51
|
Sierra V, González-Blanco L, Diñeiro Y, Díaz F, García-Espina MJ, Coto-Montes A, Gagaoua M, Oliván M. New Insights on the Impact of Cattle Handling on Post-Mortem Myofibrillar Muscle Proteome and Meat Tenderization. Foods 2021; 10:3115. [PMID: 34945666 PMCID: PMC8700955 DOI: 10.3390/foods10123115] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/03/2021] [Accepted: 12/13/2021] [Indexed: 12/20/2022] Open
Abstract
This study investigated the effect of different cattle management strategies at farm (Intensive vs. Extensive) and during transport and lairage (mixing vs. non-mixing with unfamiliar animals) on the myofibrillar subproteome of Longissimus thoracis et lumborum (LTL) muscle of "Asturiana de los Valles" yearling bulls. It further aimed to study the relationships with beef quality traits including pH, color, and tenderness evaluated by Warner-Bratzler shear force (WBSF). Thus, comparative proteomics of the myofibrillar fraction along meat maturation (from 2 h to 14 days post-mortem) and different quality traits were analyzed. A total of 23 protein fragments corresponding to 21 unique proteins showed significant differences among the treatments (p < 0.05) due to any of the factors considered (Farm, Transport and Lairage, and post-mortem time ageing). The proteins belong to several biological pathways including three structural proteins (MYBPC2, TNNT3, and MYL1) and one metabolic enzyme (ALDOA) that were affected by both Farm and Transport/Lairage factors. ACTA1, LDB3, and FHL2 were affected by Farm factors, while TNNI2 and MYLPF (structural proteins), PKM (metabolic enzyme), and HSPB1 (small Heat shock protein) were affected by Transport/Lairage factors. Several correlations were found between the changing proteins (PKM, ALDOA, TNNI2, TNNT3, ACTA1, MYL1, and CRYAB) and color and tenderness beef quality traits, indicating their importance in the determination of meat quality and their possible use as putative biomarkers.
Collapse
Affiliation(s)
- Verónica Sierra
- Área de Sistemas de Producción Animal, Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Ctra. AS-267, PK 19, 33300 Villaviciosa, Spain; (V.S.); (L.G.-B.); (Y.D.); (F.D.); (M.J.G.-E.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario, s/n, 33011 Oviedo, Spain;
| | - Laura González-Blanco
- Área de Sistemas de Producción Animal, Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Ctra. AS-267, PK 19, 33300 Villaviciosa, Spain; (V.S.); (L.G.-B.); (Y.D.); (F.D.); (M.J.G.-E.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario, s/n, 33011 Oviedo, Spain;
| | - Yolanda Diñeiro
- Área de Sistemas de Producción Animal, Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Ctra. AS-267, PK 19, 33300 Villaviciosa, Spain; (V.S.); (L.G.-B.); (Y.D.); (F.D.); (M.J.G.-E.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario, s/n, 33011 Oviedo, Spain;
| | - Fernando Díaz
- Área de Sistemas de Producción Animal, Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Ctra. AS-267, PK 19, 33300 Villaviciosa, Spain; (V.S.); (L.G.-B.); (Y.D.); (F.D.); (M.J.G.-E.)
| | - María Josefa García-Espina
- Área de Sistemas de Producción Animal, Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Ctra. AS-267, PK 19, 33300 Villaviciosa, Spain; (V.S.); (L.G.-B.); (Y.D.); (F.D.); (M.J.G.-E.)
