51
|
Desai V, Donsante A, Swoboda KJ, Martensen M, Thompson J, Kaler SG. Favorably skewed X-inactivation accounts for neurological sparing in female carriers of Menkes disease. Clin Genet 2011; 79:176-82. [PMID: 20497190 DOI: 10.1111/j.1399-0004.2010.01451.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Classical Menkes disease is an X-linked recessive neurodegenerative disorder caused by mutations in ATP7A, which is located at Xq13.1-q21. ATP7A encodes a copper-transporting P-type ATPase and plays a critical role in development of the central nervous system. With rare exceptions involving sex chromosome aneuploidy or X-autosome translocations, female carriers of ATP7A mutations are asymptomatic except for subtle hair and skin abnormalities, although the mechanism for this neurological sparing has not been reported. We studied a three-generation family in which a severe ATP7A mutation, a 5.5-kb genomic deletion spanning exons 13 and 14, segregated. The deletion junction fragment was amplified from the proband by long-range polymerase chain reaction and sequenced to characterize the breakpoints. We screened at-risk females in the family for this junction fragment and analyzed their X-inactivation patterns using the human androgen-receptor (HUMARA) gene methylation assay. We detected the junction fragment in the proband, two obligate heterozygotes, and four of six at-risk females. Skewed inactivation of the X chromosome harboring the deletion was noted in all female carriers of the deletion (n = 6), whereas random X-inactivation was observed in all non-carriers (n = 2). Our results formally document one mechanism for neurological sparing in female carriers of ATP7A mutations. Based on review of X-inactivation patterns in female carriers of other X-linked recessive diseases, our findings imply that substantial expression of a mutant ATP7A at the expense of the normal allele could be associated with neurologic symptoms in female carriers of Menkes disease and its allelic variants, occipital horn syndrome, and ATP7A-related distal motor neuropathy.
Collapse
Affiliation(s)
- V Desai
- Unit on Human Copper Metabolism, Molecular Medicine Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1832, USA
| | | | | | | | | | | |
Collapse
|
52
|
|
53
|
Kaler SG, Liew CJ, Donsante A, Hicks JD, Sato S, Greenfield JC. Molecular correlates of epilepsy in early diagnosed and treated Menkes disease. J Inherit Metab Dis 2010; 33:583-9. [PMID: 20652413 PMCID: PMC3113468 DOI: 10.1007/s10545-010-9118-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Revised: 04/14/2010] [Accepted: 04/20/2010] [Indexed: 01/18/2023]
Abstract
Epilepsy is a major feature of Menkes disease, an X-linked recessive infantile neurodegenerative disorder caused by mutations in ATP7A, which produces a copper-transporting ATPase. Three prior surveys indicated clinical seizures and electroencephalographic (EEG) abnormalities in a combined 27 of 29 (93%) symptomatic Menkes disease patients diagnosed at 2 months of age or older. To assess the influence of earlier, presymptomatic diagnosis and treatment on seizure semiology and brain electrical activity, we evaluated 71 EEGs in 24 Menkes disease patients who were diagnosed and treated with copper injections in early infancy (≤6 weeks of age), and whose ATP7A mutations we determined. Clinical seizures were observed in only 12.5% (3/24) of these patients, although 46% (11/24) had at least one abnormal EEG tracing, including 50% of patients with large deletions in ATP7A, 50% of those with small deletions, 60% of those with nonsense mutations, and 57% of those with canonical splice junction mutations. In contrast, five patients with mutations shown to retain partial function, either via some correct RNA splicing or residual copper transport capacity, had neither clinical seizures nor EEG abnormalities. Our findings suggest that early diagnosis and treatment improve brain electrical activity and decrease seizure occurrence in classical Menkes disease irrespective of the precise molecular defect. Subjects with ATP7A mutations that retain some function seem particularly well protected by early intervention against the possibility of epilepsy.
