51
|
Mottin C, Ornaghi MG, Carvalho VM, Guerrero A, Vital ACP, Ramos TR, Bonin E, Lana de Araújo F, de Araújo Castilho R, do Prado IN. Carcass characteristics and meat evaluation of cattle finished in temperate pasture and supplemented with natural additive containing clove, cashew oil, castor oils, and a microencapsulated blend of eugenol, thymol, and vanillin. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:1271-1280. [PMID: 34358347 DOI: 10.1002/jsfa.11465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/04/2021] [Accepted: 08/06/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Forty crossbred steers were supplemented with different doses (from 0 control to 6000 mg/animal/day) of natural additive blend containing clove essential oil, cashew oil, castor oil, and a microencapsulated blend of eugenol, thymol, and vanillin for 80 days. Carcass characteristics, drip loss, and antioxidant activity were evaluated 24 h post mortem on longissimus thoracis, and the effects of aging (until 14 days) were evaluated for water losses (thawing/aging and cooking), texture, color, and lipid oxidation. RESULTS The use of the natural additive blend did not modify (P > 0.05) carcass characteristics but did, however, modify body composition (P < 0.05). Drip losses were unaffected by the treatments tested (P > 0.05). There was an observed quadratic effect (P < 0.05) on losses from thawing/aging on the first day of storage. Regarding the effects of natural additives on cooking losses, there was a quadratic effect (P < 0.05) among the treatments on day 7 of aging. Differences between days of aging were only observed with control treatment. Shear force was similar among treatments on days 1 and 7 of aging. On day 14 a linear effect (P < 0.05) was observed. Also, a linear effect (P < 0.05) appeared on meat lightness, meat from the control group being clearer on day 1. No changes were observed in redness among treatments or days of storage (P > 0.05). Yellowness was not modified by the treatments (P > 0.05)but only by the days of storage in control and the lowest dosage used. CONCLUSION The blend of natural additives has potential use in pasture feeding and could improve meat quality. However, doses should be adjusted. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Camila Mottin
- Department of Animal Science, State University of Maringá, Maringá, Brazil
| | | | | | - Ana Guerrero
- Departamento Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Universidad Cardenal Herrera - CEU, CEU Universities, Valencia, Spain
| | | | | | - Edinéia Bonin
- Department of Food Science, Universidade Estadual de Maringá, Maringá, Brazil
| | - Fabiana Lana de Araújo
- Department of Animal Science, Universidade Federal do Recôncavo da Bahia, Cruz das Almas, Brazil
| | | | | |
Collapse
|
52
|
Du M, Li X, Zhang D, Li Z, Hou C, Ren C, Bai Y. Phosphorylation plays positive roles in regulating the inhibitory ability of calpastatin to calpain. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Manting Du
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences, Key Laboratory of Agro‐products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs Beijing China
- College of Food and Biological Engineering Zhengzhou University of Light Industry Zhengzhou Henan China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control Zhengzhou Henan China
| | - Xin Li
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences, Key Laboratory of Agro‐products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs Beijing China
| | - Dequan Zhang
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences, Key Laboratory of Agro‐products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs Beijing China
| | - Zheng Li
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences, Key Laboratory of Agro‐products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs Beijing China
| | - Chengli Hou
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences, Key Laboratory of Agro‐products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs Beijing China
| | - Chi Ren
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences, Key Laboratory of Agro‐products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs Beijing China
| | - Yanhong Bai
- College of Food and Biological Engineering Zhengzhou University of Light Industry Zhengzhou Henan China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control Zhengzhou Henan China
| |
Collapse
|
53
|
Wang Z, Zhou H, Zhou K, Tu J, Xu B. An underlying softening mechanism in pale, soft and exudative - Like rabbit meat: The role of reactive oxygen species - Generating systems. Food Res Int 2022; 151:110853. [PMID: 34980389 DOI: 10.1016/j.foodres.2021.110853] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 11/02/2021] [Accepted: 11/27/2021] [Indexed: 01/01/2023]
Abstract
This work investigated the role of reactive oxygen species (ROS) - generating systems on the softening of the pale, soft and exudative-like (PSE-like) rabbit meat during aging. PSE-like meat was induced by incubation of post-mortem rabbit Longissimus thoracis et lumborum at 37 °C for 3 h. During aging, PSE-like meat samples had higher values in peroxides value, thiobarbituric acid-reactive substances, metmyoglobin percentage, ferrylmyoglobin content, non-heme iron content, hydroxyl radical content and ROS concentration compared with the normal ones, suggesting that PSE-like incubation could activate lipid-oxidizing system, myoglobin-mediated oxidation system, together with metal-catalyzed oxidation system. Additionally, higher protein carbonyl content was observed in PSE-like meat, along with a significant loss in sulfhydryl group. The results of SDS-PAGE suggested that more serious protein degradation occurred in PSE-like meat. It is plausible that the activated ROS-generating system played an underlying role in the softening texture during the aging period of PSE-like meat.
Collapse
Affiliation(s)
- Zhaoming Wang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Hui Zhou
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Kai Zhou
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Juncai Tu
- Department of Wine, Food and Molecular Biosciences, Lincoln University, P O Box 84, Lincoln 7647, Christchurch, New Zealand
| | - Baocai Xu
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; State Key Laboratory of Meat Processing and Quality Control, Nanjing, 211806, China.
| |
Collapse
|
54
|
SARY C, CARBONERA F, VITAL ACP, GUERRERO A, LEWANDOWSKI V, VISENTAINER JV, PRADO IND, RIBEIRO RP. Clove (Eugenia caryophyllus) essential oil in diets for Nile tilapia (Oreochromis niloticus) improves fillet quality. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.60320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Cesar SARY
- Universidade Estadual de Maringá, Brasil
| | | | | | | | | | | | | | | |
Collapse
|
55
|
Nassar R, Vernus B, Carnac G, Fouret G, Goustard B, Casas F, Tintignac L, Cassar-Malek I, Picard B, Seiliez I, Brioche T, Koechlin-Ramonatxo C, Bertrand-Gaday C, Hamade A, Najjar F, Chabi B, Bonnieu A. Myostatin gene inactivation increases post-mortem calpain-dependent muscle proteolysis in mice. Meat Sci 2021; 185:108726. [PMID: 34973590 DOI: 10.1016/j.meatsci.2021.108726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 12/13/2022]
Abstract
Myostatin deficiency leads to extensive skeletal muscle hypertrophy, but its consequence on post-mortem muscle proteolysis is unknown. Here, we compared muscle myofibrillar protein degradation, and autophagy, ubiquitin-proteasome and Ca2+-dependent proteolysis relative to the energetic and redox status in wild-type (WT) and myostatin knock-out mice (KO) during early post-mortem storage. KO muscles showed higher degradation of myofibrillar proteins in the first 24 h after death, associated with preserved antioxidant status, compared with WT muscles. Analysis of key autophagy and ubiquitin-proteasome system markers indicated that these two pathways were not upregulated in post-mortem muscle (both genotypes), but basal autophagic flux and ATP content were lower in KO muscles. Proteasome and caspase activities were not different between WT and KO mice. Conversely, calpain activity was higher in KO muscles, concomitantly with higher troponin T and desmin degradation. Altogether, these results suggest that calpains but not the autophagy, proteasome and caspase systems, explain the difference in post-mortem muscle protein proteolysis between both genotypes.
Collapse
Affiliation(s)
- Rim Nassar
- DMEM, University of Montpellier, INRAE, Montpellier, France; Laboratoire d'Innovation thérapeutique, Lebanese University, Beyrouth, Liban
| | - Barbara Vernus
- DMEM, University of Montpellier, INRAE, Montpellier, France
| | - Gilles Carnac
- PHYMEDEXP, University of Montpellier, CNRS, INSERM, CHRU, Montpellier, France
| | - Gilles Fouret
- DMEM, University of Montpellier, INRAE, Montpellier, France
| | | | - François Casas
- DMEM, University of Montpellier, INRAE, Montpellier, France
| | - Lionel Tintignac
- Département de Biomédecine, Basel University, Basel, Switzerland
| | - Isabelle Cassar-Malek
- University Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France
| | - Brigitte Picard
- University Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France
| | - Iban Seiliez
- Université de Pau et des Pays de l'Adour, E2S UPPA, INRAE, UMR1419 Nutrition Métabolisme et Aquaculture, F-64310 Saint-Pée-sur-Nivelle, France
| | - Thomas Brioche
- DMEM, University of Montpellier, INRAE, Montpellier, France
| | | | | | - Aline Hamade
- Laboratoire d'Innovation thérapeutique, Lebanese University, Beyrouth, Liban
| | - Fadia Najjar
- Laboratoire d'Innovation thérapeutique, Lebanese University, Beyrouth, Liban
| | - Béatrice Chabi
- DMEM, University of Montpellier, INRAE, Montpellier, France
| | - Anne Bonnieu
- DMEM, University of Montpellier, INRAE, Montpellier, France.
| |
Collapse
|
56
|
Sierra V, González-Blanco L, Diñeiro Y, Díaz F, García-Espina MJ, Coto-Montes A, Gagaoua M, Oliván M. New Insights on the Impact of Cattle Handling on Post-Mortem Myofibrillar Muscle Proteome and Meat Tenderization. Foods 2021; 10:3115. [PMID: 34945666 PMCID: PMC8700955 DOI: 10.3390/foods10123115] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/03/2021] [Accepted: 12/13/2021] [Indexed: 12/20/2022] Open
Abstract
This study investigated the effect of different cattle management strategies at farm (Intensive vs. Extensive) and during transport and lairage (mixing vs. non-mixing with unfamiliar animals) on the myofibrillar subproteome of Longissimus thoracis et lumborum (LTL) muscle of "Asturiana de los Valles" yearling bulls. It further aimed to study the relationships with beef quality traits including pH, color, and tenderness evaluated by Warner-Bratzler shear force (WBSF). Thus, comparative proteomics of the myofibrillar fraction along meat maturation (from 2 h to 14 days post-mortem) and different quality traits were analyzed. A total of 23 protein fragments corresponding to 21 unique proteins showed significant differences among the treatments (p < 0.05) due to any of the factors considered (Farm, Transport and Lairage, and post-mortem time ageing). The proteins belong to several biological pathways including three structural proteins (MYBPC2, TNNT3, and MYL1) and one metabolic enzyme (ALDOA) that were affected by both Farm and Transport/Lairage factors. ACTA1, LDB3, and FHL2 were affected by Farm factors, while TNNI2 and MYLPF (structural proteins), PKM (metabolic enzyme), and HSPB1 (small Heat shock protein) were affected by Transport/Lairage factors. Several correlations were found between the changing proteins (PKM, ALDOA, TNNI2, TNNT3, ACTA1, MYL1, and CRYAB) and color and tenderness beef quality traits, indicating their importance in the determination of meat quality and their possible use as putative biomarkers.