| | - Ana Coto-Montes
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario, s/n, 33011 Oviedo, Spain;
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, Av. Julián Clavería, 6, 33006 Oviedo, Spain
| | - Mohammed Gagaoua
- Food Quality and Sensory Science Department, Teagasc Food Research Centre, Dublin 15, D15 KN3K Ashtown, Ireland
| | - Mamen Oliván
- Área de Sistemas de Producción Animal, Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Ctra. AS-267, PK 19, 33300 Villaviciosa, Spain; (V.S.); (L.G.-B.); (Y.D.); (F.D.); (M.J.G.-E.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario, s/n, 33011 Oviedo, Spain;
| |
Collapse
|
52
|
Hoa VB, Song DH, Seol KH, Kang SM, Kim HW, Kim JH, Cho SH. Coating with chitosan containing lauric acid (C12:0) significantly extends the shelf-life of aerobically - Packaged beef steaks during refrigerated storage. Meat Sci 2021; 184:108696. [PMID: 34741876 DOI: 10.1016/j.meatsci.2021.108696] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 12/20/2022]
Abstract
The present research aimed at investigating the application potential of a newly developed chitosan/lauric acid edible coating in preservation of fresh beef under refrigerated storage and aerobic packaging conditions. The 2-cm thick steaks were coated with 2% chitosan (CHI), 1 mM lauric acid in 2% chitosan (CHI/1 mM LA) or 3 mM lauric acid in 2% chitosan (CHI/3 mM LA), and over-wrapped in permeable film. Non-coated samples were used as a control (CON). Results showed that the inhibitory effects against the spoilage bacteria growth, volatile basic nitrogen formation and lipid oxidation of the chitosan coating was increased with the incorporation of lauric acid (p˂0.05). More importantly, the incorporation of lauric acid almost completely protected the meat samples against the discoloration after 21 days of storage. The coating with chitosan or chitosan/lauric acid completely inhibited the formation of bacterial spoilage-derived volatile compounds. Overall, coating of chitosan containing 1-3 mM lauric acid could be a promising method in preservation of fresh beef to improve safety and quality under aerobic packaging condition.
Collapse
Affiliation(s)
- Van-Ba Hoa
- Animal Products Utilization Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Dong-Heon Song
- Animal Products Utilization Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Kuk-Hwan Seol
- Animal Products Utilization Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Sun-Moon Kang
- Animal Products Utilization Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Hyun-Wook Kim
- Animal Products Utilization Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Jin-Hyoung Kim
- Animal Products Utilization Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Soo-Hyun Cho
- Animal Products Utilization Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea.
| |
Collapse
|
53
|
Cossa MDAV, Bilck AP, Yamashita F, Mitterer‐Daltoé ML. Biodegradable packaging as a suitable protectant for the conservation of frozen pacu (
Piaractus mesopotamicus
) for 360 days of storage at −18°C. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.16133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
54
|
Effect of varying salt concentration on iridescence in precooked pork meat. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03850-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractThe objective of this study was to investigate the effect of salt concentration on meat iridescence in cured cooked pork products. In addition, the influence of nitrite and pigmentary color on iridescence and its visual macroscopic perception was ascertained. Sample cubes from the pigs M. longissimus thoracis et lumborum were salted with either NaCl (20 g/kg, 40 g/kg) or nitrite curing salt (6 g/kg, 20 g/kg, and 40 g/kg) and subsequently cooked. Control samples were not salted. The effects of NaCl and curing salt on iridescence, instrumental color and microstructure were evaluated. Salt treatment significantly (p < 0.05) increased water-holding capacity, mean myofibers diameters and iridescence and reduced light scattering (L* value). An iridescence limit was reached with the 20 g/kg salt treatments. No differences between sodium chloride and nitrite curing salt were observed for both visual evaluation and colorimetry of the interference colors. Iridescence increases were attributed to a swelling of the myofilament lattice and thus reduction of intermyofibrillar spaces as well as an optical clearing of the myofibrils by dissolution of myofibrillar proteins that both reduce light scattering and allow more reflectance and interference to occur.