Collapse
Affiliation(s)
- Stephen G Kaler
- Unit on Human Copper Metabolism, Molecular Medicine Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1853, USA.
| | | | | | | | | | | |
Collapse
|
54
|
Alterations in the expression of the Atp7a gene in the early postnatal development of the mosaic mutant mice (Atp7a mo-ms) - An animal model for Menkes disease. Gene Expr Patterns 2010; 11:41-7. [PMID: 20831904 DOI: 10.1016/j.gep.2010.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Revised: 08/30/2010] [Accepted: 09/02/2010] [Indexed: 01/16/2023]
Abstract
Copper is a trace element that is essential for the normal growth and development of all living organisms. In mammals, the ATP7A Cu-transporting ATPase is a key protein that is required for the maintenance of copper homeostasis. In both humans and mice, the ATP7A protein is coded by the X-linked ATP7A/Atp7a gene. Disturbances in copper metabolism caused by mutations in the ATP7A/Atp7a gene lead to severe metabolic syndromes Menkes disease in humans and the lethal mottled phenotype in mice. Mosaic is one of numerous mottled mutations and may serve as a model for a severe Menkes disease variant. In Menkes patients, mutations in the ATP7A gene often result in a decreased level of the normal ATP7A protein. The aim of this study was to analyse the expression of the Atp7a gene in mosaic mutants in early postnatal development, a critical period for starting copper supplementation therapy in both Menkes patients and mutant mice. Using real-time quantitative RT-PCR, we analysed the expression of the Atp7a gene in the brain, kidney and liver of newborn (P0.5) and suckling (P14) mice. Our results indicate that in mosaic P0.5 mutants, the Atp7a mRNA level is decreased in all analysed organs in comparison with wild-type animals. In two week-old mutants, a significant decrease was observed only in the kidney. In contrast, their hepatic level of Atp7a tended to be higher than in wild-type mice. We speculate that disturbance in the expression of the Atp7a gene and, consequently, change in the copper concentration of the organs, may contribute to the early fatal outcome of mosaic males.
Collapse
|
55
|
Perinatal copper deficiency alters rat cerebellar purkinje cell size and distribution. THE CEREBELLUM 2010; 9:136-44. [PMID: 19838760 DOI: 10.1007/s12311-009-0136-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Copper is required for activity of several key enzymes and for optimal mammalian development, especially within the central nervous system. Copper-deficient (CuD) animals are visibly ataxic, and previous studies in rats have demonstrated impaired motor function through behavioral experiments consistent with altered cerebellar development. Perinatal copper deficiency was produced in Holtzman rat dams by restricting dietary copper during the last two thirds of gestation and lactation. Male offspring were evaluated at postnatal day 25. Compared to cerebella from copper-adequate pups, the CuD pups had larger Purkinje cell (PC) size and irregularities in the Purkinje cell monolayer. These results suggest that the ataxic behavioral phenotype of CuD rats may result from disrupted inhibitory pathways in the cerebellum. A similar PC phenotype is seen in Menkes disease and in mottled mouse mutants with genetic copper deficiency, suggesting that copper deficiency and not just specific loss of ATP7A function is responsible.
Collapse
|
56
|
Kennerson ML, Nicholson GA, Kaler SG, Kowalski B, Mercer JF, Tang J, Llanos RM, Chu S, Takata RI, Speck-Martins CE, Baets J, Almeida-Souza L, Fischer D, Timmerman V, Taylor PE, Scherer SS, Ferguson TA, Bird TD, De Jonghe P, Feely SM, Shy ME, Garbern JY. Missense mutations in the copper transporter gene ATP7A cause X-linked distal hereditary motor neuropathy. Am J Hum Genet 2010; 86:343-52. [PMID: 20170900 DOI: 10.1016/j.ajhg.2010.01.027] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 01/17/2010] [Accepted: 01/21/2010] [Indexed: 12/30/2022] Open
Abstract
Distal hereditary motor neuropathies comprise a clinically and genetically heterogeneous group of disorders. We recently mapped an X-linked form of this condition to chromosome Xq13.1-q21 in two large unrelated families. The region of genetic linkage included ATP7A, which encodes a copper-transporting P-type ATPase mutated in patients with Menkes disease, a severe infantile-onset neurodegenerative condition. We identified two unique ATP7A missense mutations (p.P1386S and p.T994I) in males with distal motor neuropathy in two families. These molecular alterations impact highly conserved amino acids in the carboxyl half of ATP7A and do not directly involve the copper transporter's known critical functional domains. Studies of p.P1386S revealed normal ATP7A mRNA and protein levels, a defect in ATP7A trafficking, and partial rescue of a S. cerevisiae copper transport knockout. Although ATP7A mutations are typically associated with severe Menkes disease or its milder allelic variant, occipital horn syndrome, we demonstrate here that certain missense mutations at this locus can cause a syndrome restricted to progressive distal motor neuropathy without overt signs of systemic copper deficiency. This previously unrecognized genotype-phenotype correlation suggests an important role of the ATP7A copper transporter in motor-neuron maintenance and function.