Collapse
Affiliation(s)
- Verónica Sierra
- Área de Sistemas de Producción Animal, Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Ctra. AS-267, PK 19, 33300 Villaviciosa, Spain; (V.S.); (L.G.-B.); (Y.D.); (F.D.); (M.J.G.-E.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario, s/n, 33011 Oviedo, Spain;
| | - Laura González-Blanco
- Área de Sistemas de Producción Animal, Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Ctra. AS-267, PK 19, 33300 Villaviciosa, Spain; (V.S.); (L.G.-B.); (Y.D.); (F.D.); (M.J.G.-E.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario, s/n, 33011 Oviedo, Spain;
| | - Yolanda Diñeiro
- Área de Sistemas de Producción Animal, Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Ctra. AS-267, PK 19, 33300 Villaviciosa, Spain; (V.S.); (L.G.-B.); (Y.D.); (F.D.); (M.J.G.-E.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario, s/n, 33011 Oviedo, Spain;
| | - Fernando Díaz
- Área de Sistemas de Producción Animal, Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Ctra. AS-267, PK 19, 33300 Villaviciosa, Spain; (V.S.); (L.G.-B.); (Y.D.); (F.D.); (M.J.G.-E.)
| | - María Josefa García-Espina
- Área de Sistemas de Producción Animal, Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Ctra. AS-267, PK 19, 33300 Villaviciosa, Spain; (V.S.); (L.G.-B.); (Y.D.); (F.D.); (M.J.G.-E.)
| | - Ana Coto-Montes
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario, s/n, 33011 Oviedo, Spain;
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, Av. Julián Clavería, 6, 33006 Oviedo, Spain
| | - Mohammed Gagaoua
- Food Quality and Sensory Science Department, Teagasc Food Research Centre, Dublin 15, D15 KN3K Ashtown, Ireland
| | - Mamen Oliván
- Área de Sistemas de Producción Animal, Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Ctra. AS-267, PK 19, 33300 Villaviciosa, Spain; (V.S.); (L.G.-B.); (Y.D.); (F.D.); (M.J.G.-E.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario, s/n, 33011 Oviedo, Spain;
| |
Collapse
|
57
|
Li S, Li C. Proteomics discovery of protein biomarkers linked to yak meat tenderness as determined by label-free mass spectrometry. Anim Sci J 2021; 92:e13669. [PMID: 34882917 DOI: 10.1111/asj.13669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/12/2021] [Accepted: 11/04/2021] [Indexed: 11/30/2022]
Abstract
Tenderness is one of the most important qualities in meat. A proteomic approach is a suitable way to ensure meat tenderness. Thirty-six tenderloin samples from yak were classified as exhibiting high (n = 12) or low (n = 12) tenderness and were evaluated using label-free proteomics for the identification of the proteins and pathways most influential in tenderness variability. Between the two groups, proteomic changes were mainly caused by 33 differentially expressed proteins as displayed in reference patterns in heat maps. The expression of ENO2, SUCLG2, ETFDH, PGM1, TNNT3, TNNT1, HSDL2, GPI, ALAD, and COL1A1 proteins was very different between yak meats with high and low tenderness, and therefore, they are candidate biomarkers of yak meat tenderness. Furthermore, bioinformatics analyses revealed that the identified proteins are related to pentose phosphate, glycolysis, the citrate cycle, fatty acid metabolism, and the calcium signaling pathway.
Collapse
Affiliation(s)
- Shengsheng Li
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China.,State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China.,National R &D Center for Yak Meat Processing Technology, Xining, China.,Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Xining, China
| | - Chunbao Li
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
58
|
Crystallization Behavior and Quality of Frozen Meat. Foods 2021; 10:foods10112707. [PMID: 34828989 PMCID: PMC8620417 DOI: 10.3390/foods10112707] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/31/2021] [Accepted: 11/03/2021] [Indexed: 11/17/2022] Open
Abstract
Preservation of meat through freezing entails the use of low temperatures to extend a product’s shelf-life, mainly by reducing the rate of microbial spoilage and deterioration reactions. Characteristics of meat that are important to be preserve include tenderness, water holding capacity, color, and flavor. In general, freezing improves meat tenderness, but negatively impacts other quality attributes. The extent to which these attributes are affected depends on the ice crystalline size and distribution, which itself is governed by freezing rate and storage temperature and duration. Although novel technology has made it possible to mitigate the negative effects of freezing, the complex nature of muscle tissue makes it difficult to accurately and consistently predict outcome of meat quality following freezing. This review provides an overview of the current understanding of energy and heat transfer during freezing and its effect on meat quality. Furthermore, the review provides an overview of the current novel technologies utilized to improve the freezing process.
Collapse
|
59
|
The Effect of Catabolic Transformations of Proteins and Fats on the Quality and Nutritional Value of Raw Ripened Products from Zlotnicka Spotted and Zlotnicka White Meat. ANNALS OF ANIMAL SCIENCE 2021. [DOI: 10.2478/aoas-2021-0031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
The aim of the study was to compare the advancement of the ripening as well as catabolic changes in proteins and fats of Zlotnicka Spotted (ZS) and Zlotnicka White (ZW) meat and their impact on the quality and nutritional value of ready-to-eat products. The meat of the breeds ZS and ZW differed not only in the basic chemical composition but also in the susceptibility to catabolic transformations of proteins and lipids, which translated into a separate technological and nutritional quality as well as the profile of volatile odor compounds. Loins due to their compact histological structure, low pH (5.4) and decreased water activity (0.92–0.93) were characterized by a lower number of coagulase-negative cocci (3.3 log cfu/g) compared to hams. The products of both breeds differed in the content of selected neutral glucogenic amino acids with a pI in the range of 5.6–6.1 mainly. The content of biogenic amines was therefore completely dependent on the metabolic potential of acidifying bacteria. Larger number of lactic acid bacilli (7.5–7.7 log cfu/g) and lactic acid cocci (7.9–8.3 log cfu/g), as well as a higher content of saturated (55.2–53.7%) and polyunsaturated fatty acids (6.4–7.0%) shaped the final pH of hams (5.3). Presence of aldehydes, ketones and alcohols indicated existing fat oxidation despite the small values of the TBA index of hams (1.1 mg/kg) and loins (0.4–0.6 mg/kg). The volatile compounds that differentiated products of ZS and ZW formed by the oxidation and microbial activity, were, primarily: octanal, 1-hydroxypropan- 2-one, 3-methylpentan-2-one, propane-1,2-diol, 2,5-dimethylfuran and 3-hydroxybutan- 2-one, butane-2,3-dione, butane-1,2-diol, respectively.
Collapse
|
60
|
Jose C, McGilchrist P. Ageing as a method to increase bloom depth and improve retail colour in beef graded AUS-MEAT colour 4. Meat Sci 2021; 183:108665. [PMID: 34492481 DOI: 10.1016/j.meatsci.2021.108665] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 10/20/2022]
Abstract
Meat colour is an important attribute for consumer acceptance but there is an interval between colour grading and retail display. This experiment investigates the effect of time post-slaughter (5, 14 and 40 days) on colour and bloom depth (after 1 and 24 h) for beef carcasses graded AUS-MEAT colour 4 (MC 4). Sixteen carcasses were selected at grading, 8 carcasses were graded MC 4 and 8 as compliant colour (AUS-MEAT score 2 or 3). At 5 days post-slaughter, compliant loins had greater overall bloom depth and were more red than MC 4 loins. Bloom depth (24 h) increased with ageing time but reached maximum bloom at 14 days for both treatments. After ageing for 14 and 40 days, the bloom depth of MC 4 loin was no different to the 5 day aged compliant loins after 24 h on display. Colour at grading may not be a reliable measure of retail colour considering the changes post slaughter.
Collapse
Affiliation(s)
- Cameron Jose
- School of Veterinary & Life Sciences, Murdoch University, Murdoch, WA 6150, Australia.
| | - Peter McGilchrist
- School of Veterinary & Life Sciences, Murdoch University, Murdoch, WA 6150, Australia; School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| |
Collapse
|
61
|
Rostamani M, Baghaei H, Bolandi M. Prediction of top round beef meat tenderness as a function of marinating time based on commonly evaluated parameters and regression equations. Food Sci Nutr 2021; 9:5006-5015. [PMID: 34532012 PMCID: PMC8441426 DOI: 10.1002/fsn3.2454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 11/12/2022] Open
Abstract
This study investigates the influence of 24-hr marination (with different plant extracts and vinegar) at refrigerated conditions on commonly evaluated physicochemical and textural attributes, including pH, water-holding capacity (WHC), collagen solubility, moisture, drip loss, and shear force values of beef meat. The results reflected the appropriate correlation between each pair and indicated the efficiency of the household marination procedure to acquire more palatability and tender beef meat. Therefore, to predict beef meat tenderness by applying the Warner-Bratzler shear force (WBSF), a strong positive correlation with the drip loss (p < .01) and a notable negative correlation with the moisture content (p < .01) emphasized the importance of moisture improvement and shear force reduction in affecting tenderness of baked beef meat. The regression equations and R-squared values were revealed the favorable correlation between collagen solubility and WHC (y = 0.1035x-0.8431, R 2 = .98) as well as moisture and WBSF (y = -0.3297x + 102.58, R 2 = .99) in marinated beef meat. Electrophoresis patterns of isolated myofibrillar proteins disclosed remarkable degradation of myosin heavy chain (MHC), desmin, actin, and tropomyosin during the first day of aging. The noticeable ultrastructural destruction and connective tissue solubilization were observed by microscopy images. These outcomes were a good tenderness predictor be utilized in retailing and industrial scale.
Collapse
Affiliation(s)
- Mohammadreza Rostamani
- Department of Food Science and TechnologyDamghan BranchIslamic Azad UniversityDamghanIran
| | - Homa Baghaei
- Department of Food Science and TechnologyDamghan BranchIslamic Azad UniversityDamghanIran
| | - Marzieh Bolandi
- Department of Food Science and TechnologyDamghan BranchIslamic Azad UniversityDamghanIran
| |
Collapse
|
62
|
Ferrinho AM, de Moura GV, Martins TDS, Muñoz J, Mueller LF, Garbossa PLM, de Amorim TR, Gemelli JL, Fuzikawa IHDS, Prado C, da Silveira JC, Poleti MD, Baldi F, Pereira AS. Rubia Gallega x Nelore crossbred cattle improve beef tenderness through changes in protein abundance and gene expression. Livest Sci 2021. [DOI: 10.1016/j.livsci.2021.104634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
63
|
Xu L, Liu S, Cheng Y, Qian H. The effect of aging on beef taste, aroma and texture, and the role of microorganisms: a review. Crit Rev Food Sci Nutr 2021; 63:2129-2140. [PMID: 34463171 DOI: 10.1080/10408398.2021.1971156] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The present review summarizes the advantages and disadvantages of three different aging methods (traditional dry aging, wet aging in vacuum shrink pack and dry aging in a highly moisture-permeable bag), discusses the effects of aging on beef which focus on the formation of taste-active compounds and aroma-active compounds and texture changes, and speculates the role of microbes. All these three aging methods can improve the aroma, flavor and texture of beef to varying degrees. It is concluded that the improvement in the taste during aging may be attributed to the following three aspects: First, the release of reducing sugars from the transition of glycogen and ATP; Second, the formation of free amino acids (FAAs) and peptides through proteolysis; Third, IMP, GMP, inosine and hypoxanthine which are produced by the degradation of nucleotides. The improvement of aroma is related to the volatile aroma-active components, which are produced by the thermal oxidation/degradation of fatty acids and the Maillard reaction between amino acids and reducing sugars during aging. And the change of texture is mainly owing to the degradation of cytoskeletal myofibrin and collagen with intramural connective tissue in meat by the endogenous proteolysis system. The role of microorganism in aging will be the main direction of further research.