Graphic abstract
Collapse
|
55
|
|
56
|
Zhou PC, Xie J. Effect of different thawing methods on the quality of mackerel ( Pneumatophorus japonicus). Food Sci Biotechnol 2021; 30:1213-1223. [PMID: 34594587 PMCID: PMC8423891 DOI: 10.1007/s10068-021-00966-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 08/03/2021] [Accepted: 08/08/2021] [Indexed: 12/02/2022] Open
Abstract
Five thawing methods such as flow water thawing, ultrasonic flowing water thawing, air thawing, microwave thawing and low temperature thawing were used, and the physical, chemical properties and structure of mackerels after thawing were assessed. The results showed that the low temperature thawing had the best water retention, lower protein and fat oxidation. The microwave thawing had the shortest thawing time, but uneven heating leads to partial maturation. Air thawing prolonged exposure to air leads to high levels of protein and fat oxidation. The flow water thawing had better water retention than that of the ultrasonic flowing water thawing, only the thawing time was slightly longer than that of the ultrasonic flowing water thawing. In general, the low temperature thawing performed well after thawing. The flow water thawing used only 1/43 of the low temperature thawing's elapsed time after sacrificing some acceptable qualities. Thus, flow water thawing is more suitable for thawing frozen mackerel.
Collapse
Affiliation(s)
- Peng-cheng Zhou
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306 China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, 201306 China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306 China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai, 201306 China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, 201306 China
| |
Collapse
|
57
|
Gagaoua M, Warner RD, Purslow P, Ramanathan R, Mullen AM, López-Pedrouso M, Franco D, Lorenzo JM, Tomasevic I, Picard B, Troy D, Terlouw EMC. Dark-cutting beef: A brief review and an integromics meta-analysis at the proteome level to decipher the underlying pathways. Meat Sci 2021; 181:108611. [PMID: 34157500 DOI: 10.1016/j.meatsci.2021.108611] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/07/2021] [Accepted: 06/14/2021] [Indexed: 01/06/2023]
Abstract
Comprehensive characterization of the post-mortem muscle proteome defines a fundamental goal in meat proteomics. During the last decade, proteomics tools have been applied in the field of foodomics to help decipher factors underpinning meat quality variations and to enlighten us, through data-driven methods, on the underlying mechanisms leading to meat quality defects such as dark-cutting meat known also as dark, firm and dry (DFD) meat. In cattle, several proteomics studies have focused on the extent to which changes in the post-mortem muscle proteome relate to dark-cutting beef development. The present data-mining study firstly reviews proteomics studies which investigated dark-cutting beef, and secondly, gathers the protein biomarkers that differ between dark-cutting versus beef with normal-pH in a unique repertoire. A list of 130 proteins from eight eligible studies was curated and mined through bioinformatics for Gene Ontology annotations, molecular pathways enrichments, secretome analysis and biological pathways comparisons to normal beef color from a previous meta-analysis. The major biological pathways underpinning dark-cutting beef at the proteome level have been described and deeply discussed in this integromics study.
Collapse
Affiliation(s)
- Mohammed Gagaoua
- Food Quality and Sensory Science Department, Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland.
| | - Robyn D Warner
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Peter Purslow
- Centro de Investigacion Veterinaria de Tandil (CIVETAN), Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil B7001BBO, Argentina
| | - Ranjith Ramanathan
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Anne Maria Mullen
- Food Quality and Sensory Science Department, Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland
| | - Maria López-Pedrouso
- Department of Zoology, Genetics and Physical Anthropology, University of Santiago de Compostela, 15872 Santiago de Compostela, Spain
| | - Daniel Franco
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas 32900, Ourense, Spain
| | - José M Lorenzo
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas 32900, Ourense, Spain; Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
| | - Igor Tomasevic
- University of Belgrade, Faculty of Agriculture, Nemanjina 6, 11080, Belgrade, Serbia
| | - Brigitte Picard
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France
| | - Declan Troy
- Food Quality and Sensory Science Department, Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland
| | - E M Claudia Terlouw
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France
| |
Collapse
|
58
|
Estévez M. Critical overview of the use of plant antioxidants in the meat industry: Opportunities, innovative applications and future perspectives. Meat Sci 2021; 181:108610. [PMID: 34147961 DOI: 10.1016/j.meatsci.2021.108610] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/08/2021] [Accepted: 06/14/2021] [Indexed: 12/19/2022]
Abstract
The number of articles devoted to study the effect of "natural antioxidants" on meat systems has remarkably increased in the last 10 years. Yet, a critical review of literature reveals recurrent flaws in regards to the rationale of the application, the experimental design, the characterisation of the plant sources, the discussion of the molecular mechanisms and of the potential benefits. The selection of the appropriate source of these antioxidants and the identification of their bioactive constituents, are essential to understand their mode of action and set effective and safe doses. The methodological approach should also be planned with care as the recorded effects and main conclusions largely depend on the accuracy and specificity of the methods. This article aims to critically review the recent advances in the application of plant antioxidants in meat and meat products and briefly covers current trends of innovative application and future trends.