Collapse
|
57
|
Copper in the brain and Alzheimer’s disease. J Biol Inorg Chem 2009; 15:61-76. [DOI: 10.1007/s00775-009-0600-y] [Citation(s) in RCA: 313] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2009] [Accepted: 10/13/2009] [Indexed: 12/13/2022]
|
58
|
Veldhuis NA, Valova VA, Gaeth AP, Palstra N, Hannan KM, Michell BJ, Kelly LE, Jennings I, Kemp BE, Pearson RB, Robinson PJ, Camakaris J. Phosphorylation regulates copper-responsive trafficking of the Menkes copper transporting P-type ATPase. Int J Biochem Cell Biol 2009; 41:2403-12. [PMID: 19576997 DOI: 10.1016/j.biocel.2009.06.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2009] [Revised: 06/24/2009] [Accepted: 06/25/2009] [Indexed: 12/25/2022]
Abstract
The Menkes copper-translocating P-type ATPase (ATP7A) is a critical copper transport protein functioning in systemic copper absorption and supply of copper to cuproenzymes in the secretory pathway. Mutations in ATP7A can lead to the usually lethal Menkes disease. ATP7A function is regulated by copper-responsive trafficking between the trans-Golgi Network and the plasma membrane. We have previously reported basal and copper-responsive kinase phosphorylation of ATP7A but the specific phosphorylation sites had not been identified. As copper stimulates both trafficking and phosphorylation of ATP7A we aimed to identify all the specific phosphosites and to determine whether trafficking and phosphorylation are linked. We identified twenty in vivo phosphorylation sites in the human ATP7A and eight in hamster, all clustered within the N- and C-terminal cytosolic domains. Eight sites were copper-responsive and hence candidates for regulating copper-responsive trafficking or catalytic activity. Mutagenesis of the copper-responsive phosphorylation site Serine-1469 resulted in mislocalization of ATP7A in the presence of added copper in both polarized (Madin Darby canine kidney) and non-polarized (Chinese Hamster Ovary) cells, strongly suggesting that phosphorylation of specific serine residues is required for copper-responsive ATP7A trafficking to the plasma membrane. A constitutively phosphorylated site, Serine-1432, when mutated to alanine also resulted in mislocalization in the presence of added copper in polarized Madin Darby kidney cells. These studies demonstrate that phosphorylation of specific serine residues in ATP7A regulates its sub-cellular localization and hence function and will facilitate identification of the kinases and signaling pathways involved in regulating this pivotal copper transporter.
Collapse
Affiliation(s)
- Nicholas A Veldhuis
- Genetics Department, The University of Melbourne, Melbourne, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Gybina AA, Tkac I, Prohaska JR. Copper deficiency alters the neurochemical profile of developing rat brain. Nutr Neurosci 2009; 12:114-22. [PMID: 19356314 DOI: 10.1179/147683009x423265] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Copper deficiency is associated with impaired brain development and mitochondrial dysfunction. Perinatal copper deficiency was produced in Holtzman rats. In vivo proton NMR spectroscopy was used to quantify 18 cerebellar and hippocampal metabolites on postnatal day 21 (P21). Copper status was evaluated in male copper-adequate (CuA) and copper-deficient (CuD) brothers at P19 and at P23, 2 days following NMR experiments, by metal and in vitro metabolite data. Compared to CuA pups, CuD pups had lower ascorbate concentration in both brain regions, confirming prior HPLC data. Both regions of CuD rats also had lower N-acetylaspartate levels consistent with delayed development or impaired mitochondrial function similar to prior work demonstrating elevated lactate and citrate. For other metabolites, the P21 neurochemical profile of CuD rats was remarkably similar to CuA rats but uniquely different from iron-deficient or chronic hypoxia models. Further research is needed to determine the neurochemical consequences of copper deficiency.