Collapse
Affiliation(s)
- Lin Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Shengnan Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yuliang Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - He Qian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
64
|
Dang DS, Stafford CD, Taylor MJ, Buhler JF, Thornton KJ, Matarneh SK. Ultrasonication of beef improves calpain-1 autolysis and caspase-3 activity by elevating cytosolic calcium and inducing mitochondrial dysfunction. Meat Sci 2021; 183:108646. [PMID: 34392092 DOI: 10.1016/j.meatsci.2021.108646] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 02/05/2023]
Abstract
The objective of this study was to investigate if ultrasonication of bovine longissimus thoracis et lumborum (LTL) steaks increases calpain-1 and caspase-3 activities, and if so, to explore the underlying mechanisms that trigger their activation. Post-rigor bovine LTL steaks were subjected to ultrasonication at 40 kHz and 12 W/cm2 for 40 min and subsequently aged for 14 d at 4 °C. Ultrasonication improved beef tenderness (P < 0.05) without negatively impacting pH, color, or cook loss (P > 0.05). Improved tenderness in the ultrasonicated steaks was associated with greater degradation of titin, desmin, troponin-T, and calpastatin and increased calpain-1 autolysis and caspase-3 activity (P < 0.05). In addition, ultrasonicated steaks had greater levels of cytosolic calcium and reactive oxygen species and lower mitochondrial oxygen consumption rate (P < 0.05). These data indicate that improved beef tenderness following ultrasonication is, in part, a function of increased calpain-1 and caspase-3 activities, potentially by elevating cytosolic calcium and inducing mitochondrial dysfunction, respectively.
Collapse
Affiliation(s)
- David S Dang
- Department of Nutrition, Dietetics and Food Sciences, Utah State University, Logan, UT 84322, United States
| | - Chandler D Stafford
- Department of Nutrition, Dietetics and Food Sciences, Utah State University, Logan, UT 84322, United States
| | - Mackenzie J Taylor
- Department of Nutrition, Dietetics and Food Sciences, Utah State University, Logan, UT 84322, United States
| | - Jared F Buhler
- Department of Nutrition, Dietetics and Food Sciences, Utah State University, Logan, UT 84322, United States
| | - Kara J Thornton
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT 84322, United States
| | - Sulaiman K Matarneh
- Department of Nutrition, Dietetics and Food Sciences, Utah State University, Logan, UT 84322, United States.
| |
Collapse
|
65
|
Effect of Wet Aging on Color Stability, Tenderness, and Sensory Attributes of Longissimus lumborum and Gluteus medius Muscles from Water Buffalo Bulls. Animals (Basel) 2021; 11:ani11082248. [PMID: 34438706 PMCID: PMC8388356 DOI: 10.3390/ani11082248] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 01/09/2023] Open
Abstract
Simple Summary The water buffalo is found in many tropical countries worldwide. In the current world scenario, where meeting the protein requirements of the population is one of the biggest future challenges, buffalo meat could be a good source of protein and other nutrients. Currently, very little information is available regarding buffalo meat quality attributes. Therefore, this study was designed to evaluate the effects of aging time and muscle type on meat quality attributes (pH, color, tenderness, water holding capacity, and sensory acceptance) of buffalo meat. The results showed that color, tenderness, and sensory attributes were improved with aging time; the suitable aging time required to enhance meat quality attributes in Longissimus lumborum and Gluteus medius muscles is 28 and 21 days, respectively. Abstract The present study aimed to investigate the effect of wet aging on meat quality characteristics of Longissimus lumborum (LL) and Gluteus medius (GM) muscles of buffalo bulls. Meat samples from six aging periods, i.e., 0 day (d) = control, 7 d, 14 d, 21 d, 28 d, and 35 d, were evaluated for pH, color, metmyoglobin content (MetMb%), cooking loss, water holding capacity (WHC), myofibrillar fragmentation index (MFI), Warner–Bratzler shear force (WBSF), and sensory evaluation. The pH, instrumental color redness (a *), yellowness (b *), chroma (C *), and MetMb% values were increased, while the lightness (L *) and hue angle (h *) values showed non-significant (p > 0.05) differences in both LL and GM muscles in all aging periods. The cooking loss increased while WHC decreased till 35 days of aging. MFI values significantly (p < 0.05) increased, while WBSF values decreased; in addition, sensory characteristics were improved with the increase in the aging period. Overall, the color, tenderness, and sensory characteristics were improved in LL and GM muscles until 28 and 21 days of aging, respectively. Based on the evaluated meat characteristics, 28 days of aging is required to improve the meat quality characteristics of LL, whereas 21 days of aging is suitable for GM muscle.
Collapse
|
66
|
Herrera NJ, Bland NA, Ribeiro FA, Henriott ML, Hofferber EM, Meier J, Petersen JL, Iverson NM, Calkins CR. Oxidative stress and postmortem meat quality in crossbred lambs. J Anim Sci 2021; 99:6276237. [PMID: 33991192 DOI: 10.1093/jas/skab156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/11/2021] [Indexed: 01/05/2023] Open
Abstract
The objective of this study was to evaluate effects of different levels of lipopolysaccharide (LPS)-mediated oxidative stress on fresh meat quality. Crossbred lambs (n = 29) were blocked by weight and fed a standard finishing ration for the duration of the study. Lambs were individually housed and treatment groups were administered one of three intravenous injections every 72 h across a three-injection (9-day) cycle: saline control (control), 50 ng LPS/kg body weight (BW) (LPS50), or 100 ng LPS/kg BW (LPS100). Rectal temperatures were measured to indicate inflammatory response. Lambs were harvested at the Loeffel Meat Laboratory and 80 mg of pre-rigor Longissimus lumborum were collected in control and LPS100 treatments within 30 min postmortem for RNA analysis. Wholesale loins were split and randomly assigned 1 or 14 d of wet aging. Chops were fabricated after aging and placed under retail display (RD) for 0 or 7 d. Animal was the experimental unit. LPS-treated lambs had increased (P < 0.05) rectal temperatures at 1, 2, 4, and 24 h post-injection. Transcriptomics revealed significant (Praw < 0.05) upregulation in RNA pathways related to generation of oxidative stress in LPS100 compared with control. A trend was found for tenderness (Warner-Bratzler shear force, WBSF; P = 0.10), chops from LPS50 having lower shear force compared with control at 1 d postmortem. Muscle from LPS50 treatment lambs exhibited greater troponin T degradation (P = 0.02) compared with all treatments at 1 d. Aging decreased WBSF (P < 0.0001), increased sarcoplasmic calcium concentration (P < 0.0001), pH (P < 0.0001), and proteolysis (P < 0.0001) across treatments. Following aging, chops increased discoloration as RD increased (P < 0.0001), with control chops aged 14 d being the most discolored. Chops from lambs given LPS had higher (P < 0.05) a* values compared with control at 14 d of aging. The L* values were greater (P < 0.05) in LPS100 compared with both LPS50 and control. Aging tended (P = 0.0608) to increase lipid oxidation during RD across either aging period. No significant differences (P > 0.05) in sarcomere length, proximate composition, fatty acid composition, or isoprostane content were found. These results suggest that defined upregulation of oxidative stress has no detriment on fresh meat color, but may alter biological pathways responsible for muscle stress response, apoptosis, and enzymatic processes, resulting in changes in tenderness early postmortem.
Collapse
Affiliation(s)
- Nicolas J Herrera
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583-0908, USA
| | - Nicolas A Bland
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583-0908, USA
| | - Felipe A Ribeiro
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583-0908, USA
| | - Morgan L Henriott
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583-0908, USA
| | - Eric M Hofferber
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68503-0908, USA
| | - Jakob Meier
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68503-0908, USA
| | - Jessica L Petersen
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583-0908, USA
| | - Nicole M Iverson
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68503-0908, USA
| | - Chris R Calkins
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583-0908, USA
| |
Collapse
|
67
|
Barón CLC, Santos‐Donado PR, Ramos PM, Donado‐Pestana CM, Delgado EF, Contreras‐Castillo CJ. Influence of ultimate pH on biochemistry and quality of
Longissimus lumborum
steaks from Nellore bulls during ageing. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.14955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Clara Lucía Contreras Barón
- Department of Agro‐industry, Food and Nutrition “Luiz de Queiroz” College of Agriculture – University of São Paulo P.O. Box 13418‐900, Av. Padua Dias 11 Piracicaba SP Brazil
| | - Priscila Robertina Santos‐Donado
- Department of Agro‐industry, Food and Nutrition “Luiz de Queiroz” College of Agriculture – University of São Paulo P.O. Box 13418‐900, Av. Padua Dias 11 Piracicaba SP Brazil
| | - Patricia Maloso Ramos
- Department of Animal Science “Luiz de Queiroz” College of Agriculture – University of São Paulo P.O. Box 13418‐900, Av. Padua Dias 11 Piracicaba SP Brazil
| | - Carlos M. Donado‐Pestana
- Department of Food and Experimental Nutrition Faculty of Pharmaceutical Sciences University of São Paulo P.O. Box 05508‐900, Av. Prof. Lineu Prestes 580 São Paulo SP Brazil
| | - Eduardo Francisquine Delgado
- Department of Animal Science “Luiz de Queiroz” College of Agriculture – University of São Paulo P.O. Box 13418‐900, Av. Padua Dias 11 Piracicaba SP Brazil
| | - Carmen J. Contreras‐Castillo
- Department of Agro‐industry, Food and Nutrition “Luiz de Queiroz” College of Agriculture – University of São Paulo P.O. Box 13418‐900, Av. Padua Dias 11 Piracicaba SP Brazil
| |
Collapse
|
68
|
Barido FH, Lee SK. Tenderness-related index and proteolytic enzyme response to the marination of spent hen breast by a protease extracted from Cordyceps militaris mushroom. Anim Biosci 2021; 34:1859-1869. [PMID: 33902173 PMCID: PMC8563259 DOI: 10.5713/ab.20.0831] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/05/2021] [Indexed: 12/04/2022] Open
Abstract
Objective The effects of a crude protease extracted from Cordyceps militaris (CM) mushrooms on the postmortem tenderization mechanism and quality improvement in spent hen breast were investigated. Methods Different percentages of the crude protease extracted from CM mushrooms were introduced to spent hen breast via spray marination, and its effects on tenderness-related indexes and proteolytic enzymes were compared to papain. Results The results indicated that there was a possible improvement by the protease extracted from CM mushroom through the upregulation of endogenous proteolytic enzymes involved in the calpain system, cathepsin-B, and caspase-3 coupled with its nucleotide-specific impact. However, the effect of the protease extracted from CM mushroom was likely dose-dependent, with significant improvements at a minimum level of 4%. Marination with the protease extracted from CM mushroom at this level led to increased protein solubility and an increased myofibrillar fragmentation index. The sarcoplasmic protein and collagen contents seemed to be less affected by the protease extracted from CM mushroom, indicating that substrate hydrolysis was limited to myofibrillar protein. Furthermore the protease extracted from CM mushroom intensified meat product taste due to increasing the inosinic acid content, a highly effective salt that provides umami taste. Conclusion The synergistic results of the proteolytic activity and nucleotide-specific effects following treatments suggest that the exogenous protease derived from CM mushroom has the potential for improving the texture of spent hen breast.