Collapse
Affiliation(s)
- M Estévez
- Meat and Meat Products Research Institute (IPROCAR), Food Technology, University of Extremadura, 10003 Cáceres, Spain.
| |
Collapse
|
59
|
Lan M, Li L, Peng X, Chen J, Cao Q, He N, Cai J, Li B, Zhang X. Effects of different lipids on the physicochemical properties and microstructure of pale, soft and exudative (PSE)-like chicken meat gel. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111284] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
60
|
Xue G, Cheng S, Yin J, Zhang R, Su Y, Li X, Li J, Bao J. Influence of pre-slaughter fasting time on weight loss, meat quality and carcass contamination in broilers. Anim Biosci 2021; 34:1070-1077. [PMID: 33171031 PMCID: PMC8100496 DOI: 10.5713/ajas.20.0560] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/01/2020] [Indexed: 11/29/2022] Open
Abstract
Objective An experiment was conducted to determine the appropriate fasting time prior to slaughter for broilers in floor-feed and scatter-feed mode. Methods On 21 d since hatching, 120 Arbor Acres broilers were divided into floor-feed and scatter-feed groups, chicks from each group were further assigned to feed withdrawal treatments for 0, 4, 6, 8, and 10 h. Some resultant indicators such as carcass contamination, body weight loss, meat quality of 54-day-old broilers were measured. Results It appears that longer feed withdrawal increased weight loss, lightness, drop loss of meat but reduced pH. A significant higher weight loss and lightness for both floor-feed and scatter-feed chicks coincided after 6 to 10 h feed withdrawal (p<0.05). pH for breast muscle at 45 min postmortem reduced when chicks of scatter-feed were fasted 6 and 10 h, while the reduction of floor-feed group occurred only in 10 h (p<0.05). A noticeable effect of feed withdrawal on drop loss occurred after 10 h fasting in scatter-feed of which drop loss were significantly higher than that for other groups including control (p<0.05). The change of contamination propensity revealed that 6 to 10 h fasting significantly reduced the likelihood of carcass contamination under both floor-feed and scatter-feed (p<0.05). Net weights of intestinal contents for gizzard were significantly reduced after feed deprived for 10 h in floor-feed and 6 and 10 h in scatter-feed (p<0.05). The decrease for whole intestine occurred after floor-feed broilers have been without feed for more than 4 h, scatter-feed broilers for more than 8 h (p<0.05). Conclusion On the premise that poultry product properties and welfare were not significantly damaged, proper fasting time could reduce carcass contamination. Current data implied that 6 h fasting was recommendable for both floor and scatter feed pre-slaughter broilers.