Collapse
Affiliation(s)
- Anna A Gybina
- Department of Biochemistry and Molecular Biology, University of Minnesota Medical School, Duluth, Minnesota 55812, USA
| | | | | |
Collapse
|
60
|
Gybina AA, Prohaska JR. Augmented cerebellar lactate in copper deficient rat pups originates from both blood and cerebellum. Metab Brain Dis 2009; 24:299-310. [PMID: 19319671 PMCID: PMC2854828 DOI: 10.1007/s11011-009-9135-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Accepted: 09/08/2008] [Indexed: 12/27/2022]
Abstract
Copper (Cu) is essential for proper brain development, particularly the cerebellum, and functions as a cofactor for enzymes including mitochondrial cytochrome c oxidase (CCO). Cu deficiency severely limits CCO activity. Augmented lactate in brain of Cu deficient (Cu-) humans and cerebella of Cu- rats is though to originate from impaired mitochondria. However, brain lactate may also originate from elevated blood lactate. The hypothesis that cerebellar lactate originates from elevated blood lactate in Cu- rat pups was tested. Analysis of Cu- and Cu adequate (Cu+) rat pups (experiment I) revealed blood lactate was elevated in Cu- rat pups and cerebellar lactate levels were closely correlated to blood lactate concentration. A second rat experiment (experiment II) assessed Cu- cerebellar lactate without the confounding factor of elevated blood lactate. Blood lactate levels of Cu- rat pups in experiment II were equal to those of controls; however, Cu- cerebellar lactate was still elevated, suggesting mitochondrial impairment by Cu deficiency. Treatment of rat pups with dichloroacetate (DCA), an activator of mitochondrial pyruvate dehydrogenase complex (PDC), lowered Cu- cerebellar lactate to control levels suggesting PDC inhibition is a site of mitochondrial impairment in Cu- cerebella. Results suggest Cu- cerebellar lactate originates from blood and cerebellum.
Collapse
Affiliation(s)
- Anna A Gybina
- Department of Biochemistry and Molecular Biology, University of Minnesota Medical School Duluth, Duluth, MN 55812, USA
| | | |
Collapse
|
61
|
Bohlken A, Cheung BB, Bell JL, Koach J, Smith S, Sekyere E, Thomas W, Norris M, Haber M, Lovejoy DB, Richardson DR, Marshall GM. ATP7A is a novel target of retinoic acid receptor beta2 in neuroblastoma cells. Br J Cancer 2009; 100:96-105. [PMID: 19127267 PMCID: PMC2634674 DOI: 10.1038/sj.bjc.6604833] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Increased retinoic acid receptor β (RARβ2) gene expression is a hallmark of cancer cell responsiveness to retinoid anticancer effects. Moreover, low basal or induced RARβ2 expression is a common feature of many human cancers, suggesting that RARβ2 may act as a tumour suppressor gene in the absence of supplemented retinoid. We have previously shown that low RARβ2 expression is a feature of advanced neuroblastoma. Here, we demonstrate that the ABC domain of the RARβ2 protein alone was sufficient for the growth inhibitory effects of RARβ2 on neuroblastoma cells. ATP7A, the copper efflux pump, is a retinoid-responsive gene, was upregulated by ectopic overexpression of RARβ2. The ectopic overexpression of the RARβ2 ABC domain was sufficient to induce ATP7A expression, whereas, RARβ2 siRNA blocked the induction of ATP7A expression in retinoid-treated neuroblastoma cells. Forced downregulation of ATP7A reduced copper efflux and increased viability of retinoid-treated neuroblastoma cells. Copper supplementation enhanced cell growth and reduced retinoid-responsiveness, whereas copper chelation reduced the viability and proliferative capacity. Taken together, our data demonstrates ATP7A expression is regulated by retinoic acid receptor β and it has effects on intracellular copper levels, revealing a link between the anticancer action of retinoids and copper metabolism.