Collapse
Affiliation(s)
- Farouq Heidar Barido
- Department of Applied Animal Science, College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - Sung Ki Lee
- Department of Applied Animal Science, College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
69
|
Li P, Sun L, Wang J, Wang Y, Zou Y, Yan Z, Zhang M, Wang D, Xu W. Effects of combined ultrasound and low-temperature short-time heating pretreatment on proteases inactivation and textural quality of meat of yellow-feathered chickens. Food Chem 2021; 355:129645. [PMID: 33799244 DOI: 10.1016/j.foodchem.2021.129645] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/13/2021] [Accepted: 03/15/2021] [Indexed: 12/25/2022]
Abstract
This study aimed to investigate the effect of combined ultrasound and low-temperature short-time heating (ULTSTH) (40 kHz, 0.2 W/cm2 at 55 °C for 15 min) as pretreatment on proteases inactivation and textural quality of yellow-feathered chicken (YFC). Results showed ultrasound and low-temperature heating synergistically improved the inactivation of the most important meat proteases, calpain, cathepsin B and total proteases, with kinetics following the first order decay(s). Degradation of meat proteins was effectively reduced by ULTSTH compared to the pretreatment of chilling. Importantly, ULTSTH increased the firmness of breast meat and led to improved texture and microstructure. Lipid and protein oxidation of meat pretreated with ULTSTH were reduced during refrigerated storage period. Additionally, microorganisms in meat were inactivated by ULTSTH, which resulted in an obvious increase in the shelf life of meat. These findings suggested that ULTSTH is promising as an alternative pretreatment to obtain a favorable textural quality of YFC.
Collapse
Affiliation(s)
- Pengpeng Li
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Liangge Sun
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Jiankang Wang
- School of Food and Biological Engineering, Shanxi University of Science and Technology, Xi'an 710021, PR China
| | - Yuanxin Wang
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China; Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Ye Zou
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Zheng Yan
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Muhan Zhang
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Daoying Wang
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, PR China.
| | - Weimin Xu
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, PR China
| |
Collapse
|
70
|
Dunshea F, Ha M, Purslow P, Miller R, Warner R, Vaskoska RS, Wheeler TL, Li X. Meat Tenderness: Underlying Mechanisms, Instrumental Measurement, and Sensory Assessment. MEAT AND MUSCLE BIOLOGY 2021. [DOI: 10.22175/mmb.10489] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
71
|
Barido FH, Lee SK. Changes in proteolytic enzyme activities, tenderness-related traits, and quality properties of spent hen meat affected by adenosine 5'-monophosphate during cold storage. Poult Sci 2021; 100:101056. [PMID: 33744615 PMCID: PMC8005812 DOI: 10.1016/j.psj.2021.101056] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 01/02/2023] Open
Abstract
A mechanism of postmortem tenderization by adenosine 5′-monophosphate (AMP) on spent hen meat was investigated. Breast meat samples were made into a rectangular size of 7.5 × 5 × 2 cm and grouped into 5 different treatments, followed by immersion for 24 h at 4 ± 2°C in AMP marinade solutions of 0, 15, 30, 45, and 60 mmol/L that dissolved in 0.9% (w/v) saline solution. To investigate the enzymatic changes and tenderness-related traits, samples were stored until day 5 at a temperature of 2 ± 2°C. Result showed that each increase of 15 mmol/L AMP within marinade solution remarkably improved the myofibril fragmentation index and texture properties. The upregulation of tenderness-related enzymes was found for caspase-3 at 1 to 20.4 fold and 1 to 1.2 fold higher for the cathepsin-B, while a slight effect on calpains enzyme was observed. When compared with day 0 as a reference sample, the activity of the caspase-3 enzyme was more stable, as was cathepsin-B on the ultimate storage day, while the calpains enzyme showed a declining activity even after treatment. The flavor enhancement of 2.16- to 5.10-fold seemed to be a consequence of the AMP conversion into IMP that was responsible for the intensification of the umami-like flavor. No adverse effect was observed for instrumental surface color during the postmortem period. Therefore, this study suggested that the synergistic results after AMP treatment strongly contributed to postmortem tenderization mainly through cathepsin-B and caspase-3 enzyme upregulation, which led to more myofibrillar fragmentation and structural alteration of myofibrillar protein.
Collapse
Affiliation(s)
- Farouq Heidar Barido
- Department of Applied Animal Science, College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - Sung Ki Lee
- Department of Applied Animal Science, College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Korea.
| |
Collapse
|
72
|
Ma D, Suh DH, Zhang J, Chao Y, Duttlinger AW, Johnson JS, Lee CH, Kim YHB. Elucidating the involvement of apoptosis in postmortem proteolysis in porcine muscles from two production cycles using metabolomics approach. Sci Rep 2021; 11:3465. [PMID: 33568769 PMCID: PMC7876139 DOI: 10.1038/s41598-021-82929-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/27/2021] [Indexed: 11/13/2022] Open
Abstract
Apoptosis has been suggested as the first step in the process of conversion of muscle into meat. While a potential role of apoptosis in postmortem proteolysis has been proposed, the underlying mechanisms by which metabolome changes in muscles would influence apoptotic and proteolytic process, leading to meat quality variation, has not been determined. Here, apoptotic and proteolytic attributes and metabolomics profiling of longissimus dorsi (LD) and psoas major (PM) muscles in pigs from two different production cycles (July–Jan vs. Apr–Sep) were evaluated. PM showed higher mitochondrial membrane permeability (MMP), concurrent with less extent of calpain-1 autolysis and troponin T degradation and higher abundance of HSP27 and αβ-crystallin compared to LD (P < 0.05). Apr–Sep muscles showed concurrence of extended apoptosis (indicated by higher MMP), calpain-1 autolysis and troponin T degradation, regardless of muscle effects (P < 0.05). Metabolomics profiling showed Apr–Sep muscles to increase in oxidative stress-related macronutrients, including 6-carbon sugars, some branched-chain AA, and free fatty acids. Antioxidant AA (His and Asp) and ascorbic acid were higher in July–Jan (P < 0.05). The results of the present study suggest that early postmortem apoptosis might be positively associated with pro-oxidant macronutrients and negatively associated with antioxidant metabolites, consequently affecting meat quality attributes in a muscle-specific manner.
Collapse
Affiliation(s)
- Danyi Ma
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Dong Ho Suh
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, South Korea
| | - Jiaying Zhang
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Yufan Chao
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Alan W Duttlinger
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA.,USDA-ARS Livestock Behavior Research Unit, West Lafayette, IN, 47907, USA
| | - Jay S Johnson
- USDA-ARS Livestock Behavior Research Unit, West Lafayette, IN, 47907, USA
| | - Choong Hwan Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, South Korea. .,Research Institute for Bioactive-Metabolome Network, Konkuk University, Seoul, 05029, South Korea.
| | - Yuan H Brad Kim
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
73
|
Gagaoua M, Troy D, Mullen AM. The Extent and Rate of the Appearance of the Major 110 and 30 kDa Proteolytic Fragments during Post-Mortem Aging of Beef Depend on the Glycolysing Rate of the Muscle and Aging Time: An LC-MS/MS Approach to Decipher Their Proteome and Associated Pathways. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:602-614. [PMID: 33377770 DOI: 10.1021/acs.jafc.0c06485] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Post-mortem (p-m) muscle undergoes a myriad of complex physical and biochemical changes prior to its conversion to meat, which are influential on proteolysis and hence tenderization. A more in-depth understanding of the mechanisms underpinning these dynamics is a key to consistently providing tender beef. Using an LC-MS/MS approach, with state-of-art mass spectrometry Q Exactive HF-X, the proteome and associated pathways contributing to the appearance of the proteolytic breakdown products appearing over 14 days p-m, at two important molecular weights (110 and 30 kDa) on 1D SDS-PAGE gels, have been investigated in beef longissimus thoracis et lumborum muscles exhibiting four rates of pH decline differentiated on the basis of time at pH 6 (fast glycolysing, <3 h; medium, 3-5 h; slow, 5-8 h; and very slow, 8+ h). Both 110 and 30 kDa bands appeared during aging and increased in intensity as a function of p-m time in a pH decline-dependent manner. The 110 kDa band appeared as early as 3 h p-m and displayed an incremental increase in all groups through to 14 days p-m. From 2 days p-m, this increase in abundance during aging was significantly (P < 0.001) influenced by the glycolytic rate: fast > or = medium > slow > very slow. The day 2 p-m appearance of the 30 kDa band was most evident for the fast glycolysing muscle with little or no evidence of appearance in slow and very slow. For days 7 and 14 p-m, the strength of appearance was dependent on glycolysing groups fast > medium > or = slow > very slow. LC-MS/MS analysis yielded a total of 22 unique proteins for the 110 kDa fragment and 13 for the 30 kDa, with 4 common proteins related to both the actin and fibrinogen complex. The Gene Ontology analysis revealed that a myriad of biological pathways are influential with many related to proteins involved primarily in muscle contraction and structure. Other pathways of interest include energy metabolism, apoptotic mitochondrial changes, calcium and ion transport, and so on. Interestingly, most of the proteins composing the fragments were so far identified as biomarkers of beef tenderness and other quality traits.
Collapse
Affiliation(s)
- Mohammed Gagaoua
- Food Quality and Sensory Science Department, Teagasc Ashtown Food Research Centre, Ashtown, Dublin 15, Ireland
| | - Declan Troy
- Food Quality and Sensory Science Department, Teagasc Ashtown Food Research Centre, Ashtown, Dublin 15, Ireland
| | - Anne Maria Mullen
- Food Quality and Sensory Science Department, Teagasc Ashtown Food Research Centre, Ashtown, Dublin 15, Ireland
| |
Collapse
|
74
|
Saleem MU, Ali MM, Nazir MM, Durrani AZ, Naseer O, Asghar B. Variations in growth performance, meat quality and consumer preferences influenced by difference of breed in buffalo bulls (Bubalus bubalis). ANIMAL PRODUCTION SCIENCE 2021. [DOI: 10.1071/an20293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Context
Breeds of buffalo (Nili-Ravi and Kundhi) show different growth-rate and meat characteristics. Consumer preferences vary for the selection of meat according to the taste and sensory attributes. Buffalo meat is widely consumed in Asia and multiple buffalo breeds are reared for meat production.