Collapse
|
61
|
Jiang J, Wang H, Guo X, Wang X. Effect of radio frequency tempering on the color of frozen tilapia fillets. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.110897] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
62
|
Wang W, Wen C, Guo Q, Li J, He S, Yin Y. Dietary Supplementation With Chlorogenic Acid Derived From Lonicera macranthoides Hand-Mazz Improves Meat Quality and Muscle Fiber Characteristics of Finishing Pigs via Enhancement of Antioxidant Capacity. Front Physiol 2021; 12:650084. [PMID: 33959038 PMCID: PMC8096064 DOI: 10.3389/fphys.2021.650084] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/22/2021] [Indexed: 11/17/2022] Open
Abstract
Chlorogenic acid (CGA), one of the most abundant polyphenol compounds in nature, is regarded as a potential feed additive to promote animal health and enhance the meat products’ quality via its various biological properties. The current study aims: (1) to determine whether dietary CGA supplementation improves meat quality and muscle fiber characteristics, and (2) to ascertain whether the corresponding improvement is associated with enhancing the antioxidant capacity of the finishing pigs. Thirty-two (Large × White × Landrace) finishing pigs with an average initial body weight of 71.89 ± 0.92 kg were allotted to 4 groups, and each was fed diets supplemented with 0, 0.02, 0.04, or 0.08% (weight/weight) of CGA. The meat quality traits, muscle fiber characteristics, and the serum and muscle antioxidant capacity were assessed. Results suggested that, compared with the control group, dietary CGA supplementation at a level of 0.04% significantly decreased the b∗ value and distinctly increased the inosinic acid content of longissimus dorsi (LD) and biceps femoris (BF) muscles (P < 0.01). Moreover, dietary supplementation with 0.04% of CGA markedly improved the amino acid composition of LD and BF muscles, as well as augmented the mRNA abundance of Nrf-2, GPX-1, MyoD, MyoG, and oxidative muscle fiber (I and IIa) in LD muscle (P < 0.05). This result indicates that a diet supplemented with 0.04% of CGA promotes myogenesis and induces a transformation toward more oxidative muscle fibers in LD muscle, subsequently improving meat quality. Besides, dietary supplementation with 0.02% and 0.04% of CGA notably enhanced the serum GSH-PX level (P < 0.01). Considering all these effects are closely related to the alteration of antioxidant activities of the finishing pigs, the underlying metabolism is likely connected to the boosting of their antioxidant capacity induced by dietary CGA.
Collapse
Affiliation(s)
- Wenlong Wang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, School of Life Sciences, Hunan Normal University, Changsha, China.,National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Chaoyue Wen
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, School of Life Sciences, Hunan Normal University, Changsha, China.,National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Qiuping Guo
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jianzhong Li
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, School of Life Sciences, Hunan Normal University, Changsha, China
| | - Shanping He
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, School of Life Sciences, Hunan Normal University, Changsha, China
| | - Yulong Yin
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, School of Life Sciences, Hunan Normal University, Changsha, China.,National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
63
|
Buhler JF, Dang DS, Stafford CD, Keele NE, Esco AN, Thornton KJ, Cornforth DP, Matarneh SK. Injection of iodoacetic acid into pre-rigor bovine muscle simulates dark cutting conditions. Meat Sci 2021; 176:108486. [PMID: 33711679 DOI: 10.1016/j.meatsci.2021.108486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 02/18/2021] [Accepted: 03/01/2021] [Indexed: 12/01/2022]
Abstract
The purpose of this study was to develop an in situ model for dark cutting beef. Iodoacetic acid (IAA) was injected at different concentrations (0, 0.625, 1.25, 2.5, 3.75, 5, or 10 μmol/g of muscle) into pre-rigor bovine longissimus thoracis et lumborum (LTL) muscle samples, and pH and color were evaluated over a 48 h period. Injection of IAA blunted muscle pH decline and lowered lightness (L*), redness (a*), and yellowness (b*) values (P ≤ 0.05) in a concentration dependent fashion. In a follow-up study, LTL muscle samples were injected with 5 μmol IAA/g of muscle to test whether IAA maintains its effect over a 336 h post-mortem storage period. In addition to inhibiting pH decline and decreasing color values, IAA increased LTL muscle water holding capacity (WHC) and firmness (P ≤ 0.05) throughout the 336 h post-mortem storage period. Collectively, these data suggest that pre-rigor injection of IAA generates beef with dark cutting-like characteristics.