Collapse
Affiliation(s)
- A Bohlken
- Children's Cancer Institute Australia for Medical Research, Randwick, NSW 2031, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
The multi-layered regulation of copper translocating P-type ATPases. Biometals 2009; 22:177-90. [PMID: 19130269 DOI: 10.1007/s10534-008-9183-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Accepted: 12/07/2008] [Indexed: 12/21/2022]
Abstract
The copper-translocating Menkes (ATP7A, MNK protein) and Wilson (ATP7B, WND protein) P-type ATPases are pivotal for copper (Cu) homeostasis, functioning in the biosynthetic incorporation of Cu into copper-dependent enzymes of the secretory pathway, Cu detoxification via Cu efflux, and specialized roles such as systemic Cu absorption (MNK) and Cu excretion (WND). Essential to these functions is their Cu and hormone-responsive distribution between the trans-Golgi network (TGN) and exocytic vesicles located at or proximal to the apical (WND) or basolateral (MNK) cell surface. Intriguingly, MNK and WND Cu-ATPases expressed in the same tissues perform distinct yet complementary roles. While intramolecular differences may specify their distinct roles, cellular signaling components are predicted to be critical for both differences and synergy between these enzymes. This review focuses on these mechanisms, including the cell signaling pathways that influence trafficking and bi-functionality of Cu-ATPases. Phosphorylation events are hypothesized to play a central role in Cu homeostasis, promoting multi-layered regulation and cross-talk between cuproenzymes and Cu-independent mechanisms.
Collapse
|
63
|
Gybina AA, Prohaska JR. Fructose-2,6-bisphosphate is lower in copper deficient rat cerebellum despite higher content of phosphorylated AMP-activated protein kinase. Exp Biol Med (Maywood) 2008; 233:1262-70. [PMID: 18703756 DOI: 10.3181/0804-rm-132] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Limitation in copper (Cu) leads to pathophysiology in developing brain. Cu deficiency impairs brain mitochondria and results in high brain lactate suggesting augmented anaerobic glycolysis. AMP activated protein kinase (AMPK) is a cellular energy "master-switch" that is thought to augment glycolysis through phosphorylation and activation phosphofructokinase 2 (PFK2) resulting in increases of the glycolytic stimulator fructose-2,6-bisphosphate (F2,6BP). Previously, Cu deficiency has been shown to augment cerebellar AMPK activation. Cerebella of Cu-adequate (Cu+) and Cu-deficient (Cu-) rat pups were assessed to evaluate if AMPK activation in Cu- cerebella functioned to enhance PFK2 activation and increase F2,BP concentration. Higher levels of pAMPK were detected in Cu- cerebella. However, PFK2 activity, mRNA, and protein abundance were not affected by Cu deficiency. Surprisingly, F2,6BP levels were markedly lower in Cu- cerebella. Lower F2,6BP may be due to inhibition of PFK2 by citrate, as citrate concentration was significantly higher in Cu- cerebella. Data suggest AMPK activation in Cu- cerebellum does not augment glycolysis through a PFK2 mechanism. Furthermore, other metabolite data suggest that glycolysis may actually be blunted, since levels of glucose and glucose-6-phosphate were higher in Cu- cerebella than controls.
Collapse
Affiliation(s)
- Anna A Gybina
- Department of Biochemistry and Molecular Biology, University of Minnesota Medical School Duluth, Duluth, MN 55812, USA
| | | |
Collapse
|
64
|
Metals in Alzheimer's and Parkinson's diseases. Curr Opin Chem Biol 2008; 12:222-8. [PMID: 18342639 DOI: 10.1016/j.cbpa.2008.02.019] [Citation(s) in RCA: 534] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2008] [Revised: 02/04/2008] [Accepted: 02/17/2008] [Indexed: 12/31/2022]
Abstract
There has been steadily growing interest in the participation of metal ions (especially, zinc, copper, and iron) in neurobiological processes, such as the regulation of synaptic transmission. Recent descriptions of the release of zinc and copper in the cortical glutamatergic synapse, and influencing the response of the NMDA receptor underscore the relevance of understanding the inorganic milieu of the synapse to neuroscience. Additionally, major neurodegenerative disorders, including Alzheimer's disease and Parkinson's disease, are characterized by elevated tissue iron, and miscompartmentalization of copper and zinc (e.g. accumulation in amyloid). Increasingly sophisticated medicinal chemistry approaches, which correct these metal abnormalities without causing systemic disturbance of these essential minerals, are being tested. These small molecules show promise of being disease-modifying.