Aims
The current experiment was designed to compare growth rates, meat characteristics and consumer preference for meat from bulls of different buffalo breeds.
Methods
Thirty-five male Nili-Ravi buffalo bulls (NRBB) and 35 male Kundhi buffalo bulls (KBB) having an age of 18 ± 1.56 months and 18 ± 1.65 months with live bodyweight of 150 ± 1.98 kg and 149 ± 2.09 kg respectively, were purchased and reared for 90 days. All animals were slaughtered on the 91st day and samples from M. pectoralis descendance, M. latissimus dorsi and M. obliquus externus abdominis were collected. A consumer preference survey was also conducted to assess the preferences for meat from the buffalo breeds.
Key results
Results of the survey suggested that for buyers, meat colour was the primary selection criteria (P < 0.05) at the time of purchase. Consumers preferred the lighter-coloured meat of KBB (P < 0.05) than that of NRBB.
Conclusions
Findings of the study showed that meat from KBB had superior sensory attributes compared with NRBB, although the meat from NRBB was the more nutritious of the two buffalo breeds.
Implications
The results will provide a focussed view regarding selection of buffalo bulls for meat production.
Collapse
|
75
|
Abstract
Fresh meat quality is greatly determined through biochemical changes occurring in the muscle during its conversion to meat. These changes are key to imparting a unique set of characteristics on fresh meat, including its appearance, ability to retain moisture, and texture. Skeletal muscle is an extremely heterogeneous tissue composed of different types of fibers that have distinct contractile and metabolic properties. Fiber type composition determines the overall biochemical and functional properties of the muscle tissue and, subsequently, its quality as fresh meat. Therefore, changing muscle fiber profile in living animals through genetic selection or environmental factors has the potential to modulate fresh meat quality. We provide an overview of the biochemical processes responsible for the development of meat quality attributes and an overall understanding of the strong relationship between muscle fiber profile and meat quality in different meat species.
Collapse
Affiliation(s)
| | - Saulo L Silva
- Animal Science Department, College of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil 13635-900;
| | - David E Gerrard
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA;
| |
Collapse
|
76
|
Dry-aged beef manufactured in Japan: Microbiota identification and their effects on product characteristics. Food Res Int 2020; 140:110020. [PMID: 33648250 DOI: 10.1016/j.foodres.2020.110020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 12/18/2022]
Abstract
We aimed to determine the mold, yeast, and bacterial distributions in dry-aged beef (DAB) manufactured in Hokkaido, Japan, and to study their effects on meat quality compared to wet-aged beef (WAB). Two rump blocks from Holstein steer were dry- and wet-aged for 35 days at 2.9 °C and 90% RH. The psychrophilic molds Mucor flavus and Helicostylum pulchrum and other fungi (Penicillium sp. and Debaryomyces sp.) appeared on the crust of DAB, while lactic acid bacteria and coliforms were suppressed in the inner part of the meat. The composition of C16:0, C18:0, and C18:1 fatty acids did not differ between DAB and WAB, while more C17:0 fatty acids were detected in DAB. Dry aging suppressed acids and increased the production of various aroma compounds with mushroom-like, nutty, and other pleasant flavors. The meat quality and free amino acid (FAA) contents of DAB and WAB did not differ significantly. In this study, we identified major molds on DAB, which might contribute to an increase in aroma. Keywords: dry-aged beef; Mucor flavus; Helicostylum pulchrum; psychrophilic mold; meat quality; volatile aroma compounds.
Collapse
|
77
|
Optimization of the Effect of Pineapple By-Products Enhanced in Bromelain by Hydrostatic Pressure on the Texture and Overall Quality of Silverside Beef Cut. Foods 2020; 9:foods9121752. [PMID: 33256241 PMCID: PMC7760178 DOI: 10.3390/foods9121752] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/19/2020] [Accepted: 11/23/2020] [Indexed: 11/24/2022] Open
Abstract
Dehydrated pineapple by-products enriched in bromelain using a hydrostatic pressure treatment (225 MPa, 8.5 min) were added in marinades to improve beef properties. The steaks from the silverside cut (2 ± 0.5 cm thickness and weight 270 ± 50 g), characterized as harder and cheaper, were immersed in marinades that were added to dehydrated and pressurized pineapple by-products that corresponded to a bromelain concentration of 0–20 mg tyrosine, 100 g−1 meat, and 0–24 h time, according to the central composite factorial design matrix. Samples were characterized in terms of marination yield, pH, color, and histology. Subsequently, samples were cooked in a water-bath (80 °C, 15 min), stabilized (4 °C, 24 h), and measured for cooking loss, pH, color, hardness, and histology. Marinades (12–24 h) and bromelain concentration (10–20 mg tyrosine.100 g−1 meat) reduced pH and hardness, increased marination yield, and resulted in a lighter color. Although refrigeration was not an optimal temperature for bromelain activity, meat hardness decreased (41%). Thus, the use of pineapple by-products in brine allowed for the valorization of lower commercial value steak cuts.
Collapse
|
78
|
Li X, Zhang D, Ren C, Bai Y, Ijaz M, Hou C, Chen L. Effects of protein posttranslational modifications on meat quality: A review. Compr Rev Food Sci Food Saf 2020; 20:289-331. [PMID: 33443799 DOI: 10.1111/1541-4337.12668] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/14/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023]
Abstract
Meat quality plays an important role in the purchase decision of consumers, affecting producers and retailers. The formation mechanisms determining meat quality are intricate, as several endogenous and exogenous factors contribute during antemortem and postmortem periods. Abundant research has been performed on meat quality; however, unexpected variation in meat quality remains an issue in the meat industry. Protein posttranslational modifications (PTMs) regulate structures and functions of proteins in living tissues, and recent reports confirmed their importance in meat quality. The objective of this review was to provide a summary of the research on the effects of PTMs on meat quality. The effects of four common PTMs, namely, protein phosphorylation, acetylation, S-nitrosylation, and ubiquitination, on meat quality were discussed, with emphasis on the effects of protein phosphorylation on meat tenderness, color, and water holding capacity. The mechanisms and factors that may affect the function of protein phosphorylation are also discussed. The current research confirms that meat quality traits are regulated by multiple PTMs. Cross talk between different PTMs and interactions of PTMs with postmortem biochemical processes need to be explored to improve our understanding on factors affecting meat quality.
Collapse
Affiliation(s)
- Xin Li
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dequan Zhang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chi Ren
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuqiang Bai
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Muawuz Ijaz
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chengli Hou
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Li Chen
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
79
|
Mazaheri Kalahrodi M, Baghaei H, Emadzadeh B, Bolandi M. The combined effect of asparagus juice and balsamic vinegar on the tenderness, physicochemical and structural attributes of beefsteak. Journal of Food Science and Technology 2020; 58:3143-3153. [PMID: 34294976 DOI: 10.1007/s13197-020-04817-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/25/2020] [Accepted: 05/15/2020] [Indexed: 11/26/2022]
Abstract
The adverse effects of chemical compounds have limited their usage despite their relative success in improving meat tenderness. Thus, natural tenderizers have attracted attention. The present study aimed to evaluate the tenderization effects of asparagus (Asparagus officinalis L.) juice and balsamic vinegar on beefsteak; marination at 4 °C for 48 h significantly increased the water-holding capacity, total protein solubility, myofibrillar fragmentation index and hydroxyproline content but significantly decreased the pH value, Warner-Bratzler shear force, and energy to the peak rates (P < 0.05). Scanning electron microscopy images and electrophoresis findings revealed extensive degradation of connective tissues and changes in protein band patterns, respectively. The tenderness of the beefsteak samples was optimum by applying 25% asparagus juice, and 25% asparagus juice + 10% balsamic vinegar. Therefore, marinade solutions containing asparagus juice and balsamic vinegar can be considered as natural tenderizing agents in formulation of seasonings and sauces to promote tenderness in tough beefsteak and possibly improve other quality-related properties.
Collapse
Affiliation(s)
| | - Homa Baghaei
- Islamic Azad University, Damghan Branch, Damghan, Iran
| | - Bahareh Emadzadeh
- Department of Food Nanotechnology, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | | |
Collapse
|
80
|
Bischof G, Witte F, Terjung N, Januschewski E, Heinz V, Juadjur A, Gibis M. Analysis of aging type- and aging time-related changes in the polar fraction of metabolome of beef by 1H NMR spectroscopy. Food Chem 2020; 342:128353. [PMID: 33092915 DOI: 10.1016/j.foodchem.2020.128353] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 12/20/2022]
Abstract
The tenderness and taste of beef is improved by either dry- or wet-aging or a combination of both. The objective was to develop a validated method for detecting differences in the polar fraction of metabolome in dry-aged and wet-aged beef over the aging time and quantifying the metabolites of interest by 1H NMR spectroscopy using beef. Sixty strip loin (M. longissimus dorsi) samples aged in different ways (wet-aging vs. dry-aging) and aging times (0, 7, 14, 21, 28 days) were analyzed. The aging type could be defined by linear discriminant analysis with an accuracy of 95%. Ten (lactic acid, alanine, methionine, fumaric acid, inosine, inosine monophosphate, creatine, betaine, carnosine and hypoxanthine) out of eighteen metabolites differ significantly (p < 0.05) in content depending on the aging type. Fifteen metabolites in dry-aged and ten in wet-aged beef correlate with the aging time (r > 0.7, <-0.7), which shows significant aging time-related effects on the polar fraction of metabolome.