Collapse
Affiliation(s)
- Jared F Buhler
- Department of Nutrition, Dietetics and Food Sciences, Utah State University, Logan, UT 84322, United States
| | - David S Dang
- Department of Nutrition, Dietetics and Food Sciences, Utah State University, Logan, UT 84322, United States
| | - Chandler D Stafford
- Department of Nutrition, Dietetics and Food Sciences, Utah State University, Logan, UT 84322, United States
| | - Natalie E Keele
- Department of Nutrition, Dietetics and Food Sciences, Utah State University, Logan, UT 84322, United States
| | - Abigail N Esco
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT 84322, United States
| | - Kara J Thornton
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT 84322, United States
| | - Daren P Cornforth
- Department of Nutrition, Dietetics and Food Sciences, Utah State University, Logan, UT 84322, United States
| | - Sulaiman K Matarneh
- Department of Nutrition, Dietetics and Food Sciences, Utah State University, Logan, UT 84322, United States.
| |
Collapse
|
64
|
Weng K, Huo W, Gu T, Bao Q, Hou LE, Zhang Y, Zhang Y, Xu Q, Chen G. Effects of marketable ages on meat quality through fiber characteristics in the goose. Poult Sci 2020; 100:728-737. [PMID: 33518126 PMCID: PMC7858183 DOI: 10.1016/j.psj.2020.11.053] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/15/2020] [Accepted: 11/23/2020] [Indexed: 11/18/2022] Open
Abstract
Goose meat is increasingly popular among consumers because of its good quality. The fiber characteristics have been well demonstrated to be key contributing factors of meat quality, and the marketable ages are also closely related to meat quality. However, little is known about the effect of different marketable ages on the quality of goose meat through its fiber characteristics. Here, fiber characteristics of Yangzhou geese of different marketable ages (70, 90, and 120 d) and their effect on meat quality were investigated. The results showed that only fast-twitch fibers were present in breast muscle, irrespective of age, and that few slow-twitch fibers could be identified in leg muscle, especially in gastrocnemius and extensor digitorum longus. Fiber diameter in breast muscle increased rapidly from age 70 d to 90 d, from 19.88 to 26.27 μm, and remained stable for 90 d thereafter. The diameter and cross-sectional area of muscle fiber continue to grow with day increasing in leg muscle. In addition, we measured the proximate composition and physical properties at different ages. Among the 3 marketable ages investigated, the 120-day-old geese had higher intramuscular fat and protein content, as well as lower moisture content, both in breast and leg meat. Greater lightness and pressing loss, with lower redness and shear force, were observed in the breast and leg meat of 70-day-old geese when compared with 90- or 120-day-old geese. Taken together, although older marketable age hardly affected muscle fiber type in geese, it would contribute to larger muscle fiber area, higher intramuscular fat and protein content, as well as redder and chewier meat. As a result, the reasonable marketable age should be taken into account to improve quality in goose meat production, and the marketable age of 90 or 120 d was recommended and it could potentially improve meat quality in goose meat production.
Collapse
Affiliation(s)
- Kaiqi Weng
- Jiangsu Key Laboratory For Animal Genetic, Breeding and Molecular Design, Yangzhou University, Yangzhou, Jiangsu, China
| | - Weiran Huo
- Jiangsu Key Laboratory For Animal Genetic, Breeding and Molecular Design, Yangzhou University, Yangzhou, Jiangsu, China
| | - Tiantian Gu
- Jiangsu Key Laboratory For Animal Genetic, Breeding and Molecular Design, Yangzhou University, Yangzhou, Jiangsu, China
| | - Qiang Bao
- Jiangsu Key Laboratory For Animal Genetic, Breeding and Molecular Design, Yangzhou University, Yangzhou, Jiangsu, China
| | - Li-E Hou
- Jiangsu Key Laboratory For Animal Genetic, Breeding and Molecular Design, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yu Zhang
- Jiangsu Key Laboratory For Animal Genetic, Breeding and Molecular Design, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yang Zhang
- Jiangsu Key Laboratory For Animal Genetic, Breeding and Molecular Design, Yangzhou University, Yangzhou, Jiangsu, China
| | - Qi Xu
- Jiangsu Key Laboratory For Animal Genetic, Breeding and Molecular Design, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Guohong Chen
- Jiangsu Key Laboratory For Animal Genetic, Breeding and Molecular Design, Yangzhou University, Yangzhou, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Jiangsu Yangzhou, China.