Collapse
|
65
|
Abstract
Alzheimer's disease is the most common form of dementia in the elderly, and it is characterized by elevated brain iron levels and accumulation of copper and zinc in cerebral beta-amyloid deposits (e.g., senile plaques). Both ionic zinc and copper are able to accelerate the aggregation of Abeta, the principle component of beta-amyloid deposits. Copper (and iron) can also promote the neurotoxic redox activity of Abeta and induce oxidative cross-linking of the peptide into stable oligomers. Recent reports have documented the release of Abeta together with ionic zinc and copper in cortical glutamatergic synapses after excitation. This, in turn, leads to the formation of Abeta oligomers, which, in turn, modulates long-term potentiation by controlling synaptic levels of the NMDA receptor. The excessive accumulation of Abeta oligomers in the synaptic cleft would then be predicted to adversely affect synaptic neurotransmission. Based on these findings, we have proposed the "Metal Hypothesis of Alzheimer's Disease," which stipulates that the neuropathogenic effects of Abeta in Alzheimer's disease are promoted by (and possibly even dependent on) Abeta-metal interactions. Increasingly sophisticated pharmaceutical approaches are now being implemented to attenuate abnormal Abeta-metal interactions without causing systemic disturbance of essential metals. Small molecules targeting Abeta-metal interactions (e.g., PBT2) are currently advancing through clinical trials and show increasing promise as disease-modifying agents for Alzheimer's disease based on the "metal hypothesis."
Collapse
Affiliation(s)
- Ashley I. Bush
- grid.415325.40000000115123749The Mental Health Research Institute, 155 Oak Street, 3052 Parkville, Victoria Australia
- grid.1008.9000000012179088XDepartment of Pathology, University of Melbourne, Grattan Street, 3010 Parkville, Victoria Australia
| | - Rudolph E. Tanzi
- grid.32224.350000000403869924Genetics and Aging Research Unit, Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, 02129 Charlestown, Massachusetts
| |
Collapse
|
66
|
Kambe T, Weaver BP, Andrews GK. The genetics of essential metal homeostasis during development. Genesis 2008; 46:214-28. [PMID: 18395838 DOI: 10.1002/dvg.20382] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The essential metals copper, zinc, and iron play key roles in embryonic, fetal, and postnatal development in higher eukaryotes. Recent advances in our understanding of the molecules involved in the intricate control of the homeostasis of these metals and the availability of natural mutations and targeted mutations in many of the genes involved have allowed for elucidation of the diverse roles of these metals during development. Evidence suggests that the ability of the embryo to control the homeostasis of these metals becomes essential at the blastocyst stage and during early morphogenesis. However, these metals play unique roles throughout development and exert pleiotropic, metal-specific, and often cell-specific effects on morphogenesis, growth, and differentiation. Herein, we briefly review the major players known to be involved in the homeostasis of each of these essential metals and their known roles in development.
Collapse
Affiliation(s)
- Taiho Kambe
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas 66160-7421, USA
| | | | | |
Collapse
|
67
|
Copper deficiency results in AMP-activated protein kinase activation and acetylCoA carboxylase phosphorylation in rat cerebellum. Brain Res 2008; 1204:69-76. [PMID: 18339363 DOI: 10.1016/j.brainres.2008.01.087] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Revised: 01/30/2008] [Accepted: 01/31/2008] [Indexed: 01/13/2023]
Abstract
Copper (Cu) deficiency impairs cerebellar development including biosynthetic processes like myelination and synaptogenesis. The activity of cerebellar mitochondrial cuproenzyme cytochrome c oxidase is markedly lower in Cu deficient rat pups and is accompanied by higher lactate levels indicating mitochondrial inhibition. Cu deficiency impaired energy metabolism is thought to contribute to developmental delays, but specific mechanisms linking these phenomena have remained unexplored. AMP-activated protein kinase (AMPK) is a cellular energy sensor that is activated during mitochondrial inhibition and shuts down biosynthetic processes to help conserve cellular ATP levels. Activated AMPK phosphorylates and inhibits acetylCoA carboxylase (ACC), the first enzyme in fatty acid biosynthesis. We hypothesize that AMPK is activated and ACC inhibited in Cu deficient cerebella. Perinatal copper deficiency was studied in young rats in rapidly frozen cerebella. Compared to copper-adequate (Cu+) pups, copper-deficient (Cu-) pups were hypothermic, had lower brain copper levels and markedly higher cerebellar lactate. Concentration of phosphorylated AMPK (pAMPK), indicating AMPK activation, was robustly higher in Cu- cerebella of rat pups at two ages and in two separate experiments. Compared to Cu+ cerebella, pACC content was significantly higher in all Cu- samples. Mechanisms leading to AMPK activation remain elusive. Higher AMP/ATP ratios and increased reactive nitrogen species (RNS) can lead to AMPK activation. ATP and AMP concentrations were unaltered and nitric oxide metabolites and 3-nitrotyrosine peptide levels remained unchanged in Cu- cerebella. AMPK activation may explain how ATP levels can be maintained even with a severe mitochondrial loss of CCO function.