Collapse
Affiliation(s)
- Greta Bischof
- German Institute of Food Technologies, Prof.-v.-Klitzing-Str. 7, 49610 Quakenbrück, Germany; Department of Food Material Science, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstr. 25, 70599 Stuttgart, Germany
| | - Franziska Witte
- German Institute of Food Technologies, Prof.-v.-Klitzing-Str. 7, 49610 Quakenbrück, Germany
| | - Nino Terjung
- German Institute of Food Technologies, Prof.-v.-Klitzing-Str. 7, 49610 Quakenbrück, Germany
| | - Edwin Januschewski
- German Institute of Food Technologies, Prof.-v.-Klitzing-Str. 7, 49610 Quakenbrück, Germany
| | - Volker Heinz
- German Institute of Food Technologies, Prof.-v.-Klitzing-Str. 7, 49610 Quakenbrück, Germany
| | - Andreas Juadjur
- German Institute of Food Technologies, Prof.-v.-Klitzing-Str. 7, 49610 Quakenbrück, Germany.
| | - Monika Gibis
- Department of Food Material Science, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstr. 25, 70599 Stuttgart, Germany.
| |
Collapse
|
81
|
Pizarro-Oteíza S, Briones-Labarca V, Pérez-Won M, Uribe E, Lemus-Mondaca R, Cañas-Sarazúa R, Tabilo-Munizaga G. Enzymatic impregnation by high hydrostatic pressure as pretreatment for the tenderization process of Chilean abalone (Concholepas concholepas). INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2020.102451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
82
|
Fernández-Barroso MÁ, Caraballo C, Silió L, Rodríguez C, Nuñez Y, Sánchez-Esquiliche F, Matos G, García-Casco JM, Muñoz M. Differences in the Loin Tenderness of Iberian Pigs Explained through Dissimilarities in Their Transcriptome Expression Profile. Animals (Basel) 2020; 10:ani10091715. [PMID: 32971875 PMCID: PMC7552750 DOI: 10.3390/ani10091715] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/10/2020] [Accepted: 09/18/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary The Iberian pig is the most representative autochthonous breed of the Mediterranean region with unique genetic and phenotypic characteristics. The breed has been successfully preserved by its high-quality meat and high-priced products. Tenderness is one of the most relevant meat quality traits, and meat tenderization is influenced by genetic and environmental effects such as pre-slaughter handling and post-mortem conditions. Tenderness could be included in Iberian pig breeding programs, mainly focused on the improvement of premium-cuts percentage, in order to avoid the meat quality decline. A better biological understanding of this trait is needed. In the current study, we analyze the transcriptome of pigs divergent for Warner–Bratzler shear force through RNA-seq technique for the identification, characterization and quantification of candidate genes involved in biological pathways, networks and functions affecting meat tenderness. Abstract Tenderness is one of the most important meat quality traits and it can be measured through shear force with the Warner–Bratzler test. In the current study, we use the RNA-seq technique to analyze the transcriptome of Longissimus dorsi (LD) muscle in two groups of Iberian pigs (Tough and Tender) divergent for shear force breeding values. We identified 200 annotated differentially expressed genes (DEGs) and 245 newly predicted isoforms. The RNAseq expression results of 10 genes were validated with quantitative PCR (qPCR). Functional analyses showed an enrichment of DE genes in biological processes related to proteolysis (CTSC, RHOD, MYH8, ACTC1, GADD45B, CASQ2, CHRNA9 and ANKRD1), skeletal muscle tissue development (ANKRD1, DMD, FOS and MSTN), lipid metabolism (FABP3 and PPARGC1A) and collagen metabolism (COL14A1). The upstream analysis revealed a total of 11 transcription regulatory factors that could regulate the expression of some DEGs. Among them, IGF1, VGLL3 and PPARG can be highlighted since they regulate the expression of genes involved in biological pathways that could affect tenderness. The experiment revealed a set of candidate genes and regulatory factors suggestive to search polymorphisms that could be incorporated in a breeding program for improving meat tenderness.
Collapse
Affiliation(s)
- Miguel Ángel Fernández-Barroso
- Centro Nacional de I+D del Cerdo Ibérico (CENIDCI), INIA, 06300 Zafra, Spain; (C.C.); (J.M.G.-C.)
- Departamento de Mejora Genética Animal, INIA, 28040 Madrid, Spain; (L.S.); (C.R.); (Y.N.); (M.M.)
- Correspondence:
| | - Carmen Caraballo
- Centro Nacional de I+D del Cerdo Ibérico (CENIDCI), INIA, 06300 Zafra, Spain; (C.C.); (J.M.G.-C.)
- Departamento de Mejora Genética Animal, INIA, 28040 Madrid, Spain; (L.S.); (C.R.); (Y.N.); (M.M.)
| | - Luis Silió
- Departamento de Mejora Genética Animal, INIA, 28040 Madrid, Spain; (L.S.); (C.R.); (Y.N.); (M.M.)
| | - Carmen Rodríguez
- Departamento de Mejora Genética Animal, INIA, 28040 Madrid, Spain; (L.S.); (C.R.); (Y.N.); (M.M.)
| | - Yolanda Nuñez
- Departamento de Mejora Genética Animal, INIA, 28040 Madrid, Spain; (L.S.); (C.R.); (Y.N.); (M.M.)
| | | | - Gema Matos
- Sánchez Romero Carvajal—Jabugo, SRC, 21290 Huelva, Spain; (F.S.-E.); (G.M.)
| | - Juan María García-Casco
- Centro Nacional de I+D del Cerdo Ibérico (CENIDCI), INIA, 06300 Zafra, Spain; (C.C.); (J.M.G.-C.)
- Departamento de Mejora Genética Animal, INIA, 28040 Madrid, Spain; (L.S.); (C.R.); (Y.N.); (M.M.)
| | - María Muñoz
- Centro Nacional de I+D del Cerdo Ibérico (CENIDCI), INIA, 06300 Zafra, Spain; (C.C.); (J.M.G.-C.)
| |
Collapse
|
83
|
Gagaoua M, Terlouw EMC, Mullen AM, Franco D, Warner RD, Lorenzo JM, Purslow PP, Gerrard D, Hopkins DL, Troy D, Picard B. Molecular signatures of beef tenderness: Underlying mechanisms based on integromics of protein biomarkers from multi-platform proteomics studies. Meat Sci 2020; 172:108311. [PMID: 33002652 DOI: 10.1016/j.meatsci.2020.108311] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/09/2020] [Accepted: 09/14/2020] [Indexed: 12/15/2022]
Abstract
Over the last two decades, proteomics have been employed to decipher the underlying factors contributing to variation in the quality of muscle foods, including beef tenderness. One such approach is the application of high-throughput protein analytical platforms in the identification of meat quality biomarkers. To broaden our understanding about the biological mechanisms underpinning meat tenderization across a large number of studies, an integromics study was performed to review the current status of protein biomarker discovery targeting beef tenderness. This meta-analysis is the first to gather and propose a comprehensive list of 124 putative protein biomarkers derived from 28 independent proteomics-based experiments, from which 33 robust candidates were identified worthy of evaluation using targeted or untargeted data-independent acquisition proteomic methods. We further provide an overview of the interconnectedness of the main biological pathways impacting tenderness determination after multistep analyses including Gene Ontology annotations, pathway and process enrichment and literature mining, and specifically discuss the major proteins and pathways most often reported in proteomics research.
Collapse
Affiliation(s)
- Mohammed Gagaoua
- Food Quality and Sensory Science Department, Teagasc Ashtown Food Research Centre, Ashtown, Dublin 15, Ireland.
| | - E M Claudia Terlouw
- INRAE, Université Clermont Auvergne, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France
| | - Anne Maria Mullen
- Food Quality and Sensory Science Department, Teagasc Ashtown Food Research Centre, Ashtown, Dublin 15, Ireland
| | - Daniel Franco
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas 32900, Ourense, Spain
| | - Robyn D Warner
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - José M Lorenzo
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas 32900, Ourense, Spain; Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
| | - Peter P Purslow
- Centro de Investigacion Veterinaria de Tandil (CIVETAN), Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil B7001BBO, Argentina
| | - David Gerrard
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - David L Hopkins
- NSW DPI, Centre for Red Meat and Sheep Development, Cowra, NSW 2794, Australia
| | - Declan Troy
- Food Quality and Sensory Science Department, Teagasc Ashtown Food Research Centre, Ashtown, Dublin 15, Ireland
| | - Brigitte Picard
- INRAE, Université Clermont Auvergne, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France
| |
Collapse
|
84
|
Zhang L, Wang Z, Song Y, Li M, Yu Q. Quality of vacuum packaged beef as affected by aqueous ozone and sodium citrate treatment. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2020. [DOI: 10.1080/10942912.2020.1814322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Li Zhang
- College of Food Science and Engineering, Gansu Agriculture University, Lanzhou, China
| | - Zhuo Wang
- College of Food Science and Engineering, Gansu Agriculture University, Lanzhou, China
| | - Yanyan Song
- College of Food Science and Engineering, Gansu Agriculture University, Lanzhou, China
| | - Minghua Li
- College of Food Science and Engineering, Gansu Agriculture University, Lanzhou, China
| | - Qunli Yu
- College of Food Science and Engineering, Gansu Agriculture University, Lanzhou, China
| |
Collapse
|
85
|
Yan M, Li S. Influence of collagen changes on the tenderness of yak rumen smooth muscle during storage. CANADIAN JOURNAL OF ANIMAL SCIENCE 2020. [DOI: 10.1139/cjas-2019-0067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The aim of the present study was to investigate the influence of collagen changes on the tenderness of yak rumen smooth muscle during storage. Yak rumen smooth muscle was stored at 3 ± 1 °C for 7 d and the Warner–Bratzler shear force (WBSF); total, soluble, and insoluble collagen content (TCC, SCC); collagen solubility (CS); and histological structure were monitored. Label-free mass spectrometry was used to validate the changes in collagen. Collagen changes significantly influenced yak rumen smooth muscle tenderness. A significant positive relationship was found between WBSF and TCC, SCC, as well as CS. The label-free mass spectrometry results validated that the collagen of smooth muscle was degraded during storage. Histological analysis revealed that yak rumen smooth muscle structure was destroyed during storage. Smooth muscle underwent a similar change in tenderness as skeletal muscle, and the weakening of connective tissue was the main reason for smooth muscle tenderness development.
Collapse
Affiliation(s)
- Mingyi Yan
- Academy of Animal and Veterinary Sciences, Qinghai University, Xining 810016, People’s Republic of China
| | - Shengsheng Li
- Academy of Animal and Veterinary Sciences, Qinghai University, Xining 810016, People’s Republic of China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, People’s Republic of China
- National R & D Center for Yak Meat Processing Technology, Xining 810016, People’s Republic of China
| |
Collapse
|
86
|
Lu X, Yang Y, Zhang Y, Mao Y, Liang R, Zhu L, Luo X. The relationship between myofiber characteristics and meat quality of Chinese Qinchuan and Luxi cattle. Anim Biosci 2020; 34:743-750. [PMID: 32819068 PMCID: PMC7961283 DOI: 10.5713/ajas.20.0066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 06/20/2020] [Indexed: 11/27/2022] Open
Abstract
Objective The objectives of this study were to explore the expression patterns of myosin heavy chain (MyHC) genes of different skeletal muscles from Chinese cattle, and to investigate the relationship between myofiber characteristics and meat quality of M. longissimus lumborum (LL), M. psoas major (PM), and M. semimembranosus (SM) from Chinese Luxi and Qinchuan cattle. Methods Three major muscles including LL, PM, and SM from Chinese Luxi cattle and Chinese Qinchuan cattle were used in this study. The myofiber characteristics were measured by histochemical analysis. The MyHC isoforms expression was evaluated by real-time quantitative polymerase chain reaction. Quality traits including pH value, meat color, cooking loss, Warner-Bratzler shear force (WBSF) and sarcomere length were determined at day 5 postmortem. Results PM muscle had higher pH value, a* value, sarcomere length and lower WBSF value compared to LL and SM muscles (p<0.05). Numbers of type I myofiber and the relative expression of MyHC I mRNA in PM muscle were higher than those of LL and SM muscles (p<0.05). Myofiber diameter of PM muscle was lower than that of LL and SM muscles, regardless of myofiber types (p<0.05). Conclusion According to the stepwise linear regression analyses, tenderness was influenced by myofiber characteristics in all three examined muscles. Tenderness of beef muscles from Qinchuan and Luxi cattle could be improved by increasing numbers of type I myofiber.