| |
Collapse
|
65
|
The Applicability of Total Color Difference ΔE for Determining the Blooming Time in Longissimus Lumborum and Semimembranosus Muscles from Holstein-Friesian Bulls at Different Ageing Times. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10228215] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study was conducted to determine the optimal blooming time in beef muscles based on ΔE, and to analyze the effects of muscle type and ageing time on beef color and blooming. Beef color was determined on freshly cut longissimus lumborum (LL, n = 8) and semimembranosus (SM, n = 8) muscles on days 1, 9, and 14 of ageing during 60 min blooming at 5 min intervals. It was found that ΔE0, representing the difference in color between freshly cut muscles and subsequently analyzed samples, supported the determination of the optimal blooming time, which varied across ageing times (15, 20, 25 min for the LL muscle, and 10, 15, 20 min for the SM muscle on days 1, 9, and 14 of ageing, respectively). Beef color was affected by both muscle type and ageing. The values of color parameters increased between days 1 and 9 of ageing. The results may have practical applications because beef should be presented to consumers and restaurant owners approximately 25 min after cutting, when its color has fully developed.
Collapse
|
66
|
Hati SRH, Zulianti I, Achyar A, Safira A. Perceptions of nutritional value, sensory appeal, and price influencing customer intention to purchase frozen beef: Evidence from Indonesia. Meat Sci 2020; 172:108306. [PMID: 33032070 DOI: 10.1016/j.meatsci.2020.108306] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 06/14/2020] [Accepted: 09/01/2020] [Indexed: 01/24/2023]
Abstract
The lack of public understanding of frozen meat encourages consumers to buy only fresh meat, which has caused imported frozen meat to remain unabsorbed by the market despite the growing demand for meat. This study aims to analyze consumer perceptions that affect the intention to purchase frozen meat, which is mediated by the attitude toward frozen meat. Several factors were tested: perceived nutritional content, perceived sensory appeal, and perceived price. The method used in this study is quantitative ̶ an online questionnaire collects data from 536 customers who are the buyers and decision-makers in buying meat in their household. Structural equation modeling (SEM) was used to analyze the data. The results of this study indicate that higher consumer perceptions of nutritional content, sensory appeal, and price lead to higher attitudes toward frozen meat and in turn, increase purchase intention.
Collapse
Affiliation(s)
| | - Ina Zulianti
- Graduate School of Management Faculty of Economics and Business Universitas, Indonesia
| | - Adrian Achyar
- Management Department Faculty of Economics and Business Universitas, Indonesia
| | - Anya Safira
- Management Department Faculty of Economics and Business Universitas, Indonesia
| |
Collapse
|
67
|
Xiong Y, Li S, Warner RD, Fang Z. Effect of oregano essential oil and resveratrol nanoemulsion loaded pectin edible coating on the preservation of pork loin in modified atmosphere packaging. Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107226] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
68
|
Ramanathan R, Hunt MC, Mancini RA, Nair MN, Denzer ML, Suman SP, Mafi GG. Recent Updates in Meat Color Research: Integrating Traditional and High-Throughput Approaches. MEAT AND MUSCLE BIOLOGY 2020. [DOI: 10.22175/mmb.9598] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Deviation from a bright cherry-red color of fresh meat results in less consumer acceptance and either discounted or discarded products in the value chain. Tissue homeostasis changes immediately after exsanguination, leading to acidification of muscle. Any alteration in pH drop can influence both muscle structure and enzymatic activity related to oxygen consumption and the redox state of myoglobin. This review focuses on both fundamental and applied approaches to under-stand the effects of pH on biochemical changes, oxygen diffusion, and its impact on meat color. Recent updates utilizing high-throughput “omics” approaches to elucidate the biochemical changes associated with high-pH meat are also dis-cussed. The fundamental aspects affecting fresh meat color are complex and highly interrelated with factors ranging from live animal production to preharvest environmental issues, muscle to meat conversion, and numerous facets along the merchandising chain of marketing meat to consumers.
