pathway in amyotrophic lateral sclerosis and slow disease progression.
Collapse
|
88
|
Globerson A, Barzilai N. The voyage to healthy longevity: from experimental models to the ultimate goal. Mech Ageing Dev 2005; 126:225-9. [PMID: 15621200 DOI: 10.1016/j.mad.2004.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2004] [Accepted: 08/23/2004] [Indexed: 10/26/2022]
Abstract
Understanding mechanisms underlying longevity, and endeavor towards the specific goals of alleviating frailty in old age, require a comprehensive approach that considers the various theoretical and experimental approaches, as well as compiling the data on humans. This logistic has underlined the program of the conference, and is reflected in the present special issue. Considerable volume of data now point to distinct genes that are associated with exceptional longevity in humans, as reflected from the articles in this volume. However, this symposium also highlighted non-genetic effects, including physical, mental and social activities, and elucidate the relevant underlying mechanisms. The symposium focused on understanding the basis of human longevity coupled to extended health-span and function into old age.
Collapse
|
89
|
Mandel SA, Avramovich-Tirosh Y, Reznichenko L, Zheng H, Weinreb O, Amit T, Youdim MBH. Multifunctional Activities of Green Tea Catechins in Neuroprotection. Neurosignals 2005; 14:46-60. [PMID: 15956814 DOI: 10.1159/000085385] [Citation(s) in RCA: 243] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2005] [Accepted: 03/01/2005] [Indexed: 12/16/2022] Open
Abstract
Many lines of evidence suggest that oxidative stress resulting in reactive oxygen species (ROS) generation and inflammation play a pivotal role in the age-associated cognitive decline and neuronal loss in neurodegenerative diseases including Alzheimer's (AD), Parkinson's (PD) and Huntington's diseases. One cardinal chemical pathology observed in these disorders is the accumulation of iron at sites where the neurons die. The buildup of an iron gradient in conjunction with ROS (superoxide, hydroxyl radical and nitric oxide) are thought to constitute a major trigger in neuronal toxicity and demise in all these diseases. Thus, promising future treatment of neurodegenerative diseases and aging depends on availability of effective brain permeable, iron-chelatable/radical scavenger neuroprotective drugs that would prevent the progression of neurodegeneration. Tea flavonoids (catechins) have been reported to possess potent iron-chelating, radical-scavenging and anti-inflammatory activities and to protect neuronal death in a wide array of cellular and animal models of neurological diseases. Recent studies have indicated that in addition to the known antioxidant activity of catechins, other mechanisms such as modulation of signal transduction pathways, cell survival/death genes and mitochondrial function, contribute significantly to the induction of cell viability. This review will focus on the multifunctional properties of green tea and its major component (-)-epigallocatechin-3-gallate (EGCG) and their ability to induce neuroprotection and neurorescue in vitro and in vivo. In particular, their transitional metal (iron and copper) chelating property and inhibition of oxidative stress.
Collapse
Affiliation(s)
- Silvia A Mandel
- Eve Topf and USA National Parkinson Foundation Centers of Excellence for Neurodegenerative Diseases Research, Technion-Faculty of Medicine, Haifa, Israel
| | | | | | | | | | | | | |
Collapse
|