Collapse
Affiliation(s)
- Xiao Lu
- College of Food Science and Engineering, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Yuying Yang
- College of Food Science and Engineering, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Yimin Zhang
- College of Food Science and Engineering, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Yanwei Mao
- College of Food Science and Engineering, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Rongrong Liang
- College of Food Science and Engineering, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Lixian Zhu
- College of Food Science and Engineering, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Xin Luo
- College of Food Science and Engineering, Shandong Agricultural University, Taian, Shandong 271018, China
| |
Collapse
|
87
|
Fernández-Barroso MÁ, Silió L, Rodríguez C, Palma-Granados P, López A, Caraballo C, Sánchez-Esquiliche F, Gómez-Carballar F, García-Casco JM, Muñoz M. Genetic parameter estimation and gene association analyses for meat quality traits in open-air free-range Iberian pigs. J Anim Breed Genet 2020; 137:581-598. [PMID: 32761820 DOI: 10.1111/jbg.12498] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 06/29/2020] [Accepted: 07/04/2020] [Indexed: 11/29/2022]
Abstract
Meat quality of Iberian pigs is defined by the combination of their genetic characteristics and the particular production system. To carry out a genetic analysis of the main meat quality traits, we estimated their heritabilities, genetic correlations and the association effects of 32 selected SNPs of 12 candidate genes. A total of ten traits were measured in longissimus dorsi samples from 1,199 Iberian pigs fattened in the traditional free-range system: water holding capacity (thawing, cooking and centrifuge force water losses), instrumental colour (lightness L*, redness a* and yellowness b*), myoglobin content, shear force on cooked meat, and shear force and maximum compression force on dry-cured loin. Estimated heritability values were low to moderate (0.01 to 0.43) being the lowest for L* and the highest for cooking loss. Strong genetic correlations between water holding capacity traits (0.93 to 0.96) and between myoglobin content and a* (0.94) were observed. The association analyses revealed 19 SNPs significantly associated with different traits. Consistent and strong effects were observed between PRKAG3 SNPs (rs319678464G > C and rs330427832C > T), MYH3_rs81437544T > C, CASP3_rs319658214G > T and CTSL_rs332171512A > G and water losses. Also for CAPN1_rs81358667G > A and CASP3_rs319658214G > T and shear force. The SNPs mapping on PRKAG3 showed the highest effects on Minolta colour traits. Genotyping of these SNPs could be useful for the selection of Iberian young boars with similar estimated breeding values for productive traits.
Collapse
Affiliation(s)
- Miguel Á Fernández-Barroso
- Centro de I+D en Cerdo Ibérico, INIA, Zafra, Spain.,Departamento de Mejora Genética Animal, INIA, Madrid, Spain
| | - Luis Silió
- Departamento de Mejora Genética Animal, INIA, Madrid, Spain
| | | | - Patricia Palma-Granados
- Centro de I+D en Cerdo Ibérico, INIA, Zafra, Spain.,Departamento de Mejora Genética Animal, INIA, Madrid, Spain
| | - Adrián López
- Departamento de Mejora Genética Animal, INIA, Madrid, Spain
| | - Carmen Caraballo
- Centro de I+D en Cerdo Ibérico, INIA, Zafra, Spain.,Departamento de Mejora Genética Animal, INIA, Madrid, Spain
| | | | | | - Juan M García-Casco
- Centro de I+D en Cerdo Ibérico, INIA, Zafra, Spain.,Departamento de Mejora Genética Animal, INIA, Madrid, Spain
| | - María Muñoz
- Centro de I+D en Cerdo Ibérico, INIA, Zafra, Spain.,Departamento de Mejora Genética Animal, INIA, Madrid, Spain
| |
Collapse
|
88
|
Jwa SH, Kim YA, Hoa VB, Hwang IH. A combination of postmortem ageing and sous vide cooking following by blowtorching and oven roasting for improving the eating quality and acceptance of low quality grade Hanwoo striploin. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2020; 33:1339-1351. [PMID: 32054202 PMCID: PMC7322645 DOI: 10.5713/ajas.19.0667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 10/28/2019] [Indexed: 11/27/2022]
Abstract
Objective It is well recognized that beef cuts from a low quality grade are usually associated with tougher, drier and less flavorful. Thus, the present study aimed at investigating the combined effects of postmortem ageing and sous vide (SV) cooking followed by oven roasting or blowtorching on the eating quality of low quality grade Hanwoo beef striploins. Methods Hanwoo beef striploins (quality grade 3) obtained from 36 month-old Hanwoo steers were used, and the samples were chiller aged for 0 and 14 d at 4°C. After ageing, the samples were prepared into 2.5-cm steaks which were then SV cooked at 55°C for 5 h and then raised to 60°C for 1 h, and thereafter the SV-cooked the steaks were further roasted in oven for 20 min (SV+OV) or blowtorched (SV+TC) for 2 min. The cooked samples were analyzed for microbiological quality, browning index, Wanrner-Bratzler shear force (WBSF), aroma flavor compounds and sensory properties. Results The SV cooking significantly reduced the WBSF values in beef samples (p<0.05). Blowtorching after SV cooking led to a browner surface of the beef steaks (p<0.05). The samples treated with SV+OV or SV+TC exhibited higher levels of Maillard reaction-derived aroma flavor compounds such as; pyrazines and sulfur-containing compounds compared to those just SV cooked. More especially, the SV+OV− or SV+TC− treated samples presented significantly higher flavor and overall acceptability scores compared to those just SV cooked (p<0.05). Ageing beef for 14 d significantly improved the tenderness by reducing the WBSF and increasing the tenderness scores. Conclusion Thus, the combination of postmortem ageing and SV cooking followed by additional treatments (blowtorching or oven roasting) could be used to improve the eating quality especially tenderness and flavor as well as overall acceptability of low grade Hanwoo beef.
Collapse
|
89
|
Motter MM, Corva PM, Soria LA. Expression of calpastatin isoforms in three skeletal muscles of Angus steers and their association with fiber type composition and proteolytic potential. Meat Sci 2020; 171:108267. [PMID: 32745871 DOI: 10.1016/j.meatsci.2020.108267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/24/2020] [Accepted: 07/24/2020] [Indexed: 10/23/2022]
Abstract
This study aimed to evaluate the expression of calpastatin (CAST) isoforms and their potential associations with fiber type composition (%RA), calpastatin activity (CA) and myofibril fragmentation index (MFI) in three muscles with known differences in tenderness (infraspinatus, triceps brachii and semitendinosus) of Angus steers. Expression of total CAST (CAST-T) and CAST isoforms I, II, III (2-3) and III (2-4) (including or not exon 3) was evaluated by qRT-PCR. CAST expression and CA were significantly higher and MFI was lower in semitendinosus, the muscle with the highest %RA of IIX fibers. Differential expression of isoforms defined the variability in CAST-T among muscles. Semitendinosus had a higher expression of isoforms II and III (2-3), but lower expression of III (2-4) compared to the other two muscles. Relative expression of isoforms II and III that were defined by promoter preference linked to alternative splicing, seem to be the main factors explaining differences in CAST expression and ultimately in MFI among muscles.
Collapse
Affiliation(s)
- Mariana M Motter
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Cátedra de Genética, Chorroarín 280 (1427), Buenos Aires, Argentina
| | - Pablo M Corva
- Universidad Nacional de Mar del Plata, Facultad de Ciencias Agrarias, Unidad Integrada Balcarce, Departamento de Producción Animal, CC276 (CP7620) Balcarce, Argentina
| | - Liliana A Soria
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Cátedra de Genética, Chorroarín 280 (1427), Buenos Aires, Argentina.
| |
Collapse
|
90
|
Influence of proteolytic enzyme treatment on the changes in volatile compounds and odors of beef longissimus dorsi. Food Chem 2020; 333:127549. [PMID: 32683266 DOI: 10.1016/j.foodchem.2020.127549] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/07/2020] [Accepted: 07/07/2020] [Indexed: 12/13/2022]
Abstract
Enzymatic tenderization is extensively applied in the meat industry, whereas its influence on meat flavor has seldom been evaluated. Proteinase K, papain, bromelain and Flavourzyme® were used to treat beef muscle, and the changes in volatile compounds and odors were subsequently analyzed. Proteolysis by proteinase K was found to elevate the average bitterness of the identified peptides by generating peptides with high Q values, whereas proteolysis by papain generated the highest level of amino acids. Enzymatic treatment by Flavourzyme and bromelain significantly elevated the levels of ketones and odors, whereas excessive proteolysis by papain and proteinase K largely reduced the levels of esters and aldehydes. The level of amino acids and degree of hydrolysis were found to be predominant factors that regulated the level of volatiles and odors. These results highlighted the huge influence of enzymatic tenderization on meat flavor, depending on degree of hydrolysis and cleavage pattern of applied proteases.
Collapse
|
91
|
Antonelo D, Gómez JFM, Cônsolo NRB, Beline M, Colnago LA, Schilling W, Zhang X, Suman SP, Gerrard DE, Balieiro JC, Silva SL. Metabolites and Metabolic Pathways Correlated With Beef Tenderness. MEAT AND MUSCLE BIOLOGY 2020. [DOI: 10.22175/mmb.10854] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Metabolite profile has been used to understand the causes of variability in beef tenderness, but still little is known about how metabolites contribute to beef quality. Therefore, this study was carried out to evaluate how meat metabolites and their metabolic pathways correlate to variability in beef tenderness. Carcasses from 60 noncastrated male cattle were selected, and three 2.5-cm-thick longissimus thoracis steaks were obtained and aged (0°C to 4°C) for 7d. Warner-Bratzler shear force (WBSF) was performed (steak 1). Based on WBSF data, 2 tenderness classes (n = 30; 15 per class [tender and tough]) were created to perform sarcomere length (steak 2) and metabolom ic analysis (steak 3). Meat ultimate pH did not differ between tenderness classes. However, steaks classified as tender had greater sarcomere length (P = 0.019) than those classified as tough. Acetyl-carnitine (P = 0.026), adenine (P = 0.026), beta-alanine (P = 0.005), fumarate (P = 0.022), glutamine (P = 0.043), and valine (P = 0.030) concentration were higher in tender beef compared with tough beef. The 4 most important compounds differing between tender and tough beef were lactate, glucose, creatine, and glutamine, which may indicate that metabolic pathways such as D-glutamine and D-glutamate metabolism, beta-alanine metabolism, purine metabolism, and tricarboxylic acid cycle affected the tenderness classes. Beta-alanine (r = − 0.45), acetyl-carnitine (r = − 0.40), fumarate (r = − 0.38), valine (r = − 0.34), glucose (r = − 0.32), glutamine (r = − 0.31), and adenine (r = −0.31) were negatively correlated with WBSF values. Metabolite profile in tender beef indicated a greater oxidative metabolism, which promoted modifications in the muscle structure and proteolysis, favoring its tenderization.