Collapse
Affiliation(s)
| | - Melvin C. Hunt
- Kansas State University Department of Animal Sciences and Industry
| | | | | | - Morgan L. Denzer
- Oklahoma State University Department of Animal and Food Sciences
| | | | - Gretchen G. Mafi
- Oklahoma State University Department of Animal and Food Sciences
| |
Collapse
|
69
|
|
70
|
Picard B, Gagaoua M. Muscle Fiber Properties in Cattle and Their Relationships with Meat Qualities: An Overview. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:6021-6039. [PMID: 32374594 DOI: 10.1021/acs.jafc.0c02086] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The control of meat quality traits constitutes an important target for any farm animal production, including cattle. Therefore, better understanding of the biochemical properties that drive muscle development and final outcomes constitutes one of the main challenging topics of animal production and meat science. Accordingly, this review has focused on skeletal muscle fibers in cattle and their relationships with beef qualities. It aimed to describe the chemical and structural properties of muscle fibers as well as a comprehensive review of their contractile and metabolic characteristics during the life of the animal. The existing methods for the classification of muscle fibers were reviewed, compared, and discussed. Then, the different stages of myogenesis in cattle were defined. The main factors regulating fetal and postnatal growth and the plasticity of muscle fibers were evidenced, especially the role of myostatin growth factor and the impact of nutritional factors. This review highlights that the knowledge about muscle fibers is paramount for a better understanding of how to control the muscle properties throughout the life of the animal for better management of the final eating qualities of beef. Accordingly, the associations between bovine muscle fibers and different meat eating qualities such as tenderness, pH decline, and color traits were further presented.
Collapse
Affiliation(s)
- Brigitte Picard
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, 63122 Saint-Genès-Champanelle, France
| | - Mohammed Gagaoua
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, 63122 Saint-Genès-Champanelle, France
- Food Quality and Sensory Science Department, Teagasc Ashtown Food Research Centre, Ashtown, Dublin 15, Ireland
| |
Collapse
|
71
|
Ni C, Liu H, Liu Q, Sun Y, Pan L, Fisk ID, Liu Y. Rapid and nondestructive monitoring for the quality of Jinhua dry‐cured ham using hyperspectral imaging and chromometer. J FOOD PROCESS ENG 2020. [DOI: 10.1111/jfpe.13443] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Chendie Ni
- College of Food Science and TechnologyShanghai Ocean University Shanghai China
| | - Hai Liu
- College of Food Science and TechnologyShanghai Ocean University Shanghai China
| | - Qiang Liu
- College of Food Science and TechnologyNanjing Agricultural University Nanjing China
| | - Ye Sun
- College of Food Science and TechnologyNanjing Agricultural University Nanjing China
| | - Leiqing Pan
- College of Food Science and TechnologyNanjing Agricultural University Nanjing China
| | - Ian Denis Fisk
- Division of Food SciencesUniversity of Nottingham Loughborough UK
| | - Yuan Liu
- Department of Food Science & TechnologyShanghai Jiao Tong University Shanghai China
- Shanghai Engineering Research Center of Food Safety Shanghai China
| |
Collapse
|