Collapse
|
68
|
Niciu MJ, Ma XM, Meskini RE, Pachter JS, Mains RE, Eipper BA. Altered ATP7A expression and other compensatory responses in a murine model of Menkes disease. Neurobiol Dis 2007; 27:278-91. [PMID: 17588765 PMCID: PMC2040029 DOI: 10.1016/j.nbd.2007.05.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2007] [Revised: 05/03/2007] [Accepted: 05/10/2007] [Indexed: 01/01/2023] Open
Abstract
Mutations in the copper-transporter ATP7A lead to severe neurodegeneration in the mottled brindled hemizygous male (MoBr/y) mouse and human patients with Menkes disease. Our earlier studies demonstrated cell-type- and -stage-specific changes in ATP7A protein expression during postnatal neurodevelopment. Here we examined copper and cuproenzyme levels in MoBr/y mice to search for compensatory responses. While all MoBr/y neocortical subcellular fractions had decreased copper levels, the greatest decrease (8-fold) was observed in cytosol. Immunostaining for ATP7A revealed decreased levels in MoBr/y hippocampal pyramidal and cerebellar Purkinje neurons. In contrast, an upregulation of ATP7A protein occurred in MoBr/y endothelial cells, perhaps to compensate for a lack of copper in the neuropil. MoBr/y astrocytes and microglia increased their physical association with the blood-brain barrier. No alterations in ATP7A levels were observed in ependymal cells, arguing for specificity in the alteration observed at the blood-brain barrier. The decreased expression of ATP7A protein in MoBr/y Purkinje cells was associated with impaired synaptogenesis and dramatic cytoskeletal dysfunction. Immunoblotting failed to reveal any compensatory increase in levels of ATP7B. While total levels of several cuproenzymes (peptide-amidating monooxygenase, SOD1, and SOD3) were unaltered in the MoBr/y brain, levels of amidated cholecystokinin (CCK8) and amidated pituitary adenylate cyclase-activating polypeptide (PACAP38) were reduced in a tissue-specific fashion. The compensatory changes observed in the neurovascular unit provide insight into the success of copper injections within a defined neurodevelopmental period.
Collapse
Affiliation(s)
- Mark J. Niciu
- University of Connecticut Health Center, Department of Neuroscience, Academic Research Building (E)-4047, 263 Farmington Avenue, Farmington, CT 06030-3401 (U.S.A.)
| | - Xin-Ming Ma
- University of Connecticut Health Center, Department of Neuroscience, Academic Research Building (E)-4047, 263 Farmington Avenue, Farmington, CT 06030-3401 (U.S.A.)
| | - Rajaâ El Meskini
- University of Connecticut Health Center, Department of Neuroscience, Academic Research Building (E)-4047, 263 Farmington Avenue, Farmington, CT 06030-3401 (U.S.A.)
- The Johns Hopkins University School of Medicine, Department of Neuroscience, 1006B Preclinical Teaching Building, 725 North Wolfe Street, Baltimore, MD 21205 (U.S.A.)
| | - Joel S. Pachter
- University of Connecticut Health Center, Blood-Brain Barrier Laboratory, Department of Pharmacology, 263 Farmington Avenue, Farmington, CT 06030 (U.S.A.)
| | - Richard E. Mains
- University of Connecticut Health Center, Department of Neuroscience, Academic Research Building (E)-4047, 263 Farmington Avenue, Farmington, CT 06030-3401 (U.S.A.)
| | - Betty A. Eipper
- University of Connecticut Health Center, Department of Neuroscience, Academic Research Building (E)-4047, 263 Farmington Avenue, Farmington, CT 06030-3401 (U.S.A.)
- *To whom correspondence should be addressed: Betty A. Eipper, E-mail: , Tel. #: (860)-679-8898, Fax #: (860)-679-1885
| |
Collapse
|