Collapse
Affiliation(s)
| | | | | | | | | | - Wes Schilling
- Mississippi State University Department of Food Science, Nutrition and Health Promotion
| | | | | | | | | | | |
Collapse
|
92
|
Xiao X, Hou C, Zhang D, Li X, Ren C, Ijaz M, Hussain Z, Liu D. Effect of pre- and post-rigor on texture, flavor, heterocyclic aromatic amines and sensory evaluation of roasted lamb. Meat Sci 2020; 169:108220. [PMID: 32590278 DOI: 10.1016/j.meatsci.2020.108220] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 02/01/2020] [Accepted: 06/09/2020] [Indexed: 10/24/2022]
Abstract
This study investigated the variation in texture, flavor, heterocyclic aromatic amines (HAAs) and sensory evaluation of pre- and post-rigor roasted lamb. Topside muscles were collected from twenty-eight lamb carcasses at 1 h, 6 h, 12 h, 1 d, 3 d, 5 d and 7 d postmortem and then roasted at 180 °C for 8 min. According to the pH and shear force (SF) values, the lamb muscles at 1-12 h, 1 d and 3-7 days postmortem were considered to be in the phases of pre-rigor, rigor and post-rigor, respectively. Pre-rigor roasted lamb showed a lower roasting loss, while the post-rigor roasted lamb showed a lower SF value. Higher concentrations of total volatile compounds were found at 3 days postmortem. The total contents of HAAs were significantly lower in pre-rigor roasted lamb compared to the post-rigor roasted lamb (P < .05). Overall, it was concluded that both pre- and post-rigor "roasted lamb" have their own special properties.
Collapse
Affiliation(s)
- Xiong Xiao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, Jinzhou 121013, China
| | - Chengli Hou
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Dequan Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| | - Xin Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Chi Ren
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Muawuz Ijaz
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Zubair Hussain
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Dengyong Liu
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, Jinzhou 121013, China
| |
Collapse
|
93
|
Safety evaluation of collagenase from Streptomyces violaceoruber. Regul Toxicol Pharmacol 2020; 113:104645. [DOI: 10.1016/j.yrtph.2020.104645] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 02/28/2020] [Accepted: 03/15/2020] [Indexed: 11/18/2022]
|
94
|
Effects of Feeding and Maturation System on Qualitative Characteristics of Buffalo Meat ( Bubalus bubalis). Animals (Basel) 2020; 10:ani10050899. [PMID: 32455847 PMCID: PMC7278378 DOI: 10.3390/ani10050899] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/13/2020] [Accepted: 05/19/2020] [Indexed: 11/17/2022] Open
Abstract
We aimed to evaluate the effects of post dry ageing (PDA) period on meat colour and rheological characteristics in 16 buffalo bulls fed two different diets: with (FRS) or without (CTL) rye grass. Animals were randomly divided into two feeding groups and slaughtered at 540 ± 4.7 and 533 ± 7.0 kg of live body weight, respectively, for the CTL and FRS group. After five days post-mortem ageing (T0), Semitendinosus muscle (ST) and Longissimus muscle (LD) underwent a prolonged maturation process in a controlled meat chamber for 30 days (ST) and until 60 days (LD). After 30 days (T1), significant changes (p < 0.01) in meat colour (ΔE) in both muscles of the FRS group was recorded, while no significant change was observed in CTL group. The FRS diet had a positive effect on textural properties of ST muscle compared to CTL diet, as well as hardness, chewiness and gumminess. All qualitative characteristics improved in the first period of PDA but, whereas LD showed to keep improving, extending the post-ageing period by further 30 days, the ST becomes un-processable at 60 days. In conclusion, a combined used of fresh feeding and PDA period could enhance both tenderness and colour in animal fed FSR.
Collapse
|
95
|
Ahmad MN, Shuhaimen MS, Normaya E, Omar MN, Iqbal A, Ku Bulat KH. The applicability of using a protease extracted from cashew fruits (Anacardium occidentale), as possible meat tenderizer: An experimental design approach. J Texture Stud 2020; 51:810-829. [PMID: 32401337 DOI: 10.1111/jtxs.12529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 11/28/2022]
Abstract
Meat tenderness is one of the most important organoleptic properties in determining consumer acceptance in meat product marketability. Therefore, an effective meat tenderization method is sought after by exploring plant-derived proteolytic enzymes as meat tenderizer. In this study, a novel protease from Cashew was identified as a new alternative halal meat tenderizer. The extraction of cashew protease was optimized using response surface methodology (R2 = 0.9803) by varying pH, CaCl2 concentration, mixing time, and mass. pH 6.34, 7.92 mM CaCl2 concentration, 5.51 min mixing time, and 19.24 g sample mass were the optimal extraction conditions. There was no significant difference (n = 3; p < 0.05) between the calculated (6.302 units/ml) and experimental (6.493 ± 0.229 units/ml) protease activity. The ascending order of the effects was pH < mixing time < CaCl2 < sample mass. In meat tenderizing application, the meat samples treated with 9% (v/w) crude protease extract obtained the lowest shear force (1.38 ± 0.25 N) to cause deformation on the meat. An electrophoretic analysis showed that protein bands above ~49.8 kDa were completely degraded into protein bands below ~22.4 kDa. Scanning electron microscopy shows the disruption of the muscle fibers after being treated by the Cashew protease. The results of this study show the Cashew (Anacardium occidentale) crude extract can be used as an alternative of the animal and microbial protease as meat tenderizer and subsequently overcome the shortcoming of the halal industrial protease.
Collapse
Affiliation(s)
- Mohammad Norazmi Ahmad
- Experimental and Theoretical Research Laboratory, Department of Chemistry, Kulliyah of Science, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - Muhammad Shahrain Shuhaimen
- Experimental and Theoretical Research Laboratory, Department of Chemistry, Kulliyah of Science, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - Erna Normaya
- Experimental and Theoretical Research Laboratory, Department of Chemistry, Kulliyah of Science, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - Muhammad Nor Omar
- Department of Biotechnology, Kulliyah of Science, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - Anwar Iqbal
- School of Chemical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Ku Halim Ku Bulat
- Department of Chemistry, Faculty of Science, University Malaysia Terengganu, Terengganu, Malaysia
| |
Collapse
|
96
|
Protein degradation and structure changes of beef muscle during superchilled storage. Meat Sci 2020; 168:108180. [PMID: 32447186 DOI: 10.1016/j.meatsci.2020.108180] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/07/2020] [Accepted: 05/04/2020] [Indexed: 12/30/2022]
Abstract
This study investigated the effect of superchilled storage (-4 °C) on protein degradation and structural changes of beef steaks from M. longissimus lumborum compared with traditional chilling (2 °C) and frozen storage (-18 °C). Traditional chilling induced significantly greater degradation of troponin T and desmin, and more rapid loss of calpain activity, compared to superchilled or frozen storage treatments. The proteolysis of key myofibrillar proteins resulted in a sharp decline of WBSF values during traditional chilled storage. For frozen beef samples, no major changes were observed with respect to protein degradation or muscle structure during storage. However, superchilled samples exhibited wider gaps between muscle fibers at 12 weeks storage, associated with muscle fiber shrinkage.
Collapse
|
97
|
Jiang X, Rao Q, Mittl K, Hsieh YHP. Monoclonal antibody-based sandwich ELISA for the detection of mammalian meats. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.107045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
98
|
Nam OS, Park I. Palatability and hygiene characteristics of dry‐aged pork and optimisation of dry ageing period. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Oh Seong Nam
- Division of Food and Culinary Arts Youngsan University 142 Bansong Beltway Busan 48015 Korea
| | - Inmyoung Park
- Division of Food and Culinary Arts Youngsan University 142 Bansong Beltway Busan 48015 Korea
- Department of Oriental Food and Culinary Arts Youngsan University 142 Bansong Beltway Busan 48015 Korea
| |
Collapse
|
99
|
Tayengwa T, Chikwanha OC, Dugan ME, Mutsvangwa T, Mapiye C. Influence of feeding fruit by-products as alternative dietary fibre sources to wheat bran on beef production and quality of Angus steers. Meat Sci 2020; 161:107969. [DOI: 10.1016/j.meatsci.2019.107969] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 12/14/2022]
|
100
|
Liang Y, Bao Y, Gao X, Deng K, An S, Wang Z, Huang X, Liu D, Liu Z, Wang F, Fan Y. Effects of spirulina supplementation on lipid metabolism disorder, oxidative stress caused by high-energy dietary in Hu sheep. Meat Sci 2020; 164:108094. [PMID: 32146297 DOI: 10.1016/j.meatsci.2020.108094] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/22/2020] [Accepted: 02/24/2020] [Indexed: 12/21/2022]
Abstract
The aim of this study was to investigate the effect of spirulina supplementation in a high-energy (HE) diet on lipid metabolism, oxidative status and immunity in Hu lambs. The lambs were assigned to two groups receiving either a standard diet (ST) or a HE diet. Each group was divided into three subgroups: no spirulina supplementation (control), 1% spirulina supplementation, or 3% spirulina supplementation. The body fat, serum cholesterol, triacylglycerol and oxidative stress increased in lambs fed the HE diet. However, 3% spirulina supplementation in the HE diet reduced above parameters and enhanced antioxidant capacity, including increased SOD activity and T-AOC content in serum and Longissimus thoracis et lumborum (LTL). Additionally, lambs receiving 3% spirulina supplementation showed an improvement in immunity-related parameters, including increased IgG concentration in serum and red and white blood cell counts. In conclusion, 3% spirulina supplementation in HE diet ameliorated lipid metabolic disorder and oxidative stress caused by a HE diet.
Collapse
Affiliation(s)
- Yaxu Liang
- Institute of Goats and Sheep Science, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu 210095, PR China
| | - Yongjin Bao
- Institute of Goats and Sheep Science, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu 210095, PR China
| | - Xiaoxiao Gao
- Institute of Goats and Sheep Science, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu 210095, PR China
| | - Kaiping Deng
- Institute of Goats and Sheep Science, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu 210095, PR China
| | - Shiyu An
- Institute of Goats and Sheep Science, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu 210095, PR China
| | - Zhibo Wang
- Institute of Goats and Sheep Science, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu 210095, PR China
| | - Xinai Huang
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou 225300, PR China
| | - Dong Liu
- Inner Mongolia Caolv Agricultural Science and Technology Development Co., Ltd, Ordos, Inner Mongolia 016100, PR China
| | - Zhinan Liu
- Inner Mongolia Caolv Agricultural Science and Technology Development Co., Ltd, Ordos, Inner Mongolia 016100, PR China
| | - Feng Wang
- Institute of Goats and Sheep Science, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu 210095, PR China.
| | - Yixuan Fan
- Institute of Goats and Sheep Science, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu 210095, PR China.
| |
Collapse
|